Vulkan-Hpp/RAII_Samples/RayTracing/CameraManipulator.cpp

436 lines
12 KiB
C++
Raw Permalink Normal View History

// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// ignore warning 4127: conditional expression is constant
#if defined( _MSC_VER )
# pragma warning( disable : 4127 )
#elif defined( __clang__ )
# if ( 10 <= __clang_major__ )
# pragma clang diagnostic ignored "-Wdeprecated-volatile" // to keep glm/detail/type_half.inl compiling
# endif
#elif defined( __GNUC__ )
// don't know how to switch off that warning here
#else
// unknow compiler... just ignore the warnings for yourselves ;)
#endif
#include "CameraManipulator.hpp"
#include <glm/glm.hpp>
#include <glm/gtx/rotate_vector.hpp>
namespace vk
{
namespace su
{
const float trackballSize = 0.8f;
//-----------------------------------------------------------------------------
// MATH functions
//
template <typename T>
bool isZero( const T & _a )
{
return fabs( _a ) < std::numeric_limits<T>::epsilon();
}
template <typename T>
bool isOne( const T & _a )
{
return areEqual( _a, (T)1 );
}
inline float sign( float s )
{
return ( s < 0.f ) ? -1.f : 1.f;
}
CameraManipulator::CameraManipulator()
{
update();
}
glm::vec3 const & CameraManipulator::getCameraPosition() const
{
return m_cameraPosition;
}
glm::vec3 const & CameraManipulator::getCenterPosition() const
{
return m_centerPosition;
}
glm::mat4 const & CameraManipulator::getMatrix() const
{
return m_matrix;
}
CameraManipulator::Mode CameraManipulator::getMode() const
{
return m_mode;
}
glm::ivec2 const & CameraManipulator::getMousePosition() const
{
return m_mousePosition;
}
float CameraManipulator::getRoll() const
{
return m_roll;
}
float CameraManipulator::getSpeed() const
{
return m_speed;
}
glm::vec3 const & CameraManipulator::getUpVector() const
{
return m_upVector;
}
glm::u32vec2 const & CameraManipulator::getWindowSize() const
{
return m_windowSize;
}
CameraManipulator::Action CameraManipulator::mouseMove( glm::ivec2 const & position, MouseButton mouseButton, ModifierFlags & modifiers )
{
Action curAction = Action::None;
switch ( mouseButton )
{
case MouseButton::Left:
if ( ( ( modifiers & ModifierFlagBits::Ctrl ) && ( modifiers & ModifierFlagBits::Shift ) ) || ( modifiers & ModifierFlagBits::Alt ) )
{
curAction = m_mode == Mode::Examine ? Action::LookAround : Action::Orbit;
}
else if ( modifiers & ModifierFlagBits::Shift )
{
curAction = Action::Dolly;
}
else if ( modifiers & ModifierFlagBits::Ctrl )
{
curAction = Action::Pan;
}
else
{
curAction = m_mode == Mode::Examine ? Action::Orbit : Action::LookAround;
}
break;
case MouseButton::Middle: curAction = Action::Pan; break;
case MouseButton::Right: curAction = Action::Dolly; break;
default: assert( false );
}
assert( curAction != Action::None );
motion( position, curAction );
return curAction;
}
void CameraManipulator::setLookat( const glm::vec3 & cameraPosition, const glm::vec3 & centerPosition, const glm::vec3 & upVector )
{
m_cameraPosition = cameraPosition;
m_centerPosition = centerPosition;
m_upVector = upVector;
update();
}
void CameraManipulator::setMode( Mode mode )
{
m_mode = mode;
}
void CameraManipulator::setMousePosition( glm::ivec2 const & position )
{
m_mousePosition = position;
}
void CameraManipulator::setRoll( float roll )
{
m_roll = roll;
update();
}
void CameraManipulator::setSpeed( float speed )
{
m_speed = speed;
}
void CameraManipulator::setWindowSize( glm::ivec2 const & size )
{
m_windowSize = size;
}
void CameraManipulator::wheel( int value )
{
float fValue = static_cast<float>( value );
float dx = ( fValue * std::abs( fValue ) ) / static_cast<float>( m_windowSize[0] );
glm::vec3 z = m_cameraPosition - m_centerPosition;
float length = z.length() * 0.1f;
length = length < 0.001f ? 0.001f : length;
dx *= m_speed;
dolly( glm::vec2( dx, dx ) );
update();
}
void CameraManipulator::dolly( glm::vec2 const & delta )
{
glm::vec3 z = m_centerPosition - m_cameraPosition;
float length = glm::length( z );
// We are at the point of interest, and don't know any direction, so do nothing!
if ( isZero( length ) )
{
return;
}
// Use the larger movement.
float dd;
if ( m_mode != Mode::Examine )
{
dd = -delta[1];
}
else
{
dd = fabs( delta[0] ) > fabs( delta[1] ) ? delta[0] : -delta[1];
}
float factor = m_speed * dd / length;
// Adjust speed based on distance.
length /= 10;
length = length < 0.001f ? 0.001f : length;
factor *= length;
// Don't move to or through the point of interest.
if ( 1.0f <= factor )
{
return;
}
z *= factor;
// Not going up
if ( m_mode == Mode::Walk )
{
if ( m_upVector.y > m_upVector.z )
{
z.y = 0;
}
else
{
z.z = 0;
}
}
m_cameraPosition += z;
// In fly mode, the interest moves with us.
if ( m_mode != Mode::Examine )
{
m_centerPosition += z;
}
}
void CameraManipulator::motion( glm::ivec2 const & position, Action action )
{
glm::vec2 delta( float( position[0] - m_mousePosition[0] ) / float( m_windowSize[0] ),
float( position[1] - m_mousePosition[1] ) / float( m_windowSize[1] ) );
switch ( action )
{
case Action::Orbit:
if ( m_mode == Mode::Trackball )
{
orbit( delta, true ); // trackball(position);
}
else
{
orbit( delta, false );
}
break;
case Action::Dolly: dolly( delta ); break;
case Action::Pan: pan( delta ); break;
case Action::LookAround:
if ( m_mode == Mode::Trackball )
{
trackball( position );
}
else
{
orbit( glm::vec2( delta[0], -delta[1] ), true );
}
break;
default: break;
}
update();
m_mousePosition = position;
}
void CameraManipulator::orbit( glm::vec2 const & delta, bool invert )
{
if ( isZero( delta[0] ) && isZero( delta[1] ) )
{
return;
}
// Full width will do a full turn
float dx = delta[0] * float( glm::two_pi<float>() );
float dy = delta[1] * float( glm::two_pi<float>() );
// Get the camera
glm::vec3 origin( invert ? m_cameraPosition : m_centerPosition );
glm::vec3 position( invert ? m_centerPosition : m_cameraPosition );
// Get the length of sight
glm::vec3 centerToEye( position - origin );
float radius = glm::length( centerToEye );
centerToEye = glm::normalize( centerToEye );
// Find the rotation around the UP axis (Y)
glm::vec3 zAxis( centerToEye );
glm::mat4 yRotation = glm::rotate( -dx, m_upVector );
// Apply the (Y) rotation to the eye-center vector
glm::vec4 tmpVector = yRotation * glm::vec4( centerToEye.x, centerToEye.y, centerToEye.z, 0.0f );
centerToEye = glm::vec3( tmpVector.x, tmpVector.y, tmpVector.z );
// Find the rotation around the X vector: cross between eye-center and up (X)
glm::vec3 xAxis = glm::cross( m_upVector, zAxis );
xAxis = glm::normalize( xAxis );
glm::mat4 xRotation = glm::rotate( -dy, xAxis );
// Apply the (X) rotation to the eye-center vector
tmpVector = xRotation * glm::vec4( centerToEye.x, centerToEye.y, centerToEye.z, 0 );
glm::vec3 rotatedVector( tmpVector.x, tmpVector.y, tmpVector.z );
if ( sign( rotatedVector.x ) == sign( centerToEye.x ) )
{
centerToEye = rotatedVector;
}
// Make the vector as long as it was originally
centerToEye *= radius;
// Finding the new position
glm::vec3 newPosition = centerToEye + origin;
if ( !invert )
{
m_cameraPosition = newPosition; // Normal: change the position of the camera
}
else
{
m_centerPosition = newPosition; // Inverted: change the interest point
}
}
void CameraManipulator::pan( glm::vec2 const & delta )
{
glm::vec3 z( m_cameraPosition - m_centerPosition );
float length = static_cast<float>( glm::length( z ) ) / 0.785f; // 45 degrees
z = glm::normalize( z );
glm::vec3 x = glm::normalize( glm::cross( m_upVector, z ) );
glm::vec3 y = glm::normalize( glm::cross( z, x ) );
x *= -delta[0] * length;
y *= delta[1] * length;
if ( m_mode == Mode::Fly )
{
x = -x;
y = -y;
}
m_cameraPosition += x + y;
m_centerPosition += x + y;
}
double CameraManipulator::projectOntoTBSphere( const glm::vec2 & p )
{
double z;
double d = length( p );
if ( d < trackballSize * 0.70710678118654752440 )
{
// inside sphere
z = sqrt( trackballSize * trackballSize - d * d );
}
else
{
// on hyperbola
double t = trackballSize / 1.41421356237309504880;
z = t * t / d;
}
return z;
}
void CameraManipulator::trackball( glm::ivec2 const & position )
{
glm::vec2 p0( 2 * ( m_mousePosition[0] - m_windowSize[0] / 2 ) / double( m_windowSize[0] ),
2 * ( m_windowSize[1] / 2 - m_mousePosition[1] ) / double( m_windowSize[1] ) );
glm::vec2 p1( 2 * ( position[0] - m_windowSize[0] / 2 ) / double( m_windowSize[0] ),
2 * ( m_windowSize[1] / 2 - position[1] ) / double( m_windowSize[1] ) );
// determine the z coordinate on the sphere
glm::vec3 pTB0( p0[0], p0[1], projectOntoTBSphere( p0 ) );
glm::vec3 pTB1( p1[0], p1[1], projectOntoTBSphere( p1 ) );
// calculate the rotation axis via cross product between p0 and p1
glm::vec3 axis = glm::cross( pTB0, pTB1 );
axis = glm::normalize( axis );
// calculate the angle
float t = glm::length( pTB0 - pTB1 ) / ( 2.f * trackballSize );
// clamp between -1 and 1
if ( t > 1.0f )
{
t = 1.0f;
}
else if ( t < -1.0f )
{
t = -1.0f;
}
float rad = 2.0f * asin( t );
{
glm::vec4 rot_axis = m_matrix * glm::vec4( axis, 0 );
glm::mat4 rot_mat = glm::rotate( rad, glm::vec3( rot_axis.x, rot_axis.y, rot_axis.z ) );
glm::vec3 pnt = m_cameraPosition - m_centerPosition;
glm::vec4 pnt2 = rot_mat * glm::vec4( pnt.x, pnt.y, pnt.z, 1 );
m_cameraPosition = m_centerPosition + glm::vec3( pnt2.x, pnt2.y, pnt2.z );
glm::vec4 up2 = rot_mat * glm::vec4( m_upVector.x, m_upVector.y, m_upVector.z, 0 );
m_upVector = glm::vec3( up2.x, up2.y, up2.z );
}
}
void CameraManipulator::update()
{
m_matrix = glm::lookAt( m_cameraPosition, m_centerPosition, m_upVector );
if ( !isZero( m_roll ) )
{
glm::mat4 rot = glm::rotate( m_roll, glm::vec3( 0, 0, 1 ) );
m_matrix = m_matrix * rot;
}
}
} // namespace su
} // namespace vk