Vulkan-Hpp/RAII_Samples/PipelineCache/PipelineCache.cpp

385 lines
18 KiB
C++
Raw Permalink Normal View History

// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// VulkanHpp Samples : PipelineCache
// This sample tries to save and reuse pipeline cache data between runs.
#if defined( _MSC_VER )
// no need to ignore any warnings with MSVC
#elif defined( __clang__ )
# pragma clang diagnostic ignored "-Wmissing-braces"
#elif defined( __GNUC__ )
#else
// unknow compiler... just ignore the warnings for yourselves ;)
#endif
#include "../../samples/utils/geometries.hpp"
#include "../../samples/utils/math.hpp"
#include "../utils/shaders.hpp"
#include "../utils/utils.hpp"
#include "SPIRV/GlslangToSpv.h"
2024-03-17 05:07:15 +00:00
#include "glslang/Public/ShaderLang.h"
#include <fstream>
#include <iomanip>
#include <thread>
// For timestamp code (getMilliseconds)
#ifdef WIN32
# include <Windows.h>
#else
# include <sys/time.h>
#endif
typedef unsigned long long timestamp_t;
timestamp_t getMilliseconds()
{
#ifdef WIN32
LARGE_INTEGER frequency;
BOOL useQPC = QueryPerformanceFrequency( &frequency );
if ( useQPC )
{
LARGE_INTEGER now;
QueryPerformanceCounter( &now );
return ( 1000LL * now.QuadPart ) / frequency.QuadPart;
}
else
{
return GetTickCount();
}
#else
struct timeval now;
gettimeofday( &now, NULL );
return ( now.tv_usec / 1000 ) + (timestamp_t)now.tv_sec;
#endif
}
static char const * AppName = "PipelineCache";
static char const * EngineName = "Vulkan.hpp";
int main( int /*argc*/, char ** /*argv*/ )
{
try
{
vk::raii::Context context;
vk::raii::Instance instance = vk::raii::su::makeInstance( context, AppName, EngineName, {}, vk::su::getInstanceExtensions() );
#if !defined( NDEBUG )
vk::raii::DebugUtilsMessengerEXT debugUtilsMessenger( instance, vk::su::makeDebugUtilsMessengerCreateInfoEXT() );
#endif
vk::raii::PhysicalDevice physicalDevice = vk::raii::PhysicalDevices( instance ).front();
vk::PhysicalDeviceProperties properties = physicalDevice.getProperties();
vk::raii::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) );
std::pair<uint32_t, uint32_t> graphicsAndPresentQueueFamilyIndex =
vk::raii::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, surfaceData.surface );
vk::raii::Device device = vk::raii::su::makeDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() );
vk::raii::CommandPool commandPool = vk::raii::CommandPool( device, { {}, graphicsAndPresentQueueFamilyIndex.first } );
vk::raii::CommandBuffer commandBuffer = vk::raii::su::makeCommandBuffer( device, commandPool );
vk::raii::Queue graphicsQueue( device, graphicsAndPresentQueueFamilyIndex.first, 0 );
vk::raii::Queue presentQueue( device, graphicsAndPresentQueueFamilyIndex.second, 0 );
vk::raii::su::SwapChainData swapChainData( physicalDevice,
device,
surfaceData.surface,
surfaceData.extent,
vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc,
{},
graphicsAndPresentQueueFamilyIndex.first,
graphicsAndPresentQueueFamilyIndex.second );
vk::raii::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent );
vk::raii::su::TextureData textureData( physicalDevice, device );
commandBuffer.begin( vk::CommandBufferBeginInfo() );
textureData.setImage( commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) );
vk::raii::su::BufferData uniformBufferData( physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer );
glm::mat4x4 mvpcMatrix = vk::su::createModelViewProjectionClipMatrix( surfaceData.extent );
vk::raii::su::copyToDevice( uniformBufferData.deviceMemory, mvpcMatrix );
vk::raii::DescriptorSetLayout descriptorSetLayout =
vk::raii::su::makeDescriptorSetLayout( device,
{ { vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex },
{ vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment } } );
vk::raii::PipelineLayout pipelineLayout( device, { {}, *descriptorSetLayout } );
vk::Format colorFormat = vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface ) ).format;
vk::raii::RenderPass renderPass = vk::raii::su::makeRenderPass( device, colorFormat, depthBufferData.format );
glslang::InitializeProcess();
vk::raii::ShaderModule vertexShaderModule = vk::raii::su::makeShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T );
vk::raii::ShaderModule fragmentShaderModule = vk::raii::su::makeShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C );
glslang::FinalizeProcess();
std::vector<vk::raii::Framebuffer> framebuffers =
vk::raii::su::makeFramebuffers( device, renderPass, swapChainData.imageViews, &depthBufferData.imageView, surfaceData.extent );
vk::raii::su::BufferData vertexBufferData( physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer );
vk::raii::su::copyToDevice( vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) );
vk::raii::DescriptorPool descriptorPool =
vk::raii::su::makeDescriptorPool( device, { { vk::DescriptorType::eUniformBuffer, 1 }, { vk::DescriptorType::eCombinedImageSampler, 1 } } );
vk::raii::DescriptorSet descriptorSet = std::move( vk::raii::DescriptorSets( device, { descriptorPool, *descriptorSetLayout } ).front() );
vk::raii::su::updateDescriptorSets(
device, descriptorSet, { { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, VK_WHOLE_SIZE, nullptr } }, { textureData } );
/* VULKAN_KEY_START */
// Check disk for existing cache data
size_t startCacheSize = 0;
char * startCacheData = nullptr;
std::string cacheFileName = "pipeline_cache_data.bin";
std::ifstream readCacheStream( cacheFileName, std::ios_base::in | std::ios_base::binary );
if ( readCacheStream.good() )
{
// Determine cache size
readCacheStream.seekg( 0, readCacheStream.end );
startCacheSize = static_cast<size_t>( readCacheStream.tellg() );
readCacheStream.seekg( 0, readCacheStream.beg );
// Allocate memory to hold the initial cache data
startCacheData = (char *)std::malloc( startCacheSize );
// Read the data into our buffer
readCacheStream.read( startCacheData, startCacheSize );
// Clean up and print results
readCacheStream.close();
std::cout << " Pipeline cache HIT!\n";
std::cout << " cacheData loaded from " << cacheFileName << "\n";
}
else
{
// No cache found on disk
std::cout << " Pipeline cache miss!\n";
}
if ( startCacheData != nullptr )
{
// Check for cache validity
//
// TODO: Update this as the spec evolves. The fields are not defined by the header.
//
// The code below supports SDK 0.10 Vulkan spec, which contains the following table:
//
// Offset Size Meaning
// ------ ------------ ------------------------------------------------------------------
// 0 4 a device ID equal to VkPhysicalDeviceProperties::DeviceId written
// as a stream of bytes, with the least significant byte first
//
// 4 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID
//
//
// The code must be updated for latest Vulkan spec, which contains the following table:
//
// Offset Size Meaning
// ------ ------------ ------------------------------------------------------------------
// 0 4 length in bytes of the entire pipeline cache header written as a
// stream of bytes, with the least significant byte first
// 4 4 a VkPipelineCacheHeaderVersion value written as a stream of bytes,
// with the least significant byte first
// 8 4 a vendor ID equal to VkPhysicalDeviceProperties::vendorID written
// as a stream of bytes, with the least significant byte first
// 12 4 a device ID equal to VkPhysicalDeviceProperties::deviceID written
// as a stream of bytes, with the least significant byte first
// 16 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID
uint32_t headerLength = 0;
uint32_t cacheHeaderVersion = 0;
uint32_t vendorID = 0;
uint32_t deviceID = 0;
uint8_t pipelineCacheUUID[VK_UUID_SIZE] = {};
memcpy( &headerLength, (uint8_t *)startCacheData + 0, 4 );
memcpy( &cacheHeaderVersion, (uint8_t *)startCacheData + 4, 4 );
memcpy( &vendorID, (uint8_t *)startCacheData + 8, 4 );
memcpy( &deviceID, (uint8_t *)startCacheData + 12, 4 );
memcpy( pipelineCacheUUID, (uint8_t *)startCacheData + 16, VK_UUID_SIZE );
// Check each field and report bad values before freeing existing cache
bool badCache = false;
if ( headerLength <= 0 )
{
badCache = true;
std::cout << " Bad header length in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << headerLength << "\n";
}
if ( cacheHeaderVersion != VK_PIPELINE_CACHE_HEADER_VERSION_ONE )
{
badCache = true;
std::cout << " Unsupported cache header version in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << cacheHeaderVersion << "\n";
}
if ( vendorID != properties.vendorID )
{
badCache = true;
std::cout << " Vender ID mismatch in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << vendorID << "\n";
std::cout << " Driver expects: " << std::hex << std::setw( 8 ) << properties.vendorID << "\n";
}
if ( deviceID != properties.deviceID )
{
badCache = true;
std::cout << " Device ID mismatch in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << deviceID << "\n";
std::cout << " Driver expects: " << std::hex << std::setw( 8 ) << properties.deviceID << "\n";
}
if ( memcmp( pipelineCacheUUID, properties.pipelineCacheUUID, sizeof( pipelineCacheUUID ) ) != 0 )
{
badCache = true;
std::cout << " UUID mismatch in " << cacheFileName << ".\n";
std::cout << " Cache contains: " << vk::su::UUID( pipelineCacheUUID ) << "\n";
std::cout << " Driver expects: " << vk::su::UUID( properties.pipelineCacheUUID ) << "\n";
}
if ( badCache )
{
// Don't submit initial cache data if any version info is incorrect
free( startCacheData );
startCacheSize = 0;
startCacheData = nullptr;
// And clear out the old cache file for use in next run
std::cout << " Deleting cache entry " << cacheFileName << " to repopulate.\n";
if ( remove( cacheFileName.c_str() ) != 0 )
{
std::cerr << "Reading error";
exit( EXIT_FAILURE );
}
}
}
// Feed the initial cache data into cache creation
vk::PipelineCacheCreateInfo pipelineCacheCreateInfo( {}, startCacheSize, startCacheData );
vk::raii::PipelineCache pipelineCache( device, pipelineCacheCreateInfo );
// Free our initialData now that pipeline cache has been created
free( startCacheData );
startCacheData = NULL;
// Time (roughly) taken to create the graphics pipeline
timestamp_t start = getMilliseconds();
vk::raii::Pipeline graphicsPipeline = vk::raii::su::makeGraphicsPipeline( device,
pipelineCache,
vertexShaderModule,
nullptr,
fragmentShaderModule,
nullptr,
sizeof( texturedCubeData[0] ),
{ { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } },
vk::FrontFace::eClockwise,
true,
pipelineLayout,
renderPass );
timestamp_t elapsed = getMilliseconds() - start;
std::cout << " vkCreateGraphicsPipeline time: " << (double)elapsed << " ms\n";
vk::raii::Semaphore imageAcquiredSemaphore( device, vk::SemaphoreCreateInfo() );
// Get the index of the next available swapchain image:
vk::Result result;
uint32_t imageIndex;
std::tie( result, imageIndex ) = swapChainData.swapChain.acquireNextImage( vk::su::FenceTimeout, imageAcquiredSemaphore );
assert( result == vk::Result::eSuccess );
assert( imageIndex < swapChainData.images.size() );
std::array<vk::ClearValue, 2> clearValues;
clearValues[0].color = vk::ClearColorValue( 0.2f, 0.2f, 0.2f, 0.2f );
clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 );
commandBuffer.beginRenderPass(
vk::RenderPassBeginInfo( renderPass, framebuffers[imageIndex], vk::Rect2D( vk::Offset2D(), surfaceData.extent ), clearValues ),
vk::SubpassContents::eInline );
commandBuffer.bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline );
commandBuffer.bindDescriptorSets( vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, { descriptorSet }, {} );
commandBuffer.bindVertexBuffers( 0, { vertexBufferData.buffer }, { 0 } );
commandBuffer.setViewport(
0, vk::Viewport( 0.0f, 0.0f, static_cast<float>( surfaceData.extent.width ), static_cast<float>( surfaceData.extent.height ), 0.0f, 1.0f ) );
commandBuffer.setScissor( 0, vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ) );
commandBuffer.draw( 12 * 3, 1, 0, 0 );
commandBuffer.endRenderPass();
commandBuffer.end();
vk::raii::Fence drawFence( device, vk::FenceCreateInfo() );
vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput );
vk::SubmitInfo submitInfo( *imageAcquiredSemaphore, waitDestinationStageMask, *commandBuffer );
graphicsQueue.submit( submitInfo, *drawFence );
while ( vk::Result::eTimeout == device.waitForFences( { drawFence }, VK_TRUE, vk::su::FenceTimeout ) )
;
vk::PresentInfoKHR presentInfoKHR( nullptr, *swapChainData.swapChain, imageIndex );
result = presentQueue.presentKHR( presentInfoKHR );
switch ( result )
{
case vk::Result::eSuccess: break;
case vk::Result::eSuboptimalKHR: std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n"; break;
default: assert( false ); // an unexpected result is returned !
}
std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) );
// Store away the cache that we've populated. This could conceivably happen
// earlier, depends on when the pipeline cache stops being populated
// internally.
std::vector<uint8_t> endCacheData = pipelineCache.getData();
// Write the file to disk, overwriting whatever was there
std::ofstream writeCacheStream( cacheFileName, std::ios_base::out | std::ios_base::binary );
if ( writeCacheStream.good() )
{
writeCacheStream.write( reinterpret_cast<char const *>( endCacheData.data() ), endCacheData.size() );
writeCacheStream.close();
std::cout << " cacheData written to " << cacheFileName << "\n";
}
else
{
// Something bad happened
std::cout << " Unable to write cache data to disk!\n";
}
/* VULKAN_KEY_END */
}
catch ( vk::SystemError & err )
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit( -1 );
}
catch ( std::exception & err )
{
std::cout << "std::exception: " << err.what() << std::endl;
exit( -1 );
}
catch ( ... )
{
std::cout << "unknown error\n";
exit( -1 );
}
return 0;
}