Vulkan-Hpp/RAII_Samples/utils/utils.hpp

895 lines
50 KiB
C++
Raw Normal View History

#pragma once
// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#if defined( _MSC_VER )
// no need to ignore any warnings with MSVC
#elif defined( __clang__ )
# pragma clang diagnostic ignored "-Wmissing-braces"
#elif defined( __GNUC__ )
// no need to ignore any warnings with GCC
#else
// unknown compiler... just ignore the warnings for yourselves ;)
#endif
#include "../../samples/utils/utils.hpp"
#include <numeric>
#include <vulkan/vulkan_raii.hpp>
namespace vk
{
namespace raii
{
namespace su
{
vk::raii::DeviceMemory allocateDeviceMemory( vk::raii::Device const & device,
vk::PhysicalDeviceMemoryProperties const & memoryProperties,
vk::MemoryRequirements const & memoryRequirements,
vk::MemoryPropertyFlags memoryPropertyFlags )
{
uint32_t memoryTypeIndex = vk::su::findMemoryType( memoryProperties, memoryRequirements.memoryTypeBits, memoryPropertyFlags );
vk::MemoryAllocateInfo memoryAllocateInfo( memoryRequirements.size, memoryTypeIndex );
return vk::raii::DeviceMemory( device, memoryAllocateInfo );
}
template <typename T>
void copyToDevice( vk::raii::DeviceMemory const & deviceMemory, T const * pData, size_t count, vk::DeviceSize stride = sizeof( T ) )
{
assert( sizeof( T ) <= stride );
uint8_t * deviceData = static_cast<uint8_t *>( deviceMemory.mapMemory( 0, count * stride ) );
if ( stride == sizeof( T ) )
{
memcpy( deviceData, pData, count * sizeof( T ) );
}
else
{
for ( size_t i = 0; i < count; i++ )
{
memcpy( deviceData, &pData[i], sizeof( T ) );
deviceData += stride;
}
}
deviceMemory.unmapMemory();
}
template <typename T>
void copyToDevice( vk::raii::DeviceMemory const & deviceMemory, T const & data )
{
copyToDevice<T>( deviceMemory, &data, 1 );
}
template <typename T, class... Args>
std::unique_ptr<T> make_unique( Args &&... args )
{
#if ( 14 <= VULKAN_HPP_CPP_VERSION )
return std::make_unique<T>( std::forward<Args>( args )... );
#else
return std::unique_ptr<T>( new T( std::forward<Args>( args )... ) );
#endif
}
template <typename Func>
void oneTimeSubmit( vk::raii::Device const & device, vk::raii::CommandPool const & commandPool, vk::raii::Queue const & queue, Func const & func )
{
vk::raii::CommandBuffer commandBuffer = std::move( vk::raii::CommandBuffers( device, { *commandPool, vk::CommandBufferLevel::ePrimary, 1 } ).front() );
commandBuffer.begin( vk::CommandBufferBeginInfo( vk::CommandBufferUsageFlagBits::eOneTimeSubmit ) );
func( commandBuffer );
commandBuffer.end();
vk::SubmitInfo submitInfo( nullptr, nullptr, *commandBuffer );
queue.submit( submitInfo, nullptr );
queue.waitIdle();
}
void setImageLayout(
vk::raii::CommandBuffer const & commandBuffer, vk::Image image, vk::Format format, vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout )
{
vk::AccessFlags sourceAccessMask;
switch ( oldImageLayout )
{
case vk::ImageLayout::eTransferDstOptimal: sourceAccessMask = vk::AccessFlagBits::eTransferWrite; break;
case vk::ImageLayout::ePreinitialized: sourceAccessMask = vk::AccessFlagBits::eHostWrite; break;
case vk::ImageLayout::eGeneral: // sourceAccessMask is empty
case vk::ImageLayout::eUndefined: break;
default: assert( false ); break;
}
vk::PipelineStageFlags sourceStage;
switch ( oldImageLayout )
{
case vk::ImageLayout::eGeneral:
case vk::ImageLayout::ePreinitialized: sourceStage = vk::PipelineStageFlagBits::eHost; break;
case vk::ImageLayout::eTransferDstOptimal: sourceStage = vk::PipelineStageFlagBits::eTransfer; break;
case vk::ImageLayout::eUndefined: sourceStage = vk::PipelineStageFlagBits::eTopOfPipe; break;
default: assert( false ); break;
}
vk::AccessFlags destinationAccessMask;
switch ( newImageLayout )
{
case vk::ImageLayout::eColorAttachmentOptimal: destinationAccessMask = vk::AccessFlagBits::eColorAttachmentWrite; break;
case vk::ImageLayout::eDepthStencilAttachmentOptimal:
destinationAccessMask = vk::AccessFlagBits::eDepthStencilAttachmentRead | vk::AccessFlagBits::eDepthStencilAttachmentWrite;
break;
case vk::ImageLayout::eGeneral: // empty destinationAccessMask
case vk::ImageLayout::ePresentSrcKHR: break;
case vk::ImageLayout::eShaderReadOnlyOptimal: destinationAccessMask = vk::AccessFlagBits::eShaderRead; break;
case vk::ImageLayout::eTransferSrcOptimal: destinationAccessMask = vk::AccessFlagBits::eTransferRead; break;
case vk::ImageLayout::eTransferDstOptimal: destinationAccessMask = vk::AccessFlagBits::eTransferWrite; break;
default: assert( false ); break;
}
vk::PipelineStageFlags destinationStage;
switch ( newImageLayout )
{
case vk::ImageLayout::eColorAttachmentOptimal: destinationStage = vk::PipelineStageFlagBits::eColorAttachmentOutput; break;
case vk::ImageLayout::eDepthStencilAttachmentOptimal: destinationStage = vk::PipelineStageFlagBits::eEarlyFragmentTests; break;
case vk::ImageLayout::eGeneral: destinationStage = vk::PipelineStageFlagBits::eHost; break;
case vk::ImageLayout::ePresentSrcKHR: destinationStage = vk::PipelineStageFlagBits::eBottomOfPipe; break;
case vk::ImageLayout::eShaderReadOnlyOptimal: destinationStage = vk::PipelineStageFlagBits::eFragmentShader; break;
case vk::ImageLayout::eTransferDstOptimal:
case vk::ImageLayout::eTransferSrcOptimal: destinationStage = vk::PipelineStageFlagBits::eTransfer; break;
default: assert( false ); break;
}
vk::ImageAspectFlags aspectMask;
if ( newImageLayout == vk::ImageLayout::eDepthStencilAttachmentOptimal )
{
aspectMask = vk::ImageAspectFlagBits::eDepth;
if ( format == vk::Format::eD32SfloatS8Uint || format == vk::Format::eD24UnormS8Uint )
{
aspectMask |= vk::ImageAspectFlagBits::eStencil;
}
}
else
{
aspectMask = vk::ImageAspectFlagBits::eColor;
}
vk::ImageSubresourceRange imageSubresourceRange( aspectMask, 0, 1, 0, 1 );
vk::ImageMemoryBarrier imageMemoryBarrier( sourceAccessMask,
destinationAccessMask,
oldImageLayout,
newImageLayout,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
image,
imageSubresourceRange );
return commandBuffer.pipelineBarrier( sourceStage, destinationStage, {}, nullptr, nullptr, imageMemoryBarrier );
}
struct BufferData
{
BufferData( vk::raii::PhysicalDevice const & physicalDevice,
vk::raii::Device const & device,
vk::DeviceSize size,
vk::BufferUsageFlags usage,
vk::MemoryPropertyFlags propertyFlags = vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent )
: buffer( device, vk::BufferCreateInfo( {}, size, usage ) )
#if !defined( NDEBUG )
, m_size( size )
, m_usage( usage )
, m_propertyFlags( propertyFlags )
#endif
{
deviceMemory = vk::raii::su::allocateDeviceMemory( device, physicalDevice.getMemoryProperties(), buffer.getMemoryRequirements(), propertyFlags );
buffer.bindMemory( *deviceMemory, 0 );
}
BufferData( std::nullptr_t ) {}
template <typename DataType>
void upload( DataType const & data ) const
{
assert( ( m_propertyFlags & vk::MemoryPropertyFlagBits::eHostCoherent ) && ( m_propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible ) );
assert( sizeof( DataType ) <= m_size );
void * dataPtr = deviceMemory.mapMemory( 0, sizeof( DataType ) );
memcpy( dataPtr, &data, sizeof( DataType ) );
deviceMemory.unmapMemory();
}
template <typename DataType>
void upload( std::vector<DataType> const & data, size_t stride = 0 ) const
{
assert( m_propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible );
size_t elementSize = stride ? stride : sizeof( DataType );
assert( sizeof( DataType ) <= elementSize );
copyToDevice( deviceMemory, data.data(), data.size(), elementSize );
}
template <typename DataType>
void upload( vk::raii::PhysicalDevice const & physicalDevice,
vk::raii::Device const & device,
vk::raii::CommandPool const & commandPool,
vk::raii::Queue const & queue,
std::vector<DataType> const & data,
size_t stride ) const
{
assert( m_usage & vk::BufferUsageFlagBits::eTransferDst );
assert( m_propertyFlags & vk::MemoryPropertyFlagBits::eDeviceLocal );
size_t elementSize = stride ? stride : sizeof( DataType );
assert( sizeof( DataType ) <= elementSize );
size_t dataSize = data.size() * elementSize;
assert( dataSize <= m_size );
vk::raii::su::BufferData stagingBuffer( physicalDevice, device, dataSize, vk::BufferUsageFlagBits::eTransferSrc );
copyToDevice( stagingBuffer.deviceMemory, data.data(), data.size(), elementSize );
vk::raii::su::oneTimeSubmit( device,
commandPool,
queue,
[&]( vk::raii::CommandBuffer const & commandBuffer )
{ commandBuffer.copyBuffer( *stagingBuffer.buffer, *this->buffer, vk::BufferCopy( 0, 0, dataSize ) ); } );
}
// the DeviceMemory should be destroyed before the Buffer it is bound to; to get that order with the standard destructor
// of the BufferData, the order of DeviceMemory and Buffer here matters
vk::raii::DeviceMemory deviceMemory = nullptr;
vk::raii::Buffer buffer = nullptr;
#if !defined( NDEBUG )
private:
vk::DeviceSize m_size;
vk::BufferUsageFlags m_usage;
vk::MemoryPropertyFlags m_propertyFlags;
#endif
};
struct ImageData
{
ImageData( vk::raii::PhysicalDevice const & physicalDevice,
vk::raii::Device const & device,
vk::Format format_,
vk::Extent2D const & extent,
vk::ImageTiling tiling,
vk::ImageUsageFlags usage,
vk::ImageLayout initialLayout,
vk::MemoryPropertyFlags memoryProperties,
vk::ImageAspectFlags aspectMask )
: format( format_ )
, image( device,
{ vk::ImageCreateFlags(),
vk::ImageType::e2D,
format,
vk::Extent3D( extent, 1 ),
1,
1,
vk::SampleCountFlagBits::e1,
tiling,
usage | vk::ImageUsageFlagBits::eSampled,
vk::SharingMode::eExclusive,
{},
initialLayout } )
{
deviceMemory = vk::raii::su::allocateDeviceMemory( device, physicalDevice.getMemoryProperties(), image.getMemoryRequirements(), memoryProperties );
image.bindMemory( *deviceMemory, 0 );
imageView = vk::raii::ImageView( device, vk::ImageViewCreateInfo( {}, *image, vk::ImageViewType::e2D, format, {}, { aspectMask, 0, 1, 0, 1 } ) );
}
ImageData( std::nullptr_t ) {}
// the DeviceMemory should be destroyed before the Image it is bound to; to get that order with the standard destructor
// of the ImageData, the order of DeviceMemory and Image here matters
vk::Format format;
vk::raii::DeviceMemory deviceMemory = nullptr;
vk::raii::Image image = nullptr;
vk::raii::ImageView imageView = nullptr;
};
struct DepthBufferData : public ImageData
{
DepthBufferData( vk::raii::PhysicalDevice const & physicalDevice, vk::raii::Device const & device, vk::Format format, vk::Extent2D const & extent )
: ImageData( physicalDevice,
device,
format,
extent,
vk::ImageTiling::eOptimal,
vk::ImageUsageFlagBits::eDepthStencilAttachment,
vk::ImageLayout::eUndefined,
vk::MemoryPropertyFlagBits::eDeviceLocal,
vk::ImageAspectFlagBits::eDepth )
{
}
};
struct SurfaceData
{
SurfaceData( vk::raii::Instance const & instance, std::string const & windowName, vk::Extent2D const & extent_ )
: extent( extent_ ), window( vk::su::createWindow( windowName, extent ) )
{
VkSurfaceKHR _surface;
VkResult err = glfwCreateWindowSurface( static_cast<VkInstance>( *instance ), window.handle, nullptr, &_surface );
if ( err != VK_SUCCESS )
throw std::runtime_error( "Failed to create window!" );
surface = vk::raii::SurfaceKHR( instance, _surface );
}
vk::Extent2D extent;
vk::su::WindowData window;
vk::raii::SurfaceKHR surface = nullptr;
};
struct SwapChainData
{
SwapChainData( vk::raii::PhysicalDevice const & physicalDevice,
vk::raii::Device const & device,
vk::raii::SurfaceKHR const & surface,
vk::Extent2D const & extent,
vk::ImageUsageFlags usage,
vk::raii::SwapchainKHR const * pOldSwapchain,
uint32_t graphicsQueueFamilyIndex,
uint32_t presentQueueFamilyIndex )
{
vk::SurfaceFormatKHR surfaceFormat = vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( *surface ) );
colorFormat = surfaceFormat.format;
vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR( *surface );
2021-12-07 09:39:23 +00:00
vk::Extent2D swapchainExtent;
if ( surfaceCapabilities.currentExtent.width == std::numeric_limits<uint32_t>::max() )
{
// If the surface size is undefined, the size is set to the size of the images requested.
swapchainExtent.width = vk::su::clamp( extent.width, surfaceCapabilities.minImageExtent.width, surfaceCapabilities.maxImageExtent.width );
swapchainExtent.height = vk::su::clamp( extent.height, surfaceCapabilities.minImageExtent.height, surfaceCapabilities.maxImageExtent.height );
}
else
{
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfaceCapabilities.currentExtent;
}
vk::SurfaceTransformFlagBitsKHR preTransform = ( surfaceCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity )
? vk::SurfaceTransformFlagBitsKHR::eIdentity
: surfaceCapabilities.currentTransform;
vk::CompositeAlphaFlagBitsKHR compositeAlpha =
( surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePreMultiplied ) ? vk::CompositeAlphaFlagBitsKHR::ePreMultiplied
: ( surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePostMultiplied ) ? vk::CompositeAlphaFlagBitsKHR::ePostMultiplied
: ( surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::eInherit ) ? vk::CompositeAlphaFlagBitsKHR::eInherit
: vk::CompositeAlphaFlagBitsKHR::eOpaque;
vk::PresentModeKHR presentMode = vk::su::pickPresentMode( physicalDevice.getSurfacePresentModesKHR( *surface ) );
vk::SwapchainCreateInfoKHR swapChainCreateInfo( {},
*surface,
vk::su::clamp( 3u, surfaceCapabilities.minImageCount, surfaceCapabilities.maxImageCount ),
colorFormat,
surfaceFormat.colorSpace,
swapchainExtent,
1,
usage,
vk::SharingMode::eExclusive,
{},
preTransform,
compositeAlpha,
presentMode,
true,
pOldSwapchain ? **pOldSwapchain : nullptr );
if ( graphicsQueueFamilyIndex != presentQueueFamilyIndex )
{
uint32_t queueFamilyIndices[2] = { graphicsQueueFamilyIndex, presentQueueFamilyIndex };
// If the graphics and present queues are from different queue families, we either have to explicitly
// transfer ownership of images between the queues, or we have to create the swapchain with imageSharingMode
// as vk::SharingMode::eConcurrent
swapChainCreateInfo.imageSharingMode = vk::SharingMode::eConcurrent;
swapChainCreateInfo.queueFamilyIndexCount = 2;
swapChainCreateInfo.pQueueFamilyIndices = queueFamilyIndices;
}
swapChain = vk::raii::SwapchainKHR( device, swapChainCreateInfo );
images = swapChain.getImages();
imageViews.reserve( images.size() );
vk::ImageViewCreateInfo imageViewCreateInfo( {}, {}, vk::ImageViewType::e2D, colorFormat, {}, { vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 } );
for ( auto image : images )
{
imageViewCreateInfo.image = image;
imageViews.emplace_back( device, imageViewCreateInfo );
}
}
vk::Format colorFormat;
vk::raii::SwapchainKHR swapChain = nullptr;
std::vector<vk::Image> images;
std::vector<vk::raii::ImageView> imageViews;
};
struct TextureData
{
TextureData( vk::raii::PhysicalDevice const & physicalDevice,
vk::raii::Device const & device,
vk::Extent2D const & extent_ = { 256, 256 },
vk::ImageUsageFlags usageFlags = {},
vk::FormatFeatureFlags formatFeatureFlags = {},
bool anisotropyEnable = false,
bool forceStaging = false )
: format( vk::Format::eR8G8B8A8Unorm )
, extent( extent_ )
, sampler( device,
{ {},
vk::Filter::eLinear,
vk::Filter::eLinear,
vk::SamplerMipmapMode::eLinear,
vk::SamplerAddressMode::eRepeat,
vk::SamplerAddressMode::eRepeat,
vk::SamplerAddressMode::eRepeat,
0.0f,
anisotropyEnable,
16.0f,
false,
vk::CompareOp::eNever,
0.0f,
0.0f,
vk::BorderColor::eFloatOpaqueBlack } )
{
vk::FormatProperties formatProperties = physicalDevice.getFormatProperties( format );
formatFeatureFlags |= vk::FormatFeatureFlagBits::eSampledImage;
needsStaging = forceStaging || ( ( formatProperties.linearTilingFeatures & formatFeatureFlags ) != formatFeatureFlags );
vk::ImageTiling imageTiling;
vk::ImageLayout initialLayout;
vk::MemoryPropertyFlags requirements;
if ( needsStaging )
{
assert( ( formatProperties.optimalTilingFeatures & formatFeatureFlags ) == formatFeatureFlags );
stagingBufferData = BufferData( physicalDevice, device, extent.width * extent.height * 4, vk::BufferUsageFlagBits::eTransferSrc );
imageTiling = vk::ImageTiling::eOptimal;
usageFlags |= vk::ImageUsageFlagBits::eTransferDst;
initialLayout = vk::ImageLayout::eUndefined;
}
else
{
imageTiling = vk::ImageTiling::eLinear;
initialLayout = vk::ImageLayout::ePreinitialized;
requirements = vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible;
}
imageData = ImageData( physicalDevice,
device,
format,
extent,
imageTiling,
usageFlags | vk::ImageUsageFlagBits::eSampled,
initialLayout,
requirements,
vk::ImageAspectFlagBits::eColor );
}
template <typename ImageGenerator>
void setImage( vk::raii::CommandBuffer const & commandBuffer, ImageGenerator const & imageGenerator )
{
void * data = needsStaging ? stagingBufferData.deviceMemory.mapMemory( 0, stagingBufferData.buffer.getMemoryRequirements().size )
: imageData.deviceMemory.mapMemory( 0, imageData.image.getMemoryRequirements().size );
imageGenerator( data, extent );
needsStaging ? stagingBufferData.deviceMemory.unmapMemory() : imageData.deviceMemory.unmapMemory();
if ( needsStaging )
{
// Since we're going to blit to the texture image, set its layout to eTransferDstOptimal
vk::raii::su::setImageLayout(
commandBuffer, *imageData.image, imageData.format, vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferDstOptimal );
vk::BufferImageCopy copyRegion( 0,
extent.width,
extent.height,
vk::ImageSubresourceLayers( vk::ImageAspectFlagBits::eColor, 0, 0, 1 ),
vk::Offset3D( 0, 0, 0 ),
vk::Extent3D( extent, 1 ) );
commandBuffer.copyBufferToImage( *stagingBufferData.buffer, *imageData.image, vk::ImageLayout::eTransferDstOptimal, copyRegion );
// Set the layout for the texture image from eTransferDstOptimal to eShaderReadOnlyOptimal
vk::raii::su::setImageLayout(
commandBuffer, *imageData.image, imageData.format, vk::ImageLayout::eTransferDstOptimal, vk::ImageLayout::eShaderReadOnlyOptimal );
}
else
{
// If we can use the linear tiled image as a texture, just do it
vk::raii::su::setImageLayout(
commandBuffer, *imageData.image, imageData.format, vk::ImageLayout::ePreinitialized, vk::ImageLayout::eShaderReadOnlyOptimal );
}
}
vk::Format format;
vk::Extent2D extent;
bool needsStaging;
BufferData stagingBufferData = nullptr;
ImageData imageData = nullptr;
vk::raii::Sampler sampler;
};
std::pair<uint32_t, uint32_t> findGraphicsAndPresentQueueFamilyIndex( vk::raii::PhysicalDevice const & physicalDevice,
vk::raii::SurfaceKHR const & surface )
{
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
assert( queueFamilyProperties.size() < std::numeric_limits<uint32_t>::max() );
uint32_t graphicsQueueFamilyIndex = vk::su::findGraphicsQueueFamilyIndex( queueFamilyProperties );
if ( physicalDevice.getSurfaceSupportKHR( graphicsQueueFamilyIndex, *surface ) )
{
return std::make_pair( graphicsQueueFamilyIndex,
graphicsQueueFamilyIndex ); // the first graphicsQueueFamilyIndex does also support presents
}
// the graphicsQueueFamilyIndex doesn't support present -> look for an other family index that supports both
// graphics and present
for ( size_t i = 0; i < queueFamilyProperties.size(); i++ )
{
if ( ( queueFamilyProperties[i].queueFlags & vk::QueueFlagBits::eGraphics ) &&
physicalDevice.getSurfaceSupportKHR( static_cast<uint32_t>( i ), *surface ) )
{
return std::make_pair( static_cast<uint32_t>( i ), static_cast<uint32_t>( i ) );
}
}
// there's nothing like a single family index that supports both graphics and present -> look for an other
// family index that supports present
for ( size_t i = 0; i < queueFamilyProperties.size(); i++ )
{
if ( physicalDevice.getSurfaceSupportKHR( static_cast<uint32_t>( i ), *surface ) )
{
return std::make_pair( graphicsQueueFamilyIndex, static_cast<uint32_t>( i ) );
}
}
throw std::runtime_error( "Could not find queues for both graphics or present -> terminating" );
}
vk::raii::CommandBuffer makeCommandBuffer( vk::raii::Device const & device, vk::raii::CommandPool const & commandPool )
{
vk::CommandBufferAllocateInfo commandBufferAllocateInfo( *commandPool, vk::CommandBufferLevel::ePrimary, 1 );
return std::move( vk::raii::CommandBuffers( device, commandBufferAllocateInfo ).front() );
}
vk::raii::DescriptorPool makeDescriptorPool( vk::raii::Device const & device, std::vector<vk::DescriptorPoolSize> const & poolSizes )
{
assert( !poolSizes.empty() );
uint32_t maxSets = std::accumulate(
poolSizes.begin(), poolSizes.end(), 0, []( uint32_t sum, vk::DescriptorPoolSize const & dps ) { return sum + dps.descriptorCount; } );
assert( 0 < maxSets );
vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo( vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, maxSets, poolSizes );
return vk::raii::DescriptorPool( device, descriptorPoolCreateInfo );
}
vk::raii::DescriptorSetLayout makeDescriptorSetLayout( vk::raii::Device const & device,
std::vector<std::tuple<vk::DescriptorType, uint32_t, vk::ShaderStageFlags>> const & bindingData,
vk::DescriptorSetLayoutCreateFlags flags = {} )
{
std::vector<vk::DescriptorSetLayoutBinding> bindings( bindingData.size() );
for ( size_t i = 0; i < bindingData.size(); i++ )
{
bindings[i] = vk::DescriptorSetLayoutBinding(
vk::su::checked_cast<uint32_t>( i ), std::get<0>( bindingData[i] ), std::get<1>( bindingData[i] ), std::get<2>( bindingData[i] ) );
}
vk::DescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo( flags, bindings );
return vk::raii::DescriptorSetLayout( device, descriptorSetLayoutCreateInfo );
}
vk::raii::Device makeDevice( vk::raii::PhysicalDevice const & physicalDevice,
uint32_t queueFamilyIndex,
std::vector<std::string> const & extensions = {},
vk::PhysicalDeviceFeatures const * physicalDeviceFeatures = nullptr,
void const * pNext = nullptr )
{
std::vector<char const *> enabledExtensions;
enabledExtensions.reserve( extensions.size() );
for ( auto const & ext : extensions )
{
enabledExtensions.push_back( ext.data() );
}
float queuePriority = 0.0f;
vk::DeviceQueueCreateInfo deviceQueueCreateInfo( vk::DeviceQueueCreateFlags(), queueFamilyIndex, 1, &queuePriority );
vk::DeviceCreateInfo deviceCreateInfo( vk::DeviceCreateFlags(), deviceQueueCreateInfo, {}, enabledExtensions, physicalDeviceFeatures, pNext );
return vk::raii::Device( physicalDevice, deviceCreateInfo );
}
std::vector<vk::raii::Framebuffer> makeFramebuffers( vk::raii::Device const & device,
vk::raii::RenderPass & renderPass,
std::vector<vk::raii::ImageView> const & imageViews,
vk::raii::ImageView const * pDepthImageView,
vk::Extent2D const & extent )
{
vk::ImageView attachments[2];
attachments[1] = pDepthImageView ? **pDepthImageView : vk::ImageView();
vk::FramebufferCreateInfo framebufferCreateInfo(
vk::FramebufferCreateFlags(), *renderPass, pDepthImageView ? 2 : 1, attachments, extent.width, extent.height, 1 );
std::vector<vk::raii::Framebuffer> framebuffers;
framebuffers.reserve( imageViews.size() );
for ( auto const & imageView : imageViews )
{
attachments[0] = *imageView;
framebuffers.push_back( vk::raii::Framebuffer( device, framebufferCreateInfo ) );
}
return framebuffers;
}
vk::raii::Pipeline makeGraphicsPipeline( vk::raii::Device const & device,
vk::raii::PipelineCache const & pipelineCache,
vk::raii::ShaderModule const & vertexShaderModule,
vk::SpecializationInfo const * vertexShaderSpecializationInfo,
vk::raii::ShaderModule const & fragmentShaderModule,
vk::SpecializationInfo const * fragmentShaderSpecializationInfo,
uint32_t vertexStride,
std::vector<std::pair<vk::Format, uint32_t>> const & vertexInputAttributeFormatOffset,
vk::FrontFace frontFace,
bool depthBuffered,
vk::raii::PipelineLayout const & pipelineLayout,
vk::raii::RenderPass const & renderPass )
{
std::array<vk::PipelineShaderStageCreateInfo, 2> pipelineShaderStageCreateInfos = {
vk::PipelineShaderStageCreateInfo( {}, vk::ShaderStageFlagBits::eVertex, *vertexShaderModule, "main", vertexShaderSpecializationInfo ),
vk::PipelineShaderStageCreateInfo( {}, vk::ShaderStageFlagBits::eFragment, *fragmentShaderModule, "main", fragmentShaderSpecializationInfo )
};
std::vector<vk::VertexInputAttributeDescription> vertexInputAttributeDescriptions;
vk::PipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo;
vk::VertexInputBindingDescription vertexInputBindingDescription( 0, vertexStride );
if ( 0 < vertexStride )
{
vertexInputAttributeDescriptions.reserve( vertexInputAttributeFormatOffset.size() );
for ( uint32_t i = 0; i < vertexInputAttributeFormatOffset.size(); i++ )
{
vertexInputAttributeDescriptions.emplace_back( i, 0, vertexInputAttributeFormatOffset[i].first, vertexInputAttributeFormatOffset[i].second );
}
pipelineVertexInputStateCreateInfo.setVertexBindingDescriptions( vertexInputBindingDescription );
pipelineVertexInputStateCreateInfo.setVertexAttributeDescriptions( vertexInputAttributeDescriptions );
}
vk::PipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateCreateInfo( vk::PipelineInputAssemblyStateCreateFlags(),
vk::PrimitiveTopology::eTriangleList );
vk::PipelineViewportStateCreateInfo pipelineViewportStateCreateInfo( vk::PipelineViewportStateCreateFlags(), 1, nullptr, 1, nullptr );
vk::PipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo( vk::PipelineRasterizationStateCreateFlags(),
false,
false,
vk::PolygonMode::eFill,
vk::CullModeFlagBits::eBack,
frontFace,
false,
0.0f,
0.0f,
0.0f,
1.0f );
vk::PipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo( {}, vk::SampleCountFlagBits::e1 );
vk::StencilOpState stencilOpState( vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::CompareOp::eAlways );
vk::PipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo(
vk::PipelineDepthStencilStateCreateFlags(), depthBuffered, depthBuffered, vk::CompareOp::eLessOrEqual, false, false, stencilOpState, stencilOpState );
vk::ColorComponentFlags colorComponentFlags( vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG | vk::ColorComponentFlagBits::eB |
vk::ColorComponentFlagBits::eA );
vk::PipelineColorBlendAttachmentState pipelineColorBlendAttachmentState( false,
vk::BlendFactor::eZero,
vk::BlendFactor::eZero,
vk::BlendOp::eAdd,
vk::BlendFactor::eZero,
vk::BlendFactor::eZero,
vk::BlendOp::eAdd,
colorComponentFlags );
vk::PipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo(
vk::PipelineColorBlendStateCreateFlags(), false, vk::LogicOp::eNoOp, pipelineColorBlendAttachmentState, { { 1.0f, 1.0f, 1.0f, 1.0f } } );
std::array<vk::DynamicState, 2> dynamicStates = { vk::DynamicState::eViewport, vk::DynamicState::eScissor };
vk::PipelineDynamicStateCreateInfo pipelineDynamicStateCreateInfo( vk::PipelineDynamicStateCreateFlags(), dynamicStates );
vk::GraphicsPipelineCreateInfo graphicsPipelineCreateInfo( vk::PipelineCreateFlags(),
pipelineShaderStageCreateInfos,
&pipelineVertexInputStateCreateInfo,
&pipelineInputAssemblyStateCreateInfo,
nullptr,
&pipelineViewportStateCreateInfo,
&pipelineRasterizationStateCreateInfo,
&pipelineMultisampleStateCreateInfo,
&pipelineDepthStencilStateCreateInfo,
&pipelineColorBlendStateCreateInfo,
&pipelineDynamicStateCreateInfo,
*pipelineLayout,
*renderPass );
return vk::raii::Pipeline( device, pipelineCache, graphicsPipelineCreateInfo );
}
vk::raii::Image makeImage( vk::raii::Device const & device )
{
vk::ImageCreateInfo imageCreateInfo( {},
vk::ImageType::e2D,
vk::Format::eB8G8R8A8Unorm,
vk::Extent3D( 640, 640, 1 ),
1,
1,
vk::SampleCountFlagBits::e1,
vk::ImageTiling::eLinear,
vk::ImageUsageFlagBits::eTransferSrc );
return vk::raii::Image( device, imageCreateInfo );
}
vk::raii::Instance makeInstance( vk::raii::Context const & context,
std::string const & appName,
std::string const & engineName,
std::vector<std::string> const & layers = {},
std::vector<std::string> const & extensions = {},
uint32_t apiVersion = VK_API_VERSION_1_0 )
{
vk::ApplicationInfo applicationInfo( appName.c_str(), 1, engineName.c_str(), 1, apiVersion );
2021-05-25 14:14:56 +00:00
std::vector<char const *> enabledLayers = vk::su::gatherLayers( layers
#if !defined( NDEBUG )
,
context.enumerateInstanceLayerProperties()
#endif
);
std::vector<char const *> enabledExtensions = vk::su::gatherExtensions( extensions
2021-05-25 14:14:56 +00:00
#if !defined( NDEBUG )
,
context.enumerateInstanceExtensionProperties()
2021-05-25 14:14:56 +00:00
#endif
);
#if defined( NDEBUG )
vk::StructureChain<vk::InstanceCreateInfo>
#else
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT>
#endif
instanceCreateInfoChain = vk::su::makeInstanceCreateInfoChain( applicationInfo, enabledLayers, enabledExtensions );
return vk::raii::Instance( context, instanceCreateInfoChain.get<vk::InstanceCreateInfo>() );
}
vk::raii::RenderPass makeRenderPass( vk::raii::Device const & device,
vk::Format colorFormat,
vk::Format depthFormat,
vk::AttachmentLoadOp loadOp = vk::AttachmentLoadOp::eClear,
vk::ImageLayout colorFinalLayout = vk::ImageLayout::ePresentSrcKHR )
{
std::vector<vk::AttachmentDescription> attachmentDescriptions;
assert( colorFormat != vk::Format::eUndefined );
attachmentDescriptions.emplace_back( vk::AttachmentDescriptionFlags(),
colorFormat,
vk::SampleCountFlagBits::e1,
loadOp,
vk::AttachmentStoreOp::eStore,
vk::AttachmentLoadOp::eDontCare,
vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout::eUndefined,
colorFinalLayout );
if ( depthFormat != vk::Format::eUndefined )
{
attachmentDescriptions.emplace_back( vk::AttachmentDescriptionFlags(),
depthFormat,
vk::SampleCountFlagBits::e1,
loadOp,
vk::AttachmentStoreOp::eDontCare,
vk::AttachmentLoadOp::eDontCare,
vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout::eUndefined,
vk::ImageLayout::eDepthStencilAttachmentOptimal );
}
vk::AttachmentReference colorAttachment( 0, vk::ImageLayout::eColorAttachmentOptimal );
vk::AttachmentReference depthAttachment( 1, vk::ImageLayout::eDepthStencilAttachmentOptimal );
vk::SubpassDescription subpassDescription( vk::SubpassDescriptionFlags(),
vk::PipelineBindPoint::eGraphics,
{},
colorAttachment,
{},
( depthFormat != vk::Format::eUndefined ) ? &depthAttachment : nullptr );
vk::RenderPassCreateInfo renderPassCreateInfo( vk::RenderPassCreateFlags(), attachmentDescriptions, subpassDescription );
return vk::raii::RenderPass( device, renderPassCreateInfo );
}
vk::Format pickDepthFormat( vk::raii::PhysicalDevice const & physicalDevice )
{
std::vector<vk::Format> candidates = { vk::Format::eD32Sfloat, vk::Format::eD32SfloatS8Uint, vk::Format::eD24UnormS8Uint };
for ( vk::Format format : candidates )
{
vk::FormatProperties props = physicalDevice.getFormatProperties( format );
if ( props.optimalTilingFeatures & vk::FormatFeatureFlagBits::eDepthStencilAttachment )
{
return format;
}
}
throw std::runtime_error( "failed to find supported format!" );
}
void submitAndWait( vk::raii::Device const & device, vk::raii::Queue const & queue, vk::raii::CommandBuffer const & commandBuffer )
{
vk::raii::Fence fence( device, vk::FenceCreateInfo() );
queue.submit( vk::SubmitInfo( nullptr, nullptr, *commandBuffer ), *fence );
while ( vk::Result::eTimeout == device.waitForFences( { *fence }, VK_TRUE, vk::su::FenceTimeout ) )
;
}
void updateDescriptorSets(
vk::raii::Device const & device,
vk::raii::DescriptorSet const & descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::raii::Buffer const &, vk::DeviceSize, vk::raii::BufferView const *>> const & bufferData,
vk::raii::su::TextureData const & textureData,
uint32_t bindingOffset = 0 )
{
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.reserve( bufferData.size() );
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.reserve( bufferData.size() + 1 );
uint32_t dstBinding = bindingOffset;
for ( auto const & bd : bufferData )
{
bufferInfos.emplace_back( *std::get<1>( bd ), 0, std::get<2>( bd ) );
vk::BufferView bufferView;
if ( std::get<3>( bd ) )
{
bufferView = **std::get<3>( bd );
}
writeDescriptorSets.emplace_back(
*descriptorSet, dstBinding++, 0, 1, std::get<0>( bd ), nullptr, &bufferInfos.back(), std::get<3>( bd ) ? &bufferView : nullptr );
}
vk::DescriptorImageInfo imageInfo( *textureData.sampler, *textureData.imageData.imageView, vk::ImageLayout::eShaderReadOnlyOptimal );
writeDescriptorSets.emplace_back( *descriptorSet, dstBinding, 0, vk::DescriptorType::eCombinedImageSampler, imageInfo, nullptr, nullptr );
device.updateDescriptorSets( writeDescriptorSets, nullptr );
}
void updateDescriptorSets(
vk::raii::Device const & device,
vk::raii::DescriptorSet const & descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::raii::Buffer const &, vk::DeviceSize, vk::raii::BufferView const *>> const & bufferData,
std::vector<vk::raii::su::TextureData> const & textureData,
uint32_t bindingOffset = 0 )
{
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.reserve( bufferData.size() );
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.reserve( bufferData.size() + ( textureData.empty() ? 0 : 1 ) );
uint32_t dstBinding = bindingOffset;
for ( auto const & bd : bufferData )
{
bufferInfos.emplace_back( *std::get<1>( bd ), 0, std::get<2>( bd ) );
vk::BufferView bufferView;
if ( std::get<3>( bd ) )
{
bufferView = **std::get<3>( bd );
}
writeDescriptorSets.emplace_back(
*descriptorSet, dstBinding++, 0, 1, std::get<0>( bd ), nullptr, &bufferInfos.back(), std::get<3>( bd ) ? &bufferView : nullptr );
}
std::vector<vk::DescriptorImageInfo> imageInfos;
if ( !textureData.empty() )
{
imageInfos.reserve( textureData.size() );
for ( auto const & thd : textureData )
{
imageInfos.emplace_back( *thd.sampler, *thd.imageData.imageView, vk::ImageLayout::eShaderReadOnlyOptimal );
}
writeDescriptorSets.emplace_back( *descriptorSet,
dstBinding,
0,
vk::su::checked_cast<uint32_t>( imageInfos.size() ),
vk::DescriptorType::eCombinedImageSampler,
imageInfos.data(),
nullptr,
nullptr );
}
device.updateDescriptorSets( writeDescriptorSets, nullptr );
}
} // namespace su
} // namespace raii
} // namespace vk