// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : MultipleSets // Use multiple descriptor sets to draw a textured cube. #include "../utils/geometries.hpp" #include "../utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "vulkan/vulkan.hpp" #include "SPIRV/GlslangToSpv.h" #include static char const* AppName = "MultipleSets"; static char const* EngineName = "Vulkan.hpp"; const std::string vertexShaderText = R"( #version 400 #extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_shading_language_420pack : enable layout (std140, set = 0, binding = 0) uniform buffer { mat4 mvp; } uniformBuffer; layout (set = 1, binding = 0) uniform sampler2D surface; layout (location = 0) in vec4 pos; layout (location = 1) in vec2 inTexCoord; layout (location = 0) out vec4 outColor; layout (location = 1) out vec2 outTexCoord; void main() { outColor = texture(surface, vec2(0.0f)); outTexCoord = inTexCoord; gl_Position = uniformBuffer.mvp * pos; } )"; const char *fragShaderText = "#version 400\n" "#extension GL_ARB_separate_shader_objects : enable\n" "#extension GL_ARB_shading_language_420pack : enable\n" "layout (location = 0) in vec4 inColor;\n" "layout (location = 1) in vec2 inTexCoords;\n" "layout (location = 0) out vec4 outColor;\n" "void main() {\n" " vec4 resColor = inColor;\n" // Create a border to see the cube more easily " if (inTexCoords.x < 0.01 || inTexCoords.x > 0.99)\n" " resColor *= vec4(0.1, 0.1, 0.1, 1.0);\n" " if (inTexCoords.y < 0.01 || inTexCoords.y > 0.99)\n" " resColor *= vec4(0.1, 0.1, 0.1, 1.0);\n" " outColor = resColor;\n" "}\n"; const std::string fragmentShaderText = R"( #version 400 #extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_shading_language_420pack : enable layout (location = 0) in vec4 inColor; layout (location = 1) in vec2 inTexCoord; layout (location = 0) out vec4 outColor; void main() { outColor = inColor; // create a border to see the cube more easily if ((inTexCoord.x < 0.01f) || (0.99f < inTexCoord.x) || (inTexCoord.y < 0.01f) || (0.99f < inTexCoord.y)) { outColor *= vec4(0.1f, 0.1f, 0.1f, 1.0f); } } )"; class MonochromeTextureGenerator { public: MonochromeTextureGenerator(std::array const& rgb_) : rgb(rgb_) {} void operator()(void* data, vk::Extent2D &extent) const { // fill in with the monochrome color unsigned char *pImageMemory = static_cast(data); for (uint32_t row = 0; row < extent.height; row++) { for (uint32_t col = 0; col < extent.width; col++) { pImageMemory[0] = rgb[0]; pImageMemory[1] = rgb[1]; pImageMemory[2] = rgb[2]; pImageMemory[3] = 255; pImageMemory += 4; } } } private: std::array const& rgb; }; int main(int /*argc*/, char ** /*argv*/) { try { vk::UniqueInstance instance = vk::su::createInstance(AppName, EngineName, vk::su::getInstanceExtensions()); #if !defined(NDEBUG) vk::UniqueDebugReportCallbackEXT debugReportCallback = vk::su::createDebugReportCallback(instance); #endif std::vector physicalDevices = instance->enumeratePhysicalDevices(); assert(!physicalDevices.empty()); vk::su::SurfaceData surfaceData(instance, AppName, AppName, vk::Extent2D(500, 500)); std::pair graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex(physicalDevices[0], surfaceData.surface); vk::UniqueDevice device = vk::su::createDevice(physicalDevices[0], graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions()); vk::UniqueCommandPool commandPool = vk::su::createCommandPool(device, graphicsAndPresentQueueFamilyIndex.first); std::vector commandBuffers = device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::ePrimary, 1)); vk::Queue graphicsQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.first, 0); vk::Queue presentQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.second, 0); vk::su::SwapChainData swapChainData(physicalDevices[0], device, surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc , graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second); vk::su::DepthBufferData depthBufferData(physicalDevices[0], device, vk::Format::eD16Unorm, surfaceData.extent); vk::su::TextureData textureData(physicalDevices[0], device); commandBuffers[0]->begin(vk::CommandBufferBeginInfo()); textureData.setTexture(device, commandBuffers[0], MonochromeTextureGenerator({ 118, 185, 0 })); vk::su::BufferData uniformBufferData(physicalDevices[0], device, sizeof(glm::mat4x4), vk::BufferUsageFlagBits::eUniformBuffer); vk::su::copyToDevice(device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix(surfaceData.extent)); vk::UniqueRenderPass renderPass = vk::su::createRenderPass(device, vk::su::pickColorFormat(physicalDevices[0].getSurfaceFormatsKHR(surfaceData.surface.get())), depthBufferData.format); glslang::InitializeProcess(); vk::UniqueShaderModule vertexShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eVertex, vertexShaderText); vk::UniqueShaderModule fragmentShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText); glslang::FinalizeProcess(); std::vector framebuffers = vk::su::createFramebuffers(device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent); vk::su::BufferData vertexBufferData(physicalDevices[0], device, sizeof(texturedCubeData), vk::BufferUsageFlagBits::eVertexBuffer); vk::su::copyToDevice(device, vertexBufferData.deviceMemory, texturedCubeData, sizeof(texturedCubeData) / sizeof(texturedCubeData[0])); /* VULKAN_KEY_START */ // Create first layout to contain uniform buffer data vk::DescriptorSetLayoutBinding uniformBinding(0, vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex); vk::UniqueDescriptorSetLayout uniformLayout = device->createDescriptorSetLayoutUnique(vk::DescriptorSetLayoutCreateInfo(vk::DescriptorSetLayoutCreateFlags(), 1, &uniformBinding)); // Create second layout containing combined sampler/image data vk::DescriptorSetLayoutBinding sampler2DBinding(0, vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eVertex); vk::UniqueDescriptorSetLayout samplerLayout = device->createDescriptorSetLayoutUnique(vk::DescriptorSetLayoutCreateInfo(vk::DescriptorSetLayoutCreateFlags(), 1, &sampler2DBinding)); // Create pipeline layout with multiple descriptor sets std::array descriptorSetLayouts = { uniformLayout.get(), samplerLayout.get() }; vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), 2, descriptorSetLayouts.data())); // Create a single pool to contain data for our two descriptor sets vk::DescriptorPoolSize poolSizes[2] = { vk::DescriptorPoolSize(vk::DescriptorType::eUniformBuffer, 1), vk::DescriptorPoolSize(vk::DescriptorType::eCombinedImageSampler, 1) }; vk::UniqueDescriptorPool descriptorPool = device->createDescriptorPoolUnique(vk::DescriptorPoolCreateInfo(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 2, 2, poolSizes)); // Populate descriptor sets std::vector descriptorSets = device->allocateDescriptorSetsUnique(vk::DescriptorSetAllocateInfo(descriptorPool.get(), 2, descriptorSetLayouts.data())); // Populate with info about our uniform buffer vk::DescriptorBufferInfo uniformBufferInfo(uniformBufferData.buffer.get(), 0, sizeof(glm::mat4x4)); vk::DescriptorImageInfo textureImageInfo(textureData.textureSampler.get(), textureData.imageData->imageView.get(), vk::ImageLayout::eShaderReadOnlyOptimal); std::array writeDescriptorSets = { vk::WriteDescriptorSet(descriptorSets[0].get(), 0, 0, 1, vk::DescriptorType::eUniformBuffer, nullptr, &uniformBufferInfo), vk::WriteDescriptorSet(descriptorSets[1].get(), 0, 0, 1, vk::DescriptorType::eCombinedImageSampler, &textureImageInfo) }; device->updateDescriptorSets(writeDescriptorSets, nullptr); /* VULKAN_KEY_END */ vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo()); vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline(device, pipelineCache, vertexShaderModule, fragmentShaderModule, sizeof(texturedCubeData[0]), true, pipelineLayout, renderPass); // Get the index of the next available swapchain image: vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique(vk::SemaphoreCreateInfo()); vk::ResultValue currentBuffer = device->acquireNextImageKHR(swapChainData.swapChain.get(), vk::su::FenceTimeout, imageAcquiredSemaphore.get(), nullptr); assert(currentBuffer.result == vk::Result::eSuccess); assert(currentBuffer.value < framebuffers.size()); vk::ClearValue clearValues[2]; clearValues[0].color = vk::ClearColorValue(std::array({ 0.2f, 0.2f, 0.2f, 0.2f })); clearValues[1].depthStencil = vk::ClearDepthStencilValue(1.0f, 0); vk::RenderPassBeginInfo renderPassBeginInfo(renderPass.get(), framebuffers[currentBuffer.value].get(), vk::Rect2D(vk::Offset2D(0, 0), surfaceData.extent), 2, clearValues); commandBuffers[0]->beginRenderPass(renderPassBeginInfo, vk::SubpassContents::eInline); commandBuffers[0]->bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline.get()); commandBuffers[0]->bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, { descriptorSets[0].get(), descriptorSets[1].get() }, nullptr); vk::DeviceSize offset = 0; commandBuffers[0]->bindVertexBuffers(0, vertexBufferData.buffer.get(), offset); vk::Viewport viewport(0.0f, 0.0f, static_cast(surfaceData.extent.width), static_cast(surfaceData.extent.height), 0.0f, 1.0f); commandBuffers[0]->setViewport(0, viewport); vk::Rect2D scissor(vk::Offset2D(0, 0), surfaceData.extent); commandBuffers[0]->setScissor(0, scissor); commandBuffers[0]->draw(12 * 3, 1, 0, 0); commandBuffers[0]->endRenderPass(); commandBuffers[0]->end(); vk::UniqueFence drawFence = device->createFenceUnique(vk::FenceCreateInfo()); vk::PipelineStageFlags waitDestinationStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); vk::SubmitInfo submitInfo(1, &imageAcquiredSemaphore.get(), &waitDestinationStageMask, 1, &commandBuffers[0].get()); graphicsQueue.submit(submitInfo, drawFence.get()); while (vk::Result::eTimeout == device->waitForFences(drawFence.get(), VK_TRUE, vk::su::FenceTimeout)) ; presentQueue.presentKHR(vk::PresentInfoKHR(0, nullptr, 1, &swapChainData.swapChain.get(), ¤tBuffer.value)); Sleep(1000); device->waitIdle(); #if defined(VK_USE_PLATFORM_WIN32_KHR) DestroyWindow(surfaceData.window); #else #pragma error "unhandled platform" #endif } catch (vk::SystemError err) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit(-1); } catch (std::runtime_error err) { std::cout << "std::runtime_error: " << err.what() << std::endl; exit(-1); } catch (...) { std::cout << "unknown error\n"; exit(-1); } return 0; }