// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : PipelineCache // This sample tries to save and reuse pipeline cache data between runs. #include "../utils/geometries.hpp" #include "../utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "vulkan/vulkan.hpp" #include "SPIRV/GlslangToSpv.h" #include #include // For timestamp code (getMilliseconds) #ifdef WIN32 #include #else #include #endif typedef unsigned long long timestamp_t; timestamp_t getMilliseconds() { #ifdef WIN32 LARGE_INTEGER frequency; BOOL useQPC = QueryPerformanceFrequency(&frequency); if (useQPC) { LARGE_INTEGER now; QueryPerformanceCounter(&now); return (1000LL * now.QuadPart) / frequency.QuadPart; } else { return GetTickCount(); } #else struct timeval now; gettimeofday(&now, NULL); return (now.tv_usec / 1000) + (timestamp_t)now.tv_sec; #endif } static char const* AppName = "PipelineCache"; static char const* EngineName = "Vulkan.hpp"; int main(int /*argc*/, char ** /*argv*/) { try { vk::UniqueInstance instance = vk::su::createInstance(AppName, EngineName, vk::su::getInstanceExtensions()); #if !defined(NDEBUG) vk::UniqueDebugReportCallbackEXT debugReportCallback = vk::su::createDebugReportCallback(instance); #endif std::vector physicalDevices = instance->enumeratePhysicalDevices(); vk::PhysicalDeviceProperties properties = physicalDevices[0].getProperties(); assert(!physicalDevices.empty()); vk::su::SurfaceData surfaceData(instance, AppName, AppName, vk::Extent2D(500, 500)); std::pair graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex(physicalDevices[0], surfaceData.surface); vk::UniqueDevice device = vk::su::createDevice(physicalDevices[0], graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions()); vk::UniqueCommandPool commandPool = vk::su::createCommandPool(device, graphicsAndPresentQueueFamilyIndex.first); std::vector commandBuffers = device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::ePrimary, 1)); vk::Queue graphicsQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.first, 0); vk::Queue presentQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.second, 0); vk::su::SwapChainData swapChainData(physicalDevices[0], device, surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc , graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second); vk::su::DepthBufferData depthBufferData(physicalDevices[0], device, vk::Format::eD16Unorm, surfaceData.extent); vk::su::TextureData textureData(physicalDevices[0], device); commandBuffers[0]->begin(vk::CommandBufferBeginInfo()); textureData.setTexture(device, commandBuffers[0], vk::su::MonochromeTextureGenerator({ 118, 185, 0 })); vk::su::BufferData uniformBufferData(physicalDevices[0], device, sizeof(glm::mat4x4), vk::BufferUsageFlagBits::eUniformBuffer); vk::su::copyToDevice(device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix(surfaceData.extent)); vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout(device, vk::DescriptorType::eUniformBuffer, true); vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), 1, &descriptorSetLayout.get())); vk::UniqueRenderPass renderPass = vk::su::createRenderPass(device, vk::su::pickColorFormat(physicalDevices[0].getSurfaceFormatsKHR(surfaceData.surface.get())), depthBufferData.format); glslang::InitializeProcess(); vk::UniqueShaderModule vertexShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T); vk::UniqueShaderModule fragmentShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C); glslang::FinalizeProcess(); std::vector framebuffers = vk::su::createFramebuffers(device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent); vk::su::BufferData vertexBufferData(physicalDevices[0], device, sizeof(texturedCubeData), vk::BufferUsageFlagBits::eVertexBuffer); vk::su::copyToDevice(device, vertexBufferData.deviceMemory, texturedCubeData, sizeof(texturedCubeData) / sizeof(texturedCubeData[0])); vk::UniqueDescriptorPool descriptorPool = vk::su::createDescriptorPool(device, vk::DescriptorType::eUniformBuffer, true); std::vector descriptorSets = device->allocateDescriptorSetsUnique(vk::DescriptorSetAllocateInfo(descriptorPool.get(), 1, &descriptorSetLayout.get())); vk::DescriptorBufferInfo descriptorBufferInfo(uniformBufferData.buffer.get(), 0, sizeof(glm::mat4x4)); vk::DescriptorImageInfo imageInfo(textureData.textureSampler.get(), textureData.imageData->imageView.get(), vk::ImageLayout::eShaderReadOnlyOptimal); vk::su::updateDescriptorSets(device, descriptorSets[0], vk::DescriptorType::eUniformBuffer, &descriptorBufferInfo, &imageInfo); /* VULKAN_KEY_START */ // Check disk for existing cache data size_t startCacheSize = 0; char *startCacheData = nullptr; std::string cacheFileName = "pipeline_cache_data.bin"; std::ifstream readCacheStream(cacheFileName, std::ios_base::in | std::ios_base::binary); if (readCacheStream.good()) { // Determine cache size readCacheStream.seekg(0, readCacheStream.end); startCacheSize = readCacheStream.tellg(); readCacheStream.seekg(0, readCacheStream.beg); // Allocate memory to hold the initial cache data startCacheData = new char[startCacheSize]; // Read the data into our buffer readCacheStream.read(startCacheData, startCacheSize); // Clean up and print results readCacheStream.close(); std::cout << " Pipeline cache HIT!\n"; std::cout << " cacheData loaded from " << cacheFileName << "\n"; } else { // No cache found on disk std::cout << " Pipeline cache miss!\n"; } if (startCacheData != nullptr) { // Check for cache validity // // TODO: Update this as the spec evolves. The fields are not defined by the header. // // The code below supports SDK 0.10 Vulkan spec, which contains the following table: // // Offset Size Meaning // ------ ------------ ------------------------------------------------------------------ // 0 4 a device ID equal to VkPhysicalDeviceProperties::DeviceId written // as a stream of bytes, with the least significant byte first // // 4 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID // // // The code must be updated for latest Vulkan spec, which contains the following table: // // Offset Size Meaning // ------ ------------ ------------------------------------------------------------------ // 0 4 length in bytes of the entire pipeline cache header written as a // stream of bytes, with the least significant byte first // 4 4 a VkPipelineCacheHeaderVersion value written as a stream of bytes, // with the least significant byte first // 8 4 a vendor ID equal to VkPhysicalDeviceProperties::vendorID written // as a stream of bytes, with the least significant byte first // 12 4 a device ID equal to VkPhysicalDeviceProperties::deviceID written // as a stream of bytes, with the least significant byte first // 16 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID uint32_t headerLength = 0; uint32_t cacheHeaderVersion = 0; uint32_t vendorID = 0; uint32_t deviceID = 0; uint8_t pipelineCacheUUID[VK_UUID_SIZE] = {}; memcpy(&headerLength, (uint8_t *)startCacheData + 0, 4); memcpy(&cacheHeaderVersion, (uint8_t *)startCacheData + 4, 4); memcpy(&vendorID, (uint8_t *)startCacheData + 8, 4); memcpy(&deviceID, (uint8_t *)startCacheData + 12, 4); memcpy(pipelineCacheUUID, (uint8_t *)startCacheData + 16, VK_UUID_SIZE); // Check each field and report bad values before freeing existing cache bool badCache = false; if (headerLength <= 0) { badCache = true; std::cout << " Bad header length in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << std::hex << std::setw(8) << headerLength << "\n"; } if (cacheHeaderVersion != VK_PIPELINE_CACHE_HEADER_VERSION_ONE) { badCache = true; std::cout << " Unsupported cache header version in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << std::hex << std::setw(8) << cacheHeaderVersion << "\n"; } if (vendorID != properties.vendorID) { badCache = true; std::cout << " Vender ID mismatch in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << std::hex << std::setw(8) << vendorID << "\n"; std::cout << " Driver expects: " << std::hex << std::setw(8) << properties.vendorID << "\n"; } if (deviceID != properties.deviceID) { badCache = true; std::cout << " Device ID mismatch in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << std::hex << std::setw(8) << deviceID << "\n"; std::cout << " Driver expects: " << std::hex << std::setw(8) << properties.deviceID << "\n"; } if (memcmp(pipelineCacheUUID, properties.pipelineCacheUUID, sizeof(pipelineCacheUUID)) != 0) { badCache = true; std::cout << " UUID mismatch in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << vk::su::UUID(pipelineCacheUUID) << "\n"; std::cout << " Driver expects: " << vk::su::UUID(properties.pipelineCacheUUID) << "\n"; } if (badCache) { // Don't submit initial cache data if any version info is incorrect free(startCacheData); startCacheSize = 0; startCacheData = nullptr; // And clear out the old cache file for use in next run std::cout << " Deleting cache entry " << cacheFileName << " to repopulate.\n"; if (remove(cacheFileName.c_str()) != 0) { std::cerr << "Reading error"; exit(EXIT_FAILURE); } } } // Feed the initial cache data into cache creation vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo(vk::PipelineCacheCreateFlags(), startCacheSize, startCacheData)); // Free our initialData now that pipeline cache has been created free(startCacheData); startCacheData = NULL; // Time (roughly) taken to create the graphics pipeline timestamp_t start = getMilliseconds(); vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline(device, pipelineCache, vertexShaderModule, fragmentShaderModule, sizeof(texturedCubeData[0]), true, true, pipelineLayout, renderPass); timestamp_t elapsed = getMilliseconds() - start; std::cout << " vkCreateGraphicsPipeline time: " << (double)elapsed << " ms\n"; vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique(vk::SemaphoreCreateInfo(vk::SemaphoreCreateFlags())); // Get the index of the next available swapchain image: vk::ResultValue currentBuffer = device->acquireNextImageKHR(swapChainData.swapChain.get(), UINT64_MAX, imageAcquiredSemaphore.get(), nullptr); assert(currentBuffer.result == vk::Result::eSuccess); assert(currentBuffer.value < framebuffers.size()); vk::ClearValue clearValues[2]; clearValues[0].color = vk::ClearColorValue(std::array({ 0.2f, 0.2f, 0.2f, 0.2f })); clearValues[1].depthStencil = vk::ClearDepthStencilValue(1.0f, 0); commandBuffers[0]->beginRenderPass(vk::RenderPassBeginInfo(renderPass.get(), framebuffers[currentBuffer.value].get(), vk::Rect2D(vk::Offset2D(), surfaceData.extent), 2, clearValues), vk::SubpassContents::eInline); commandBuffers[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline.get()); commandBuffers[0]->bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSets[0].get(), {}); VkDeviceSize offset = 0; commandBuffers[0]->bindVertexBuffers(0, vertexBufferData.buffer.get(), offset); vk::Viewport viewport(0.0f, 0.0f, static_cast(surfaceData.extent.width), static_cast(surfaceData.extent.height), 0.0f, 1.0f); commandBuffers[0]->setViewport(0, viewport); vk::Rect2D scissor(vk::Offset2D(0, 0), surfaceData.extent); commandBuffers[0]->setScissor(0, scissor); commandBuffers[0]->draw(12 * 3, 1, 0, 0); commandBuffers[0]->endRenderPass(); commandBuffers[0]->end(); vk::UniqueFence drawFence = device->createFenceUnique(vk::FenceCreateInfo()); vk::PipelineStageFlags waitDestinationStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); vk::SubmitInfo submitInfo(1, &imageAcquiredSemaphore.get(), &waitDestinationStageMask, 1, &commandBuffers[0].get()); graphicsQueue.submit(submitInfo, drawFence.get()); while (vk::Result::eTimeout == device->waitForFences(drawFence.get(), VK_TRUE, vk::su::FenceTimeout)) ; presentQueue.presentKHR(vk::PresentInfoKHR(0, nullptr, 1, &swapChainData.swapChain.get(), ¤tBuffer.value)); Sleep(1000); // Store away the cache that we've populated. This could conceivably happen // earlier, depends on when the pipeline cache stops being populated // internally. std::vector endCacheData = device->getPipelineCacheData(pipelineCache.get()); // Write the file to disk, overwriting whatever was there std::ofstream writeCacheStream(cacheFileName, std::ios_base::out | std::ios_base::binary); if (writeCacheStream.good()) { writeCacheStream.write(reinterpret_cast(endCacheData.data()), endCacheData.size()); writeCacheStream.close(); std::cout << " cacheData written to " << cacheFileName << "\n"; } else { // Something bad happened std::cout << " Unable to write cache data to disk!\n"; } /* VULKAN_KEY_END */ #if defined(VK_USE_PLATFORM_WIN32_KHR) DestroyWindow(surfaceData.window); #else #pragma error "unhandled platform" #endif } catch (vk::SystemError err) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit(-1); } catch (std::runtime_error err) { std::cout << "std::runtime_error: " << err.what() << std::endl; exit(-1); } catch (...) { std::cout << "unknown error\n"; exit(-1); } return 0; }