// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : MultipleSets // Use multiple descriptor sets to draw a textured cube. #if defined( _MSC_VER ) // no need to ignore any warnings with MSVC #elif defined( __clang__ ) # pragma clang diagnostic ignored "-Wmissing-braces" #elif defined( __GNUC__ ) #else // unknow compiler... just ignore the warnings for yourselves ;) #endif #include "../utils/geometries.hpp" #include "../utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "SPIRV/GlslangToSpv.h" #include #include static char const * AppName = "MultipleSets"; static char const * EngineName = "Vulkan.hpp"; const std::string vertexShaderText = R"( #version 400 #extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_shading_language_420pack : enable layout (std140, set = 0, binding = 0) uniform buffer { mat4 mvp; } uniformBuffer; layout (set = 1, binding = 0) uniform sampler2D surface; layout (location = 0) in vec4 pos; layout (location = 1) in vec2 inTexCoord; layout (location = 0) out vec4 outColor; layout (location = 1) out vec2 outTexCoord; void main() { outColor = texture(surface, vec2(0.0f)); outTexCoord = inTexCoord; gl_Position = uniformBuffer.mvp * pos; } )"; const std::string fragmentShaderText = R"( #version 400 #extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_shading_language_420pack : enable layout (location = 0) in vec4 inColor; layout (location = 1) in vec2 inTexCoord; layout (location = 0) out vec4 outColor; void main() { outColor = inColor; // create a border to see the cube more easily if ((inTexCoord.x < 0.01f) || (0.99f < inTexCoord.x) || (inTexCoord.y < 0.01f) || (0.99f < inTexCoord.y)) { outColor *= vec4(0.1f, 0.1f, 0.1f, 1.0f); } } )"; int main( int /*argc*/, char ** /*argv*/ ) { try { vk::Instance instance = vk::su::createInstance( AppName, EngineName, {}, vk::su::getInstanceExtensions() ); #if !defined( NDEBUG ) vk::DebugUtilsMessengerEXT debugUtilsMessenger = instance.createDebugUtilsMessengerEXT( vk::su::makeDebugUtilsMessengerCreateInfoEXT() ); #endif vk::PhysicalDevice physicalDevice = instance.enumeratePhysicalDevices().front(); vk::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) ); std::pair graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, surfaceData.surface ); vk::Device device = vk::su::createDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() ); vk::CommandPool commandPool = vk::su::createCommandPool( device, graphicsAndPresentQueueFamilyIndex.first ); vk::CommandBuffer commandBuffer = device.allocateCommandBuffers( vk::CommandBufferAllocateInfo( commandPool, vk::CommandBufferLevel::ePrimary, 1 ) ).front(); vk::Queue graphicsQueue = device.getQueue( graphicsAndPresentQueueFamilyIndex.first, 0 ); vk::Queue presentQueue = device.getQueue( graphicsAndPresentQueueFamilyIndex.second, 0 ); vk::su::SwapChainData swapChainData( physicalDevice, device, surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc, {}, graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second ); vk::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent ); vk::su::TextureData textureData( physicalDevice, device ); commandBuffer.begin( vk::CommandBufferBeginInfo() ); textureData.setImage( device, commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) ); vk::su::BufferData uniformBufferData( physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer ); glm::mat4x4 mvpcMatrix = vk::su::createModelViewProjectionClipMatrix( surfaceData.extent ); vk::su::copyToDevice( device, uniformBufferData.deviceMemory, mvpcMatrix ); vk::RenderPass renderPass = vk::su::createRenderPass( device, vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface ) ).format, depthBufferData.format ); glslang::InitializeProcess(); vk::ShaderModule vertexShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText ); vk::ShaderModule fragmentShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText ); glslang::FinalizeProcess(); std::vector framebuffers = vk::su::createFramebuffers( device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent ); vk::su::BufferData vertexBufferData( physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer ); vk::su::copyToDevice( device, vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) ); /* VULKAN_KEY_START */ // Create first layout to contain uniform buffer data vk::DescriptorSetLayoutBinding uniformBinding( 0, vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex ); vk::DescriptorSetLayout uniformLayout = device.createDescriptorSetLayout( vk::DescriptorSetLayoutCreateInfo( vk::DescriptorSetLayoutCreateFlags(), uniformBinding ) ); // Create second layout containing combined sampler/image data vk::DescriptorSetLayoutBinding sampler2DBinding( 0, vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eVertex ); vk::DescriptorSetLayout samplerLayout = device.createDescriptorSetLayout( vk::DescriptorSetLayoutCreateInfo( vk::DescriptorSetLayoutCreateFlags(), sampler2DBinding ) ); // Create pipeline layout with multiple descriptor sets std::array descriptorSetLayouts = { { uniformLayout, samplerLayout } }; vk::PipelineLayout pipelineLayout = device.createPipelineLayout( vk::PipelineLayoutCreateInfo( vk::PipelineLayoutCreateFlags(), descriptorSetLayouts ) ); // Create a single pool to contain data for our two descriptor sets std::array poolSizes = { vk::DescriptorPoolSize( vk::DescriptorType::eUniformBuffer, 1 ), vk::DescriptorPoolSize( vk::DescriptorType::eCombinedImageSampler, 1 ) }; vk::DescriptorPool descriptorPool = device.createDescriptorPool( vk::DescriptorPoolCreateInfo( vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 2, poolSizes ) ); // Populate descriptor sets vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo( descriptorPool, descriptorSetLayouts ); std::vector descriptorSets = device.allocateDescriptorSets( descriptorSetAllocateInfo ); // Populate with info about our uniform buffer vk::DescriptorBufferInfo uniformBufferInfo( uniformBufferData.buffer, 0, sizeof( glm::mat4x4 ) ); vk::DescriptorImageInfo textureImageInfo( textureData.sampler, textureData.imageData->imageView, vk::ImageLayout::eShaderReadOnlyOptimal ); std::array writeDescriptorSets = { { vk::WriteDescriptorSet( descriptorSets[0], 0, 0, vk::DescriptorType::eUniformBuffer, {}, uniformBufferInfo ), vk::WriteDescriptorSet( descriptorSets[1], 0, 0, vk::DescriptorType::eCombinedImageSampler, textureImageInfo ) } }; device.updateDescriptorSets( writeDescriptorSets, nullptr ); /* VULKAN_KEY_END */ vk::PipelineCache pipelineCache = device.createPipelineCache( vk::PipelineCacheCreateInfo() ); vk::Pipeline graphicsPipeline = vk::su::createGraphicsPipeline( device, pipelineCache, std::make_pair( vertexShaderModule, nullptr ), std::make_pair( fragmentShaderModule, nullptr ), sizeof( texturedCubeData[0] ), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } }, vk::FrontFace::eClockwise, true, pipelineLayout, renderPass ); // Get the index of the next available swapchain image: vk::Semaphore imageAcquiredSemaphore = device.createSemaphore( vk::SemaphoreCreateInfo() ); vk::ResultValue currentBuffer = device.acquireNextImageKHR( swapChainData.swapChain, vk::su::FenceTimeout, imageAcquiredSemaphore, nullptr ); assert( currentBuffer.result == vk::Result::eSuccess ); assert( currentBuffer.value < framebuffers.size() ); std::array clearValues; clearValues[0].color = vk::ClearColorValue( 0.2f, 0.2f, 0.2f, 0.2f ); clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 ); vk::RenderPassBeginInfo renderPassBeginInfo( renderPass, framebuffers[currentBuffer.value], vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ), clearValues ); commandBuffer.beginRenderPass( renderPassBeginInfo, vk::SubpassContents::eInline ); commandBuffer.bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline ); commandBuffer.bindDescriptorSets( vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, { descriptorSets[0], descriptorSets[1] }, nullptr ); commandBuffer.bindVertexBuffers( 0, vertexBufferData.buffer, { 0 } ); commandBuffer.setViewport( 0, vk::Viewport( 0.0f, 0.0f, static_cast( surfaceData.extent.width ), static_cast( surfaceData.extent.height ), 0.0f, 1.0f ) ); commandBuffer.setScissor( 0, vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ) ); commandBuffer.draw( 12 * 3, 1, 0, 0 ); commandBuffer.endRenderPass(); commandBuffer.end(); vk::Fence drawFence = device.createFence( vk::FenceCreateInfo() ); vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput ); vk::SubmitInfo submitInfo( imageAcquiredSemaphore, waitDestinationStageMask, commandBuffer ); graphicsQueue.submit( submitInfo, drawFence ); while ( vk::Result::eTimeout == device.waitForFences( drawFence, VK_TRUE, vk::su::FenceTimeout ) ) ; vk::Result result = presentQueue.presentKHR( vk::PresentInfoKHR( {}, swapChainData.swapChain, currentBuffer.value ) ); switch ( result ) { case vk::Result::eSuccess: break; case vk::Result::eSuboptimalKHR: std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n"; break; default: assert( false ); // an unexpected result is returned ! } std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) ); device.waitIdle(); device.destroyFence( drawFence ); device.destroySemaphore( imageAcquiredSemaphore ); device.destroyPipeline( graphicsPipeline ); device.destroyPipelineCache( pipelineCache ); device.freeDescriptorSets( descriptorPool, descriptorSets ); device.destroyDescriptorPool( descriptorPool ); device.destroyPipelineLayout( pipelineLayout ); device.destroyDescriptorSetLayout( samplerLayout ); device.destroyDescriptorSetLayout( uniformLayout ); vertexBufferData.clear( device ); for ( auto framebuffer : framebuffers ) { device.destroyFramebuffer( framebuffer ); } device.destroyShaderModule( fragmentShaderModule ); device.destroyShaderModule( vertexShaderModule ); device.destroyRenderPass( renderPass ); uniformBufferData.clear( device ); textureData.clear( device ); depthBufferData.clear( device ); swapChainData.clear( device ); device.freeCommandBuffers( commandPool, commandBuffer ); device.destroyCommandPool( commandPool ); device.destroy(); instance.destroySurfaceKHR( surfaceData.surface ); #if !defined( NDEBUG ) instance.destroyDebugUtilsMessengerEXT( debugUtilsMessenger ); #endif instance.destroy(); } catch ( vk::SystemError & err ) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit( -1 ); } catch ( std::exception & err ) { std::cout << "std::exception: " << err.what() << std::endl; exit( -1 ); } catch ( ... ) { std::cout << "unknown error\n"; exit( -1 ); } return 0; }