mirror of
https://github.com/walterschell/Lua.git
synced 2024-11-22 05:04:35 +00:00
commit
442f9d544a
@ -1,5 +1,5 @@
|
||||
cmake_minimum_required(VERSION 3.1)
|
||||
project(lua LANGUAGES C VERSION 5.4.0)
|
||||
project(lua LANGUAGES C VERSION 5.4.2)
|
||||
|
||||
option(LUA_SUPPORT_DL "Support dynamic loading of compiled modules" OFF)
|
||||
|
||||
@ -18,4 +18,4 @@ else()
|
||||
endif()
|
||||
|
||||
|
||||
add_subdirectory(lua-5.4.0)
|
||||
add_subdirectory(lua-5.4.2)
|
||||
|
@ -1,11 +1,11 @@
|
||||
# Lua
|
||||
CMake based build of Lua 5.4.0
|
||||
CMake based build of Lua 5.4.2
|
||||
![Build Linux](https://github.com/walterschell/Lua/workflows/Build%20Linux/badge.svg)
|
||||
![Build Windows](https://github.com/walterschell/Lua/workflows/Build%20Windows/badge.svg)
|
||||
![Build OSX](https://github.com/walterschell/Lua/workflows/Build%20OSX/badge.svg)
|
||||
![Build Emscripten](https://github.com/walterschell/Lua/workflows/Build%20Emscripten/badge.svg)
|
||||
# Usage
|
||||
Inside of CMakeLists.txt
|
||||
Inside of your project's CMakeLists.txt
|
||||
```cmake
|
||||
add_subdirectory(lua)
|
||||
...
|
||||
|
@ -43,7 +43,7 @@ if(UNIX)
|
||||
find_library(LIBM m)
|
||||
#TODO: Redo this with find_package
|
||||
if(NOT LIBM)
|
||||
message(FATAL_ERROR "libm not found and requred by lua")
|
||||
message(FATAL_ERROR "libm not found and is required by lua")
|
||||
endif()
|
||||
target_link_libraries(lua_static INTERFACE ${LIBM})
|
||||
|
@ -46,7 +46,7 @@ TO_MAN= lua.1 luac.1
|
||||
|
||||
# Lua version and release.
|
||||
V= 5.4
|
||||
R= $V.0
|
||||
R= $V.2
|
||||
|
||||
# Targets start here.
|
||||
all: $(PLAT)
|
@ -1,5 +1,5 @@
|
||||
|
||||
This is Lua 5.4.0, released on 18 Jun 2020.
|
||||
This is Lua 5.4.2, released on 13 Nov 2020.
|
||||
|
||||
For installation instructions, license details, and
|
||||
further information about Lua, see doc/readme.html.
|
@ -95,6 +95,7 @@ Freely available under the terms of the
|
||||
<UL>
|
||||
<LI><A HREF="manual.html#4.1.1">4.1.1 – Stack Size</A>
|
||||
<LI><A HREF="manual.html#4.1.2">4.1.2 – Valid and Acceptable Indices</A>
|
||||
<LI><A HREF="manual.html#4.1.3">4.1.3 – Pointers to strings</A>
|
||||
</UL>
|
||||
<LI><A HREF="manual.html#4.2">4.2 – C Closures</A>
|
||||
<LI><A HREF="manual.html#4.3">4.3 – Registry</A>
|
||||
@ -197,7 +198,6 @@ Freely available under the terms of the
|
||||
<A HREF="manual.html#pdf-debug.getregistry">debug.getregistry</A><BR>
|
||||
<A HREF="manual.html#pdf-debug.getupvalue">debug.getupvalue</A><BR>
|
||||
<A HREF="manual.html#pdf-debug.getuservalue">debug.getuservalue</A><BR>
|
||||
<A HREF="manual.html#pdf-debug.setcstacklimit">debug.setcstacklimit</A><BR>
|
||||
<A HREF="manual.html#pdf-debug.sethook">debug.sethook</A><BR>
|
||||
<A HREF="manual.html#pdf-debug.setlocal">debug.setlocal</A><BR>
|
||||
<A HREF="manual.html#pdf-debug.setmetatable">debug.setmetatable</A><BR>
|
||||
@ -475,7 +475,6 @@ Freely available under the terms of the
|
||||
<A HREF="manual.html#lua_resume">lua_resume</A><BR>
|
||||
<A HREF="manual.html#lua_rotate">lua_rotate</A><BR>
|
||||
<A HREF="manual.html#lua_setallocf">lua_setallocf</A><BR>
|
||||
<A HREF="manual.html#lua_setcstacklimit">lua_setcstacklimit</A><BR>
|
||||
<A HREF="manual.html#lua_setfield">lua_setfield</A><BR>
|
||||
<A HREF="manual.html#lua_setglobal">lua_setglobal</A><BR>
|
||||
<A HREF="manual.html#lua_sethook">lua_sethook</A><BR>
|
||||
@ -664,10 +663,10 @@ Freely available under the terms of the
|
||||
|
||||
<P CLASS="footer">
|
||||
Last update:
|
||||
Sat May 30 08:22:18 -03 2020
|
||||
Tue Nov 10 20:58:52 UTC 2020
|
||||
</P>
|
||||
<!--
|
||||
Last change: revised for Lua 5.4.0 (final)
|
||||
Last change: revised for Lua 5.4.2
|
||||
-->
|
||||
|
||||
</BODY>
|
Before Width: | Height: | Size: 9.7 KiB After Width: | Height: | Size: 9.7 KiB |
@ -2966,26 +2966,31 @@ When you interact with the Lua API,
|
||||
you are responsible for ensuring consistency.
|
||||
In particular,
|
||||
<em>you are responsible for controlling stack overflow</em>.
|
||||
You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
|
||||
to ensure that the stack has enough space for pushing new elements.
|
||||
When you call any API function,
|
||||
you must ensure the stack has enough room to accommodate the results.
|
||||
|
||||
|
||||
<p>
|
||||
There is one exception to the above rule:
|
||||
When you call a Lua function
|
||||
without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>),
|
||||
Lua ensures that the stack has enough space for all results.
|
||||
However, it does not ensure any extra space.
|
||||
So, before pushing anything on the stack after such a call
|
||||
you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
|
||||
|
||||
|
||||
<p>
|
||||
Whenever Lua calls C,
|
||||
it ensures that the stack has space for
|
||||
at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots.
|
||||
at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra elements;
|
||||
that is, you can safely push up to <code>LUA_MINSTACK</code> values into it.
|
||||
<code>LUA_MINSTACK</code> is defined as 20,
|
||||
so that usually you do not have to worry about stack space
|
||||
unless your code has loops pushing elements onto the stack.
|
||||
|
||||
|
||||
<p>
|
||||
When you call a Lua function
|
||||
without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>),
|
||||
Lua ensures that the stack has enough space for all results,
|
||||
but it does not ensure any extra space.
|
||||
So, before pushing anything in the stack after such a call
|
||||
you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
|
||||
Whenever necessary,
|
||||
you can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
|
||||
to ensure that the stack has enough space for pushing new elements.
|
||||
|
||||
|
||||
|
||||
@ -3044,6 +3049,49 @@ which behaves like a nil value.
|
||||
|
||||
|
||||
|
||||
<h3>4.1.3 – <a name="4.1.3">Pointers to strings</a></h3>
|
||||
|
||||
<p>
|
||||
Several functions in the API return pointers (<code>const char*</code>)
|
||||
to Lua strings in the stack.
|
||||
(See <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, <a href="#lua_pushlstring"><code>lua_pushlstring</code></a>,
|
||||
<a href="#lua_pushstring"><code>lua_pushstring</code></a>, and <a href="#lua_tolstring"><code>lua_tolstring</code></a>.
|
||||
See also <a href="#luaL_checklstring"><code>luaL_checklstring</code></a>, <a href="#luaL_checkstring"><code>luaL_checkstring</code></a>,
|
||||
and <a href="#luaL_tolstring"><code>luaL_tolstring</code></a> in the auxiliary library.)
|
||||
|
||||
|
||||
<p>
|
||||
In general,
|
||||
Lua's garbage collection can free or move internal memory
|
||||
and then invalidate pointers to internal strings.
|
||||
To allow a safe use of these pointers,
|
||||
The API guarantees that any pointer to a string in a stack index
|
||||
is valid while the string value at that index is not removed from the stack.
|
||||
(It can be moved to another index, though.)
|
||||
When the index is a pseudo-index (referring to an upvalue),
|
||||
the pointer is valid while the corresponding call is active and
|
||||
the corresponding upvalue is not modified.
|
||||
|
||||
|
||||
<p>
|
||||
Some functions in the debug interface
|
||||
also return pointers to strings,
|
||||
namely <a href="#lua_getlocal"><code>lua_getlocal</code></a>, <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>,
|
||||
<a href="#lua_setlocal"><code>lua_setlocal</code></a>, and <a href="#lua_setupvalue"><code>lua_setupvalue</code></a>.
|
||||
For these functions, the pointer is guaranteed to
|
||||
be valid while the caller function is active and
|
||||
the given closure (if one was given) is in the stack.
|
||||
|
||||
|
||||
<p>
|
||||
Except for these guarantees,
|
||||
the garbage collector is free to invalidate
|
||||
any pointer to internal strings.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<h2>4.2 – <a name="4.2">C Closures</a></h2>
|
||||
@ -3239,7 +3287,7 @@ Therefore, if a C function <code>foo</code> calls an API function
|
||||
and this API function yields
|
||||
(directly or indirectly by calling another function that yields),
|
||||
Lua cannot return to <code>foo</code> any more,
|
||||
because the <code>longjmp</code> removes its frame from the C stack.
|
||||
because the <code>longjmp</code> removes its frame from the C stack.
|
||||
|
||||
|
||||
<p>
|
||||
@ -3269,7 +3317,7 @@ After the thread resumes,
|
||||
it eventually will finish running the callee function.
|
||||
However,
|
||||
the callee function cannot return to the original function,
|
||||
because its frame in the C stack was destroyed by the yield.
|
||||
because its frame in the C stack was destroyed by the yield.
|
||||
Instead, Lua calls a <em>continuation function</em>,
|
||||
which was given as an argument to the callee function.
|
||||
As the name implies,
|
||||
@ -3389,7 +3437,7 @@ depending on the situation;
|
||||
an interrogation mark '<code>?</code>' means that
|
||||
we cannot know how many elements the function pops/pushes
|
||||
by looking only at its arguments.
|
||||
(For instance, they may depend on what is on the stack.)
|
||||
(For instance, they may depend on what is in the stack.)
|
||||
The third field, <code>x</code>,
|
||||
tells whether the function may raise errors:
|
||||
'<code>-</code>' means the function never raises any error;
|
||||
@ -3408,7 +3456,7 @@ and therefore may raise any errors.
|
||||
<p>
|
||||
Converts the acceptable index <code>idx</code>
|
||||
into an equivalent absolute index
|
||||
(that is, one that does not depend on the stack top).
|
||||
(that is, one that does not depend on the stack size).
|
||||
|
||||
|
||||
|
||||
@ -3678,7 +3726,7 @@ of numeric arguments and returns their average and their sum:
|
||||
<pre>int lua_checkstack (lua_State *L, int n);</pre>
|
||||
|
||||
<p>
|
||||
Ensures that the stack has space for at least <code>n</code> extra slots,
|
||||
Ensures that the stack has space for at least <code>n</code> extra elements,
|
||||
that is, that you can safely push up to <code>n</code> values into it.
|
||||
It returns false if it cannot fulfill the request,
|
||||
either because it would cause the stack
|
||||
@ -3686,7 +3734,7 @@ to be greater than a fixed maximum size
|
||||
(typically at least several thousand elements) or
|
||||
because it cannot allocate memory for the extra space.
|
||||
This function never shrinks the stack;
|
||||
if the stack already has space for the extra slots,
|
||||
if the stack already has space for the extra elements,
|
||||
it is left unchanged.
|
||||
|
||||
|
||||
@ -4443,6 +4491,10 @@ plus an associated block of raw memory with <code>size</code> bytes.
|
||||
|
||||
<p>
|
||||
The function returns the address of the block of memory.
|
||||
Lua ensures that this address is valid as long as
|
||||
the corresponding userdata is alive (see <a href="#2.5">§2.5</a>).
|
||||
Moreover, if the userdata is marked for finalization (see <a href="#2.5.3">§2.5.3</a>),
|
||||
its address is valid at least until the call to its finalizer.
|
||||
|
||||
|
||||
|
||||
@ -4600,13 +4652,18 @@ except that it allows the called function to yield (see <a href="#4.5">§4.5
|
||||
|
||||
|
||||
<hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p>
|
||||
<span class="apii">[-n, +0, –]</span>
|
||||
<span class="apii">[-n, +0, <em>e</em>]</span>
|
||||
<pre>void lua_pop (lua_State *L, int n);</pre>
|
||||
|
||||
<p>
|
||||
Pops <code>n</code> elements from the stack.
|
||||
|
||||
|
||||
<p>
|
||||
This function can run arbitrary code when removing an index
|
||||
marked as to-be-closed from the stack.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -4688,7 +4745,7 @@ This function is equivalent to <a href="#lua_pushcclosure"><code>lua_pushcclosur
|
||||
|
||||
<p>
|
||||
Pushes onto the stack a formatted string
|
||||
and returns a pointer to this string.
|
||||
and returns a pointer to this string (see <a href="#4.1.3">§4.1.3</a>).
|
||||
It is similar to the ISO C function <code>sprintf</code>,
|
||||
but has two important differences.
|
||||
First,
|
||||
@ -4788,7 +4845,7 @@ including embedded zeros.
|
||||
|
||||
|
||||
<p>
|
||||
Returns a pointer to the internal copy of the string.
|
||||
Returns a pointer to the internal copy of the string (see <a href="#4.1.3">§4.1.3</a>).
|
||||
|
||||
|
||||
|
||||
@ -4829,7 +4886,7 @@ the function returns.
|
||||
|
||||
|
||||
<p>
|
||||
Returns a pointer to the internal copy of the string.
|
||||
Returns a pointer to the internal copy of the string (see <a href="#4.1.3">§4.1.3</a>).
|
||||
|
||||
|
||||
<p>
|
||||
@ -5273,7 +5330,7 @@ for the "newindex" event (see <a href="#2.4">§2.4</a>).
|
||||
|
||||
|
||||
<hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p>
|
||||
<span class="apii">[-?, +?, –]</span>
|
||||
<span class="apii">[-?, +?, <em>e</em>]</span>
|
||||
<pre>void lua_settop (lua_State *L, int index);</pre>
|
||||
|
||||
<p>
|
||||
@ -5284,6 +5341,11 @@ then the new elements are filled with <b>nil</b>.
|
||||
If <code>index</code> is 0, then all stack elements are removed.
|
||||
|
||||
|
||||
<p>
|
||||
This function can run arbitrary code when removing an index
|
||||
marked as to-be-closed from the stack.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -5399,7 +5461,7 @@ otherwise, returns <code>NULL</code>.
|
||||
|
||||
|
||||
<hr><h3><a name="lua_toclose"><code>lua_toclose</code></a></h3><p>
|
||||
<span class="apii">[-0, +0, <em>v</em>]</span>
|
||||
<span class="apii">[-0, +0, <em>m</em>]</span>
|
||||
<pre>void lua_toclose (lua_State *L, int index);</pre>
|
||||
|
||||
<p>
|
||||
@ -5423,11 +5485,19 @@ that is equal to or below an active to-be-closed index.
|
||||
|
||||
|
||||
<p>
|
||||
This function can raise an out-of-memory error.
|
||||
In that case, the value in the given index is immediately closed,
|
||||
In the case of an out-of-memory error,
|
||||
the value in the given index is immediately closed,
|
||||
as if it was already marked.
|
||||
|
||||
|
||||
<p>
|
||||
Note that, both in case of errors and of a regular return,
|
||||
by the time the <code>__close</code> metamethod runs,
|
||||
the C stack was already unwound,
|
||||
so that any automatic C variable declared in the calling function
|
||||
will be out of scope.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -5482,18 +5552,12 @@ when <code>lua_tolstring</code> is applied to keys during a table traversal.)
|
||||
|
||||
<p>
|
||||
<code>lua_tolstring</code> returns a pointer
|
||||
to a string inside the Lua state.
|
||||
to a string inside the Lua state (see <a href="#4.1.3">§4.1.3</a>).
|
||||
This string always has a zero ('<code>\0</code>')
|
||||
after its last character (as in C),
|
||||
but can contain other zeros in its body.
|
||||
|
||||
|
||||
<p>
|
||||
Because Lua has garbage collection,
|
||||
there is no guarantee that the pointer returned by <code>lua_tolstring</code>
|
||||
will be valid after the corresponding Lua value is removed from the stack.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -5944,7 +6008,7 @@ true if the function is a vararg function
|
||||
</li>
|
||||
|
||||
<li><b><code>ftransfer</code>: </b>
|
||||
the index on the stack of the first value being "transferred",
|
||||
the index in the stack of the first value being "transferred",
|
||||
that is, parameters in a call or return values in a return.
|
||||
(The other values are in consecutive indices.)
|
||||
Using this index, you can access and modify these values
|
||||
@ -6141,7 +6205,7 @@ an identification of the <em>activation record</em>
|
||||
of the function executing at a given level.
|
||||
Level 0 is the current running function,
|
||||
whereas level <em>n+1</em> is the function that has called level <em>n</em>
|
||||
(except for tail calls, which do not count on the stack).
|
||||
(except for tail calls, which do not count in the stack).
|
||||
When called with a level greater than the stack depth,
|
||||
<a href="#lua_getstack"><code>lua_getstack</code></a> returns 0;
|
||||
otherwise it returns 1.
|
||||
@ -6218,24 +6282,6 @@ calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</cod
|
||||
|
||||
|
||||
|
||||
<hr><h3><a name="lua_setcstacklimit"><code>lua_setcstacklimit</code></a></h3><p>
|
||||
<span class="apii">[-0, +0, –]</span>
|
||||
<pre>int (lua_setcstacklimit) (lua_State *L, unsigned int limit);</pre>
|
||||
|
||||
<p>
|
||||
Sets a new limit for the C stack.
|
||||
This limit controls how deeply nested calls can go in Lua,
|
||||
with the intent of avoiding a stack overflow.
|
||||
Returns the old limit in case of success,
|
||||
or zero in case of error.
|
||||
For more details about this function,
|
||||
see <a href="#pdf-debug.setcstacklimit"><code>debug.setcstacklimit</code></a>,
|
||||
its equivalent in the standard library.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p>
|
||||
<span class="apii">[-0, +0, –]</span>
|
||||
<pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>
|
||||
@ -6259,8 +6305,7 @@ For each event, the hook is called as explained below:
|
||||
<ul>
|
||||
|
||||
<li><b>The call hook: </b> is called when the interpreter calls a function.
|
||||
The hook is called just after Lua enters the new function,
|
||||
before the function gets its arguments.
|
||||
The hook is called just after Lua enters the new function.
|
||||
</li>
|
||||
|
||||
<li><b>The return hook: </b> is called when the interpreter returns from a function.
|
||||
@ -7573,7 +7618,7 @@ it returns <code>NULL</code> instead of raising an error.
|
||||
Converts any Lua value at the given index to a C string
|
||||
in a reasonable format.
|
||||
The resulting string is pushed onto the stack and also
|
||||
returned by the function.
|
||||
returned by the function (see <a href="#4.1.3">§4.1.3</a>).
|
||||
If <code>len</code> is not <code>NULL</code>,
|
||||
the function also sets <code>*len</code> with the string length.
|
||||
|
||||
@ -8001,9 +8046,11 @@ The default is "<code>bt</code>".
|
||||
|
||||
|
||||
<p>
|
||||
Lua does not check the consistency of binary chunks.
|
||||
Maliciously crafted binary chunks can crash
|
||||
the interpreter.
|
||||
It is safe to load malformed binary chunks;
|
||||
<code>load</code> signals an appropriate error.
|
||||
However,
|
||||
Lua does not check the consistency of the code inside binary chunks;
|
||||
running maliciously crafted bytecode can crash the interpreter.
|
||||
|
||||
|
||||
|
||||
@ -8665,6 +8712,18 @@ As such, it is only available on some platforms
|
||||
plus other Unix systems that support the <code>dlfcn</code> standard).
|
||||
|
||||
|
||||
<p>
|
||||
This function is inherently insecure,
|
||||
as it allows Lua to call any function in any readable dynamic
|
||||
library in the system.
|
||||
(Lua calls any function assuming the function
|
||||
has a proper prototype and respects a proper protocol
|
||||
(see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
|
||||
Therefore,
|
||||
calling an arbitrary function in an arbitrary dynamic library
|
||||
more often than not results in an access violation.)
|
||||
|
||||
|
||||
|
||||
|
||||
<p>
|
||||
@ -11084,7 +11143,7 @@ which means the function running at level <code>f</code> of the call stack
|
||||
of the given thread:
|
||||
level 0 is the current function (<code>getinfo</code> itself);
|
||||
level 1 is the function that called <code>getinfo</code>
|
||||
(except for tail calls, which do not count on the stack);
|
||||
(except for tail calls, which do not count in the stack);
|
||||
and so on.
|
||||
If <code>f</code> is a number greater than the number of active functions,
|
||||
then <code>getinfo</code> returns <b>fail</b>.
|
||||
@ -11218,43 +11277,6 @@ to the userdata <code>u</code> plus a boolean,
|
||||
|
||||
|
||||
|
||||
<p>
|
||||
<hr><h3><a name="pdf-debug.setcstacklimit"><code>debug.setcstacklimit (limit)</code></a></h3>
|
||||
|
||||
|
||||
<p>
|
||||
Sets a new limit for the C stack.
|
||||
This limit controls how deeply nested calls can go in Lua,
|
||||
with the intent of avoiding a stack overflow.
|
||||
A limit too small restricts recursive calls pointlessly;
|
||||
a limit too large exposes the interpreter to stack-overflow crashes.
|
||||
Unfortunately, there is no way to know a priori
|
||||
the maximum safe limit for a platform.
|
||||
|
||||
|
||||
<p>
|
||||
Each call made from Lua code counts one unit.
|
||||
Other operations (e.g., calls made from C to Lua or resuming a coroutine)
|
||||
may have a higher cost.
|
||||
|
||||
|
||||
<p>
|
||||
This function has the following restrictions:
|
||||
|
||||
<ul>
|
||||
<li>It can only be called from the main coroutine (thread);</li>
|
||||
<li>It cannot be called while handling a stack-overflow error;</li>
|
||||
<li><code>limit</code> must be less than 40000;</li>
|
||||
<li><code>limit</code> cannot be less than the amount of C stack in use.</li>
|
||||
</ul><p>
|
||||
If a call does not respect some restriction,
|
||||
it returns a false value.
|
||||
Otherwise,
|
||||
the call returns the old limit.
|
||||
|
||||
|
||||
|
||||
|
||||
<p>
|
||||
<hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>
|
||||
|
||||
@ -11886,10 +11908,10 @@ and LiteralString, see <a href="#3.1">§3.1</a>.)
|
||||
|
||||
<P CLASS="footer">
|
||||
Last update:
|
||||
Thu Jun 18 16:10:16 UTC 2020
|
||||
Fri Nov 13 15:35:22 UTC 2020
|
||||
</P>
|
||||
<!--
|
||||
Last change: revised for Lua 5.4.0 (final)
|
||||
Last change: revised for Lua 5.4.2
|
||||
-->
|
||||
|
||||
</body></html>
|
Before Width: | Height: | Size: 3.7 KiB After Width: | Height: | Size: 3.7 KiB |
@ -110,7 +110,7 @@ Here are the details.
|
||||
<OL>
|
||||
<LI>
|
||||
Open a terminal window and move to
|
||||
the top-level directory, which is named <TT>lua-5.4.0</TT>.
|
||||
the top-level directory, which is named <TT>lua-5.4.2</TT>.
|
||||
The <TT>Makefile</TT> there controls both the build process and the installation process.
|
||||
<P>
|
||||
<LI>
|
||||
@ -330,10 +330,10 @@ THE SOFTWARE.
|
||||
|
||||
<P CLASS="footer">
|
||||
Last update:
|
||||
Fri May 1 19:33:31 UTC 2020
|
||||
Tue Nov 10 20:55:28 UTC 2020
|
||||
</P>
|
||||
<!--
|
||||
Last change: revised for Lua 5.4.0 (final)
|
||||
Last change: revised for Lua 5.4.2
|
||||
-->
|
||||
|
||||
</BODY>
|
@ -18,7 +18,7 @@
|
||||
|
||||
#define LUA_VERSION_MAJOR "5"
|
||||
#define LUA_VERSION_MINOR "4"
|
||||
#define LUA_VERSION_RELEASE "0"
|
||||
#define LUA_VERSION_RELEASE "2"
|
||||
|
||||
#define LUA_VERSION_NUM 504
|
||||
#define LUA_VERSION_RELEASE_NUM (LUA_VERSION_NUM * 100 + 0)
|
@ -36,21 +36,6 @@
|
||||
** =====================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
@@ LUAI_MAXCSTACK defines the maximum depth for nested calls and
|
||||
** also limits the maximum depth of other recursive algorithms in
|
||||
** the implementation, such as syntactic analysis. A value too
|
||||
** large may allow the interpreter to crash (C-stack overflow).
|
||||
** The default value seems ok for regular machines, but may be
|
||||
** too high for restricted hardware.
|
||||
** The test file 'cstack.lua' may help finding a good limit.
|
||||
** (It will crash with a limit too high.)
|
||||
*/
|
||||
#if !defined(LUAI_MAXCSTACK)
|
||||
#define LUAI_MAXCSTACK 2000
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
@@ LUA_USE_C89 controls the use of non-ISO-C89 features.
|
||||
** Define it if you want Lua to avoid the use of a few C99 features
|
@ -26,7 +26,7 @@ MYLIBS=
|
||||
MYOBJS=
|
||||
|
||||
# Special flags for compiler modules; -Os reduces code size.
|
||||
CMCFLAGS= -Os
|
||||
CMCFLAGS=
|
||||
|
||||
# == END OF USER SETTINGS -- NO NEED TO CHANGE ANYTHING BELOW THIS LINE =======
|
||||
|
@ -97,8 +97,9 @@ static StkId index2stack (lua_State *L, int idx) {
|
||||
|
||||
LUA_API int lua_checkstack (lua_State *L, int n) {
|
||||
int res;
|
||||
CallInfo *ci = L->ci;
|
||||
CallInfo *ci;
|
||||
lua_lock(L);
|
||||
ci = L->ci;
|
||||
api_check(L, n >= 0, "negative 'n'");
|
||||
if (L->stack_last - L->top > n) /* stack large enough? */
|
||||
res = 1; /* yes; check is OK */
|
||||
@ -170,10 +171,12 @@ LUA_API int lua_gettop (lua_State *L) {
|
||||
|
||||
|
||||
LUA_API void lua_settop (lua_State *L, int idx) {
|
||||
CallInfo *ci = L->ci;
|
||||
StkId func = ci->func;
|
||||
CallInfo *ci;
|
||||
StkId func;
|
||||
ptrdiff_t diff; /* difference for new top */
|
||||
lua_lock(L);
|
||||
ci = L->ci;
|
||||
func = ci->func;
|
||||
if (idx >= 0) {
|
||||
api_check(L, idx <= ci->top - (func + 1), "new top too large");
|
||||
diff = ((func + 1) + idx) - L->top;
|
||||
@ -376,20 +379,22 @@ LUA_API int lua_toboolean (lua_State *L, int idx) {
|
||||
|
||||
|
||||
LUA_API const char *lua_tolstring (lua_State *L, int idx, size_t *len) {
|
||||
TValue *o = index2value(L, idx);
|
||||
TValue *o;
|
||||
lua_lock(L);
|
||||
o = index2value(L, idx);
|
||||
if (!ttisstring(o)) {
|
||||
if (!cvt2str(o)) { /* not convertible? */
|
||||
if (len != NULL) *len = 0;
|
||||
lua_unlock(L);
|
||||
return NULL;
|
||||
}
|
||||
lua_lock(L); /* 'luaO_tostring' may create a new string */
|
||||
luaO_tostring(L, o);
|
||||
luaC_checkGC(L);
|
||||
o = index2value(L, idx); /* previous call may reallocate the stack */
|
||||
lua_unlock(L);
|
||||
}
|
||||
if (len != NULL)
|
||||
*len = vslen(o);
|
||||
lua_unlock(L);
|
||||
return svalue(o);
|
||||
}
|
||||
|
||||
@ -563,6 +568,7 @@ LUA_API void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n) {
|
||||
while (n--) {
|
||||
setobj2n(L, &cl->upvalue[n], s2v(L->top + n));
|
||||
/* does not need barrier because closure is white */
|
||||
lua_assert(iswhite(cl));
|
||||
}
|
||||
setclCvalue(L, s2v(L->top), cl);
|
||||
api_incr_top(L);
|
||||
@ -624,8 +630,9 @@ static int auxgetstr (lua_State *L, const TValue *t, const char *k) {
|
||||
|
||||
|
||||
LUA_API int lua_getglobal (lua_State *L, const char *name) {
|
||||
Table *reg = hvalue(&G(L)->l_registry);
|
||||
Table *reg;
|
||||
lua_lock(L);
|
||||
reg = hvalue(&G(L)->l_registry);
|
||||
return auxgetstr(L, luaH_getint(reg, LUA_RIDX_GLOBALS), name);
|
||||
}
|
||||
|
||||
@ -804,8 +811,9 @@ static void auxsetstr (lua_State *L, const TValue *t, const char *k) {
|
||||
|
||||
|
||||
LUA_API void lua_setglobal (lua_State *L, const char *name) {
|
||||
Table *reg = hvalue(&G(L)->l_registry);
|
||||
Table *reg;
|
||||
lua_lock(L); /* unlock done in 'auxsetstr' */
|
||||
reg = hvalue(&G(L)->l_registry);
|
||||
auxsetstr(L, luaH_getint(reg, LUA_RIDX_GLOBALS), name);
|
||||
}
|
||||
|
||||
@ -1093,8 +1101,9 @@ LUA_API int lua_status (lua_State *L) {
|
||||
LUA_API int lua_gc (lua_State *L, int what, ...) {
|
||||
va_list argp;
|
||||
int res = 0;
|
||||
global_State *g = G(L);
|
||||
global_State *g;
|
||||
lua_lock(L);
|
||||
g = G(L);
|
||||
va_start(argp, what);
|
||||
switch (what) {
|
||||
case LUA_GCSTOP: {
|
||||
@ -1194,9 +1203,15 @@ LUA_API int lua_gc (lua_State *L, int what, ...) {
|
||||
|
||||
|
||||
LUA_API int lua_error (lua_State *L) {
|
||||
TValue *errobj;
|
||||
lua_lock(L);
|
||||
errobj = s2v(L->top - 1);
|
||||
api_checknelems(L, 1);
|
||||
luaG_errormsg(L);
|
||||
/* error object is the memory error message? */
|
||||
if (ttisshrstring(errobj) && eqshrstr(tsvalue(errobj), G(L)->memerrmsg))
|
||||
luaM_error(L); /* raise a memory error */
|
||||
else
|
||||
luaG_errormsg(L); /* raise a regular error */
|
||||
/* code unreachable; will unlock when control actually leaves the kernel */
|
||||
return 0; /* to avoid warnings */
|
||||
}
|
||||
@ -1238,14 +1253,12 @@ LUA_API void lua_toclose (lua_State *L, int idx) {
|
||||
LUA_API void lua_concat (lua_State *L, int n) {
|
||||
lua_lock(L);
|
||||
api_checknelems(L, n);
|
||||
if (n >= 2) {
|
||||
if (n > 0)
|
||||
luaV_concat(L, n);
|
||||
}
|
||||
else if (n == 0) { /* push empty string */
|
||||
setsvalue2s(L, L->top, luaS_newlstr(L, "", 0));
|
||||
else { /* nothing to concatenate */
|
||||
setsvalue2s(L, L->top, luaS_newlstr(L, "", 0)); /* push empty string */
|
||||
api_incr_top(L);
|
||||
}
|
||||
/* else n == 1; nothing to do */
|
||||
luaC_checkGC(L);
|
||||
lua_unlock(L);
|
||||
}
|
||||
@ -1370,13 +1383,16 @@ LUA_API const char *lua_setupvalue (lua_State *L, int funcindex, int n) {
|
||||
|
||||
|
||||
static UpVal **getupvalref (lua_State *L, int fidx, int n, LClosure **pf) {
|
||||
static const UpVal *const nullup = NULL;
|
||||
LClosure *f;
|
||||
TValue *fi = index2value(L, fidx);
|
||||
api_check(L, ttisLclosure(fi), "Lua function expected");
|
||||
f = clLvalue(fi);
|
||||
api_check(L, (1 <= n && n <= f->p->sizeupvalues), "invalid upvalue index");
|
||||
if (pf) *pf = f;
|
||||
return &f->upvals[n - 1]; /* get its upvalue pointer */
|
||||
if (1 <= n && n <= f->p->sizeupvalues)
|
||||
return &f->upvals[n - 1]; /* get its upvalue pointer */
|
||||
else
|
||||
return (UpVal**)&nullup;
|
||||
}
|
||||
|
||||
|
||||
@ -1388,11 +1404,14 @@ LUA_API void *lua_upvalueid (lua_State *L, int fidx, int n) {
|
||||
}
|
||||
case LUA_VCCL: { /* C closure */
|
||||
CClosure *f = clCvalue(fi);
|
||||
api_check(L, 1 <= n && n <= f->nupvalues, "invalid upvalue index");
|
||||
return &f->upvalue[n - 1];
|
||||
}
|
||||
if (1 <= n && n <= f->nupvalues)
|
||||
return &f->upvalue[n - 1];
|
||||
/* else */
|
||||
} /* FALLTHROUGH */
|
||||
case LUA_VLCF:
|
||||
return NULL; /* light C functions have no upvalues */
|
||||
default: {
|
||||
api_check(L, 0, "closure expected");
|
||||
api_check(L, 0, "function expected");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
@ -1404,6 +1423,7 @@ LUA_API void lua_upvaluejoin (lua_State *L, int fidx1, int n1,
|
||||
LClosure *f1;
|
||||
UpVal **up1 = getupvalref(L, fidx1, n1, &f1);
|
||||
UpVal **up2 = getupvalref(L, fidx2, n2, NULL);
|
||||
api_check(L, *up1 != NULL && *up2 != NULL, "invalid upvalue index");
|
||||
*up1 = *up2;
|
||||
luaC_objbarrier(L, f1, *up1);
|
||||
}
|
@ -283,10 +283,10 @@ LUALIB_API int luaL_fileresult (lua_State *L, int stat, const char *fname) {
|
||||
|
||||
|
||||
LUALIB_API int luaL_execresult (lua_State *L, int stat) {
|
||||
const char *what = "exit"; /* type of termination */
|
||||
if (stat != 0 && errno != 0) /* error with an 'errno'? */
|
||||
return luaL_fileresult(L, 0, NULL);
|
||||
else {
|
||||
const char *what = "exit"; /* type of termination */
|
||||
l_inspectstat(stat, what); /* interpret result */
|
||||
if (*what == 'e' && stat == 0) /* successful termination? */
|
||||
lua_pushboolean(L, 1);
|
||||
@ -475,8 +475,10 @@ static void *resizebox (lua_State *L, int idx, size_t newsize) {
|
||||
lua_Alloc allocf = lua_getallocf(L, &ud);
|
||||
UBox *box = (UBox *)lua_touserdata(L, idx);
|
||||
void *temp = allocf(ud, box->box, box->bsize, newsize);
|
||||
if (temp == NULL && newsize > 0) /* allocation error? */
|
||||
luaL_error(L, "not enough memory");
|
||||
if (temp == NULL && newsize > 0) { /* allocation error? */
|
||||
lua_pushliteral(L, "not enough memory");
|
||||
lua_error(L); /* raise a memory error */
|
||||
}
|
||||
box->box = temp;
|
||||
box->bsize = newsize;
|
||||
return temp;
|
||||
@ -1004,43 +1006,67 @@ static int panic (lua_State *L) {
|
||||
|
||||
|
||||
/*
|
||||
** Emit a warning. '*warnstate' means:
|
||||
** 0 - warning system is off;
|
||||
** 1 - ready to start a new message;
|
||||
** 2 - previous message is to be continued.
|
||||
** Warning functions:
|
||||
** warnfoff: warning system is off
|
||||
** warnfon: ready to start a new message
|
||||
** warnfcont: previous message is to be continued
|
||||
*/
|
||||
static void warnf (void *ud, const char *message, int tocont) {
|
||||
int *warnstate = (int *)ud;
|
||||
if (*warnstate != 2 && !tocont && *message == '@') { /* control message? */
|
||||
if (strcmp(message, "@off") == 0)
|
||||
*warnstate = 0;
|
||||
else if (strcmp(message, "@on") == 0)
|
||||
*warnstate = 1;
|
||||
return;
|
||||
static void warnfoff (void *ud, const char *message, int tocont);
|
||||
static void warnfon (void *ud, const char *message, int tocont);
|
||||
static void warnfcont (void *ud, const char *message, int tocont);
|
||||
|
||||
|
||||
/*
|
||||
** Check whether message is a control message. If so, execute the
|
||||
** control or ignore it if unknown.
|
||||
*/
|
||||
static int checkcontrol (lua_State *L, const char *message, int tocont) {
|
||||
if (tocont || *(message++) != '@') /* not a control message? */
|
||||
return 0;
|
||||
else {
|
||||
if (strcmp(message, "off") == 0)
|
||||
lua_setwarnf(L, warnfoff, L); /* turn warnings off */
|
||||
else if (strcmp(message, "on") == 0)
|
||||
lua_setwarnf(L, warnfon, L); /* turn warnings on */
|
||||
return 1; /* it was a control message */
|
||||
}
|
||||
else if (*warnstate == 0) /* warnings off? */
|
||||
return;
|
||||
if (*warnstate == 1) /* previous message was the last? */
|
||||
lua_writestringerror("%s", "Lua warning: "); /* start a new warning */
|
||||
}
|
||||
|
||||
|
||||
static void warnfoff (void *ud, const char *message, int tocont) {
|
||||
checkcontrol((lua_State *)ud, message, tocont);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Writes the message and handle 'tocont', finishing the message
|
||||
** if needed and setting the next warn function.
|
||||
*/
|
||||
static void warnfcont (void *ud, const char *message, int tocont) {
|
||||
lua_State *L = (lua_State *)ud;
|
||||
lua_writestringerror("%s", message); /* write message */
|
||||
if (tocont) /* not the last part? */
|
||||
*warnstate = 2; /* to be continued */
|
||||
lua_setwarnf(L, warnfcont, L); /* to be continued */
|
||||
else { /* last part */
|
||||
lua_writestringerror("%s", "\n"); /* finish message with end-of-line */
|
||||
*warnstate = 1; /* ready to start a new message */
|
||||
lua_setwarnf(L, warnfon, L); /* next call is a new message */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void warnfon (void *ud, const char *message, int tocont) {
|
||||
if (checkcontrol((lua_State *)ud, message, tocont)) /* control message? */
|
||||
return; /* nothing else to be done */
|
||||
lua_writestringerror("%s", "Lua warning: "); /* start a new warning */
|
||||
warnfcont(ud, message, tocont); /* finish processing */
|
||||
}
|
||||
|
||||
|
||||
LUALIB_API lua_State *luaL_newstate (void) {
|
||||
lua_State *L = lua_newstate(l_alloc, NULL);
|
||||
if (L) {
|
||||
int *warnstate; /* space for warning state */
|
||||
lua_atpanic(L, &panic);
|
||||
warnstate = (int *)lua_newuserdatauv(L, sizeof(int), 0);
|
||||
luaL_ref(L, LUA_REGISTRYINDEX); /* make sure it won't be collected */
|
||||
*warnstate = 0; /* default is warnings off */
|
||||
lua_setwarnf(L, warnf, warnstate);
|
||||
lua_setwarnf(L, warnfoff, L); /* default is warnings off */
|
||||
}
|
||||
return L;
|
||||
}
|
@ -753,7 +753,7 @@ void luaK_setoneret (FuncState *fs, expdesc *e) {
|
||||
|
||||
|
||||
/*
|
||||
** Ensure that expression 'e' is not a variable (nor a constant).
|
||||
** Ensure that expression 'e' is not a variable (nor a <const>).
|
||||
** (Expression still may have jump lists.)
|
||||
*/
|
||||
void luaK_dischargevars (FuncState *fs, expdesc *e) {
|
||||
@ -805,8 +805,8 @@ void luaK_dischargevars (FuncState *fs, expdesc *e) {
|
||||
|
||||
|
||||
/*
|
||||
** Ensures expression value is in register 'reg' (and therefore
|
||||
** 'e' will become a non-relocatable expression).
|
||||
** Ensure expression value is in register 'reg', making 'e' a
|
||||
** non-relocatable expression.
|
||||
** (Expression still may have jump lists.)
|
||||
*/
|
||||
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
|
||||
@ -860,7 +860,8 @@ static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
|
||||
|
||||
|
||||
/*
|
||||
** Ensures expression value is in any register.
|
||||
** Ensure expression value is in a register, making 'e' a
|
||||
** non-relocatable expression.
|
||||
** (Expression still may have jump lists.)
|
||||
*/
|
||||
static void discharge2anyreg (FuncState *fs, expdesc *e) {
|
||||
@ -946,8 +947,11 @@ int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
|
||||
exp2reg(fs, e, e->u.info); /* put final result in it */
|
||||
return e->u.info;
|
||||
}
|
||||
/* else expression has jumps and cannot change its register
|
||||
to hold the jump values, because it is a local variable.
|
||||
Go through to the default case. */
|
||||
}
|
||||
luaK_exp2nextreg(fs, e); /* otherwise, use next available register */
|
||||
luaK_exp2nextreg(fs, e); /* default: use next available register */
|
||||
return e->u.info;
|
||||
}
|
||||
|
@ -73,11 +73,12 @@ static int luaB_coresume (lua_State *L) {
|
||||
static int luaB_auxwrap (lua_State *L) {
|
||||
lua_State *co = lua_tothread(L, lua_upvalueindex(1));
|
||||
int r = auxresume(L, co, lua_gettop(L));
|
||||
if (r < 0) {
|
||||
if (r < 0) { /* error? */
|
||||
int stat = lua_status(co);
|
||||
if (stat != LUA_OK && stat != LUA_YIELD)
|
||||
lua_resetthread(co); /* close variables in case of errors */
|
||||
if (lua_type(L, -1) == LUA_TSTRING) { /* error object is a string? */
|
||||
if (stat != LUA_OK && stat != LUA_YIELD) /* error in the coroutine? */
|
||||
lua_resetthread(co); /* close its tbc variables */
|
||||
if (stat != LUA_ERRMEM && /* not a memory error and ... */
|
||||
lua_type(L, -1) == LUA_TSTRING) { /* ... error object is a string? */
|
||||
luaL_where(L, 1); /* add extra info, if available */
|
||||
lua_insert(L, -2);
|
||||
lua_concat(L, 2);
|
@ -13,7 +13,7 @@
|
||||
/*
|
||||
** WARNING: the functions defined here do not necessarily correspond
|
||||
** to the similar functions in the standard C ctype.h. They are
|
||||
** optimized for the specific needs of Lua
|
||||
** optimized for the specific needs of Lua.
|
||||
*/
|
||||
|
||||
#if !defined(LUA_USE_CTYPE)
|
||||
@ -61,13 +61,19 @@
|
||||
#define lisprint(c) testprop(c, MASK(PRINTBIT))
|
||||
#define lisxdigit(c) testprop(c, MASK(XDIGITBIT))
|
||||
|
||||
|
||||
/*
|
||||
** this 'ltolower' only works for alphabetic characters
|
||||
** In ASCII, this 'ltolower' is correct for alphabetic characters and
|
||||
** for '.'. That is enough for Lua needs. ('check_exp' ensures that
|
||||
** the character either is an upper-case letter or is unchanged by
|
||||
** the transformation, which holds for lower-case letters and '.'.)
|
||||
*/
|
||||
#define ltolower(c) ((c) | ('A' ^ 'a'))
|
||||
#define ltolower(c) \
|
||||
check_exp(('A' <= (c) && (c) <= 'Z') || (c) == ((c) | ('A' ^ 'a')), \
|
||||
(c) | ('A' ^ 'a'))
|
||||
|
||||
|
||||
/* two more entries for 0 and -1 (EOZ) */
|
||||
/* one entry for each character and for -1 (EOZ) */
|
||||
LUAI_DDEC(const lu_byte luai_ctype_[UCHAR_MAX + 2];)
|
||||
|
||||
|
@ -281,25 +281,33 @@ static int db_setupvalue (lua_State *L) {
|
||||
** Check whether a given upvalue from a given closure exists and
|
||||
** returns its index
|
||||
*/
|
||||
static int checkupval (lua_State *L, int argf, int argnup) {
|
||||
static void *checkupval (lua_State *L, int argf, int argnup, int *pnup) {
|
||||
void *id;
|
||||
int nup = (int)luaL_checkinteger(L, argnup); /* upvalue index */
|
||||
luaL_checktype(L, argf, LUA_TFUNCTION); /* closure */
|
||||
luaL_argcheck(L, (lua_getupvalue(L, argf, nup) != NULL), argnup,
|
||||
"invalid upvalue index");
|
||||
return nup;
|
||||
id = lua_upvalueid(L, argf, nup);
|
||||
if (pnup) {
|
||||
luaL_argcheck(L, id != NULL, argnup, "invalid upvalue index");
|
||||
*pnup = nup;
|
||||
}
|
||||
return id;
|
||||
}
|
||||
|
||||
|
||||
static int db_upvalueid (lua_State *L) {
|
||||
int n = checkupval(L, 1, 2);
|
||||
lua_pushlightuserdata(L, lua_upvalueid(L, 1, n));
|
||||
void *id = checkupval(L, 1, 2, NULL);
|
||||
if (id != NULL)
|
||||
lua_pushlightuserdata(L, id);
|
||||
else
|
||||
luaL_pushfail(L);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
static int db_upvaluejoin (lua_State *L) {
|
||||
int n1 = checkupval(L, 1, 2);
|
||||
int n2 = checkupval(L, 3, 4);
|
||||
int n1, n2;
|
||||
checkupval(L, 1, 2, &n1);
|
||||
checkupval(L, 3, 4, &n2);
|
||||
luaL_argcheck(L, !lua_iscfunction(L, 1), 1, "Lua function expected");
|
||||
luaL_argcheck(L, !lua_iscfunction(L, 3), 3, "Lua function expected");
|
||||
lua_upvaluejoin(L, 1, n1, 3, n2);
|
||||
@ -440,10 +448,7 @@ static int db_traceback (lua_State *L) {
|
||||
static int db_setcstacklimit (lua_State *L) {
|
||||
int limit = (int)luaL_checkinteger(L, 1);
|
||||
int res = lua_setcstacklimit(L, limit);
|
||||
if (res == 0)
|
||||
lua_pushboolean(L, 0);
|
||||
else
|
||||
lua_pushinteger(L, res);
|
||||
lua_pushinteger(L, res);
|
||||
return 1;
|
||||
}
|
||||
|
@ -33,10 +33,8 @@
|
||||
|
||||
#define noLuaClosure(f) ((f) == NULL || (f)->c.tt == LUA_VCCL)
|
||||
|
||||
|
||||
/* Active Lua function (given call info) */
|
||||
#define ci_func(ci) (clLvalue(s2v((ci)->func)))
|
||||
|
||||
/* inverse of 'pcRel' */
|
||||
#define invpcRel(pc, p) ((p)->code + (pc) + 1)
|
||||
|
||||
static const char *funcnamefromcode (lua_State *L, CallInfo *ci,
|
||||
const char **name);
|
||||
@ -127,20 +125,18 @@ static void settraps (CallInfo *ci) {
|
||||
/*
|
||||
** This function can be called during a signal, under "reasonable"
|
||||
** assumptions.
|
||||
** Fields 'oldpc', 'basehookcount', and 'hookcount' (set by
|
||||
** 'resethookcount') are for debug only, and it is no problem if they
|
||||
** get arbitrary values (causes at most one wrong hook call). 'hookmask'
|
||||
** is an atomic value. We assume that pointers are atomic too (e.g., gcc
|
||||
** ensures that for all platforms where it runs). Moreover, 'hook' is
|
||||
** always checked before being called (see 'luaD_hook').
|
||||
** Fields 'basehookcount' and 'hookcount' (set by 'resethookcount')
|
||||
** are for debug only, and it is no problem if they get arbitrary
|
||||
** values (causes at most one wrong hook call). 'hookmask' is an atomic
|
||||
** value. We assume that pointers are atomic too (e.g., gcc ensures that
|
||||
** for all platforms where it runs). Moreover, 'hook' is always checked
|
||||
** before being called (see 'luaD_hook').
|
||||
*/
|
||||
LUA_API void lua_sethook (lua_State *L, lua_Hook func, int mask, int count) {
|
||||
if (func == NULL || mask == 0) { /* turn off hooks? */
|
||||
mask = 0;
|
||||
func = NULL;
|
||||
}
|
||||
if (isLua(L->ci))
|
||||
L->oldpc = L->ci->u.l.savedpc;
|
||||
L->hook = func;
|
||||
L->basehookcount = count;
|
||||
resethookcount(L);
|
||||
@ -192,8 +188,8 @@ static const char *upvalname (const Proto *p, int uv) {
|
||||
static const char *findvararg (CallInfo *ci, int n, StkId *pos) {
|
||||
if (clLvalue(s2v(ci->func))->p->is_vararg) {
|
||||
int nextra = ci->u.l.nextraargs;
|
||||
if (n <= nextra) {
|
||||
*pos = ci->func - nextra + (n - 1);
|
||||
if (n >= -nextra) { /* 'n' is negative */
|
||||
*pos = ci->func - nextra - (n + 1);
|
||||
return "(vararg)"; /* generic name for any vararg */
|
||||
}
|
||||
}
|
||||
@ -206,7 +202,7 @@ const char *luaG_findlocal (lua_State *L, CallInfo *ci, int n, StkId *pos) {
|
||||
const char *name = NULL;
|
||||
if (isLua(ci)) {
|
||||
if (n < 0) /* access to vararg values? */
|
||||
return findvararg(ci, -n, pos);
|
||||
return findvararg(ci, n, pos);
|
||||
else
|
||||
name = luaF_getlocalname(ci_func(ci)->p, n, currentpc(ci));
|
||||
}
|
||||
@ -787,18 +783,34 @@ l_noret luaG_runerror (lua_State *L, const char *fmt, ...) {
|
||||
** previous instruction 'oldpc'.
|
||||
*/
|
||||
static int changedline (const Proto *p, int oldpc, int newpc) {
|
||||
if (p->lineinfo == NULL) /* no debug information? */
|
||||
return 0;
|
||||
while (oldpc++ < newpc) {
|
||||
if (p->lineinfo[oldpc] != 0)
|
||||
return (luaG_getfuncline(p, oldpc - 1) != luaG_getfuncline(p, newpc));
|
||||
}
|
||||
return 0; /* no line changes in the way */
|
||||
return 0; /* no line changes between positions */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Traces the execution of a Lua function. Called before the execution
|
||||
** of each opcode, when debug is on. 'L->oldpc' stores the last
|
||||
** instruction traced, to detect line changes. When entering a new
|
||||
** function, 'npci' will be zero and will test as a new line without
|
||||
** the need for 'oldpc'; so, 'oldpc' does not need to be initialized
|
||||
** before. Some exceptional conditions may return to a function without
|
||||
** updating 'oldpc'. In that case, 'oldpc' may be invalid; if so, it is
|
||||
** reset to zero. (A wrong but valid 'oldpc' at most causes an extra
|
||||
** call to a line hook.)
|
||||
*/
|
||||
int luaG_traceexec (lua_State *L, const Instruction *pc) {
|
||||
CallInfo *ci = L->ci;
|
||||
lu_byte mask = L->hookmask;
|
||||
const Proto *p = ci_func(ci)->p;
|
||||
int counthook;
|
||||
/* 'L->oldpc' may be invalid; reset it in this case */
|
||||
int oldpc = (L->oldpc < p->sizecode) ? L->oldpc : 0;
|
||||
if (!(mask & (LUA_MASKLINE | LUA_MASKCOUNT))) { /* no hooks? */
|
||||
ci->u.l.trap = 0; /* don't need to stop again */
|
||||
return 0; /* turn off 'trap' */
|
||||
@ -819,15 +831,14 @@ int luaG_traceexec (lua_State *L, const Instruction *pc) {
|
||||
if (counthook)
|
||||
luaD_hook(L, LUA_HOOKCOUNT, -1, 0, 0); /* call count hook */
|
||||
if (mask & LUA_MASKLINE) {
|
||||
const Proto *p = ci_func(ci)->p;
|
||||
int npci = pcRel(pc, p);
|
||||
if (npci == 0 || /* call linehook when enter a new function, */
|
||||
pc <= L->oldpc || /* when jump back (loop), or when */
|
||||
changedline(p, pcRel(L->oldpc, p), npci)) { /* enter new line */
|
||||
pc <= invpcRel(oldpc, p) || /* when jump back (loop), or when */
|
||||
changedline(p, oldpc, npci)) { /* enter new line */
|
||||
int newline = luaG_getfuncline(p, npci);
|
||||
luaD_hook(L, LUA_HOOKLINE, newline, 0, 0); /* call line hook */
|
||||
}
|
||||
L->oldpc = pc; /* 'pc' of last call to line hook */
|
||||
L->oldpc = npci; /* 'pc' of last call to line hook */
|
||||
}
|
||||
if (L->status == LUA_YIELD) { /* did hook yield? */
|
||||
if (counthook)
|
@ -13,6 +13,11 @@
|
||||
|
||||
#define pcRel(pc, p) (cast_int((pc) - (p)->code) - 1)
|
||||
|
||||
|
||||
/* Active Lua function (given call info) */
|
||||
#define ci_func(ci) (clLvalue(s2v((ci)->func)))
|
||||
|
||||
|
||||
#define resethookcount(L) (L->hookcount = L->basehookcount)
|
||||
|
||||
/*
|
@ -139,8 +139,7 @@ l_noret luaD_throw (lua_State *L, int errcode) {
|
||||
|
||||
|
||||
int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud) {
|
||||
global_State *g = G(L);
|
||||
l_uint32 oldnCcalls = g->Cstacklimit - (L->nCcalls + L->nci);
|
||||
l_uint32 oldnCcalls = L->nCcalls;
|
||||
struct lua_longjmp lj;
|
||||
lj.status = LUA_OK;
|
||||
lj.previous = L->errorJmp; /* chain new error handler */
|
||||
@ -149,7 +148,7 @@ int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud) {
|
||||
(*f)(L, ud);
|
||||
);
|
||||
L->errorJmp = lj.previous; /* restore old error handler */
|
||||
L->nCcalls = g->Cstacklimit - oldnCcalls - L->nci;
|
||||
L->nCcalls = oldnCcalls;
|
||||
return lj.status;
|
||||
}
|
||||
|
||||
@ -183,21 +182,20 @@ static void correctstack (lua_State *L, StkId oldstack, StkId newstack) {
|
||||
|
||||
|
||||
int luaD_reallocstack (lua_State *L, int newsize, int raiseerror) {
|
||||
int lim = L->stacksize;
|
||||
StkId newstack = luaM_reallocvector(L, L->stack, lim, newsize, StackValue);
|
||||
int lim = stacksize(L);
|
||||
StkId newstack = luaM_reallocvector(L, L->stack,
|
||||
lim + EXTRA_STACK, newsize + EXTRA_STACK, StackValue);
|
||||
lua_assert(newsize <= LUAI_MAXSTACK || newsize == ERRORSTACKSIZE);
|
||||
lua_assert(L->stack_last - L->stack == L->stacksize - EXTRA_STACK);
|
||||
if (unlikely(newstack == NULL)) { /* reallocation failed? */
|
||||
if (raiseerror)
|
||||
luaM_error(L);
|
||||
else return 0; /* do not raise an error */
|
||||
}
|
||||
for (; lim < newsize; lim++)
|
||||
setnilvalue(s2v(newstack + lim)); /* erase new segment */
|
||||
setnilvalue(s2v(newstack + lim + EXTRA_STACK)); /* erase new segment */
|
||||
correctstack(L, L->stack, newstack);
|
||||
L->stack = newstack;
|
||||
L->stacksize = newsize;
|
||||
L->stack_last = L->stack + newsize - EXTRA_STACK;
|
||||
L->stack_last = L->stack + newsize;
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -207,52 +205,73 @@ int luaD_reallocstack (lua_State *L, int newsize, int raiseerror) {
|
||||
** is true, raises any error; otherwise, return 0 in case of errors.
|
||||
*/
|
||||
int luaD_growstack (lua_State *L, int n, int raiseerror) {
|
||||
int size = L->stacksize;
|
||||
int newsize = 2 * size; /* tentative new size */
|
||||
if (unlikely(size > LUAI_MAXSTACK)) { /* need more space after extra size? */
|
||||
int size = stacksize(L);
|
||||
if (unlikely(size > LUAI_MAXSTACK)) {
|
||||
/* if stack is larger than maximum, thread is already using the
|
||||
extra space reserved for errors, that is, thread is handling
|
||||
a stack error; cannot grow further than that. */
|
||||
lua_assert(stacksize(L) == ERRORSTACKSIZE);
|
||||
if (raiseerror)
|
||||
luaD_throw(L, LUA_ERRERR); /* error inside message handler */
|
||||
else return 0;
|
||||
return 0; /* if not 'raiseerror', just signal it */
|
||||
}
|
||||
else {
|
||||
int needed = cast_int(L->top - L->stack) + n + EXTRA_STACK;
|
||||
int newsize = 2 * size; /* tentative new size */
|
||||
int needed = cast_int(L->top - L->stack) + n;
|
||||
if (newsize > LUAI_MAXSTACK) /* cannot cross the limit */
|
||||
newsize = LUAI_MAXSTACK;
|
||||
if (newsize < needed) /* but must respect what was asked for */
|
||||
newsize = needed;
|
||||
if (unlikely(newsize > LUAI_MAXSTACK)) { /* stack overflow? */
|
||||
if (likely(newsize <= LUAI_MAXSTACK))
|
||||
return luaD_reallocstack(L, newsize, raiseerror);
|
||||
else { /* stack overflow */
|
||||
/* add extra size to be able to handle the error message */
|
||||
luaD_reallocstack(L, ERRORSTACKSIZE, raiseerror);
|
||||
if (raiseerror)
|
||||
luaG_runerror(L, "stack overflow");
|
||||
else return 0;
|
||||
return 0;
|
||||
}
|
||||
} /* else no errors */
|
||||
return luaD_reallocstack(L, newsize, raiseerror);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static int stackinuse (lua_State *L) {
|
||||
CallInfo *ci;
|
||||
int res;
|
||||
StkId lim = L->top;
|
||||
for (ci = L->ci; ci != NULL; ci = ci->previous) {
|
||||
if (lim < ci->top) lim = ci->top;
|
||||
}
|
||||
lua_assert(lim <= L->stack_last);
|
||||
return cast_int(lim - L->stack) + 1; /* part of stack in use */
|
||||
res = cast_int(lim - L->stack) + 1; /* part of stack in use */
|
||||
if (res < LUA_MINSTACK)
|
||||
res = LUA_MINSTACK; /* ensure a minimum size */
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** If stack size is more than 3 times the current use, reduce that size
|
||||
** to twice the current use. (So, the final stack size is at most 2/3 the
|
||||
** previous size, and half of its entries are empty.)
|
||||
** As a particular case, if stack was handling a stack overflow and now
|
||||
** it is not, 'max' (limited by LUAI_MAXSTACK) will be smaller than
|
||||
** stacksize (equal to ERRORSTACKSIZE in this case), and so the stack
|
||||
** will be reduced to a "regular" size.
|
||||
*/
|
||||
void luaD_shrinkstack (lua_State *L) {
|
||||
int inuse = stackinuse(L);
|
||||
int goodsize = inuse + (inuse / 8) + 2*EXTRA_STACK;
|
||||
if (goodsize > LUAI_MAXSTACK)
|
||||
goodsize = LUAI_MAXSTACK; /* respect stack limit */
|
||||
int nsize = inuse * 2; /* proposed new size */
|
||||
int max = inuse * 3; /* maximum "reasonable" size */
|
||||
if (max > LUAI_MAXSTACK) {
|
||||
max = LUAI_MAXSTACK; /* respect stack limit */
|
||||
if (nsize > LUAI_MAXSTACK)
|
||||
nsize = LUAI_MAXSTACK;
|
||||
}
|
||||
/* if thread is currently not handling a stack overflow and its
|
||||
good size is smaller than current size, shrink its stack */
|
||||
if (inuse <= (LUAI_MAXSTACK - EXTRA_STACK) &&
|
||||
goodsize < L->stacksize)
|
||||
luaD_reallocstack(L, goodsize, 0); /* ok if that fails */
|
||||
size is larger than maximum "reasonable" size, shrink it */
|
||||
if (inuse <= LUAI_MAXSTACK && stacksize(L) > max)
|
||||
luaD_reallocstack(L, nsize, 0); /* ok if that fails */
|
||||
else /* don't change stack */
|
||||
condmovestack(L,{},{}); /* (change only for debugging) */
|
||||
luaE_shrinkCI(L); /* shrink CI list */
|
||||
@ -328,7 +347,7 @@ static StkId rethook (lua_State *L, CallInfo *ci, StkId firstres, int nres) {
|
||||
ptrdiff_t oldtop = savestack(L, L->top); /* hook may change top */
|
||||
int delta = 0;
|
||||
if (isLuacode(ci)) {
|
||||
Proto *p = clLvalue(s2v(ci->func))->p;
|
||||
Proto *p = ci_func(ci)->p;
|
||||
if (p->is_vararg)
|
||||
delta = ci->u.l.nextraargs + p->numparams + 1;
|
||||
if (L->top < ci->top)
|
||||
@ -341,15 +360,15 @@ static StkId rethook (lua_State *L, CallInfo *ci, StkId firstres, int nres) {
|
||||
luaD_hook(L, LUA_HOOKRET, -1, ftransfer, nres); /* call it */
|
||||
ci->func -= delta;
|
||||
}
|
||||
if (isLua(ci->previous))
|
||||
L->oldpc = ci->previous->u.l.savedpc; /* update 'oldpc' */
|
||||
if (isLua(ci = ci->previous))
|
||||
L->oldpc = pcRel(ci->u.l.savedpc, ci_func(ci)->p); /* update 'oldpc' */
|
||||
return restorestack(L, oldtop);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Check whether 'func' has a '__call' metafield. If so, put it in the
|
||||
** stack, below original 'func', so that 'luaD_call' can call it. Raise
|
||||
** stack, below original 'func', so that 'luaD_precall' can call it. Raise
|
||||
** an error if there is no '__call' metafield.
|
||||
*/
|
||||
void luaD_tryfuncTM (lua_State *L, StkId func) {
|
||||
@ -450,12 +469,14 @@ void luaD_pretailcall (lua_State *L, CallInfo *ci, StkId func, int narg1) {
|
||||
|
||||
|
||||
/*
|
||||
** Call a function (C or Lua). The function to be called is at *func.
|
||||
** The arguments are on the stack, right after the function.
|
||||
** When returns, all the results are on the stack, starting at the original
|
||||
** function position.
|
||||
** Prepares the call to a function (C or Lua). For C functions, also do
|
||||
** the call. The function to be called is at '*func'. The arguments
|
||||
** are on the stack, right after the function. Returns the CallInfo
|
||||
** to be executed, if it was a Lua function. Otherwise (a C function)
|
||||
** returns NULL, with all the results on the stack, starting at the
|
||||
** original function position.
|
||||
*/
|
||||
void luaD_call (lua_State *L, StkId func, int nresults) {
|
||||
CallInfo *luaD_precall (lua_State *L, StkId func, int nresults) {
|
||||
lua_CFunction f;
|
||||
retry:
|
||||
switch (ttypetag(s2v(func))) {
|
||||
@ -466,13 +487,13 @@ void luaD_call (lua_State *L, StkId func, int nresults) {
|
||||
f = fvalue(s2v(func));
|
||||
Cfunc: {
|
||||
int n; /* number of returns */
|
||||
CallInfo *ci = next_ci(L);
|
||||
checkstackp(L, LUA_MINSTACK, func); /* ensure minimum stack size */
|
||||
CallInfo *ci;
|
||||
checkstackGCp(L, LUA_MINSTACK, func); /* ensure minimum stack size */
|
||||
L->ci = ci = next_ci(L);
|
||||
ci->nresults = nresults;
|
||||
ci->callstatus = CIST_C;
|
||||
ci->top = L->top + LUA_MINSTACK;
|
||||
ci->func = func;
|
||||
L->ci = ci;
|
||||
lua_assert(ci->top <= L->stack_last);
|
||||
if (L->hookmask & LUA_MASKCALL) {
|
||||
int narg = cast_int(L->top - func) - 1;
|
||||
@ -483,29 +504,28 @@ void luaD_call (lua_State *L, StkId func, int nresults) {
|
||||
lua_lock(L);
|
||||
api_checknelems(L, n);
|
||||
luaD_poscall(L, ci, n);
|
||||
break;
|
||||
return NULL;
|
||||
}
|
||||
case LUA_VLCL: { /* Lua function */
|
||||
CallInfo *ci = next_ci(L);
|
||||
CallInfo *ci;
|
||||
Proto *p = clLvalue(s2v(func))->p;
|
||||
int narg = cast_int(L->top - func) - 1; /* number of real arguments */
|
||||
int nfixparams = p->numparams;
|
||||
int fsize = p->maxstacksize; /* frame size */
|
||||
checkstackp(L, fsize, func);
|
||||
checkstackGCp(L, fsize, func);
|
||||
L->ci = ci = next_ci(L);
|
||||
ci->nresults = nresults;
|
||||
ci->u.l.savedpc = p->code; /* starting point */
|
||||
ci->callstatus = 0;
|
||||
ci->top = func + 1 + fsize;
|
||||
ci->func = func;
|
||||
L->ci = ci;
|
||||
for (; narg < nfixparams; narg++)
|
||||
setnilvalue(s2v(L->top++)); /* complete missing arguments */
|
||||
lua_assert(ci->top <= L->stack_last);
|
||||
luaV_execute(L, ci); /* run the function */
|
||||
break;
|
||||
return ci;
|
||||
}
|
||||
default: { /* not a function */
|
||||
checkstackp(L, 1, func); /* space for metamethod */
|
||||
checkstackGCp(L, 1, func); /* space for metamethod */
|
||||
luaD_tryfuncTM(L, func); /* try to get '__call' metamethod */
|
||||
goto retry; /* try again with metamethod */
|
||||
}
|
||||
@ -513,18 +533,37 @@ void luaD_call (lua_State *L, StkId func, int nresults) {
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Call a function (C or Lua) through C. 'inc' can be 1 (increment
|
||||
** number of recursive invocations in the C stack) or nyci (the same
|
||||
** plus increment number of non-yieldable calls).
|
||||
*/
|
||||
static void ccall (lua_State *L, StkId func, int nResults, int inc) {
|
||||
CallInfo *ci;
|
||||
L->nCcalls += inc;
|
||||
if (unlikely(getCcalls(L) >= LUAI_MAXCCALLS))
|
||||
luaE_checkcstack(L);
|
||||
if ((ci = luaD_precall(L, func, nResults)) != NULL) { /* Lua function? */
|
||||
ci->callstatus = CIST_FRESH; /* mark that it is a "fresh" execute */
|
||||
luaV_execute(L, ci); /* call it */
|
||||
}
|
||||
L->nCcalls -= inc;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** External interface for 'ccall'
|
||||
*/
|
||||
void luaD_call (lua_State *L, StkId func, int nResults) {
|
||||
ccall(L, func, nResults, 1);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Similar to 'luaD_call', but does not allow yields during the call.
|
||||
** If there is a stack overflow, freeing all CI structures will
|
||||
** force the subsequent call to invoke 'luaE_extendCI', which then
|
||||
** will raise any errors.
|
||||
*/
|
||||
void luaD_callnoyield (lua_State *L, StkId func, int nResults) {
|
||||
incXCcalls(L);
|
||||
if (getCcalls(L) <= CSTACKERR) /* possible stack overflow? */
|
||||
luaE_freeCI(L);
|
||||
luaD_call(L, func, nResults);
|
||||
decXCcalls(L);
|
||||
ccall(L, func, nResults, nyci);
|
||||
}
|
||||
|
||||
|
||||
@ -602,12 +641,12 @@ static int recover (lua_State *L, int status) {
|
||||
if (ci == NULL) return 0; /* no recovery point */
|
||||
/* "finish" luaD_pcall */
|
||||
oldtop = restorestack(L, ci->u2.funcidx);
|
||||
luaF_close(L, oldtop, status); /* may change the stack */
|
||||
oldtop = restorestack(L, ci->u2.funcidx);
|
||||
luaD_seterrorobj(L, status, oldtop);
|
||||
L->ci = ci;
|
||||
L->allowhook = getoah(ci->callstatus); /* restore original 'allowhook' */
|
||||
luaD_shrinkstack(L);
|
||||
status = luaF_close(L, oldtop, status); /* may change the stack */
|
||||
oldtop = restorestack(L, ci->u2.funcidx);
|
||||
luaD_seterrorobj(L, status, oldtop);
|
||||
luaD_shrinkstack(L); /* restore stack size in case of overflow */
|
||||
L->errfunc = ci->u.c.old_errfunc;
|
||||
return 1; /* continue running the coroutine */
|
||||
}
|
||||
@ -638,12 +677,12 @@ static void resume (lua_State *L, void *ud) {
|
||||
int n = *(cast(int*, ud)); /* number of arguments */
|
||||
StkId firstArg = L->top - n; /* first argument */
|
||||
CallInfo *ci = L->ci;
|
||||
if (L->status == LUA_OK) { /* starting a coroutine? */
|
||||
luaD_call(L, firstArg - 1, LUA_MULTRET);
|
||||
}
|
||||
if (L->status == LUA_OK) /* starting a coroutine? */
|
||||
ccall(L, firstArg - 1, LUA_MULTRET, 1); /* just call its body */
|
||||
else { /* resuming from previous yield */
|
||||
lua_assert(L->status == LUA_YIELD);
|
||||
L->status = LUA_OK; /* mark that it is running (again) */
|
||||
luaE_incCstack(L); /* control the C stack */
|
||||
if (isLua(ci)) /* yielded inside a hook? */
|
||||
luaV_execute(L, ci); /* just continue running Lua code */
|
||||
else { /* 'common' yield */
|
||||
@ -671,12 +710,7 @@ LUA_API int lua_resume (lua_State *L, lua_State *from, int nargs,
|
||||
}
|
||||
else if (L->status != LUA_YIELD) /* ended with errors? */
|
||||
return resume_error(L, "cannot resume dead coroutine", nargs);
|
||||
if (from == NULL)
|
||||
L->nCcalls = CSTACKTHREAD;
|
||||
else /* correct 'nCcalls' for this thread */
|
||||
L->nCcalls = getCcalls(from) + from->nci - L->nci - CSTACKCF;
|
||||
if (L->nCcalls <= CSTACKERR)
|
||||
return resume_error(L, "C stack overflow", nargs);
|
||||
L->nCcalls = (from) ? getCcalls(from) : 0;
|
||||
luai_userstateresume(L, nargs);
|
||||
api_checknelems(L, (L->status == LUA_OK) ? nargs + 1 : nargs);
|
||||
status = luaD_rawrunprotected(L, resume, &nargs);
|
||||
@ -706,9 +740,10 @@ LUA_API int lua_isyieldable (lua_State *L) {
|
||||
|
||||
LUA_API int lua_yieldk (lua_State *L, int nresults, lua_KContext ctx,
|
||||
lua_KFunction k) {
|
||||
CallInfo *ci = L->ci;
|
||||
CallInfo *ci;
|
||||
luai_userstateyield(L, nresults);
|
||||
lua_lock(L);
|
||||
ci = L->ci;
|
||||
api_checknelems(L, nresults);
|
||||
if (unlikely(!yieldable(L))) {
|
||||
if (L != G(L)->mainthread)
|
||||
@ -754,7 +789,7 @@ int luaD_pcall (lua_State *L, Pfunc func, void *u,
|
||||
status = luaF_close(L, oldtop, status);
|
||||
oldtop = restorestack(L, old_top); /* previous call may change stack */
|
||||
luaD_seterrorobj(L, status, oldtop);
|
||||
luaD_shrinkstack(L);
|
||||
luaD_shrinkstack(L); /* restore stack size in case of overflow */
|
||||
}
|
||||
L->errfunc = old_errfunc;
|
||||
return status;
|
@ -17,6 +17,8 @@
|
||||
** Macro to check stack size and grow stack if needed. Parameters
|
||||
** 'pre'/'pos' allow the macro to preserve a pointer into the
|
||||
** stack across reallocations, doing the work only when needed.
|
||||
** It also allows the running of one GC step when the stack is
|
||||
** reallocated.
|
||||
** 'condmovestack' is used in heavy tests to force a stack reallocation
|
||||
** at every check.
|
||||
*/
|
||||
@ -35,7 +37,7 @@
|
||||
|
||||
|
||||
/* macro to check stack size, preserving 'p' */
|
||||
#define checkstackp(L,n,p) \
|
||||
#define checkstackGCp(L,n,p) \
|
||||
luaD_checkstackaux(L, n, \
|
||||
ptrdiff_t t__ = savestack(L, p); /* save 'p' */ \
|
||||
luaC_checkGC(L), /* stack grow uses memory */ \
|
||||
@ -44,7 +46,7 @@
|
||||
|
||||
/* macro to check stack size and GC */
|
||||
#define checkstackGC(L,fsize) \
|
||||
luaD_checkstackaux(L, (fsize), (void)0, luaC_checkGC(L))
|
||||
luaD_checkstackaux(L, (fsize), luaC_checkGC(L), (void)0)
|
||||
|
||||
|
||||
/* type of protected functions, to be ran by 'runprotected' */
|
||||
@ -57,6 +59,7 @@ LUAI_FUNC void luaD_hook (lua_State *L, int event, int line,
|
||||
int fTransfer, int nTransfer);
|
||||
LUAI_FUNC void luaD_hookcall (lua_State *L, CallInfo *ci);
|
||||
LUAI_FUNC void luaD_pretailcall (lua_State *L, CallInfo *ci, StkId func, int n);
|
||||
LUAI_FUNC CallInfo *luaD_precall (lua_State *L, StkId func, int nResults);
|
||||
LUAI_FUNC void luaD_call (lua_State *L, StkId func, int nResults);
|
||||
LUAI_FUNC void luaD_callnoyield (lua_State *L, StkId func, int nResults);
|
||||
LUAI_FUNC void luaD_tryfuncTM (lua_State *L, StkId func);
|
@ -53,7 +53,7 @@ void luaF_initupvals (lua_State *L, LClosure *cl) {
|
||||
uv->v = &uv->u.value; /* make it closed */
|
||||
setnilvalue(uv->v);
|
||||
cl->upvals[i] = uv;
|
||||
luaC_objbarrier(L, cl, o);
|
||||
luaC_objbarrier(L, cl, uv);
|
||||
}
|
||||
}
|
||||
|
||||
@ -234,9 +234,10 @@ int luaF_close (lua_State *L, StkId level, int status) {
|
||||
luaF_unlinkupval(uv);
|
||||
setobj(L, slot, uv->v); /* move value to upvalue slot */
|
||||
uv->v = slot; /* now current value lives here */
|
||||
if (!iswhite(uv))
|
||||
gray2black(uv); /* closed upvalues cannot be gray */
|
||||
luaC_barrier(L, uv, slot);
|
||||
if (!iswhite(uv)) { /* neither white nor dead? */
|
||||
nw2black(uv); /* closed upvalues cannot be gray */
|
||||
luaC_barrier(L, uv, slot);
|
||||
}
|
||||
}
|
||||
return status;
|
||||
}
|
@ -60,16 +60,24 @@
|
||||
#define PAUSEADJ 100
|
||||
|
||||
|
||||
/* mask to erase all color bits (plus gen. related stuff) */
|
||||
#define maskcolors (~(bitmask(BLACKBIT) | WHITEBITS | AGEBITS))
|
||||
/* mask with all color bits */
|
||||
#define maskcolors (bitmask(BLACKBIT) | WHITEBITS)
|
||||
|
||||
/* mask with all GC bits */
|
||||
#define maskgcbits (maskcolors | AGEBITS)
|
||||
|
||||
|
||||
/* macro to erase all color bits then sets only the current white bit */
|
||||
/* macro to erase all color bits then set only the current white bit */
|
||||
#define makewhite(g,x) \
|
||||
(x->marked = cast_byte((x->marked & maskcolors) | luaC_white(g)))
|
||||
(x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
|
||||
|
||||
#define white2gray(x) resetbits(x->marked, WHITEBITS)
|
||||
#define black2gray(x) resetbit(x->marked, BLACKBIT)
|
||||
/* make an object gray (neither white nor black) */
|
||||
#define set2gray(x) resetbits(x->marked, maskcolors)
|
||||
|
||||
|
||||
/* make an object black (coming from any color) */
|
||||
#define set2black(x) \
|
||||
(x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
|
||||
|
||||
|
||||
#define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
|
||||
@ -77,16 +85,13 @@
|
||||
#define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
|
||||
|
||||
|
||||
#define checkconsistency(obj) \
|
||||
lua_longassert(!iscollectable(obj) || righttt(obj))
|
||||
|
||||
/*
|
||||
** Protected access to objects in values
|
||||
*/
|
||||
#define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
|
||||
|
||||
|
||||
#define markvalue(g,o) { checkconsistency(o); \
|
||||
#define markvalue(g,o) { checkliveness(g->mainthread,o); \
|
||||
if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
|
||||
|
||||
#define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
|
||||
@ -135,31 +140,38 @@ static GCObject **getgclist (GCObject *o) {
|
||||
|
||||
|
||||
/*
|
||||
** Link a collectable object 'o' with a known type into list pointed by 'p'.
|
||||
** Link a collectable object 'o' with a known type into the list 'p'.
|
||||
** (Must be a macro to access the 'gclist' field in different types.)
|
||||
*/
|
||||
#define linkgclist(o,p) ((o)->gclist = (p), (p) = obj2gco(o))
|
||||
#define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p))
|
||||
|
||||
static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
|
||||
lua_assert(!isgray(o)); /* cannot be in a gray list */
|
||||
*pnext = *list;
|
||||
*list = o;
|
||||
set2gray(o); /* now it is */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Link a generic collectable object 'o' into list pointed by 'p'.
|
||||
** Link a generic collectable object 'o' into the list 'p'.
|
||||
*/
|
||||
#define linkobjgclist(o,p) (*getgclist(o) = (p), (p) = obj2gco(o))
|
||||
#define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Clear keys for empty entries in tables. If entry is empty
|
||||
** and its key is not marked, mark its entry as dead. This allows the
|
||||
** collection of the key, but keeps its entry in the table (its removal
|
||||
** could break a chain). The main feature of a dead key is that it must
|
||||
** be different from any other value, to do not disturb searches.
|
||||
** Other places never manipulate dead keys, because its associated empty
|
||||
** value is enough to signal that the entry is logically empty.
|
||||
** Clear keys for empty entries in tables. If entry is empty, mark its
|
||||
** entry as dead. This allows the collection of the key, but keeps its
|
||||
** entry in the table: its removal could break a chain and could break
|
||||
** a table traversal. Other places never manipulate dead keys, because
|
||||
** its associated empty value is enough to signal that the entry is
|
||||
** logically empty.
|
||||
*/
|
||||
static void clearkey (Node *n) {
|
||||
lua_assert(isempty(gval(n)));
|
||||
if (keyiswhite(n))
|
||||
setdeadkey(n); /* unused and unmarked key; remove it */
|
||||
if (keyiscollectable(n))
|
||||
setdeadkey(n); /* unused key; remove it */
|
||||
}
|
||||
|
||||
|
||||
@ -181,14 +193,17 @@ static int iscleared (global_State *g, const GCObject *o) {
|
||||
|
||||
|
||||
/*
|
||||
** barrier that moves collector forward, that is, mark the white object
|
||||
** 'v' being pointed by the black object 'o'. (If in sweep phase, clear
|
||||
** the black object to white [sweep it] to avoid other barrier calls for
|
||||
** this same object.) In the generational mode, 'v' must also become
|
||||
** old, if 'o' is old; however, it cannot be changed directly to OLD,
|
||||
** because it may still point to non-old objects. So, it is marked as
|
||||
** OLD0. In the next cycle it will become OLD1, and in the next it
|
||||
** will finally become OLD (regular old).
|
||||
** Barrier that moves collector forward, that is, marks the white object
|
||||
** 'v' being pointed by the black object 'o'. In the generational
|
||||
** mode, 'v' must also become old, if 'o' is old; however, it cannot
|
||||
** be changed directly to OLD, because it may still point to non-old
|
||||
** objects. So, it is marked as OLD0. In the next cycle it will become
|
||||
** OLD1, and in the next it will finally become OLD (regular old). By
|
||||
** then, any object it points to will also be old. If called in the
|
||||
** incremental sweep phase, it clears the black object to white (sweep
|
||||
** it) to avoid other barrier calls for this same object. (That cannot
|
||||
** be done is generational mode, as its sweep does not distinguish
|
||||
** whites from deads.)
|
||||
*/
|
||||
void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
|
||||
global_State *g = G(L);
|
||||
@ -202,7 +217,8 @@ void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
|
||||
}
|
||||
else { /* sweep phase */
|
||||
lua_assert(issweepphase(g));
|
||||
makewhite(g, o); /* mark main obj. as white to avoid other barriers */
|
||||
if (g->gckind == KGC_INC) /* incremental mode? */
|
||||
makewhite(g, o); /* mark 'o' as white to avoid other barriers */
|
||||
}
|
||||
}
|
||||
|
||||
@ -214,18 +230,20 @@ void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
|
||||
void luaC_barrierback_ (lua_State *L, GCObject *o) {
|
||||
global_State *g = G(L);
|
||||
lua_assert(isblack(o) && !isdead(g, o));
|
||||
lua_assert(g->gckind != KGC_GEN || (isold(o) && getage(o) != G_TOUCHED1));
|
||||
if (getage(o) != G_TOUCHED2) /* not already in gray list? */
|
||||
linkobjgclist(o, g->grayagain); /* link it in 'grayagain' */
|
||||
black2gray(o); /* make object gray (again) */
|
||||
setage(o, G_TOUCHED1); /* touched in current cycle */
|
||||
lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
|
||||
if (getage(o) == G_TOUCHED2) /* already in gray list? */
|
||||
set2gray(o); /* make it gray to become touched1 */
|
||||
else /* link it in 'grayagain' and paint it gray */
|
||||
linkobjgclist(o, g->grayagain);
|
||||
if (isold(o)) /* generational mode? */
|
||||
setage(o, G_TOUCHED1); /* touched in current cycle */
|
||||
}
|
||||
|
||||
|
||||
void luaC_fix (lua_State *L, GCObject *o) {
|
||||
global_State *g = G(L);
|
||||
lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */
|
||||
white2gray(o); /* they will be gray forever */
|
||||
set2gray(o); /* they will be gray forever */
|
||||
setage(o, G_OLD); /* and old forever */
|
||||
g->allgc = o->next; /* remove object from 'allgc' list */
|
||||
o->next = g->fixedgc; /* link it to 'fixedgc' list */
|
||||
@ -259,24 +277,30 @@ GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
|
||||
|
||||
|
||||
/*
|
||||
** Mark an object. Userdata, strings, and closed upvalues are visited
|
||||
** and turned black here. Other objects are marked gray and added
|
||||
** to appropriate list to be visited (and turned black) later. (Open
|
||||
** upvalues are already linked in 'headuv' list. They are kept gray
|
||||
** to avoid barriers, as their values will be revisited by the thread.)
|
||||
** Mark an object. Userdata with no user values, strings, and closed
|
||||
** upvalues are visited and turned black here. Open upvalues are
|
||||
** already indirectly linked through their respective threads in the
|
||||
** 'twups' list, so they don't go to the gray list; nevertheless, they
|
||||
** are kept gray to avoid barriers, as their values will be revisited
|
||||
** by the thread or by 'remarkupvals'. Other objects are added to the
|
||||
** gray list to be visited (and turned black) later. Both userdata and
|
||||
** upvalues can call this function recursively, but this recursion goes
|
||||
** for at most two levels: An upvalue cannot refer to another upvalue
|
||||
** (only closures can), and a userdata's metatable must be a table.
|
||||
*/
|
||||
static void reallymarkobject (global_State *g, GCObject *o) {
|
||||
white2gray(o);
|
||||
switch (o->tt) {
|
||||
case LUA_VSHRSTR:
|
||||
case LUA_VLNGSTR: {
|
||||
gray2black(o);
|
||||
set2black(o); /* nothing to visit */
|
||||
break;
|
||||
}
|
||||
case LUA_VUPVAL: {
|
||||
UpVal *uv = gco2upv(o);
|
||||
if (!upisopen(uv)) /* open upvalues are kept gray */
|
||||
gray2black(o);
|
||||
if (upisopen(uv))
|
||||
set2gray(uv); /* open upvalues are kept gray */
|
||||
else
|
||||
set2black(uv); /* closed upvalues are visited here */
|
||||
markvalue(g, uv->v); /* mark its content */
|
||||
break;
|
||||
}
|
||||
@ -284,14 +308,14 @@ static void reallymarkobject (global_State *g, GCObject *o) {
|
||||
Udata *u = gco2u(o);
|
||||
if (u->nuvalue == 0) { /* no user values? */
|
||||
markobjectN(g, u->metatable); /* mark its metatable */
|
||||
gray2black(o); /* nothing else to mark */
|
||||
set2black(u); /* nothing else to mark */
|
||||
break;
|
||||
}
|
||||
/* else... */
|
||||
} /* FALLTHROUGH */
|
||||
case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
|
||||
case LUA_VTHREAD: case LUA_VPROTO: {
|
||||
linkobjgclist(o, g->gray);
|
||||
linkobjgclist(o, g->gray); /* to be visited later */
|
||||
break;
|
||||
}
|
||||
default: lua_assert(0); break;
|
||||
@ -324,28 +348,36 @@ static lu_mem markbeingfnz (global_State *g) {
|
||||
|
||||
|
||||
/*
|
||||
** Mark all values stored in marked open upvalues from non-marked threads.
|
||||
** (Values from marked threads were already marked when traversing the
|
||||
** thread.) Remove from the list threads that no longer have upvalues and
|
||||
** not-marked threads.
|
||||
** For each non-marked thread, simulates a barrier between each open
|
||||
** upvalue and its value. (If the thread is collected, the value will be
|
||||
** assigned to the upvalue, but then it can be too late for the barrier
|
||||
** to act. The "barrier" does not need to check colors: A non-marked
|
||||
** thread must be young; upvalues cannot be older than their threads; so
|
||||
** any visited upvalue must be young too.) Also removes the thread from
|
||||
** the list, as it was already visited. Removes also threads with no
|
||||
** upvalues, as they have nothing to be checked. (If the thread gets an
|
||||
** upvalue later, it will be linked in the list again.)
|
||||
*/
|
||||
static int remarkupvals (global_State *g) {
|
||||
lua_State *thread;
|
||||
lua_State **p = &g->twups;
|
||||
int work = 0;
|
||||
int work = 0; /* estimate of how much work was done here */
|
||||
while ((thread = *p) != NULL) {
|
||||
work++;
|
||||
lua_assert(!isblack(thread)); /* threads are never black */
|
||||
if (isgray(thread) && thread->openupval != NULL)
|
||||
if (!iswhite(thread) && thread->openupval != NULL)
|
||||
p = &thread->twups; /* keep marked thread with upvalues in the list */
|
||||
else { /* thread is not marked or without upvalues */
|
||||
UpVal *uv;
|
||||
lua_assert(!isold(thread) || thread->openupval == NULL);
|
||||
*p = thread->twups; /* remove thread from the list */
|
||||
thread->twups = thread; /* mark that it is out of list */
|
||||
for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
|
||||
lua_assert(getage(uv) <= getage(thread));
|
||||
work++;
|
||||
if (!iswhite(uv)) /* upvalue already visited? */
|
||||
if (!iswhite(uv)) { /* upvalue already visited? */
|
||||
lua_assert(upisopen(uv) && isgray(uv));
|
||||
markvalue(g, uv->v); /* mark its value */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -353,12 +385,17 @@ static int remarkupvals (global_State *g) {
|
||||
}
|
||||
|
||||
|
||||
static void cleargraylists (global_State *g) {
|
||||
g->gray = g->grayagain = NULL;
|
||||
g->weak = g->allweak = g->ephemeron = NULL;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** mark root set and reset all gray lists, to start a new collection
|
||||
*/
|
||||
static void restartcollection (global_State *g) {
|
||||
g->gray = g->grayagain = NULL;
|
||||
g->weak = g->allweak = g->ephemeron = NULL;
|
||||
cleargraylists(g);
|
||||
markobject(g, g->mainthread);
|
||||
markvalue(g, &g->l_registry);
|
||||
markmt(g);
|
||||
@ -374,6 +411,26 @@ static void restartcollection (global_State *g) {
|
||||
** =======================================================
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
** Check whether object 'o' should be kept in the 'grayagain' list for
|
||||
** post-processing by 'correctgraylist'. (It could put all old objects
|
||||
** in the list and leave all the work to 'correctgraylist', but it is
|
||||
** more efficient to avoid adding elements that will be removed.) Only
|
||||
** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
|
||||
** back to a gray list, but then it must become OLD. (That is what
|
||||
** 'correctgraylist' does when it finds a TOUCHED2 object.)
|
||||
*/
|
||||
static void genlink (global_State *g, GCObject *o) {
|
||||
lua_assert(isblack(o));
|
||||
if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */
|
||||
linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */
|
||||
} /* everything else do not need to be linked back */
|
||||
else if (getage(o) == G_TOUCHED2)
|
||||
changeage(o, G_TOUCHED2, G_OLD); /* advance age */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Traverse a table with weak values and link it to proper list. During
|
||||
** propagate phase, keep it in 'grayagain' list, to be revisited in the
|
||||
@ -410,8 +467,9 @@ static void traverseweakvalue (global_State *g, Table *h) {
|
||||
** the atomic phase, if table has any white->white entry, it has to
|
||||
** be revisited during ephemeron convergence (as that key may turn
|
||||
** black). Otherwise, if it has any white key, table has to be cleared
|
||||
** (in the atomic phase). In generational mode, it (like all visited
|
||||
** tables) must be kept in some gray list for post-processing.
|
||||
** (in the atomic phase). In generational mode, some tables
|
||||
** must be kept in some gray list for post-processing; this is done
|
||||
** by 'genlink'.
|
||||
*/
|
||||
static int traverseephemeron (global_State *g, Table *h, int inv) {
|
||||
int marked = 0; /* true if an object is marked in this traversal */
|
||||
@ -450,10 +508,8 @@ static int traverseephemeron (global_State *g, Table *h, int inv) {
|
||||
linkgclist(h, g->ephemeron); /* have to propagate again */
|
||||
else if (hasclears) /* table has white keys? */
|
||||
linkgclist(h, g->allweak); /* may have to clean white keys */
|
||||
else if (g->gckind == KGC_GEN)
|
||||
linkgclist(h, g->grayagain); /* keep it in some list */
|
||||
else
|
||||
gray2black(h);
|
||||
genlink(g, obj2gco(h)); /* check whether collector still needs to see it */
|
||||
return marked;
|
||||
}
|
||||
|
||||
@ -473,10 +529,7 @@ static void traversestrongtable (global_State *g, Table *h) {
|
||||
markvalue(g, gval(n));
|
||||
}
|
||||
}
|
||||
if (g->gckind == KGC_GEN) {
|
||||
linkgclist(h, g->grayagain); /* keep it in some gray list */
|
||||
black2gray(h);
|
||||
}
|
||||
genlink(g, obj2gco(h));
|
||||
}
|
||||
|
||||
|
||||
@ -488,7 +541,6 @@ static lu_mem traversetable (global_State *g, Table *h) {
|
||||
(cast_void(weakkey = strchr(svalue(mode), 'k')),
|
||||
cast_void(weakvalue = strchr(svalue(mode), 'v')),
|
||||
(weakkey || weakvalue))) { /* is really weak? */
|
||||
black2gray(h); /* keep table gray */
|
||||
if (!weakkey) /* strong keys? */
|
||||
traverseweakvalue(g, h);
|
||||
else if (!weakvalue) /* strong values? */
|
||||
@ -507,10 +559,7 @@ static int traverseudata (global_State *g, Udata *u) {
|
||||
markobjectN(g, u->metatable); /* mark its metatable */
|
||||
for (i = 0; i < u->nuvalue; i++)
|
||||
markvalue(g, &u->uv[i].uv);
|
||||
if (g->gckind == KGC_GEN) {
|
||||
linkgclist(u, g->grayagain); /* keep it in some gray list */
|
||||
black2gray(u);
|
||||
}
|
||||
genlink(g, obj2gco(u));
|
||||
return 1 + u->nuvalue;
|
||||
}
|
||||
|
||||
@ -559,12 +608,21 @@ static int traverseLclosure (global_State *g, LClosure *cl) {
|
||||
|
||||
/*
|
||||
** Traverse a thread, marking the elements in the stack up to its top
|
||||
** and cleaning the rest of the stack in the final traversal.
|
||||
** That ensures that the entire stack have valid (non-dead) objects.
|
||||
** and cleaning the rest of the stack in the final traversal. That
|
||||
** ensures that the entire stack have valid (non-dead) objects.
|
||||
** Threads have no barriers. In gen. mode, old threads must be visited
|
||||
** at every cycle, because they might point to young objects. In inc.
|
||||
** mode, the thread can still be modified before the end of the cycle,
|
||||
** and therefore it must be visited again in the atomic phase. To ensure
|
||||
** these visits, threads must return to a gray list if they are not new
|
||||
** (which can only happen in generational mode) or if the traverse is in
|
||||
** the propagate phase (which can only happen in incremental mode).
|
||||
*/
|
||||
static int traversethread (global_State *g, lua_State *th) {
|
||||
UpVal *uv;
|
||||
StkId o = th->stack;
|
||||
if (isold(th) || g->gcstate == GCSpropagate)
|
||||
linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
|
||||
if (o == NULL)
|
||||
return 1; /* stack not completely built yet */
|
||||
lua_assert(g->gcstate == GCSatomic ||
|
||||
@ -574,9 +632,8 @@ static int traversethread (global_State *g, lua_State *th) {
|
||||
for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
|
||||
markobject(g, uv); /* open upvalues cannot be collected */
|
||||
if (g->gcstate == GCSatomic) { /* final traversal? */
|
||||
StkId lim = th->stack + th->stacksize; /* real end of stack */
|
||||
for (; o < lim; o++) /* clear not-marked stack slice */
|
||||
setnilvalue(s2v(o));
|
||||
for (; o < th->stack_last + EXTRA_STACK; o++)
|
||||
setnilvalue(s2v(o)); /* clear dead stack slice */
|
||||
/* 'remarkupvals' may have removed thread from 'twups' list */
|
||||
if (!isintwups(th) && th->openupval != NULL) {
|
||||
th->twups = g->twups; /* link it back to the list */
|
||||
@ -585,17 +642,16 @@ static int traversethread (global_State *g, lua_State *th) {
|
||||
}
|
||||
else if (!g->gcemergency)
|
||||
luaD_shrinkstack(th); /* do not change stack in emergency cycle */
|
||||
return 1 + th->stacksize;
|
||||
return 1 + stacksize(th);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** traverse one gray object, turning it to black (except for threads,
|
||||
** which are always gray).
|
||||
** traverse one gray object, turning it to black.
|
||||
*/
|
||||
static lu_mem propagatemark (global_State *g) {
|
||||
GCObject *o = g->gray;
|
||||
gray2black(o);
|
||||
nw2black(o);
|
||||
g->gray = *getgclist(o); /* remove from 'gray' list */
|
||||
switch (o->tt) {
|
||||
case LUA_VTABLE: return traversetable(g, gco2t(o));
|
||||
@ -603,12 +659,7 @@ static lu_mem propagatemark (global_State *g) {
|
||||
case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
|
||||
case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
|
||||
case LUA_VPROTO: return traverseproto(g, gco2p(o));
|
||||
case LUA_VTHREAD: {
|
||||
lua_State *th = gco2th(o);
|
||||
linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
|
||||
black2gray(o);
|
||||
return traversethread(g, th);
|
||||
}
|
||||
case LUA_VTHREAD: return traversethread(g, gco2th(o));
|
||||
default: lua_assert(0); return 0;
|
||||
}
|
||||
}
|
||||
@ -638,8 +689,10 @@ static void convergeephemerons (global_State *g) {
|
||||
g->ephemeron = NULL; /* tables may return to this list when traversed */
|
||||
changed = 0;
|
||||
while ((w = next) != NULL) { /* for each ephemeron table */
|
||||
next = gco2t(w)->gclist; /* list is rebuilt during loop */
|
||||
if (traverseephemeron(g, gco2t(w), dir)) { /* marked some value? */
|
||||
Table *h = gco2t(w);
|
||||
next = h->gclist; /* list is rebuilt during loop */
|
||||
nw2black(h); /* out of the list (for now) */
|
||||
if (traverseephemeron(g, h, dir)) { /* marked some value? */
|
||||
propagateall(g); /* propagate changes */
|
||||
changed = 1; /* will have to revisit all ephemeron tables */
|
||||
}
|
||||
@ -716,12 +769,16 @@ static void freeobj (lua_State *L, GCObject *o) {
|
||||
case LUA_VUPVAL:
|
||||
freeupval(L, gco2upv(o));
|
||||
break;
|
||||
case LUA_VLCL:
|
||||
luaM_freemem(L, o, sizeLclosure(gco2lcl(o)->nupvalues));
|
||||
case LUA_VLCL: {
|
||||
LClosure *cl = gco2lcl(o);
|
||||
luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
|
||||
break;
|
||||
case LUA_VCCL:
|
||||
luaM_freemem(L, o, sizeCclosure(gco2ccl(o)->nupvalues));
|
||||
}
|
||||
case LUA_VCCL: {
|
||||
CClosure *cl = gco2ccl(o);
|
||||
luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
|
||||
break;
|
||||
}
|
||||
case LUA_VTABLE:
|
||||
luaH_free(L, gco2t(o));
|
||||
break;
|
||||
@ -733,13 +790,17 @@ static void freeobj (lua_State *L, GCObject *o) {
|
||||
luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
|
||||
break;
|
||||
}
|
||||
case LUA_VSHRSTR:
|
||||
luaS_remove(L, gco2ts(o)); /* remove it from hash table */
|
||||
luaM_freemem(L, o, sizelstring(gco2ts(o)->shrlen));
|
||||
case LUA_VSHRSTR: {
|
||||
TString *ts = gco2ts(o);
|
||||
luaS_remove(L, ts); /* remove it from hash table */
|
||||
luaM_freemem(L, ts, sizelstring(ts->shrlen));
|
||||
break;
|
||||
case LUA_VLNGSTR:
|
||||
luaM_freemem(L, o, sizelstring(gco2ts(o)->u.lnglen));
|
||||
}
|
||||
case LUA_VLNGSTR: {
|
||||
TString *ts = gco2ts(o);
|
||||
luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
|
||||
break;
|
||||
}
|
||||
default: lua_assert(0);
|
||||
}
|
||||
}
|
||||
@ -766,7 +827,7 @@ static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
|
||||
freeobj(L, curr); /* erase 'curr' */
|
||||
}
|
||||
else { /* change mark to 'white' */
|
||||
curr->marked = cast_byte((marked & maskcolors) | white);
|
||||
curr->marked = cast_byte((marked & ~maskgcbits) | white);
|
||||
p = &curr->next; /* go to next element */
|
||||
}
|
||||
}
|
||||
@ -823,6 +884,8 @@ static GCObject *udata2finalize (global_State *g) {
|
||||
resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */
|
||||
if (issweepphase(g))
|
||||
makewhite(g, o); /* "sweep" object */
|
||||
else if (getage(o) == G_OLD1)
|
||||
g->firstold1 = o; /* it is the first OLD1 object in the list */
|
||||
return o;
|
||||
}
|
||||
|
||||
@ -896,15 +959,15 @@ static GCObject **findlast (GCObject **p) {
|
||||
/*
|
||||
** Move all unreachable objects (or 'all' objects) that need
|
||||
** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
|
||||
** (Note that objects after 'finobjold' cannot be white, so they
|
||||
** don't need to be traversed. In incremental mode, 'finobjold' is NULL,
|
||||
** (Note that objects after 'finobjold1' cannot be white, so they
|
||||
** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
|
||||
** so the whole list is traversed.)
|
||||
*/
|
||||
static void separatetobefnz (global_State *g, int all) {
|
||||
GCObject *curr;
|
||||
GCObject **p = &g->finobj;
|
||||
GCObject **lastnext = findlast(&g->tobefnz);
|
||||
while ((curr = *p) != g->finobjold) { /* traverse all finalizable objects */
|
||||
while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */
|
||||
lua_assert(tofinalize(curr));
|
||||
if (!(iswhite(curr) || all)) /* not being collected? */
|
||||
p = &curr->next; /* don't bother with it */
|
||||
@ -920,6 +983,27 @@ static void separatetobefnz (global_State *g, int all) {
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** If pointer 'p' points to 'o', move it to the next element.
|
||||
*/
|
||||
static void checkpointer (GCObject **p, GCObject *o) {
|
||||
if (o == *p)
|
||||
*p = o->next;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Correct pointers to objects inside 'allgc' list when
|
||||
** object 'o' is being removed from the list.
|
||||
*/
|
||||
static void correctpointers (global_State *g, GCObject *o) {
|
||||
checkpointer(&g->survival, o);
|
||||
checkpointer(&g->old1, o);
|
||||
checkpointer(&g->reallyold, o);
|
||||
checkpointer(&g->firstold1, o);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** if object 'o' has a finalizer, remove it from 'allgc' list (must
|
||||
** search the list to find it) and link it in 'finobj' list.
|
||||
@ -936,14 +1020,8 @@ void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
|
||||
if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */
|
||||
g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */
|
||||
}
|
||||
else { /* correct pointers into 'allgc' list, if needed */
|
||||
if (o == g->survival)
|
||||
g->survival = o->next;
|
||||
if (o == g->old)
|
||||
g->old = o->next;
|
||||
if (o == g->reallyold)
|
||||
g->reallyold = o->next;
|
||||
}
|
||||
else
|
||||
correctpointers(g, o);
|
||||
/* search for pointer pointing to 'o' */
|
||||
for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
|
||||
*p = o->next; /* remove 'o' from 'allgc' list */
|
||||
@ -965,24 +1043,31 @@ void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
|
||||
static void setpause (global_State *g);
|
||||
|
||||
|
||||
/* mask to erase all color bits, not changing gen-related stuff */
|
||||
#define maskgencolors (~(bitmask(BLACKBIT) | WHITEBITS))
|
||||
|
||||
|
||||
/*
|
||||
** Sweep a list of objects, deleting dead ones and turning
|
||||
** the non dead to old (without changing their colors).
|
||||
** Sweep a list of objects to enter generational mode. Deletes dead
|
||||
** objects and turns the non dead to old. All non-dead threads---which
|
||||
** are now old---must be in a gray list. Everything else is not in a
|
||||
** gray list. Open upvalues are also kept gray.
|
||||
*/
|
||||
static void sweep2old (lua_State *L, GCObject **p) {
|
||||
GCObject *curr;
|
||||
global_State *g = G(L);
|
||||
while ((curr = *p) != NULL) {
|
||||
if (iswhite(curr)) { /* is 'curr' dead? */
|
||||
lua_assert(isdead(G(L), curr));
|
||||
lua_assert(isdead(g, curr));
|
||||
*p = curr->next; /* remove 'curr' from list */
|
||||
freeobj(L, curr); /* erase 'curr' */
|
||||
}
|
||||
else { /* all surviving objects become old */
|
||||
setage(curr, G_OLD);
|
||||
if (curr->tt == LUA_VTHREAD) { /* threads must be watched */
|
||||
lua_State *th = gco2th(curr);
|
||||
linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
|
||||
}
|
||||
else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
|
||||
set2gray(curr); /* open upvalues are always gray */
|
||||
else /* everything else is black */
|
||||
nw2black(curr);
|
||||
p = &curr->next; /* go to next element */
|
||||
}
|
||||
}
|
||||
@ -995,9 +1080,13 @@ static void sweep2old (lua_State *L, GCObject **p) {
|
||||
** during the sweep. So, any white object must be dead.) For
|
||||
** non-dead objects, advance their ages and clear the color of
|
||||
** new objects. (Old objects keep their colors.)
|
||||
** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
|
||||
** here, because these old-generation objects are usually not swept
|
||||
** here. They will all be advanced in 'correctgraylist'. That function
|
||||
** will also remove objects turned white here from any gray list.
|
||||
*/
|
||||
static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
|
||||
GCObject *limit) {
|
||||
GCObject *limit, GCObject **pfirstold1) {
|
||||
static const lu_byte nextage[] = {
|
||||
G_SURVIVAL, /* from G_NEW */
|
||||
G_OLD1, /* from G_SURVIVAL */
|
||||
@ -1016,9 +1105,15 @@ static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
|
||||
freeobj(L, curr); /* erase 'curr' */
|
||||
}
|
||||
else { /* correct mark and age */
|
||||
if (getage(curr) == G_NEW)
|
||||
curr->marked = cast_byte((curr->marked & maskgencolors) | white);
|
||||
setage(curr, nextage[getage(curr)]);
|
||||
if (getage(curr) == G_NEW) { /* new objects go back to white */
|
||||
int marked = curr->marked & ~maskgcbits; /* erase GC bits */
|
||||
curr->marked = cast_byte(marked | G_SURVIVAL | white);
|
||||
}
|
||||
else { /* all other objects will be old, and so keep their color */
|
||||
setage(curr, nextage[getage(curr)]);
|
||||
if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
|
||||
*pfirstold1 = curr; /* first OLD1 object in the list */
|
||||
}
|
||||
p = &curr->next; /* go to next element */
|
||||
}
|
||||
}
|
||||
@ -1028,58 +1123,50 @@ static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
|
||||
|
||||
/*
|
||||
** Traverse a list making all its elements white and clearing their
|
||||
** age.
|
||||
** age. In incremental mode, all objects are 'new' all the time,
|
||||
** except for fixed strings (which are always old).
|
||||
*/
|
||||
static void whitelist (global_State *g, GCObject *p) {
|
||||
int white = luaC_white(g);
|
||||
for (; p != NULL; p = p->next)
|
||||
p->marked = cast_byte((p->marked & maskcolors) | white);
|
||||
p->marked = cast_byte((p->marked & ~maskgcbits) | white);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Correct a list of gray objects.
|
||||
** Correct a list of gray objects. Return pointer to where rest of the
|
||||
** list should be linked.
|
||||
** Because this correction is done after sweeping, young objects might
|
||||
** be turned white and still be in the list. They are only removed.
|
||||
** For tables and userdata, advance 'touched1' to 'touched2'; 'touched2'
|
||||
** objects become regular old and are removed from the list.
|
||||
** For threads, just remove white ones from the list.
|
||||
** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
|
||||
** Non-white threads also remain on the list; 'TOUCHED2' objects become
|
||||
** regular old; they and anything else are removed from the list.
|
||||
*/
|
||||
static GCObject **correctgraylist (GCObject **p) {
|
||||
GCObject *curr;
|
||||
while ((curr = *p) != NULL) {
|
||||
switch (curr->tt) {
|
||||
case LUA_VTABLE: case LUA_VUSERDATA: {
|
||||
GCObject **next = getgclist(curr);
|
||||
if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
|
||||
lua_assert(isgray(curr));
|
||||
gray2black(curr); /* make it black, for next barrier */
|
||||
changeage(curr, G_TOUCHED1, G_TOUCHED2);
|
||||
p = next; /* go to next element */
|
||||
}
|
||||
else { /* not touched in this cycle */
|
||||
if (!iswhite(curr)) { /* not white? */
|
||||
lua_assert(isold(curr));
|
||||
if (getage(curr) == G_TOUCHED2) /* advance from G_TOUCHED2... */
|
||||
changeage(curr, G_TOUCHED2, G_OLD); /* ... to G_OLD */
|
||||
gray2black(curr); /* make it black */
|
||||
}
|
||||
/* else, object is white: just remove it from this list */
|
||||
*p = *next; /* remove 'curr' from gray list */
|
||||
}
|
||||
break;
|
||||
}
|
||||
case LUA_VTHREAD: {
|
||||
lua_State *th = gco2th(curr);
|
||||
lua_assert(!isblack(th));
|
||||
if (iswhite(th)) /* new object? */
|
||||
*p = th->gclist; /* remove from gray list */
|
||||
else /* old threads remain gray */
|
||||
p = &th->gclist; /* go to next element */
|
||||
break;
|
||||
}
|
||||
default: lua_assert(0); /* nothing more could be gray here */
|
||||
GCObject **next = getgclist(curr);
|
||||
if (iswhite(curr))
|
||||
goto remove; /* remove all white objects */
|
||||
else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
|
||||
lua_assert(isgray(curr));
|
||||
nw2black(curr); /* make it black, for next barrier */
|
||||
changeage(curr, G_TOUCHED1, G_TOUCHED2);
|
||||
goto remain; /* keep it in the list and go to next element */
|
||||
}
|
||||
else if (curr->tt == LUA_VTHREAD) {
|
||||
lua_assert(isgray(curr));
|
||||
goto remain; /* keep non-white threads on the list */
|
||||
}
|
||||
else { /* everything else is removed */
|
||||
lua_assert(isold(curr)); /* young objects should be white here */
|
||||
if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */
|
||||
changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */
|
||||
nw2black(curr); /* make object black (to be removed) */
|
||||
goto remove;
|
||||
}
|
||||
remove: *p = *next; continue;
|
||||
remain: p = next; continue;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
@ -1100,7 +1187,7 @@ static void correctgraylists (global_State *g) {
|
||||
|
||||
|
||||
/*
|
||||
** Mark 'OLD1' objects when starting a new young collection.
|
||||
** Mark black 'OLD1' objects when starting a new young collection.
|
||||
** Gray objects are already in some gray list, and so will be visited
|
||||
** in the atomic step.
|
||||
*/
|
||||
@ -1109,10 +1196,9 @@ static void markold (global_State *g, GCObject *from, GCObject *to) {
|
||||
for (p = from; p != to; p = p->next) {
|
||||
if (getage(p) == G_OLD1) {
|
||||
lua_assert(!iswhite(p));
|
||||
if (isblack(p)) {
|
||||
black2gray(p); /* should be '2white', but gray works too */
|
||||
changeage(p, G_OLD1, G_OLD); /* now they are old */
|
||||
if (isblack(p))
|
||||
reallymarkobject(g, p);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1131,50 +1217,63 @@ static void finishgencycle (lua_State *L, global_State *g) {
|
||||
|
||||
|
||||
/*
|
||||
** Does a young collection. First, mark 'OLD1' objects. (Only survival
|
||||
** and "recent old" lists can contain 'OLD1' objects. New lists cannot
|
||||
** contain 'OLD1' objects, at most 'OLD0' objects that were already
|
||||
** visited when marked old.) Then does the atomic step. Then,
|
||||
** sweep all lists and advance pointers. Finally, finish the collection.
|
||||
** Does a young collection. First, mark 'OLD1' objects. Then does the
|
||||
** atomic step. Then, sweep all lists and advance pointers. Finally,
|
||||
** finish the collection.
|
||||
*/
|
||||
static void youngcollection (lua_State *L, global_State *g) {
|
||||
GCObject **psurvival; /* to point to first non-dead survival object */
|
||||
GCObject *dummy; /* dummy out parameter to 'sweepgen' */
|
||||
lua_assert(g->gcstate == GCSpropagate);
|
||||
markold(g, g->survival, g->reallyold);
|
||||
if (g->firstold1) { /* are there regular OLD1 objects? */
|
||||
markold(g, g->firstold1, g->reallyold); /* mark them */
|
||||
g->firstold1 = NULL; /* no more OLD1 objects (for now) */
|
||||
}
|
||||
markold(g, g->finobj, g->finobjrold);
|
||||
markold(g, g->tobefnz, NULL);
|
||||
atomic(L);
|
||||
|
||||
/* sweep nursery and get a pointer to its last live element */
|
||||
psurvival = sweepgen(L, g, &g->allgc, g->survival);
|
||||
/* sweep 'survival' and 'old' */
|
||||
sweepgen(L, g, psurvival, g->reallyold);
|
||||
g->reallyold = g->old;
|
||||
g->old = *psurvival; /* 'survival' survivals are old now */
|
||||
g->gcstate = GCSswpallgc;
|
||||
psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
|
||||
/* sweep 'survival' */
|
||||
sweepgen(L, g, psurvival, g->old1, &g->firstold1);
|
||||
g->reallyold = g->old1;
|
||||
g->old1 = *psurvival; /* 'survival' survivals are old now */
|
||||
g->survival = g->allgc; /* all news are survivals */
|
||||
|
||||
/* repeat for 'finobj' lists */
|
||||
psurvival = sweepgen(L, g, &g->finobj, g->finobjsur);
|
||||
/* sweep 'survival' and 'old' */
|
||||
sweepgen(L, g, psurvival, g->finobjrold);
|
||||
g->finobjrold = g->finobjold;
|
||||
g->finobjold = *psurvival; /* 'survival' survivals are old now */
|
||||
dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */
|
||||
psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
|
||||
/* sweep 'survival' */
|
||||
sweepgen(L, g, psurvival, g->finobjold1, &dummy);
|
||||
g->finobjrold = g->finobjold1;
|
||||
g->finobjold1 = *psurvival; /* 'survival' survivals are old now */
|
||||
g->finobjsur = g->finobj; /* all news are survivals */
|
||||
|
||||
sweepgen(L, g, &g->tobefnz, NULL);
|
||||
|
||||
sweepgen(L, g, &g->tobefnz, NULL, &dummy);
|
||||
finishgencycle(L, g);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Clears all gray lists, sweeps objects, and prepare sublists to enter
|
||||
** generational mode. The sweeps remove dead objects and turn all
|
||||
** surviving objects to old. Threads go back to 'grayagain'; everything
|
||||
** else is turned black (not in any gray list).
|
||||
*/
|
||||
static void atomic2gen (lua_State *L, global_State *g) {
|
||||
cleargraylists(g);
|
||||
/* sweep all elements making them old */
|
||||
g->gcstate = GCSswpallgc;
|
||||
sweep2old(L, &g->allgc);
|
||||
/* everything alive now is old */
|
||||
g->reallyold = g->old = g->survival = g->allgc;
|
||||
g->reallyold = g->old1 = g->survival = g->allgc;
|
||||
g->firstold1 = NULL; /* there are no OLD1 objects anywhere */
|
||||
|
||||
/* repeat for 'finobj' lists */
|
||||
sweep2old(L, &g->finobj);
|
||||
g->finobjrold = g->finobjold = g->finobjsur = g->finobj;
|
||||
g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
|
||||
|
||||
sweep2old(L, &g->tobefnz);
|
||||
|
||||
@ -1187,8 +1286,9 @@ static void atomic2gen (lua_State *L, global_State *g) {
|
||||
|
||||
/*
|
||||
** Enter generational mode. Must go until the end of an atomic cycle
|
||||
** to ensure that all threads and weak tables are in the gray lists.
|
||||
** Then, turn all objects into old and finishes the collection.
|
||||
** to ensure that all objects are correctly marked and weak tables
|
||||
** are cleared. Then, turn all objects into old and finishes the
|
||||
** collection.
|
||||
*/
|
||||
static lu_mem entergen (lua_State *L, global_State *g) {
|
||||
lu_mem numobjs;
|
||||
@ -1207,10 +1307,10 @@ static lu_mem entergen (lua_State *L, global_State *g) {
|
||||
*/
|
||||
static void enterinc (global_State *g) {
|
||||
whitelist(g, g->allgc);
|
||||
g->reallyold = g->old = g->survival = NULL;
|
||||
g->reallyold = g->old1 = g->survival = NULL;
|
||||
whitelist(g, g->finobj);
|
||||
whitelist(g, g->tobefnz);
|
||||
g->finobjrold = g->finobjold = g->finobjsur = NULL;
|
||||
g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
|
||||
g->gcstate = GCSpause;
|
||||
g->gckind = KGC_INC;
|
||||
g->lastatomic = 0;
|
@ -12,16 +12,16 @@
|
||||
#include "lstate.h"
|
||||
|
||||
/*
|
||||
** Collectable objects may have one of three colors: white, which
|
||||
** means the object is not marked; gray, which means the
|
||||
** object is marked, but its references may be not marked; and
|
||||
** black, which means that the object and all its references are marked.
|
||||
** The main invariant of the garbage collector, while marking objects,
|
||||
** is that a black object can never point to a white one. Moreover,
|
||||
** any gray object must be in a "gray list" (gray, grayagain, weak,
|
||||
** allweak, ephemeron) so that it can be visited again before finishing
|
||||
** the collection cycle. These lists have no meaning when the invariant
|
||||
** is not being enforced (e.g., sweep phase).
|
||||
** Collectable objects may have one of three colors: white, which means
|
||||
** the object is not marked; gray, which means the object is marked, but
|
||||
** its references may be not marked; and black, which means that the
|
||||
** object and all its references are marked. The main invariant of the
|
||||
** garbage collector, while marking objects, is that a black object can
|
||||
** never point to a white one. Moreover, any gray object must be in a
|
||||
** "gray list" (gray, grayagain, weak, allweak, ephemeron) so that it
|
||||
** can be visited again before finishing the collection cycle. (Open
|
||||
** upvalues are an exception to this rule.) These lists have no meaning
|
||||
** when the invariant is not being enforced (e.g., sweep phase).
|
||||
*/
|
||||
|
||||
|
||||
@ -69,14 +69,16 @@
|
||||
|
||||
/*
|
||||
** Layout for bit use in 'marked' field. First three bits are
|
||||
** used for object "age" in generational mode. Last bit is free
|
||||
** to be used by respective objects.
|
||||
** used for object "age" in generational mode. Last bit is used
|
||||
** by tests.
|
||||
*/
|
||||
#define WHITE0BIT 3 /* object is white (type 0) */
|
||||
#define WHITE1BIT 4 /* object is white (type 1) */
|
||||
#define BLACKBIT 5 /* object is black */
|
||||
#define FINALIZEDBIT 6 /* object has been marked for finalization */
|
||||
|
||||
#define TESTBIT 7
|
||||
|
||||
|
||||
|
||||
#define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT)
|
||||
@ -94,7 +96,8 @@
|
||||
#define isdead(g,v) isdeadm(otherwhite(g), (v)->marked)
|
||||
|
||||
#define changewhite(x) ((x)->marked ^= WHITEBITS)
|
||||
#define gray2black(x) l_setbit((x)->marked, BLACKBIT)
|
||||
#define nw2black(x) \
|
||||
check_exp(!iswhite(x), l_setbit((x)->marked, BLACKBIT))
|
||||
|
||||
#define luaC_white(g) cast_byte((g)->currentwhite & WHITEBITS)
|
||||
|
@ -52,6 +52,12 @@ static int l_checkmode (const char *mode) {
|
||||
** =======================================================
|
||||
*/
|
||||
|
||||
#if !defined(l_checkmodep)
|
||||
/* By default, Lua accepts only "r" or "w" as mode */
|
||||
#define l_checkmodep(m) ((m[0] == 'r' || m[0] == 'w') && m[1] == '\0')
|
||||
#endif
|
||||
|
||||
|
||||
#if !defined(l_popen) /* { */
|
||||
|
||||
#if defined(LUA_USE_POSIX) /* { */
|
||||
@ -279,6 +285,7 @@ static int io_popen (lua_State *L) {
|
||||
const char *filename = luaL_checkstring(L, 1);
|
||||
const char *mode = luaL_optstring(L, 2, "r");
|
||||
LStream *p = newprefile(L);
|
||||
luaL_argcheck(L, l_checkmodep(mode), 2, "invalid mode");
|
||||
p->f = l_popen(L, filename, mode);
|
||||
p->closef = &io_pclose;
|
||||
return (p->f == NULL) ? luaL_fileresult(L, 0, filename) : 1;
|
@ -81,7 +81,6 @@ void luaX_init (lua_State *L) {
|
||||
|
||||
const char *luaX_token2str (LexState *ls, int token) {
|
||||
if (token < FIRST_RESERVED) { /* single-byte symbols? */
|
||||
lua_assert(token == cast_uchar(token));
|
||||
if (lisprint(token))
|
||||
return luaO_pushfstring(ls->L, "'%c'", token);
|
||||
else /* control character */
|
||||
@ -255,9 +254,10 @@ static int read_numeral (LexState *ls, SemInfo *seminfo) {
|
||||
|
||||
|
||||
/*
|
||||
** reads a sequence '[=*[' or ']=*]', leaving the last bracket.
|
||||
** If sequence is well formed, return its number of '='s + 2; otherwise,
|
||||
** return 1 if there is no '='s or 0 otherwise (an unfinished '[==...').
|
||||
** read a sequence '[=*[' or ']=*]', leaving the last bracket. If
|
||||
** sequence is well formed, return its number of '='s + 2; otherwise,
|
||||
** return 1 if it is a single bracket (no '='s and no 2nd bracket);
|
||||
** otherwise (an unfinished '[==...') return 0.
|
||||
*/
|
||||
static size_t skip_sep (LexState *ls) {
|
||||
size_t count = 0;
|
||||
@ -482,34 +482,34 @@ static int llex (LexState *ls, SemInfo *seminfo) {
|
||||
}
|
||||
case '=': {
|
||||
next(ls);
|
||||
if (check_next1(ls, '=')) return TK_EQ;
|
||||
if (check_next1(ls, '=')) return TK_EQ; /* '==' */
|
||||
else return '=';
|
||||
}
|
||||
case '<': {
|
||||
next(ls);
|
||||
if (check_next1(ls, '=')) return TK_LE;
|
||||
else if (check_next1(ls, '<')) return TK_SHL;
|
||||
if (check_next1(ls, '=')) return TK_LE; /* '<=' */
|
||||
else if (check_next1(ls, '<')) return TK_SHL; /* '<<' */
|
||||
else return '<';
|
||||
}
|
||||
case '>': {
|
||||
next(ls);
|
||||
if (check_next1(ls, '=')) return TK_GE;
|
||||
else if (check_next1(ls, '>')) return TK_SHR;
|
||||
if (check_next1(ls, '=')) return TK_GE; /* '>=' */
|
||||
else if (check_next1(ls, '>')) return TK_SHR; /* '>>' */
|
||||
else return '>';
|
||||
}
|
||||
case '/': {
|
||||
next(ls);
|
||||
if (check_next1(ls, '/')) return TK_IDIV;
|
||||
if (check_next1(ls, '/')) return TK_IDIV; /* '//' */
|
||||
else return '/';
|
||||
}
|
||||
case '~': {
|
||||
next(ls);
|
||||
if (check_next1(ls, '=')) return TK_NE;
|
||||
if (check_next1(ls, '=')) return TK_NE; /* '~=' */
|
||||
else return '~';
|
||||
}
|
||||
case ':': {
|
||||
next(ls);
|
||||
if (check_next1(ls, ':')) return TK_DBCOLON;
|
||||
if (check_next1(ls, ':')) return TK_DBCOLON; /* '::' */
|
||||
else return ':';
|
||||
}
|
||||
case '"': case '\'': { /* short literal strings */
|
||||
@ -548,7 +548,7 @@ static int llex (LexState *ls, SemInfo *seminfo) {
|
||||
return TK_NAME;
|
||||
}
|
||||
}
|
||||
else { /* single-char tokens (+ - / ...) */
|
||||
else { /* single-char tokens ('+', '*', '%', '{', '}', ...) */
|
||||
int c = ls->current;
|
||||
next(ls);
|
||||
return c;
|
@ -7,11 +7,17 @@
|
||||
#ifndef llex_h
|
||||
#define llex_h
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#include "lobject.h"
|
||||
#include "lzio.h"
|
||||
|
||||
|
||||
#define FIRST_RESERVED 257
|
||||
/*
|
||||
** Single-char tokens (terminal symbols) are represented by their own
|
||||
** numeric code. Other tokens start at the following value.
|
||||
*/
|
||||
#define FIRST_RESERVED (UCHAR_MAX + 1)
|
||||
|
||||
|
||||
#if !defined(LUA_ENV)
|
@ -84,7 +84,15 @@ typedef LUAI_UACNUMBER l_uacNumber;
|
||||
typedef LUAI_UACINT l_uacInt;
|
||||
|
||||
|
||||
/* internal assertions for in-house debugging */
|
||||
/*
|
||||
** Internal assertions for in-house debugging
|
||||
*/
|
||||
#if defined LUAI_ASSERT
|
||||
#undef NDEBUG
|
||||
#include <assert.h>
|
||||
#define lua_assert(c) assert(c)
|
||||
#endif
|
||||
|
||||
#if defined(lua_assert)
|
||||
#define check_exp(c,e) (lua_assert(c), (e))
|
||||
/* to avoid problems with conditions too long */
|
||||
@ -226,6 +234,17 @@ typedef l_uint32 Instruction;
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Maximum depth for nested C calls, syntactical nested non-terminals,
|
||||
** and other features implemented through recursion in C. (Value must
|
||||
** fit in a 16-bit unsigned integer. It must also be compatible with
|
||||
** the size of the C stack.)
|
||||
*/
|
||||
#if !defined(LUAI_MAXCCALLS)
|
||||
#define LUAI_MAXCCALLS 200
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** macros that are executed whenever program enters the Lua core
|
||||
** ('lua_lock') and leaves the core ('lua_unlock')
|
||||
@ -307,7 +326,8 @@ typedef l_uint32 Instruction;
|
||||
|
||||
/* exponentiation */
|
||||
#if !defined(luai_numpow)
|
||||
#define luai_numpow(L,a,b) ((void)L, l_mathop(pow)(a,b))
|
||||
#define luai_numpow(L,a,b) \
|
||||
((void)L, (b == 2) ? (a)*(a) : l_mathop(pow)(a,b))
|
||||
#endif
|
||||
|
||||
/* the others are quite standard operations */
|
||||
@ -336,7 +356,7 @@ typedef l_uint32 Instruction;
|
||||
#else
|
||||
/* realloc stack keeping its size */
|
||||
#define condmovestack(L,pre,pos) \
|
||||
{ int sz_ = (L)->stacksize; pre; luaD_reallocstack((L), sz_, 0); pos; }
|
||||
{ int sz_ = stacksize(L); pre; luaD_reallocstack((L), sz_, 0); pos; }
|
||||
#endif
|
||||
|
||||
#if !defined(HARDMEMTESTS)
|
@ -22,7 +22,7 @@
|
||||
#include "lstate.h"
|
||||
|
||||
|
||||
#if defined(HARDMEMTESTS)
|
||||
#if defined(EMERGENCYGCTESTS)
|
||||
/*
|
||||
** First allocation will fail whenever not building initial state
|
||||
** and not shrinking a block. (This fail will trigger 'tryagain' and
|
@ -215,37 +215,42 @@ static lua_Number lua_strx2number (const char *s, char **endptr) {
|
||||
/* }====================================================== */
|
||||
|
||||
|
||||
/* maximum length of a numeral */
|
||||
/* maximum length of a numeral to be converted to a number */
|
||||
#if !defined (L_MAXLENNUM)
|
||||
#define L_MAXLENNUM 200
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Convert string 's' to a Lua number (put in 'result'). Return NULL on
|
||||
** fail or the address of the ending '\0' on success. ('mode' == 'x')
|
||||
** means a hexadecimal numeral.
|
||||
*/
|
||||
static const char *l_str2dloc (const char *s, lua_Number *result, int mode) {
|
||||
char *endptr;
|
||||
*result = (mode == 'x') ? lua_strx2number(s, &endptr) /* try to convert */
|
||||
: lua_str2number(s, &endptr);
|
||||
if (endptr == s) return NULL; /* nothing recognized? */
|
||||
while (lisspace(cast_uchar(*endptr))) endptr++; /* skip trailing spaces */
|
||||
return (*endptr == '\0') ? endptr : NULL; /* OK if no trailing characters */
|
||||
return (*endptr == '\0') ? endptr : NULL; /* OK iff no trailing chars */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Convert string 's' to a Lua number (put in 'result'). Return NULL
|
||||
** on fail or the address of the ending '\0' on success.
|
||||
** 'pmode' points to (and 'mode' contains) special things in the string:
|
||||
** - 'x'/'X' means a hexadecimal numeral
|
||||
** - 'n'/'N' means 'inf' or 'nan' (which should be rejected)
|
||||
** - '.' just optimizes the search for the common case (nothing special)
|
||||
** Convert string 's' to a Lua number (put in 'result') handling the
|
||||
** current locale.
|
||||
** This function accepts both the current locale or a dot as the radix
|
||||
** mark. If the conversion fails, it may mean number has a dot but
|
||||
** locale accepts something else. In that case, the code copies 's'
|
||||
** to a buffer (because 's' is read-only), changes the dot to the
|
||||
** current locale radix mark, and tries to convert again.
|
||||
** The variable 'mode' checks for special characters in the string:
|
||||
** - 'n' means 'inf' or 'nan' (which should be rejected)
|
||||
** - 'x' means a hexadecimal numeral
|
||||
** - '.' just optimizes the search for the common case (no special chars)
|
||||
*/
|
||||
static const char *l_str2d (const char *s, lua_Number *result) {
|
||||
const char *endptr;
|
||||
const char *pmode = strpbrk(s, ".xXnN");
|
||||
const char *pmode = strpbrk(s, ".xXnN"); /* look for special chars */
|
||||
int mode = pmode ? ltolower(cast_uchar(*pmode)) : 0;
|
||||
if (mode == 'n') /* reject 'inf' and 'nan' */
|
||||
return NULL;
|
||||
@ -253,7 +258,7 @@ static const char *l_str2d (const char *s, lua_Number *result) {
|
||||
if (endptr == NULL) { /* failed? may be a different locale */
|
||||
char buff[L_MAXLENNUM + 1];
|
||||
const char *pdot = strchr(s, '.');
|
||||
if (strlen(s) > L_MAXLENNUM || pdot == NULL)
|
||||
if (pdot == NULL || strlen(s) > L_MAXLENNUM)
|
||||
return NULL; /* string too long or no dot; fail */
|
||||
strcpy(buff, s); /* copy string to buffer */
|
||||
buff[pdot - s] = lua_getlocaledecpoint(); /* correct decimal point */
|
||||
@ -333,8 +338,15 @@ int luaO_utf8esc (char *buff, unsigned long x) {
|
||||
}
|
||||
|
||||
|
||||
/* maximum length of the conversion of a number to a string */
|
||||
#define MAXNUMBER2STR 50
|
||||
/*
|
||||
** Maximum length of the conversion of a number to a string. Must be
|
||||
** enough to accommodate both LUA_INTEGER_FMT and LUA_NUMBER_FMT.
|
||||
** (For a long long int, this is 19 digits plus a sign and a final '\0',
|
||||
** adding to 21. For a long double, it can go to a sign, 33 digits,
|
||||
** the dot, an exponent letter, an exponent sign, 5 exponent digits,
|
||||
** and a final '\0', adding to 43.)
|
||||
*/
|
||||
#define MAXNUMBER2STR 44
|
||||
|
||||
|
||||
/*
|
||||
@ -375,7 +387,7 @@ void luaO_tostring (lua_State *L, TValue *obj) {
|
||||
*/
|
||||
|
||||
/* size for buffer space used by 'luaO_pushvfstring' */
|
||||
#define BUFVFS 400
|
||||
#define BUFVFS 200
|
||||
|
||||
/* buffer used by 'luaO_pushvfstring' */
|
||||
typedef struct BuffFS {
|
||||
@ -387,18 +399,16 @@ typedef struct BuffFS {
|
||||
|
||||
|
||||
/*
|
||||
** Push given string to the stack, as part of the buffer. If the stack
|
||||
** is almost full, join all partial strings in the stack into one.
|
||||
** Push given string to the stack, as part of the buffer, and
|
||||
** join the partial strings in the stack into one.
|
||||
*/
|
||||
static void pushstr (BuffFS *buff, const char *str, size_t l) {
|
||||
lua_State *L = buff->L;
|
||||
setsvalue2s(L, L->top, luaS_newlstr(L, str, l));
|
||||
L->top++; /* may use one extra slot */
|
||||
buff->pushed++;
|
||||
if (buff->pushed > 1 && L->top + 1 >= L->stack_last) {
|
||||
luaV_concat(L, buff->pushed); /* join all partial results into one */
|
||||
buff->pushed = 1;
|
||||
}
|
||||
luaV_concat(L, buff->pushed); /* join partial results into one */
|
||||
buff->pushed = 1;
|
||||
}
|
||||
|
||||
|
||||
@ -521,8 +531,7 @@ const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp) {
|
||||
}
|
||||
addstr2buff(&buff, fmt, strlen(fmt)); /* rest of 'fmt' */
|
||||
clearbuff(&buff); /* empty buffer into the stack */
|
||||
if (buff.pushed > 1)
|
||||
luaV_concat(L, buff.pushed); /* join all partial results */
|
||||
lua_assert(buff.pushed == 1);
|
||||
return svalue(s2v(L->top - 1));
|
||||
}
|
||||
|
@ -21,10 +21,12 @@
|
||||
*/
|
||||
#define LUA_TUPVAL LUA_NUMTYPES /* upvalues */
|
||||
#define LUA_TPROTO (LUA_NUMTYPES+1) /* function prototypes */
|
||||
#define LUA_TDEADKEY (LUA_NUMTYPES+2) /* removed keys in tables */
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** number of all possible types (including LUA_TNONE)
|
||||
** number of all possible types (including LUA_TNONE but excluding DEADKEY)
|
||||
*/
|
||||
#define LUA_TOTALTYPES (LUA_TPROTO + 2)
|
||||
|
||||
@ -96,7 +98,8 @@ typedef struct TValue {
|
||||
/*
|
||||
** Any value being manipulated by the program either is non
|
||||
** collectable, or the collectable object has the right tag
|
||||
** and it is not dead.
|
||||
** and it is not dead. The option 'L == NULL' allows other
|
||||
** macros using this one to be used where L is not available.
|
||||
*/
|
||||
#define checkliveness(L,obj) \
|
||||
((void)L, lua_longassert(!iscollectable(obj) || \
|
||||
@ -554,7 +557,7 @@ typedef struct Proto {
|
||||
|
||||
/*
|
||||
** {==================================================================
|
||||
** Closures
|
||||
** Functions
|
||||
** ===================================================================
|
||||
*/
|
||||
|
||||
@ -703,9 +706,9 @@ typedef union Node {
|
||||
*/
|
||||
|
||||
#define BITRAS (1 << 7)
|
||||
#define isrealasize(t) (!((t)->marked & BITRAS))
|
||||
#define setrealasize(t) ((t)->marked &= cast_byte(~BITRAS))
|
||||
#define setnorealasize(t) ((t)->marked |= BITRAS)
|
||||
#define isrealasize(t) (!((t)->flags & BITRAS))
|
||||
#define setrealasize(t) ((t)->flags &= cast_byte(~BITRAS))
|
||||
#define setnorealasize(t) ((t)->flags |= BITRAS)
|
||||
|
||||
|
||||
typedef struct Table {
|
||||
@ -742,13 +745,13 @@ typedef struct Table {
|
||||
|
||||
|
||||
/*
|
||||
** Use a "nil table" to mark dead keys in a table. Those keys serve
|
||||
** to keep space for removed entries, which may still be part of
|
||||
** chains. Note that the 'keytt' does not have the BIT_ISCOLLECTABLE
|
||||
** set, so these values are considered not collectable and are different
|
||||
** from any valid value.
|
||||
** Dead keys in tables have the tag DEADKEY but keep their original
|
||||
** gcvalue. This distinguishes them from regular keys but allows them to
|
||||
** be found when searched in a special way. ('next' needs that to find
|
||||
** keys removed from a table during a traversal.)
|
||||
*/
|
||||
#define setdeadkey(n) (keytt(n) = LUA_TTABLE, gckey(n) = NULL)
|
||||
#define setdeadkey(node) (keytt(node) = LUA_TDEADKEY)
|
||||
#define keyisdead(node) (keytt(node) == LUA_TDEADKEY)
|
||||
|
||||
/* }================================================================== */
|
||||
|
@ -261,7 +261,7 @@ OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */
|
||||
OP_UNM,/* A B R[A] := -R[B] */
|
||||
OP_BNOT,/* A B R[A] := ~R[B] */
|
||||
OP_NOT,/* A B R[A] := not R[B] */
|
||||
OP_LEN,/* A B R[A] := length of R[B] */
|
||||
OP_LEN,/* A B R[A] := #R[B] (length operator) */
|
||||
|
||||
OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */
|
||||
|
||||
@ -297,7 +297,7 @@ OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */
|
||||
OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */
|
||||
OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */
|
||||
|
||||
OP_SETLIST,/* A B C k R[A][(C-1)*FPF+i] := R[A+i], 1 <= i <= B */
|
||||
OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */
|
||||
|
||||
OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */
|
||||
|
@ -489,12 +489,10 @@ static void adjust_assign (LexState *ls, int nvars, int nexps, expdesc *e) {
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Macros to limit the maximum recursion depth while parsing
|
||||
*/
|
||||
#define enterlevel(ls) luaE_enterCcall((ls)->L)
|
||||
#define enterlevel(ls) luaE_incCstack(ls->L)
|
||||
|
||||
#define leavelevel(ls) luaE_exitCcall((ls)->L)
|
||||
|
||||
#define leavelevel(ls) ((ls)->L->nCcalls--)
|
||||
|
||||
|
||||
/*
|
||||
@ -947,7 +945,7 @@ static void setvararg (FuncState *fs, int nparams) {
|
||||
|
||||
|
||||
static void parlist (LexState *ls) {
|
||||
/* parlist -> [ param { ',' param } ] */
|
||||
/* parlist -> [ {NAME ','} (NAME | '...') ] */
|
||||
FuncState *fs = ls->fs;
|
||||
Proto *f = fs->f;
|
||||
int nparams = 0;
|
||||
@ -955,12 +953,12 @@ static void parlist (LexState *ls) {
|
||||
if (ls->t.token != ')') { /* is 'parlist' not empty? */
|
||||
do {
|
||||
switch (ls->t.token) {
|
||||
case TK_NAME: { /* param -> NAME */
|
||||
case TK_NAME: {
|
||||
new_localvar(ls, str_checkname(ls));
|
||||
nparams++;
|
||||
break;
|
||||
}
|
||||
case TK_DOTS: { /* param -> '...' */
|
||||
case TK_DOTS: {
|
||||
luaX_next(ls);
|
||||
isvararg = 1;
|
||||
break;
|
||||
@ -1625,59 +1623,21 @@ static void forstat (LexState *ls, int line) {
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Check whether next instruction is a single jump (a 'break', a 'goto'
|
||||
** to a forward label, or a 'goto' to a backward label with no variable
|
||||
** to close). If so, set the name of the 'label' it is jumping to
|
||||
** ("break" for a 'break') or to where it is jumping to ('target') and
|
||||
** return true. If not a single jump, leave input unchanged, to be
|
||||
** handled as a regular statement.
|
||||
*/
|
||||
static int issinglejump (LexState *ls, TString **label, int *target) {
|
||||
if (testnext(ls, TK_BREAK)) { /* a break? */
|
||||
*label = luaS_newliteral(ls->L, "break");
|
||||
return 1;
|
||||
}
|
||||
else if (ls->t.token != TK_GOTO || luaX_lookahead(ls) != TK_NAME)
|
||||
return 0; /* not a valid goto */
|
||||
else {
|
||||
TString *lname = ls->lookahead.seminfo.ts; /* label's id */
|
||||
Labeldesc *lb = findlabel(ls, lname);
|
||||
if (lb) { /* a backward jump? */
|
||||
/* does it need to close variables? */
|
||||
if (luaY_nvarstack(ls->fs) > stacklevel(ls->fs, lb->nactvar))
|
||||
return 0; /* not a single jump; cannot optimize */
|
||||
*target = lb->pc;
|
||||
}
|
||||
else /* jump forward */
|
||||
*label = lname;
|
||||
luaX_next(ls); /* skip goto */
|
||||
luaX_next(ls); /* skip name */
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void test_then_block (LexState *ls, int *escapelist) {
|
||||
/* test_then_block -> [IF | ELSEIF] cond THEN block */
|
||||
BlockCnt bl;
|
||||
int line;
|
||||
FuncState *fs = ls->fs;
|
||||
TString *jlb = NULL;
|
||||
int target = NO_JUMP;
|
||||
expdesc v;
|
||||
int jf; /* instruction to skip 'then' code (if condition is false) */
|
||||
luaX_next(ls); /* skip IF or ELSEIF */
|
||||
expr(ls, &v); /* read condition */
|
||||
checknext(ls, TK_THEN);
|
||||
line = ls->linenumber;
|
||||
if (issinglejump(ls, &jlb, &target)) { /* 'if x then goto' ? */
|
||||
luaK_goiffalse(ls->fs, &v); /* will jump to label if condition is true */
|
||||
if (ls->t.token == TK_BREAK) { /* 'if x then break' ? */
|
||||
int line = ls->linenumber;
|
||||
luaK_goiffalse(ls->fs, &v); /* will jump if condition is true */
|
||||
luaX_next(ls); /* skip 'break' */
|
||||
enterblock(fs, &bl, 0); /* must enter block before 'goto' */
|
||||
if (jlb != NULL) /* forward jump? */
|
||||
newgotoentry(ls, jlb, line, v.t); /* will be resolved later */
|
||||
else /* backward jump */
|
||||
luaK_patchlist(fs, v.t, target); /* jump directly to 'target' */
|
||||
newgotoentry(ls, luaS_newliteral(ls->L, "break"), line, v.t);
|
||||
while (testnext(ls, ';')) {} /* skip semicolons */
|
||||
if (block_follow(ls, 0)) { /* jump is the entire block? */
|
||||
leaveblock(fs);
|
||||
@ -1686,7 +1646,7 @@ static void test_then_block (LexState *ls, int *escapelist) {
|
||||
else /* must skip over 'then' part if condition is false */
|
||||
jf = luaK_jump(fs);
|
||||
}
|
||||
else { /* regular case (not a jump) */
|
||||
else { /* regular case (not a break) */
|
||||
luaK_goiftrue(ls->fs, &v); /* skip over block if condition is false */
|
||||
enterblock(fs, &bl, 0);
|
||||
jf = v.f;
|
||||
@ -1754,7 +1714,7 @@ static void checktoclose (LexState *ls, int level) {
|
||||
|
||||
|
||||
static void localstat (LexState *ls) {
|
||||
/* stat -> LOCAL ATTRIB NAME {',' ATTRIB NAME} ['=' explist] */
|
||||
/* stat -> LOCAL NAME ATTRIB { ',' NAME ATTRIB } ['=' explist] */
|
||||
FuncState *fs = ls->fs;
|
||||
int toclose = -1; /* index of to-be-closed variable (if any) */
|
||||
Vardesc *var; /* last variable */
|
@ -23,7 +23,7 @@
|
||||
|
||||
/* kinds of variables/expressions */
|
||||
typedef enum {
|
||||
VVOID, /* when 'expdesc' describes the last expression a list,
|
||||
VVOID, /* when 'expdesc' describes the last expression of a list,
|
||||
this kind means an empty list (so, no expression) */
|
||||
VNIL, /* constant nil */
|
||||
VTRUE, /* constant true */
|
||||
@ -38,7 +38,8 @@ typedef enum {
|
||||
VLOCAL, /* local variable; var.sidx = stack index (local register);
|
||||
var.vidx = relative index in 'actvar.arr' */
|
||||
VUPVAL, /* upvalue variable; info = index of upvalue in 'upvalues' */
|
||||
VCONST, /* compile-time constant; info = absolute index in 'actvar.arr' */
|
||||
VCONST, /* compile-time <const> variable;
|
||||
info = absolute index in 'actvar.arr' */
|
||||
VINDEXED, /* indexed variable;
|
||||
ind.t = table register;
|
||||
ind.idx = key's R index */
|
@ -76,7 +76,7 @@ static unsigned int luai_makeseed (lua_State *L) {
|
||||
addbuff(buff, p, &h); /* local variable */
|
||||
addbuff(buff, p, &lua_newstate); /* public function */
|
||||
lua_assert(p == sizeof(buff));
|
||||
return luaS_hash(buff, p, h, 1);
|
||||
return luaS_hash(buff, p, h);
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -97,66 +97,14 @@ void luaE_setdebt (global_State *g, l_mem debt) {
|
||||
|
||||
|
||||
LUA_API int lua_setcstacklimit (lua_State *L, unsigned int limit) {
|
||||
global_State *g = G(L);
|
||||
int ccalls;
|
||||
luaE_freeCI(L); /* release unused CIs */
|
||||
ccalls = getCcalls(L);
|
||||
if (limit >= 40000)
|
||||
return 0; /* out of bounds */
|
||||
limit += CSTACKERR;
|
||||
if (L != g-> mainthread)
|
||||
return 0; /* only main thread can change the C stack */
|
||||
else if (ccalls <= CSTACKERR)
|
||||
return 0; /* handling overflow */
|
||||
else {
|
||||
int diff = limit - g->Cstacklimit;
|
||||
if (ccalls + diff <= CSTACKERR)
|
||||
return 0; /* new limit would cause an overflow */
|
||||
g->Cstacklimit = limit; /* set new limit */
|
||||
L->nCcalls += diff; /* correct 'nCcalls' */
|
||||
return limit - diff - CSTACKERR; /* success; return previous limit */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Decrement count of "C calls" and check for overflows. In case of
|
||||
** a stack overflow, check appropriate error ("regular" overflow or
|
||||
** overflow while handling stack overflow). If 'nCcalls' is smaller
|
||||
** than CSTACKERR but larger than CSTACKMARK, it means it has just
|
||||
** entered the "overflow zone", so the function raises an overflow
|
||||
** error. If 'nCcalls' is smaller than CSTACKMARK (which means it is
|
||||
** already handling an overflow) but larger than CSTACKERRMARK, does
|
||||
** not report an error (to allow message handling to work). Otherwise,
|
||||
** report a stack overflow while handling a stack overflow (probably
|
||||
** caused by a repeating error in the message handling function).
|
||||
*/
|
||||
|
||||
void luaE_enterCcall (lua_State *L) {
|
||||
int ncalls = getCcalls(L);
|
||||
L->nCcalls--;
|
||||
if (ncalls <= CSTACKERR) { /* possible overflow? */
|
||||
luaE_freeCI(L); /* release unused CIs */
|
||||
ncalls = getCcalls(L); /* update call count */
|
||||
if (ncalls <= CSTACKERR) { /* still overflow? */
|
||||
if (ncalls <= CSTACKERRMARK) /* below error-handling zone? */
|
||||
luaD_throw(L, LUA_ERRERR); /* error while handling stack error */
|
||||
else if (ncalls >= CSTACKMARK) {
|
||||
/* not in error-handling zone; raise the error now */
|
||||
L->nCcalls = (CSTACKMARK - 1); /* enter error-handling zone */
|
||||
luaG_runerror(L, "C stack overflow");
|
||||
}
|
||||
/* else stack is in the error-handling zone;
|
||||
allow message handler to work */
|
||||
}
|
||||
}
|
||||
UNUSED(L); UNUSED(limit);
|
||||
return LUAI_MAXCCALLS; /* warning?? */
|
||||
}
|
||||
|
||||
|
||||
CallInfo *luaE_extendCI (lua_State *L) {
|
||||
CallInfo *ci;
|
||||
lua_assert(L->ci->next == NULL);
|
||||
luaE_enterCcall(L);
|
||||
ci = luaM_new(L, CallInfo);
|
||||
lua_assert(L->ci->next == NULL);
|
||||
L->ci->next = ci;
|
||||
@ -175,13 +123,11 @@ void luaE_freeCI (lua_State *L) {
|
||||
CallInfo *ci = L->ci;
|
||||
CallInfo *next = ci->next;
|
||||
ci->next = NULL;
|
||||
L->nCcalls += L->nci; /* add removed elements back to 'nCcalls' */
|
||||
while ((ci = next) != NULL) {
|
||||
next = ci->next;
|
||||
luaM_free(L, ci);
|
||||
L->nci--;
|
||||
}
|
||||
L->nCcalls -= L->nci; /* adjust result */
|
||||
}
|
||||
|
||||
|
||||
@ -194,7 +140,6 @@ void luaE_shrinkCI (lua_State *L) {
|
||||
CallInfo *next;
|
||||
if (ci == NULL)
|
||||
return; /* no extra elements */
|
||||
L->nCcalls += L->nci; /* add removed elements back to 'nCcalls' */
|
||||
while ((next = ci->next) != NULL) { /* two extra elements? */
|
||||
CallInfo *next2 = next->next; /* next's next */
|
||||
ci->next = next2; /* remove next from the list */
|
||||
@ -207,19 +152,39 @@ void luaE_shrinkCI (lua_State *L) {
|
||||
ci = next2; /* continue */
|
||||
}
|
||||
}
|
||||
L->nCcalls -= L->nci; /* adjust result */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Called when 'getCcalls(L)' larger or equal to LUAI_MAXCCALLS.
|
||||
** If equal, raises an overflow error. If value is larger than
|
||||
** LUAI_MAXCCALLS (which means it is handling an overflow) but
|
||||
** not much larger, does not report an error (to allow overflow
|
||||
** handling to work).
|
||||
*/
|
||||
void luaE_checkcstack (lua_State *L) {
|
||||
if (getCcalls(L) == LUAI_MAXCCALLS)
|
||||
luaG_runerror(L, "C stack overflow");
|
||||
else if (getCcalls(L) >= (LUAI_MAXCCALLS / 10 * 11))
|
||||
luaD_throw(L, LUA_ERRERR); /* error while handing stack error */
|
||||
}
|
||||
|
||||
|
||||
LUAI_FUNC void luaE_incCstack (lua_State *L) {
|
||||
L->nCcalls++;
|
||||
if (unlikely(getCcalls(L) >= LUAI_MAXCCALLS))
|
||||
luaE_checkcstack(L);
|
||||
}
|
||||
|
||||
|
||||
static void stack_init (lua_State *L1, lua_State *L) {
|
||||
int i; CallInfo *ci;
|
||||
/* initialize stack array */
|
||||
L1->stack = luaM_newvector(L, BASIC_STACK_SIZE, StackValue);
|
||||
L1->stacksize = BASIC_STACK_SIZE;
|
||||
for (i = 0; i < BASIC_STACK_SIZE; i++)
|
||||
L1->stack = luaM_newvector(L, BASIC_STACK_SIZE + EXTRA_STACK, StackValue);
|
||||
for (i = 0; i < BASIC_STACK_SIZE + EXTRA_STACK; i++)
|
||||
setnilvalue(s2v(L1->stack + i)); /* erase new stack */
|
||||
L1->top = L1->stack;
|
||||
L1->stack_last = L1->stack + L1->stacksize - EXTRA_STACK;
|
||||
L1->stack_last = L1->stack + BASIC_STACK_SIZE;
|
||||
/* initialize first ci */
|
||||
ci = &L1->base_ci;
|
||||
ci->next = ci->previous = NULL;
|
||||
@ -240,7 +205,7 @@ static void freestack (lua_State *L) {
|
||||
L->ci = &L->base_ci; /* free the entire 'ci' list */
|
||||
luaE_freeCI(L);
|
||||
lua_assert(L->nci == 0);
|
||||
luaM_freearray(L, L->stack, L->stacksize); /* free stack array */
|
||||
luaM_freearray(L, L->stack, stacksize(L) + EXTRA_STACK); /* free stack */
|
||||
}
|
||||
|
||||
|
||||
@ -290,7 +255,6 @@ static void preinit_thread (lua_State *L, global_State *g) {
|
||||
L->stack = NULL;
|
||||
L->ci = NULL;
|
||||
L->nci = 0;
|
||||
L->stacksize = 0;
|
||||
L->twups = L; /* thread has no upvalues */
|
||||
L->errorJmp = NULL;
|
||||
L->hook = NULL;
|
||||
@ -301,6 +265,7 @@ static void preinit_thread (lua_State *L, global_State *g) {
|
||||
L->openupval = NULL;
|
||||
L->status = LUA_OK;
|
||||
L->errfunc = 0;
|
||||
L->oldpc = 0;
|
||||
}
|
||||
|
||||
|
||||
@ -318,9 +283,10 @@ static void close_state (lua_State *L) {
|
||||
|
||||
|
||||
LUA_API lua_State *lua_newthread (lua_State *L) {
|
||||
global_State *g = G(L);
|
||||
global_State *g;
|
||||
lua_State *L1;
|
||||
lua_lock(L);
|
||||
g = G(L);
|
||||
luaC_checkGC(L);
|
||||
/* create new thread */
|
||||
L1 = &cast(LX *, luaM_newobject(L, LUA_TTHREAD, sizeof(LX)))->l;
|
||||
@ -333,7 +299,7 @@ LUA_API lua_State *lua_newthread (lua_State *L) {
|
||||
setthvalue2s(L, L->top, L1);
|
||||
api_incr_top(L);
|
||||
preinit_thread(L1, g);
|
||||
L1->nCcalls = getCcalls(L);
|
||||
L1->nCcalls = 0;
|
||||
L1->hookmask = L->hookmask;
|
||||
L1->basehookcount = L->basehookcount;
|
||||
L1->hook = L->hook;
|
||||
@ -394,7 +360,8 @@ LUA_API lua_State *lua_newstate (lua_Alloc f, void *ud) {
|
||||
preinit_thread(L, g);
|
||||
g->allgc = obj2gco(L); /* by now, only object is the main thread */
|
||||
L->next = NULL;
|
||||
g->Cstacklimit = L->nCcalls = LUAI_MAXCSTACK + CSTACKERR;
|
||||
L->nCcalls = 0;
|
||||
incnny(L); /* main thread is always non yieldable */
|
||||
g->frealloc = f;
|
||||
g->ud = ud;
|
||||
g->warnf = NULL;
|
||||
@ -410,8 +377,8 @@ LUA_API lua_State *lua_newstate (lua_Alloc f, void *ud) {
|
||||
g->gckind = KGC_INC;
|
||||
g->gcemergency = 0;
|
||||
g->finobj = g->tobefnz = g->fixedgc = NULL;
|
||||
g->survival = g->old = g->reallyold = NULL;
|
||||
g->finobjsur = g->finobjold = g->finobjrold = NULL;
|
||||
g->firstold1 = g->survival = g->old1 = g->reallyold = NULL;
|
||||
g->finobjsur = g->finobjold1 = g->finobjrold = NULL;
|
||||
g->sweepgc = NULL;
|
||||
g->gray = g->grayagain = NULL;
|
||||
g->weak = g->ephemeron = g->allweak = NULL;
|
||||
@ -436,8 +403,8 @@ LUA_API lua_State *lua_newstate (lua_Alloc f, void *ud) {
|
||||
|
||||
|
||||
LUA_API void lua_close (lua_State *L) {
|
||||
L = G(L)->mainthread; /* only the main thread can be closed */
|
||||
lua_lock(L);
|
||||
L = G(L)->mainthread; /* only the main thread can be closed */
|
||||
close_state(L);
|
||||
}
|
||||
|
@ -32,13 +32,29 @@
|
||||
**
|
||||
** 'allgc' -> 'survival': new objects;
|
||||
** 'survival' -> 'old': objects that survived one collection;
|
||||
** 'old' -> 'reallyold': objects that became old in last collection;
|
||||
** 'old1' -> 'reallyold': objects that became old in last collection;
|
||||
** 'reallyold' -> NULL: objects old for more than one cycle.
|
||||
**
|
||||
** 'finobj' -> 'finobjsur': new objects marked for finalization;
|
||||
** 'finobjsur' -> 'finobjold': survived """";
|
||||
** 'finobjold' -> 'finobjrold': just old """";
|
||||
** 'finobjsur' -> 'finobjold1': survived """";
|
||||
** 'finobjold1' -> 'finobjrold': just old """";
|
||||
** 'finobjrold' -> NULL: really old """".
|
||||
**
|
||||
** All lists can contain elements older than their main ages, due
|
||||
** to 'luaC_checkfinalizer' and 'udata2finalize', which move
|
||||
** objects between the normal lists and the "marked for finalization"
|
||||
** lists. Moreover, barriers can age young objects in young lists as
|
||||
** OLD0, which then become OLD1. However, a list never contains
|
||||
** elements younger than their main ages.
|
||||
**
|
||||
** The generational collector also uses a pointer 'firstold1', which
|
||||
** points to the first OLD1 object in the list. It is used to optimize
|
||||
** 'markold'. (Potentially OLD1 objects can be anywhere between 'allgc'
|
||||
** and 'reallyold', but often the list has no OLD1 objects or they are
|
||||
** after 'old1'.) Note the difference between it and 'old1':
|
||||
** 'firstold1': no OLD1 objects before this point; there can be all
|
||||
** ages after it.
|
||||
** 'old1': no objects younger than OLD1 after this point.
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -47,7 +63,7 @@
|
||||
** can become gray have such a field. The field is not the same
|
||||
** in all objects, but it always has this name.) Any gray object
|
||||
** must belong to one of these lists, and all objects in these lists
|
||||
** must be gray:
|
||||
** must be gray (with two exceptions explained below):
|
||||
**
|
||||
** 'gray': regular gray objects, still waiting to be visited.
|
||||
** 'grayagain': objects that must be revisited at the atomic phase.
|
||||
@ -58,54 +74,26 @@
|
||||
** 'weak': tables with weak values to be cleared;
|
||||
** 'ephemeron': ephemeron tables with white->white entries;
|
||||
** 'allweak': tables with weak keys and/or weak values to be cleared.
|
||||
**
|
||||
** The exceptions to that "gray rule" are:
|
||||
** - TOUCHED2 objects in generational mode stay in a gray list (because
|
||||
** they must be visited again at the end of the cycle), but they are
|
||||
** marked black because assignments to them must activate barriers (to
|
||||
** move them back to TOUCHED1).
|
||||
** - Open upvales are kept gray to avoid barriers, but they stay out
|
||||
** of gray lists. (They don't even have a 'gclist' field.)
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** About 'nCcalls': each thread in Lua (a lua_State) keeps a count of
|
||||
** how many "C calls" it still can do in the C stack, to avoid C-stack
|
||||
** overflow. This count is very rough approximation; it considers only
|
||||
** recursive functions inside the interpreter, as non-recursive calls
|
||||
** can be considered using a fixed (although unknown) amount of stack
|
||||
** space.
|
||||
**
|
||||
** The count has two parts: the lower part is the count itself; the
|
||||
** higher part counts the number of non-yieldable calls in the stack.
|
||||
** (They are together so that we can change both with one instruction.)
|
||||
**
|
||||
** Because calls to external C functions can use an unknown amount
|
||||
** of space (e.g., functions using an auxiliary buffer), calls
|
||||
** to these functions add more than one to the count (see CSTACKCF).
|
||||
**
|
||||
** The proper count excludes the number of CallInfo structures allocated
|
||||
** by Lua, as a kind of "potential" calls. So, when Lua calls a function
|
||||
** (and "consumes" one CallInfo), it needs neither to decrement nor to
|
||||
** check 'nCcalls', as its use of C stack is already accounted for.
|
||||
** About 'nCcalls': This count has two parts: the lower 16 bits counts
|
||||
** the number of recursive invocations in the C stack; the higher
|
||||
** 16 bits counts the number of non-yieldable calls in the stack.
|
||||
** (They are together so that we can change and save both with one
|
||||
** instruction.)
|
||||
*/
|
||||
|
||||
/* number of "C stack slots" used by an external C function */
|
||||
#define CSTACKCF 10
|
||||
|
||||
|
||||
/*
|
||||
** The C-stack size is sliced in the following zones:
|
||||
** - larger than CSTACKERR: normal stack;
|
||||
** - [CSTACKMARK, CSTACKERR]: buffer zone to signal a stack overflow;
|
||||
** - [CSTACKCF, CSTACKERRMARK]: error-handling zone;
|
||||
** - below CSTACKERRMARK: buffer zone to signal overflow during overflow;
|
||||
** (Because the counter can be decremented CSTACKCF at once, we need
|
||||
** the so called "buffer zones", with at least that size, to properly
|
||||
** detect a change from one zone to the next.)
|
||||
*/
|
||||
#define CSTACKERR (8 * CSTACKCF)
|
||||
#define CSTACKMARK (CSTACKERR - (CSTACKCF + 2))
|
||||
#define CSTACKERRMARK (CSTACKCF + 2)
|
||||
|
||||
|
||||
/* initial limit for the C-stack of threads */
|
||||
#define CSTACKTHREAD (2 * CSTACKERR)
|
||||
|
||||
|
||||
/* true if this thread does not have non-yieldable calls in the stack */
|
||||
#define yieldable(L) (((L)->nCcalls & 0xffff0000) == 0)
|
||||
@ -120,13 +108,8 @@
|
||||
/* Decrement the number of non-yieldable calls */
|
||||
#define decnny(L) ((L)->nCcalls -= 0x10000)
|
||||
|
||||
/* Increment the number of non-yieldable calls and decrement nCcalls */
|
||||
#define incXCcalls(L) ((L)->nCcalls += 0x10000 - CSTACKCF)
|
||||
|
||||
/* Decrement the number of non-yieldable calls and increment nCcalls */
|
||||
#define decXCcalls(L) ((L)->nCcalls -= 0x10000 - CSTACKCF)
|
||||
|
||||
|
||||
/* Non-yieldable call increment */
|
||||
#define nyci (0x10000 | 1)
|
||||
|
||||
|
||||
|
||||
@ -144,12 +127,20 @@ struct lua_longjmp; /* defined in ldo.c */
|
||||
#endif
|
||||
|
||||
|
||||
/* extra stack space to handle TM calls and some other extras */
|
||||
/*
|
||||
** Extra stack space to handle TM calls and some other extras. This
|
||||
** space is not included in 'stack_last'. It is used only to avoid stack
|
||||
** checks, either because the element will be promptly popped or because
|
||||
** there will be a stack check soon after the push. Function frames
|
||||
** never use this extra space, so it does not need to be kept clean.
|
||||
*/
|
||||
#define EXTRA_STACK 5
|
||||
|
||||
|
||||
#define BASIC_STACK_SIZE (2*LUA_MINSTACK)
|
||||
|
||||
#define stacksize(th) cast_int((th)->stack_last - (th)->stack)
|
||||
|
||||
|
||||
/* kinds of Garbage Collection */
|
||||
#define KGC_INC 0 /* incremental gc */
|
||||
@ -200,14 +191,15 @@ typedef struct CallInfo {
|
||||
*/
|
||||
#define CIST_OAH (1<<0) /* original value of 'allowhook' */
|
||||
#define CIST_C (1<<1) /* call is running a C function */
|
||||
#define CIST_HOOKED (1<<2) /* call is running a debug hook */
|
||||
#define CIST_YPCALL (1<<3) /* call is a yieldable protected call */
|
||||
#define CIST_TAIL (1<<4) /* call was tail called */
|
||||
#define CIST_HOOKYIELD (1<<5) /* last hook called yielded */
|
||||
#define CIST_FIN (1<<6) /* call is running a finalizer */
|
||||
#define CIST_TRAN (1<<7) /* 'ci' has transfer information */
|
||||
#define CIST_FRESH (1<<2) /* call is on a fresh "luaV_execute" frame */
|
||||
#define CIST_HOOKED (1<<3) /* call is running a debug hook */
|
||||
#define CIST_YPCALL (1<<4) /* call is a yieldable protected call */
|
||||
#define CIST_TAIL (1<<5) /* call was tail called */
|
||||
#define CIST_HOOKYIELD (1<<6) /* last hook called yielded */
|
||||
#define CIST_FIN (1<<7) /* call is running a finalizer */
|
||||
#define CIST_TRAN (1<<8) /* 'ci' has transfer information */
|
||||
#if defined(LUA_COMPAT_LT_LE)
|
||||
#define CIST_LEQ (1<<8) /* using __lt for __le */
|
||||
#define CIST_LEQ (1<<9) /* using __lt for __le */
|
||||
#endif
|
||||
|
||||
/* active function is a Lua function */
|
||||
@ -257,10 +249,11 @@ typedef struct global_State {
|
||||
GCObject *fixedgc; /* list of objects not to be collected */
|
||||
/* fields for generational collector */
|
||||
GCObject *survival; /* start of objects that survived one GC cycle */
|
||||
GCObject *old; /* start of old objects */
|
||||
GCObject *reallyold; /* old objects with more than one cycle */
|
||||
GCObject *old1; /* start of old1 objects */
|
||||
GCObject *reallyold; /* objects more than one cycle old ("really old") */
|
||||
GCObject *firstold1; /* first OLD1 object in the list (if any) */
|
||||
GCObject *finobjsur; /* list of survival objects with finalizers */
|
||||
GCObject *finobjold; /* list of old objects with finalizers */
|
||||
GCObject *finobjold1; /* list of old1 objects with finalizers */
|
||||
GCObject *finobjrold; /* list of really old objects with finalizers */
|
||||
struct lua_State *twups; /* list of threads with open upvalues */
|
||||
lua_CFunction panic; /* to be called in unprotected errors */
|
||||
@ -271,7 +264,6 @@ typedef struct global_State {
|
||||
TString *strcache[STRCACHE_N][STRCACHE_M]; /* cache for strings in API */
|
||||
lua_WarnFunction warnf; /* warning function */
|
||||
void *ud_warn; /* auxiliary data to 'warnf' */
|
||||
unsigned int Cstacklimit; /* current limit for the C stack */
|
||||
} global_State;
|
||||
|
||||
|
||||
@ -286,8 +278,7 @@ struct lua_State {
|
||||
StkId top; /* first free slot in the stack */
|
||||
global_State *l_G;
|
||||
CallInfo *ci; /* call info for current function */
|
||||
const Instruction *oldpc; /* last pc traced */
|
||||
StkId stack_last; /* last free slot in the stack */
|
||||
StkId stack_last; /* end of stack (last element + 1) */
|
||||
StkId stack; /* stack base */
|
||||
UpVal *openupval; /* list of open upvalues in this stack */
|
||||
GCObject *gclist;
|
||||
@ -296,8 +287,8 @@ struct lua_State {
|
||||
CallInfo base_ci; /* CallInfo for first level (C calling Lua) */
|
||||
volatile lua_Hook hook;
|
||||
ptrdiff_t errfunc; /* current error handling function (stack index) */
|
||||
l_uint32 nCcalls; /* number of allowed nested C calls - 'nci' */
|
||||
int stacksize;
|
||||
l_uint32 nCcalls; /* number of nested (non-yieldable | C) calls */
|
||||
int oldpc; /* last pc traced */
|
||||
int basehookcount;
|
||||
int hookcount;
|
||||
volatile l_signalT hookmask;
|
||||
@ -309,6 +300,12 @@ struct lua_State {
|
||||
|
||||
/*
|
||||
** Union of all collectable objects (only for conversions)
|
||||
** ISO C99, 6.5.2.3 p.5:
|
||||
** "if a union contains several structures that share a common initial
|
||||
** sequence [...], and if the union object currently contains one
|
||||
** of these structures, it is permitted to inspect the common initial
|
||||
** part of any of them anywhere that a declaration of the complete type
|
||||
** of the union is visible."
|
||||
*/
|
||||
union GCUnion {
|
||||
GCObject gc; /* common header */
|
||||
@ -322,6 +319,11 @@ union GCUnion {
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
** ISO C99, 6.7.2.1 p.14:
|
||||
** "A pointer to a union object, suitably converted, points to each of
|
||||
** its members [...], and vice versa."
|
||||
*/
|
||||
#define cast_u(o) cast(union GCUnion *, (o))
|
||||
|
||||
/* macros to convert a GCObject into a specific value */
|
||||
@ -353,12 +355,11 @@ LUAI_FUNC void luaE_freethread (lua_State *L, lua_State *L1);
|
||||
LUAI_FUNC CallInfo *luaE_extendCI (lua_State *L);
|
||||
LUAI_FUNC void luaE_freeCI (lua_State *L);
|
||||
LUAI_FUNC void luaE_shrinkCI (lua_State *L);
|
||||
LUAI_FUNC void luaE_enterCcall (lua_State *L);
|
||||
LUAI_FUNC void luaE_checkcstack (lua_State *L);
|
||||
LUAI_FUNC void luaE_incCstack (lua_State *L);
|
||||
LUAI_FUNC void luaE_warning (lua_State *L, const char *msg, int tocont);
|
||||
LUAI_FUNC void luaE_warnerror (lua_State *L, const char *where);
|
||||
|
||||
|
||||
#define luaE_exitCcall(L) ((L)->nCcalls++)
|
||||
|
||||
#endif
|
||||
|
@ -22,16 +22,6 @@
|
||||
#include "lstring.h"
|
||||
|
||||
|
||||
/*
|
||||
** Lua will use at most ~(2^LUAI_HASHLIMIT) bytes from a long string to
|
||||
** compute its hash
|
||||
*/
|
||||
#if !defined(LUAI_HASHLIMIT)
|
||||
#define LUAI_HASHLIMIT 5
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Maximum size for string table.
|
||||
*/
|
||||
@ -50,10 +40,9 @@ int luaS_eqlngstr (TString *a, TString *b) {
|
||||
}
|
||||
|
||||
|
||||
unsigned int luaS_hash (const char *str, size_t l, unsigned int seed,
|
||||
size_t step) {
|
||||
unsigned int luaS_hash (const char *str, size_t l, unsigned int seed) {
|
||||
unsigned int h = seed ^ cast_uint(l);
|
||||
for (; l >= step; l -= step)
|
||||
for (; l > 0; l--)
|
||||
h ^= ((h<<5) + (h>>2) + cast_byte(str[l - 1]));
|
||||
return h;
|
||||
}
|
||||
@ -63,8 +52,7 @@ unsigned int luaS_hashlongstr (TString *ts) {
|
||||
lua_assert(ts->tt == LUA_VLNGSTR);
|
||||
if (ts->extra == 0) { /* no hash? */
|
||||
size_t len = ts->u.lnglen;
|
||||
size_t step = (len >> LUAI_HASHLIMIT) + 1;
|
||||
ts->hash = luaS_hash(getstr(ts), len, ts->hash, step);
|
||||
ts->hash = luaS_hash(getstr(ts), len, ts->hash);
|
||||
ts->extra = 1; /* now it has its hash */
|
||||
}
|
||||
return ts->hash;
|
||||
@ -201,7 +189,7 @@ static TString *internshrstr (lua_State *L, const char *str, size_t l) {
|
||||
TString *ts;
|
||||
global_State *g = G(L);
|
||||
stringtable *tb = &g->strt;
|
||||
unsigned int h = luaS_hash(str, l, g->seed, 1);
|
||||
unsigned int h = luaS_hash(str, l, g->seed);
|
||||
TString **list = &tb->hash[lmod(h, tb->size)];
|
||||
lua_assert(str != NULL); /* otherwise 'memcmp'/'memcpy' are undefined */
|
||||
for (ts = *list; ts != NULL; ts = ts->u.hnext) {
|
@ -41,8 +41,7 @@
|
||||
#define eqshrstr(a,b) check_exp((a)->tt == LUA_VSHRSTR, (a) == (b))
|
||||
|
||||
|
||||
LUAI_FUNC unsigned int luaS_hash (const char *str, size_t l,
|
||||
unsigned int seed, size_t step);
|
||||
LUAI_FUNC unsigned int luaS_hash (const char *str, size_t l, unsigned int seed);
|
||||
LUAI_FUNC unsigned int luaS_hashlongstr (TString *ts);
|
||||
LUAI_FUNC int luaS_eqlngstr (TString *a, TString *b);
|
||||
LUAI_FUNC void luaS_resize (lua_State *L, int newsize);
|
@ -1365,7 +1365,6 @@ typedef union Ftypes {
|
||||
float f;
|
||||
double d;
|
||||
lua_Number n;
|
||||
char buff[5 * sizeof(lua_Number)]; /* enough for any float type */
|
||||
} Ftypes;
|
||||
|
||||
|
||||
@ -1535,12 +1534,10 @@ static void packint (luaL_Buffer *b, lua_Unsigned n,
|
||||
** Copy 'size' bytes from 'src' to 'dest', correcting endianness if
|
||||
** given 'islittle' is different from native endianness.
|
||||
*/
|
||||
static void copywithendian (volatile char *dest, volatile const char *src,
|
||||
static void copywithendian (char *dest, const char *src,
|
||||
int size, int islittle) {
|
||||
if (islittle == nativeendian.little) {
|
||||
while (size-- != 0)
|
||||
*(dest++) = *(src++);
|
||||
}
|
||||
if (islittle == nativeendian.little)
|
||||
memcpy(dest, src, size);
|
||||
else {
|
||||
dest += size - 1;
|
||||
while (size-- != 0)
|
||||
@ -1584,14 +1581,14 @@ static int str_pack (lua_State *L) {
|
||||
break;
|
||||
}
|
||||
case Kfloat: { /* floating-point options */
|
||||
volatile Ftypes u;
|
||||
Ftypes u;
|
||||
char *buff = luaL_prepbuffsize(&b, size);
|
||||
lua_Number n = luaL_checknumber(L, arg); /* get argument */
|
||||
if (size == sizeof(u.f)) u.f = (float)n; /* copy it into 'u' */
|
||||
else if (size == sizeof(u.d)) u.d = (double)n;
|
||||
else u.n = n;
|
||||
/* move 'u' to final result, correcting endianness if needed */
|
||||
copywithendian(buff, u.buff, size, h.islittle);
|
||||
copywithendian(buff, (char *)&u, size, h.islittle);
|
||||
luaL_addsize(&b, size);
|
||||
break;
|
||||
}
|
||||
@ -1717,9 +1714,9 @@ static int str_unpack (lua_State *L) {
|
||||
break;
|
||||
}
|
||||
case Kfloat: {
|
||||
volatile Ftypes u;
|
||||
Ftypes u;
|
||||
lua_Number num;
|
||||
copywithendian(u.buff, data + pos, size, h.islittle);
|
||||
copywithendian((char *)&u, data + pos, size, h.islittle);
|
||||
if (size == sizeof(u.f)) num = (lua_Number)u.f;
|
||||
else if (size == sizeof(u.d)) num = (lua_Number)u.d;
|
||||
else num = u.n;
|
||||
@ -1738,7 +1735,7 @@ static int str_unpack (lua_State *L) {
|
||||
break;
|
||||
}
|
||||
case Kzstr: {
|
||||
size_t len = (int)strlen(data + pos);
|
||||
size_t len = strlen(data + pos);
|
||||
luaL_argcheck(L, pos + len < ld, 2,
|
||||
"unfinished string for format 'z'");
|
||||
lua_pushlstring(L, data + pos, len);
|
@ -166,17 +166,30 @@ static Node *mainpositionTV (const Table *t, const TValue *key) {
|
||||
|
||||
|
||||
/*
|
||||
** Check whether key 'k1' is equal to the key in node 'n2'.
|
||||
** This equality is raw, so there are no metamethods. Floats
|
||||
** with integer values have been normalized, so integers cannot
|
||||
** be equal to floats. It is assumed that 'eqshrstr' is simply
|
||||
** pointer equality, so that short strings are handled in the
|
||||
** default case.
|
||||
** Check whether key 'k1' is equal to the key in node 'n2'. This
|
||||
** equality is raw, so there are no metamethods. Floats with integer
|
||||
** values have been normalized, so integers cannot be equal to
|
||||
** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
|
||||
** that short strings are handled in the default case.
|
||||
** A true 'deadok' means to accept dead keys as equal to their original
|
||||
** values. All dead keys are compared in the default case, by pointer
|
||||
** identity. (Only collectable objects can produce dead keys.) Note that
|
||||
** dead long strings are also compared by identity.
|
||||
** Once a key is dead, its corresponding value may be collected, and
|
||||
** then another value can be created with the same address. If this
|
||||
** other value is given to 'next', 'equalkey' will signal a false
|
||||
** positive. In a regular traversal, this situation should never happen,
|
||||
** as all keys given to 'next' came from the table itself, and therefore
|
||||
** could not have been collected. Outside a regular traversal, we
|
||||
** have garbage in, garbage out. What is relevant is that this false
|
||||
** positive does not break anything. (In particular, 'next' will return
|
||||
** some other valid item on the table or nil.)
|
||||
*/
|
||||
static int equalkey (const TValue *k1, const Node *n2) {
|
||||
if (rawtt(k1) != keytt(n2)) /* not the same variants? */
|
||||
static int equalkey (const TValue *k1, const Node *n2, int deadok) {
|
||||
if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
|
||||
!(deadok && keyisdead(n2) && iscollectable(k1)))
|
||||
return 0; /* cannot be same key */
|
||||
switch (ttypetag(k1)) {
|
||||
switch (keytt(n2)) {
|
||||
case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
|
||||
return 1;
|
||||
case LUA_VNUMINT:
|
||||
@ -187,7 +200,7 @@ static int equalkey (const TValue *k1, const Node *n2) {
|
||||
return pvalue(k1) == pvalueraw(keyval(n2));
|
||||
case LUA_VLCF:
|
||||
return fvalue(k1) == fvalueraw(keyval(n2));
|
||||
case LUA_VLNGSTR:
|
||||
case ctb(LUA_VLNGSTR):
|
||||
return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
|
||||
default:
|
||||
return gcvalue(k1) == gcvalueraw(keyval(n2));
|
||||
@ -251,11 +264,12 @@ static unsigned int setlimittosize (Table *t) {
|
||||
/*
|
||||
** "Generic" get version. (Not that generic: not valid for integers,
|
||||
** which may be in array part, nor for floats with integral values.)
|
||||
** See explanation about 'deadok' in function 'equalkey'.
|
||||
*/
|
||||
static const TValue *getgeneric (Table *t, const TValue *key) {
|
||||
static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
|
||||
Node *n = mainpositionTV(t, key);
|
||||
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||||
if (equalkey(key, n))
|
||||
if (equalkey(key, n, deadok))
|
||||
return gval(n); /* that's it */
|
||||
else {
|
||||
int nx = gnext(n);
|
||||
@ -292,7 +306,7 @@ static unsigned int findindex (lua_State *L, Table *t, TValue *key,
|
||||
if (i - 1u < asize) /* is 'key' inside array part? */
|
||||
return i; /* yes; that's the index */
|
||||
else {
|
||||
const TValue *n = getgeneric(t, key);
|
||||
const TValue *n = getgeneric(t, key, 1);
|
||||
if (unlikely(isabstkey(n)))
|
||||
luaG_runerror(L, "invalid key to 'next'"); /* key not found */
|
||||
i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
|
||||
@ -583,7 +597,7 @@ Table *luaH_new (lua_State *L) {
|
||||
GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
|
||||
Table *t = gco2t(o);
|
||||
t->metatable = NULL;
|
||||
t->flags = cast_byte(~0);
|
||||
t->flags = cast_byte(maskflags); /* table has no metamethod fields */
|
||||
t->array = NULL;
|
||||
t->alimit = 0;
|
||||
setnodevector(L, t, 0);
|
||||
@ -730,7 +744,7 @@ const TValue *luaH_getstr (Table *t, TString *key) {
|
||||
else { /* for long strings, use generic case */
|
||||
TValue ko;
|
||||
setsvalue(cast(lua_State *, NULL), &ko, key);
|
||||
return getgeneric(t, &ko);
|
||||
return getgeneric(t, &ko, 0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -750,7 +764,7 @@ const TValue *luaH_get (Table *t, const TValue *key) {
|
||||
/* else... */
|
||||
} /* FALLTHROUGH */
|
||||
default:
|
||||
return getgeneric(t, key);
|
||||
return getgeneric(t, key, 0);
|
||||
}
|
||||
}
|
||||
|
@ -15,7 +15,12 @@
|
||||
#define gnext(n) ((n)->u.next)
|
||||
|
||||
|
||||
#define invalidateTMcache(t) ((t)->flags = 0)
|
||||
/*
|
||||
** Clear all bits of fast-access metamethods, which means that the table
|
||||
** may have any of these metamethods. (First access that fails after the
|
||||
** clearing will set the bit again.)
|
||||
*/
|
||||
#define invalidateTMcache(t) ((t)->flags &= ~maskflags)
|
||||
|
||||
|
||||
/* true when 't' is using 'dummynode' as its hash part */
|
@ -240,7 +240,7 @@ void luaT_adjustvarargs (lua_State *L, int nfixparams, CallInfo *ci,
|
||||
int actual = cast_int(L->top - ci->func) - 1; /* number of arguments */
|
||||
int nextra = actual - nfixparams; /* number of extra arguments */
|
||||
ci->u.l.nextraargs = nextra;
|
||||
checkstackGC(L, p->maxstacksize + 1);
|
||||
luaD_checkstack(L, p->maxstacksize + 1);
|
||||
/* copy function to the top of the stack */
|
||||
setobjs2s(L, L->top++, ci->func);
|
||||
/* move fixed parameters to the top of the stack */
|
||||
@ -259,7 +259,7 @@ void luaT_getvarargs (lua_State *L, CallInfo *ci, StkId where, int wanted) {
|
||||
int nextra = ci->u.l.nextraargs;
|
||||
if (wanted < 0) {
|
||||
wanted = nextra; /* get all extra arguments available */
|
||||
checkstackp(L, nextra, where); /* ensure stack space */
|
||||
checkstackGCp(L, nextra, where); /* ensure stack space */
|
||||
L->top = where + nextra; /* next instruction will need top */
|
||||
}
|
||||
for (i = 0; i < wanted && i < nextra; i++)
|
@ -45,6 +45,15 @@ typedef enum {
|
||||
} TMS;
|
||||
|
||||
|
||||
/*
|
||||
** Mask with 1 in all fast-access methods. A 1 in any of these bits
|
||||
** in the flag of a (meta)table means the metatable does not have the
|
||||
** corresponding metamethod field. (Bit 7 of the flag is used for
|
||||
** 'isrealasize'.)
|
||||
*/
|
||||
#define maskflags (~(~0u << (TM_EQ + 1)))
|
||||
|
||||
|
||||
/*
|
||||
** Test whether there is no tagmethod.
|
||||
** (Because tagmethods use raw accesses, the result may be an "empty" nil.)
|
@ -416,14 +416,18 @@ static int handle_luainit (lua_State *L) {
|
||||
|
||||
|
||||
/*
|
||||
** Returns the string to be used as a prompt by the interpreter.
|
||||
** Return the string to be used as a prompt by the interpreter. Leave
|
||||
** the string (or nil, if using the default value) on the stack, to keep
|
||||
** it anchored.
|
||||
*/
|
||||
static const char *get_prompt (lua_State *L, int firstline) {
|
||||
const char *p;
|
||||
lua_getglobal(L, firstline ? "_PROMPT" : "_PROMPT2");
|
||||
p = lua_tostring(L, -1);
|
||||
if (p == NULL) p = (firstline ? LUA_PROMPT : LUA_PROMPT2);
|
||||
return p;
|
||||
if (lua_getglobal(L, firstline ? "_PROMPT" : "_PROMPT2") == LUA_TNIL)
|
||||
return (firstline ? LUA_PROMPT : LUA_PROMPT2); /* use the default */
|
||||
else { /* apply 'tostring' over the value */
|
||||
const char *p = luaL_tolstring(L, -1, NULL);
|
||||
lua_remove(L, -2); /* remove original value */
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
/* mark in error messages for incomplete statements */
|
@ -120,7 +120,10 @@ static TString *loadStringN (LoadState *S, Proto *p) {
|
||||
}
|
||||
else { /* long string */
|
||||
ts = luaS_createlngstrobj(L, size); /* create string */
|
||||
setsvalue2s(L, L->top, ts); /* anchor it ('loadVector' can GC) */
|
||||
luaD_inctop(L);
|
||||
loadVector(S, getstr(ts), size); /* load directly in final place */
|
||||
L->top--; /* pop string */
|
||||
}
|
||||
luaC_objbarrier(L, p, ts);
|
||||
return ts;
|
||||
@ -200,13 +203,20 @@ static void loadProtos (LoadState *S, Proto *f) {
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Load the upvalues for a function. The names must be filled first,
|
||||
** because the filling of the other fields can raise read errors and
|
||||
** the creation of the error message can call an emergency collection;
|
||||
** in that case all prototypes must be consistent for the GC.
|
||||
*/
|
||||
static void loadUpvalues (LoadState *S, Proto *f) {
|
||||
int i, n;
|
||||
n = loadInt(S);
|
||||
f->upvalues = luaM_newvectorchecked(S->L, n, Upvaldesc);
|
||||
f->sizeupvalues = n;
|
||||
for (i = 0; i < n; i++) {
|
||||
for (i = 0; i < n; i++) /* make array valid for GC */
|
||||
f->upvalues[i].name = NULL;
|
||||
for (i = 0; i < n; i++) { /* following calls can raise errors */
|
||||
f->upvalues[i].instack = loadByte(S);
|
||||
f->upvalues[i].idx = loadByte(S);
|
||||
f->upvalues[i].kind = loadByte(S);
|
@ -229,7 +229,7 @@ static int forprep (lua_State *L, StkId ra) {
|
||||
count /= l_castS2U(-(step + 1)) + 1u;
|
||||
}
|
||||
/* store the counter in place of the limit (which won't be
|
||||
needed anymore */
|
||||
needed anymore) */
|
||||
setivalue(plimit, l_castU2S(count));
|
||||
}
|
||||
}
|
||||
@ -634,7 +634,8 @@ static void copy2buff (StkId top, int n, char *buff) {
|
||||
** from 'L->top - total' up to 'L->top - 1'.
|
||||
*/
|
||||
void luaV_concat (lua_State *L, int total) {
|
||||
lua_assert(total >= 2);
|
||||
if (total == 1)
|
||||
return; /* "all" values already concatenated */
|
||||
do {
|
||||
StkId top = L->top;
|
||||
int n = 2; /* number of elements handled in this pass (at least 2) */
|
||||
@ -840,10 +841,8 @@ void luaV_finishOp (lua_State *L) {
|
||||
int a = GETARG_A(inst); /* first element to concatenate */
|
||||
int total = cast_int(top - 1 - (base + a)); /* yet to concatenate */
|
||||
setobjs2s(L, top - 2, top); /* put TM result in proper position */
|
||||
if (total > 1) { /* are there elements to concat? */
|
||||
L->top = top - 1; /* top is one after last element (at top-2) */
|
||||
luaV_concat(L, total); /* concat them (may yield again) */
|
||||
}
|
||||
L->top = top - 1; /* top is one after last element (at top-2) */
|
||||
luaV_concat(L, total); /* concat them (may yield again) */
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
@ -1093,18 +1092,14 @@ void luaV_finishOp (lua_State *L) {
|
||||
#define ProtectNT(exp) (savepc(L), (exp), updatetrap(ci))
|
||||
|
||||
/*
|
||||
** Protect code that will finish the loop (returns) or can only raise
|
||||
** errors. (That is, it will not return to the interpreter main loop
|
||||
** after changing the stack or hooks.)
|
||||
** Protect code that can only raise errors. (That is, it cannnot change
|
||||
** the stack or hooks.)
|
||||
*/
|
||||
#define halfProtect(exp) (savestate(L,ci), (exp))
|
||||
|
||||
/* idem, but without changing the stack */
|
||||
#define halfProtectNT(exp) (savepc(L), (exp))
|
||||
|
||||
|
||||
/* 'c' is the limit of live values in the stack */
|
||||
#define checkGC(L,c) \
|
||||
{ luaC_condGC(L, L->top = (c), /* limit of live values */ \
|
||||
{ luaC_condGC(L, (savepc(L), L->top = (c)), \
|
||||
updatetrap(ci)); \
|
||||
luai_threadyield(L); }
|
||||
|
||||
@ -1133,17 +1128,20 @@ void luaV_execute (lua_State *L, CallInfo *ci) {
|
||||
#if LUA_USE_JUMPTABLE
|
||||
#include "ljumptab.h"
|
||||
#endif
|
||||
tailcall:
|
||||
startfunc:
|
||||
trap = L->hookmask;
|
||||
returning: /* trap already set */
|
||||
cl = clLvalue(s2v(ci->func));
|
||||
k = cl->p->k;
|
||||
pc = ci->u.l.savedpc;
|
||||
if (trap) {
|
||||
if (cl->p->is_vararg)
|
||||
trap = 0; /* hooks will start after VARARGPREP instruction */
|
||||
else if (pc == cl->p->code) /* first instruction (not resuming)? */
|
||||
luaD_hookcall(L, ci);
|
||||
ci->u.l.trap = 1; /* there may be other hooks */
|
||||
if (pc == cl->p->code) { /* first instruction (not resuming)? */
|
||||
if (cl->p->is_vararg)
|
||||
trap = 0; /* hooks will start after VARARGPREP instruction */
|
||||
else /* check 'call' hook */
|
||||
luaD_hookcall(L, ci);
|
||||
}
|
||||
ci->u.l.trap = 1; /* assume trap is on, for now */
|
||||
}
|
||||
base = ci->func + 1;
|
||||
/* main loop of interpreter */
|
||||
@ -1152,7 +1150,7 @@ void luaV_execute (lua_State *L, CallInfo *ci) {
|
||||
StkId ra; /* instruction's A register */
|
||||
vmfetch();
|
||||
lua_assert(base == ci->func + 1);
|
||||
lua_assert(base <= L->top && L->top < L->stack + L->stacksize);
|
||||
lua_assert(base <= L->top && L->top < L->stack_last);
|
||||
/* invalidate top for instructions not expecting it */
|
||||
lua_assert(isIT(i) || (cast_void(L->top = base), 1));
|
||||
vmdispatch (GET_OPCODE(i)) {
|
||||
@ -1607,24 +1605,32 @@ void luaV_execute (lua_State *L, CallInfo *ci) {
|
||||
vmbreak;
|
||||
}
|
||||
vmcase(OP_CALL) {
|
||||
CallInfo *newci;
|
||||
int b = GETARG_B(i);
|
||||
int nresults = GETARG_C(i) - 1;
|
||||
if (b != 0) /* fixed number of arguments? */
|
||||
L->top = ra + b; /* top signals number of arguments */
|
||||
/* else previous instruction set top */
|
||||
ProtectNT(luaD_call(L, ra, nresults));
|
||||
savepc(L); /* in case of errors */
|
||||
if ((newci = luaD_precall(L, ra, nresults)) == NULL)
|
||||
updatetrap(ci); /* C call; nothing else to be done */
|
||||
else { /* Lua call: run function in this same C frame */
|
||||
ci = newci;
|
||||
ci->callstatus = 0; /* call re-uses 'luaV_execute' */
|
||||
goto startfunc;
|
||||
}
|
||||
vmbreak;
|
||||
}
|
||||
vmcase(OP_TAILCALL) {
|
||||
int b = GETARG_B(i); /* number of arguments + 1 (function) */
|
||||
int nparams1 = GETARG_C(i);
|
||||
/* delat is virtual 'func' - real 'func' (vararg functions) */
|
||||
/* delta is virtual 'func' - real 'func' (vararg functions) */
|
||||
int delta = (nparams1) ? ci->u.l.nextraargs + nparams1 : 0;
|
||||
if (b != 0)
|
||||
L->top = ra + b;
|
||||
else /* previous instruction set top */
|
||||
b = cast_int(L->top - ra);
|
||||
savepc(ci); /* some calls here can raise errors */
|
||||
savepc(ci); /* several calls here can raise errors */
|
||||
if (TESTARG_k(i)) {
|
||||
/* close upvalues from current call; the compiler ensures
|
||||
that there are no to-be-closed variables here, so this
|
||||
@ -1635,19 +1641,20 @@ void luaV_execute (lua_State *L, CallInfo *ci) {
|
||||
while (!ttisfunction(s2v(ra))) { /* not a function? */
|
||||
luaD_tryfuncTM(L, ra); /* try '__call' metamethod */
|
||||
b++; /* there is now one extra argument */
|
||||
checkstackp(L, 1, ra);
|
||||
checkstackGCp(L, 1, ra);
|
||||
}
|
||||
if (!ttisLclosure(s2v(ra))) { /* C function? */
|
||||
luaD_call(L, ra, LUA_MULTRET); /* call it */
|
||||
luaD_precall(L, ra, LUA_MULTRET); /* call it */
|
||||
updatetrap(ci);
|
||||
updatestack(ci); /* stack may have been relocated */
|
||||
ci->func -= delta;
|
||||
luaD_poscall(L, ci, cast_int(L->top - ra));
|
||||
return;
|
||||
ci->func -= delta; /* restore 'func' (if vararg) */
|
||||
luaD_poscall(L, ci, cast_int(L->top - ra)); /* finish caller */
|
||||
updatetrap(ci); /* 'luaD_poscall' can change hooks */
|
||||
goto ret; /* caller returns after the tail call */
|
||||
}
|
||||
ci->func -= delta;
|
||||
ci->func -= delta; /* restore 'func' (if vararg) */
|
||||
luaD_pretailcall(L, ci, ra, b); /* prepare call frame */
|
||||
goto tailcall;
|
||||
goto startfunc; /* execute the callee */
|
||||
}
|
||||
vmcase(OP_RETURN) {
|
||||
int n = GETARG_B(i) - 1; /* number of results */
|
||||
@ -1666,12 +1673,15 @@ void luaV_execute (lua_State *L, CallInfo *ci) {
|
||||
ci->func -= ci->u.l.nextraargs + nparams1;
|
||||
L->top = ra + n; /* set call for 'luaD_poscall' */
|
||||
luaD_poscall(L, ci, n);
|
||||
return;
|
||||
updatetrap(ci); /* 'luaD_poscall' can change hooks */
|
||||
goto ret;
|
||||
}
|
||||
vmcase(OP_RETURN0) {
|
||||
if (L->hookmask) {
|
||||
L->top = ra;
|
||||
halfProtectNT(luaD_poscall(L, ci, 0)); /* no hurry... */
|
||||
savepc(ci);
|
||||
luaD_poscall(L, ci, 0); /* no hurry... */
|
||||
trap = 1;
|
||||
}
|
||||
else { /* do the 'poscall' here */
|
||||
int nres = ci->nresults;
|
||||
@ -1680,12 +1690,14 @@ void luaV_execute (lua_State *L, CallInfo *ci) {
|
||||
while (nres-- > 0)
|
||||
setnilvalue(s2v(L->top++)); /* all results are nil */
|
||||
}
|
||||
return;
|
||||
goto ret;
|
||||
}
|
||||
vmcase(OP_RETURN1) {
|
||||
if (L->hookmask) {
|
||||
L->top = ra + 1;
|
||||
halfProtectNT(luaD_poscall(L, ci, 1)); /* no hurry... */
|
||||
savepc(ci);
|
||||
luaD_poscall(L, ci, 1); /* no hurry... */
|
||||
trap = 1;
|
||||
}
|
||||
else { /* do the 'poscall' here */
|
||||
int nres = ci->nresults;
|
||||
@ -1699,7 +1711,13 @@ void luaV_execute (lua_State *L, CallInfo *ci) {
|
||||
setnilvalue(s2v(L->top++));
|
||||
}
|
||||
}
|
||||
return;
|
||||
ret: /* return from a Lua function */
|
||||
if (ci->callstatus & CIST_FRESH)
|
||||
return; /* end this frame */
|
||||
else {
|
||||
ci = ci->previous;
|
||||
goto returning; /* continue running caller in this frame */
|
||||
}
|
||||
}
|
||||
vmcase(OP_FORLOOP) {
|
||||
if (ttisinteger(s2v(ra + 2))) { /* integer loop? */
|
||||
@ -1792,11 +1810,10 @@ void luaV_execute (lua_State *L, CallInfo *ci) {
|
||||
vmbreak;
|
||||
}
|
||||
vmcase(OP_VARARGPREP) {
|
||||
luaT_adjustvarargs(L, GETARG_A(i), ci, cl->p);
|
||||
updatetrap(ci);
|
||||
ProtectNT(luaT_adjustvarargs(L, GETARG_A(i), ci, cl->p));
|
||||
if (trap) {
|
||||
luaD_hookcall(L, ci);
|
||||
L->oldpc = pc + 1; /* next opcode will be seen as a "new" line */
|
||||
L->oldpc = 1; /* next opcode will be seen as a "new" line */
|
||||
}
|
||||
updatebase(ci); /* function has new base after adjustment */
|
||||
vmbreak;
|
Binary file not shown.
BIN
orig_sources/lua-5.4.2.tar.gz
Normal file
BIN
orig_sources/lua-5.4.2.tar.gz
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user