// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : PipelineCache // This sample tries to save and reuse pipeline cache data between runs. #include "../utils/geometries.hpp" #include "../utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "SPIRV/GlslangToSpv.h" #include "vulkan/vulkan.hpp" #include #include #include // For timestamp code (getMilliseconds) #ifdef WIN32 # include #else # include #endif typedef unsigned long long timestamp_t; timestamp_t getMilliseconds() { #ifdef WIN32 LARGE_INTEGER frequency; BOOL useQPC = QueryPerformanceFrequency( &frequency ); if ( useQPC ) { LARGE_INTEGER now; QueryPerformanceCounter( &now ); return ( 1000LL * now.QuadPart ) / frequency.QuadPart; } else { return GetTickCount(); } #else struct timeval now; gettimeofday( &now, NULL ); return ( now.tv_usec / 1000 ) + (timestamp_t)now.tv_sec; #endif } static char const * AppName = "PipelineCache"; static char const * EngineName = "Vulkan.hpp"; int main( int /*argc*/, char ** /*argv*/ ) { try { vk::UniqueInstance instance = vk::su::createInstance( AppName, EngineName, {}, vk::su::getInstanceExtensions() ); #if !defined( NDEBUG ) vk::UniqueDebugUtilsMessengerEXT debugUtilsMessenger = vk::su::createDebugUtilsMessenger( instance ); #endif vk::PhysicalDevice physicalDevice = instance->enumeratePhysicalDevices().front(); vk::PhysicalDeviceProperties properties = physicalDevice.getProperties(); vk::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) ); std::pair graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, *surfaceData.surface ); vk::UniqueDevice device = vk::su::createDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() ); vk::UniqueCommandPool commandPool = vk::su::createCommandPool( device, graphicsAndPresentQueueFamilyIndex.first ); vk::UniqueCommandBuffer commandBuffer = std::move( device ->allocateCommandBuffersUnique( vk::CommandBufferAllocateInfo( commandPool.get(), vk::CommandBufferLevel::ePrimary, 1 ) ) .front() ); vk::Queue graphicsQueue = device->getQueue( graphicsAndPresentQueueFamilyIndex.first, 0 ); vk::Queue presentQueue = device->getQueue( graphicsAndPresentQueueFamilyIndex.second, 0 ); vk::su::SwapChainData swapChainData( physicalDevice, device, *surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc, vk::UniqueSwapchainKHR(), graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second ); vk::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent ); vk::su::TextureData textureData( physicalDevice, device ); commandBuffer->begin( vk::CommandBufferBeginInfo() ); textureData.setImage( device, commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) ); vk::su::BufferData uniformBufferData( physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer ); vk::su::copyToDevice( device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix( surfaceData.extent ) ); vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout( device, { { vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex }, { vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment } } ); vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique( vk::PipelineLayoutCreateInfo( vk::PipelineLayoutCreateFlags(), *descriptorSetLayout ) ); vk::UniqueRenderPass renderPass = vk::su::createRenderPass( device, vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface.get() ) ).format, depthBufferData.format ); glslang::InitializeProcess(); vk::UniqueShaderModule vertexShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T ); vk::UniqueShaderModule fragmentShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C ); glslang::FinalizeProcess(); std::vector framebuffers = vk::su::createFramebuffers( device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent ); vk::su::BufferData vertexBufferData( physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer ); vk::su::copyToDevice( device, vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) ); vk::UniqueDescriptorPool descriptorPool = vk::su::createDescriptorPool( device, { { vk::DescriptorType::eUniformBuffer, 1 }, { vk::DescriptorType::eCombinedImageSampler, 1 } } ); vk::UniqueDescriptorSet descriptorSet = std::move( device->allocateDescriptorSetsUnique( vk::DescriptorSetAllocateInfo( *descriptorPool, *descriptorSetLayout ) ) .front() ); vk::su::updateDescriptorSets( device, descriptorSet, { { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, {} } }, textureData ); /* VULKAN_KEY_START */ // Check disk for existing cache data size_t startCacheSize = 0; char * startCacheData = nullptr; std::string cacheFileName = "pipeline_cache_data.bin"; std::ifstream readCacheStream( cacheFileName, std::ios_base::in | std::ios_base::binary ); if ( readCacheStream.good() ) { // Determine cache size readCacheStream.seekg( 0, readCacheStream.end ); startCacheSize = vk::su::checked_cast( readCacheStream.tellg() ); readCacheStream.seekg( 0, readCacheStream.beg ); // Allocate memory to hold the initial cache data startCacheData = (char *)std::malloc( startCacheSize ); // Read the data into our buffer readCacheStream.read( startCacheData, startCacheSize ); // Clean up and print results readCacheStream.close(); std::cout << " Pipeline cache HIT!\n"; std::cout << " cacheData loaded from " << cacheFileName << "\n"; } else { // No cache found on disk std::cout << " Pipeline cache miss!\n"; } if ( startCacheData != nullptr ) { // Check for cache validity // // TODO: Update this as the spec evolves. The fields are not defined by the header. // // The code below supports SDK 0.10 Vulkan spec, which contains the following table: // // Offset Size Meaning // ------ ------------ ------------------------------------------------------------------ // 0 4 a device ID equal to VkPhysicalDeviceProperties::DeviceId written // as a stream of bytes, with the least significant byte first // // 4 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID // // // The code must be updated for latest Vulkan spec, which contains the following table: // // Offset Size Meaning // ------ ------------ ------------------------------------------------------------------ // 0 4 length in bytes of the entire pipeline cache header written as a // stream of bytes, with the least significant byte first // 4 4 a VkPipelineCacheHeaderVersion value written as a stream of bytes, // with the least significant byte first // 8 4 a vendor ID equal to VkPhysicalDeviceProperties::vendorID written // as a stream of bytes, with the least significant byte first // 12 4 a device ID equal to VkPhysicalDeviceProperties::deviceID written // as a stream of bytes, with the least significant byte first // 16 VK_UUID_SIZE a pipeline cache ID equal to VkPhysicalDeviceProperties::pipelineCacheUUID uint32_t headerLength = 0; uint32_t cacheHeaderVersion = 0; uint32_t vendorID = 0; uint32_t deviceID = 0; uint8_t pipelineCacheUUID[VK_UUID_SIZE] = {}; memcpy( &headerLength, (uint8_t *)startCacheData + 0, 4 ); memcpy( &cacheHeaderVersion, (uint8_t *)startCacheData + 4, 4 ); memcpy( &vendorID, (uint8_t *)startCacheData + 8, 4 ); memcpy( &deviceID, (uint8_t *)startCacheData + 12, 4 ); memcpy( pipelineCacheUUID, (uint8_t *)startCacheData + 16, VK_UUID_SIZE ); // Check each field and report bad values before freeing existing cache bool badCache = false; if ( headerLength <= 0 ) { badCache = true; std::cout << " Bad header length in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << headerLength << "\n"; } if ( cacheHeaderVersion != VK_PIPELINE_CACHE_HEADER_VERSION_ONE ) { badCache = true; std::cout << " Unsupported cache header version in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << cacheHeaderVersion << "\n"; } if ( vendorID != properties.vendorID ) { badCache = true; std::cout << " Vender ID mismatch in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << vendorID << "\n"; std::cout << " Driver expects: " << std::hex << std::setw( 8 ) << properties.vendorID << "\n"; } if ( deviceID != properties.deviceID ) { badCache = true; std::cout << " Device ID mismatch in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << std::hex << std::setw( 8 ) << deviceID << "\n"; std::cout << " Driver expects: " << std::hex << std::setw( 8 ) << properties.deviceID << "\n"; } if ( memcmp( pipelineCacheUUID, properties.pipelineCacheUUID, sizeof( pipelineCacheUUID ) ) != 0 ) { badCache = true; std::cout << " UUID mismatch in " << cacheFileName << ".\n"; std::cout << " Cache contains: " << vk::su::UUID( pipelineCacheUUID ) << "\n"; std::cout << " Driver expects: " << vk::su::UUID( properties.pipelineCacheUUID ) << "\n"; } if ( badCache ) { // Don't submit initial cache data if any version info is incorrect free( startCacheData ); startCacheSize = 0; startCacheData = nullptr; // And clear out the old cache file for use in next run std::cout << " Deleting cache entry " << cacheFileName << " to repopulate.\n"; if ( remove( cacheFileName.c_str() ) != 0 ) { std::cerr << "Reading error"; exit( EXIT_FAILURE ); } } } // Feed the initial cache data into cache creation vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique( vk::PipelineCacheCreateInfo( vk::PipelineCacheCreateFlags(), startCacheSize, startCacheData ) ); // Free our initialData now that pipeline cache has been created free( startCacheData ); startCacheData = NULL; // Time (roughly) taken to create the graphics pipeline timestamp_t start = getMilliseconds(); vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline( device, pipelineCache, std::make_pair( *vertexShaderModule, nullptr ), std::make_pair( *fragmentShaderModule, nullptr ), sizeof( texturedCubeData[0] ), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } }, vk::FrontFace::eClockwise, true, pipelineLayout, renderPass ); timestamp_t elapsed = getMilliseconds() - start; std::cout << " vkCreateGraphicsPipeline time: " << (double)elapsed << " ms\n"; vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique( vk::SemaphoreCreateInfo( vk::SemaphoreCreateFlags() ) ); // Get the index of the next available swapchain image: vk::ResultValue currentBuffer = device->acquireNextImageKHR( swapChainData.swapChain.get(), UINT64_MAX, imageAcquiredSemaphore.get(), nullptr ); assert( currentBuffer.result == vk::Result::eSuccess ); assert( currentBuffer.value < framebuffers.size() ); std::array clearValues; clearValues[0].color = vk::ClearColorValue( std::array( { { 0.2f, 0.2f, 0.2f, 0.2f } } ) ); clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 ); commandBuffer->beginRenderPass( vk::RenderPassBeginInfo( renderPass.get(), framebuffers[currentBuffer.value].get(), vk::Rect2D( vk::Offset2D(), surfaceData.extent ), clearValues ), vk::SubpassContents::eInline ); commandBuffer->bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline.get() ); commandBuffer->bindDescriptorSets( vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSet.get(), {} ); commandBuffer->bindVertexBuffers( 0, *vertexBufferData.buffer, { 0 } ); commandBuffer->setViewport( 0, vk::Viewport( 0.0f, 0.0f, static_cast( surfaceData.extent.width ), static_cast( surfaceData.extent.height ), 0.0f, 1.0f ) ); commandBuffer->setScissor( 0, vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ) ); commandBuffer->draw( 12 * 3, 1, 0, 0 ); commandBuffer->endRenderPass(); commandBuffer->end(); vk::UniqueFence drawFence = device->createFenceUnique( vk::FenceCreateInfo() ); vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput ); vk::SubmitInfo submitInfo( *imageAcquiredSemaphore, waitDestinationStageMask, *commandBuffer ); graphicsQueue.submit( submitInfo, drawFence.get() ); while ( vk::Result::eTimeout == device->waitForFences( drawFence.get(), VK_TRUE, vk::su::FenceTimeout ) ) ; presentQueue.presentKHR( vk::PresentInfoKHR( {}, *swapChainData.swapChain, currentBuffer.value ) ); std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) ); // Store away the cache that we've populated. This could conceivably happen // earlier, depends on when the pipeline cache stops being populated // internally. std::vector endCacheData = device->getPipelineCacheData( pipelineCache.get() ); // Write the file to disk, overwriting whatever was there std::ofstream writeCacheStream( cacheFileName, std::ios_base::out | std::ios_base::binary ); if ( writeCacheStream.good() ) { writeCacheStream.write( reinterpret_cast( endCacheData.data() ), endCacheData.size() ); writeCacheStream.close(); std::cout << " cacheData written to " << cacheFileName << "\n"; } else { // Something bad happened std::cout << " Unable to write cache data to disk!\n"; } /* VULKAN_KEY_END */ } catch ( vk::SystemError & err ) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit( -1 ); } catch ( std::exception & err ) { std::cout << "std::exception: " << err.what() << std::endl; exit( -1 ); } catch ( ... ) { std::cout << "unknown error\n"; exit( -1 ); } return 0; }