// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "CameraManipulator.hpp" #include #include namespace vk { namespace su { const float trackballSize = 0.8f; //----------------------------------------------------------------------------- // MATH functions // template bool isZero(const T& _a) { return fabs(_a) < std::numeric_limits::epsilon(); } template bool isOne(const T& _a) { return areEqual(_a, (T)1); } inline float sign(float s) { return (s < 0.f) ? -1.f : 1.f; } CameraManipulator::CameraManipulator() { update(); } glm::vec3 const& CameraManipulator::getCameraPosition() const { return m_cameraPosition; } glm::vec3 const& CameraManipulator::getCenterPosition() const { return m_centerPosition; } glm::mat4 const& CameraManipulator::getMatrix() const { return m_matrix; } CameraManipulator::Mode CameraManipulator::getMode() const { return m_mode; } glm::ivec2 const& CameraManipulator::getMousePosition() const { return m_mousePosition; } float CameraManipulator::getRoll() const { return m_roll; } float CameraManipulator::getSpeed() const { return m_speed; } glm::vec3 const& CameraManipulator::getUpVector() const { return m_upVector; } glm::u32vec2 const& CameraManipulator::getWindowSize() const { return m_windowSize; } CameraManipulator::Action CameraManipulator::mouseMove(glm::ivec2 const& position, MouseButton mouseButton, ModifierFlags & modifiers) { Action curAction = Action::None; switch (mouseButton) { case MouseButton::Left: if (((modifiers & ModifierFlagBits::Ctrl) && (modifiers & ModifierFlagBits::Shift)) || (modifiers & ModifierFlagBits::Alt)) { curAction = m_mode == Mode::Examine ? Action::LookAround : Action::Orbit; } else if (modifiers & ModifierFlagBits::Shift) { curAction = Action::Dolly; } else if (modifiers & ModifierFlagBits::Ctrl) { curAction = Action::Pan; } else { curAction = m_mode == Mode::Examine ? Action::Orbit : Action::LookAround; } break; case MouseButton::Middle: curAction = Action::Pan; break; case MouseButton::Right: curAction = Action::Dolly; break; default: assert(false); } assert(curAction != Action::None); motion(position, curAction); return curAction; } void CameraManipulator::setLookat(const glm::vec3& cameraPosition, const glm::vec3& centerPosition, const glm::vec3& upVector) { m_cameraPosition = cameraPosition; m_centerPosition = centerPosition; m_upVector = upVector; update(); } void CameraManipulator::setMode(Mode mode) { m_mode = mode; } void CameraManipulator::setMousePosition(glm::ivec2 const& position) { m_mousePosition = position; } void CameraManipulator::setRoll(float roll) { m_roll = roll; update(); } void CameraManipulator::setSpeed(float speed) { m_speed = speed; } void CameraManipulator::setWindowSize(glm::ivec2 const& size) { m_windowSize = size; } void CameraManipulator::wheel(int value) { float fValue = static_cast(value); float dx = (fValue * abs(fValue)) / static_cast(m_windowSize[0]); glm::vec3 z = m_cameraPosition - m_centerPosition; float length = z.length() * 0.1f; length = length < 0.001f ? 0.001f : length; dx *= m_speed; dolly(glm::vec2(dx, dx)); update(); } void CameraManipulator::dolly(glm::vec2 const& delta) { glm::vec3 z = m_centerPosition - m_cameraPosition; float length = glm::length(z); // We are at the point of interest, and don't know any direction, so do nothing! if(isZero(length)) { return; } // Use the larger movement. float dd; if(m_mode != Mode::Examine) { dd = -delta[1]; } else { dd = fabs(delta[0]) > fabs(delta[1]) ? delta[0] : -delta[1]; } float factor = m_speed * dd / length; // Adjust speed based on distance. length /= 10; length = length < 0.001f ? 0.001f : length; factor *= length; // Don't move to or through the point of interest. if (1.0f <= factor) { return; } z *= factor; // Not going up if(m_mode == Mode::Walk) { if(m_upVector.y > m_upVector.z) { z.y = 0; } else { z.z = 0; } } m_cameraPosition += z; // In fly mode, the interest moves with us. if(m_mode != Mode::Examine) { m_centerPosition += z; } } void CameraManipulator::motion(glm::ivec2 const& position, Action action) { glm::vec2 delta(float(position[0] - m_mousePosition[0]) / float(m_windowSize[0]), float(position[1] - m_mousePosition[1]) / float(m_windowSize[1])); switch(action) { case Action::Orbit: if(m_mode == Mode::Trackball) { orbit(delta, true); // trackball(position); } else { orbit(delta, false); } break; case Action::Dolly: dolly(delta); break; case Action::Pan: pan(delta); break; case Action::LookAround: if(m_mode == Mode::Trackball) { trackball(position); } else { orbit(glm::vec2(delta[0], -delta[1]), true); } break; } update(); m_mousePosition = position; } void CameraManipulator::orbit(glm::vec2 const& delta, bool invert) { if(isZero(delta[0]) && isZero(delta[1])) { return; } // Full width will do a full turn float dx = delta[0] * float(glm::two_pi()); float dy = delta[1] * float(glm::two_pi()); // Get the camera glm::vec3 origin(invert ? m_cameraPosition : m_centerPosition); glm::vec3 position(invert ? m_centerPosition : m_cameraPosition); // Get the length of sight glm::vec3 centerToEye(position - origin); float radius = glm::length(centerToEye); centerToEye = glm::normalize(centerToEye); // Find the rotation around the UP axis (Y) glm::vec3 zAxis(centerToEye); glm::mat4 yRotation = glm::rotate(-dx, m_upVector); // Apply the (Y) rotation to the eye-center vector glm::vec4 tmpVector = yRotation * glm::vec4(centerToEye.x, centerToEye.y, centerToEye.z, 0.0f); centerToEye = glm::vec3(tmpVector.x, tmpVector.y, tmpVector.z); // Find the rotation around the X vector: cross between eye-center and up (X) glm::vec3 xAxis = glm::cross(m_upVector, zAxis); xAxis = glm::normalize(xAxis); glm::mat4 xRotation = glm::rotate(-dy, xAxis); // Apply the (X) rotation to the eye-center vector tmpVector = xRotation * glm::vec4(centerToEye.x, centerToEye.y, centerToEye.z, 0); glm::vec3 rotatedVector(tmpVector.x, tmpVector.y, tmpVector.z); if(sign(rotatedVector.x) == sign(centerToEye.x)) { centerToEye = rotatedVector; } // Make the vector as long as it was originally centerToEye *= radius; // Finding the new position glm::vec3 newPosition = centerToEye + origin; if(!invert) { m_cameraPosition = newPosition; // Normal: change the position of the camera } else { m_centerPosition = newPosition; // Inverted: change the interest point } } void CameraManipulator::pan(glm::vec2 const& delta) { glm::vec3 z(m_cameraPosition - m_centerPosition); float length = static_cast(glm::length(z)) / 0.785f; // 45 degrees z = glm::normalize(z); glm::vec3 x = glm::normalize(glm::cross(m_upVector, z)); glm::vec3 y = glm::normalize(glm::cross(z, x)); x *= -delta[0] * length; y *= delta[1] * length; if(m_mode == Mode::Fly) { x = -x; y = -y; } m_cameraPosition += x + y; m_centerPosition += x + y; } double CameraManipulator::projectOntoTBSphere(const glm::vec2& p) { double z; double d = length(p); if(d < trackballSize * 0.70710678118654752440) { // inside sphere z = sqrt(trackballSize * trackballSize - d * d); } else { // on hyperbola double t = trackballSize / 1.41421356237309504880; z = t * t / d; } return z; } void CameraManipulator::trackball(glm::ivec2 const& position) { glm::vec2 p0(2 * (m_mousePosition[0] - m_windowSize[0] / 2) / double(m_windowSize[0]), 2 * (m_windowSize[1] / 2 - m_mousePosition[1]) / double(m_windowSize[1])); glm::vec2 p1(2 * (position[0] - m_windowSize[0] / 2) / double(m_windowSize[0]), 2 * (m_windowSize[1] / 2 - position[1]) / double(m_windowSize[1])); // determine the z coordinate on the sphere glm::vec3 pTB0(p0[0], p0[1], projectOntoTBSphere(p0)); glm::vec3 pTB1(p1[0], p1[1], projectOntoTBSphere(p1)); // calculate the rotation axis via cross product between p0 and p1 glm::vec3 axis = glm::cross(pTB0, pTB1); axis = glm::normalize(axis); // calculate the angle float t = glm::length(pTB0 - pTB1) / (2.f * trackballSize); // clamp between -1 and 1 if(t > 1.0f) { t = 1.0f; } else if(t < -1.0f) { t = -1.0f; } float rad = 2.0f * asin(t); { glm::vec4 rot_axis = m_matrix * glm::vec4(axis, 0); glm::mat4 rot_mat = glm::rotate(rad, glm::vec3(rot_axis.x, rot_axis.y, rot_axis.z)); glm::vec3 pnt = m_cameraPosition - m_centerPosition; glm::vec4 pnt2 = rot_mat * glm::vec4(pnt.x, pnt.y, pnt.z, 1); m_cameraPosition = m_centerPosition + glm::vec3(pnt2.x, pnt2.y, pnt2.z); glm::vec4 up2 = rot_mat * glm::vec4(m_upVector.x, m_upVector.y, m_upVector.z, 0); m_upVector = glm::vec3(up2.x, up2.y, up2.z); } } void CameraManipulator::update() { m_matrix = glm::lookAt(m_cameraPosition, m_centerPosition, m_upVector); if(!isZero(m_roll)) { glm::mat4 rot = glm::rotate(m_roll, glm::vec3(0, 0, 1)); m_matrix = m_matrix * rot; } } } // namespace su } // namespace vk