// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : PushConstants // Use push constants in a simple shader, validate the correct value was read. #if defined( _MSC_VER ) // no need to ignore any warnings with MSVC #elif defined( __clang__ ) # pragma clang diagnostic ignored "-Wmissing-braces" #elif defined( __GNUC__ ) #else // unknow compiler... just ignore the warnings for yourselves ;) #endif #include "../../samples/utils/geometries.hpp" #include "../../samples/utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "SPIRV/GlslangToSpv.h" #include "vulkan/vulkan.hpp" #include #include static char const * AppName = "PushConstants"; static char const * EngineName = "Vulkan.hpp"; const std::string fragmentShaderText = R"( #version 400 #extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_shading_language_420pack : enable layout (push_constant) uniform pushBlock { int iFoo; float fBar; } pushConstantsBlock; layout (location = 0) in vec2 inTexCoords; layout (location = 0) out vec4 outColor; void main() { vec4 green = vec4(0.0f, 1.0f, 0.0f, 1.0f); vec4 red = vec4(1.0f, 0.0f, 0.0f, 1.0f); // Start with passing color vec4 resColor = green; // See if we've read in the correct push constants if ((pushConstantsBlock.iFoo != 2) || (pushConstantsBlock.fBar != 1.0f)) { resColor = red; } // Create a border to see the cube more easily if ((inTexCoords.x < 0.01f) || (0.99f < inTexCoords.x) || (inTexCoords.y < 0.01f) || (0.99f < inTexCoords.y)) { resColor *= vec4(0.1f, 0.1f, 0.1f, 1.0f); } outColor = resColor; } )"; int main( int /*argc*/, char ** /*argv*/ ) { try { std::unique_ptr context = vk::raii::su::make_unique(); std::unique_ptr instance = vk::raii::su::makeUniqueInstance( *context, AppName, EngineName, {}, vk::su::getInstanceExtensions() ); #if !defined( NDEBUG ) std::unique_ptr debugUtilsMessenger = vk::raii::su::makeUniqueDebugUtilsMessengerEXT( *instance ); #endif std::unique_ptr physicalDevice = vk::raii::su::makeUniquePhysicalDevice( *instance ); vk::raii::su::SurfaceData surfaceData( *instance, AppName, vk::Extent2D( 500, 500 ) ); std::pair graphicsAndPresentQueueFamilyIndex = vk::raii::su::findGraphicsAndPresentQueueFamilyIndex( *physicalDevice, *surfaceData.surface ); std::unique_ptr device = vk::raii::su::makeUniqueDevice( *physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() ); std::unique_ptr commandPool = vk::raii::su::makeUniqueCommandPool( *device, graphicsAndPresentQueueFamilyIndex.first ); std::unique_ptr commandBuffer = vk::raii::su::makeUniqueCommandBuffer( *device, *commandPool ); std::unique_ptr graphicsQueue = vk::raii::su::make_unique( *device, graphicsAndPresentQueueFamilyIndex.first, 0 ); std::unique_ptr presentQueue = vk::raii::su::make_unique( *device, graphicsAndPresentQueueFamilyIndex.second, 0 ); vk::raii::su::SwapChainData swapChainData( *physicalDevice, *device, *surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc, {}, graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second ); vk::raii::su::DepthBufferData depthBufferData( *physicalDevice, *device, vk::Format::eD16Unorm, surfaceData.extent ); vk::raii::su::BufferData uniformBufferData( *physicalDevice, *device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer ); glm::mat4x4 mvpcMatrix = vk::su::createModelViewProjectionClipMatrix( surfaceData.extent ); vk::raii::su::copyToDevice( *uniformBufferData.deviceMemory, mvpcMatrix ); vk::Format colorFormat = vk::su::pickSurfaceFormat( physicalDevice->getSurfaceFormatsKHR( **surfaceData.surface ) ).format; std::unique_ptr renderPass = vk::raii::su::makeUniqueRenderPass( *device, colorFormat, depthBufferData.format ); glslang::InitializeProcess(); std::unique_ptr vertexShaderModule = vk::raii::su::makeUniqueShaderModule( *device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T ); std::unique_ptr fragmentShaderModule = vk::raii::su::makeUniqueShaderModule( *device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText ); glslang::FinalizeProcess(); std::vector> framebuffers = vk::raii::su::makeUniqueFramebuffers( *device, *renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent ); vk::raii::su::BufferData vertexBufferData( *physicalDevice, *device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer ); vk::raii::su::copyToDevice( *vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) ); // Create binding and layout for the following, matching contents of shader // binding 0 = uniform buffer (MVP) std::unique_ptr descriptorSetLayout = vk::raii::su::makeUniqueDescriptorSetLayout( *device, { { vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex } } ); /* VULKAN_KEY_START */ // Set up our push constant range, which mirrors the declaration of vk::PushConstantRange pushConstantRanges( vk::ShaderStageFlagBits::eFragment, 0, 8 ); vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo( {}, **descriptorSetLayout, pushConstantRanges ); std::unique_ptr pipelineLayout = vk::raii::su::make_unique( *device, pipelineLayoutCreateInfo ); // Create a single pool to contain data for our descriptor set std::array poolSizes = { vk::DescriptorPoolSize( vk::DescriptorType::eUniformBuffer, 1 ), vk::DescriptorPoolSize( vk::DescriptorType::eCombinedImageSampler, 1 ) }; vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo( vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 1, poolSizes ); std::unique_ptr descriptorPool = vk::raii::su::make_unique( *device, descriptorPoolCreateInfo ); // Populate descriptor sets vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo( **descriptorPool, **descriptorSetLayout ); std::unique_ptr descriptorSet = vk::raii::su::make_unique( std::move( vk::raii::DescriptorSets( *device, descriptorSetAllocateInfo ).front() ) ); // Populate with info about our uniform buffer for MVP vk::DescriptorBufferInfo bufferInfo( **uniformBufferData.buffer, 0, sizeof( glm::mat4x4 ) ); vk::WriteDescriptorSet writeDescriptorSet( **descriptorSet, 0, 0, vk::DescriptorType::eUniformBuffer, {}, bufferInfo ); device->updateDescriptorSets( writeDescriptorSet, nullptr ); // Create our push constant data, which matches shader expectations std::array pushConstants = { { (unsigned)2, (unsigned)0x3F800000 } }; // Ensure we have enough room for push constant data assert( ( sizeof( pushConstants ) <= physicalDevice->getProperties().limits.maxPushConstantsSize ) && "Too many push constants" ); commandBuffer->begin( vk::CommandBufferBeginInfo() ); commandBuffer->pushConstants( **pipelineLayout, vk::ShaderStageFlagBits::eFragment, 0, pushConstants ); /* VULKAN_KEY_END */ std::unique_ptr pipelineCache = vk::raii::su::make_unique( *device, vk::PipelineCacheCreateInfo() ); std::unique_ptr graphicsPipeline = vk::raii::su::makeUniqueGraphicsPipeline( *device, *pipelineCache, *vertexShaderModule, nullptr, *fragmentShaderModule, nullptr, sizeof( texturedCubeData[0] ), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } }, vk::FrontFace::eClockwise, true, *pipelineLayout, *renderPass ); std::unique_ptr imageAcquiredSemaphore = vk::raii::su::make_unique( *device, vk::SemaphoreCreateInfo() ); vk::Result result; uint32_t imageIndex; std::tie( result, imageIndex ) = swapChainData.swapChain->acquireNextImage( vk::su::FenceTimeout, **imageAcquiredSemaphore ); assert( result == vk::Result::eSuccess ); assert( imageIndex < swapChainData.images.size() ); std::array clearValues; clearValues[0].color = vk::ClearColorValue( std::array( { { 0.2f, 0.2f, 0.2f, 0.2f } } ) ); clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 ); vk::RenderPassBeginInfo renderPassBeginInfo( **renderPass, **framebuffers[imageIndex], vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ), clearValues ); commandBuffer->beginRenderPass( renderPassBeginInfo, vk::SubpassContents::eInline ); commandBuffer->bindPipeline( vk::PipelineBindPoint::eGraphics, **graphicsPipeline ); commandBuffer->bindDescriptorSets( vk::PipelineBindPoint::eGraphics, **pipelineLayout, 0, { **descriptorSet }, nullptr ); commandBuffer->bindVertexBuffers( 0, { **vertexBufferData.buffer }, { 0 } ); commandBuffer->setViewport( 0, vk::Viewport( 0.0f, 0.0f, static_cast( surfaceData.extent.width ), static_cast( surfaceData.extent.height ), 0.0f, 1.0f ) ); commandBuffer->setScissor( 0, vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ) ); commandBuffer->draw( 12 * 3, 1, 0, 0 ); commandBuffer->endRenderPass(); commandBuffer->end(); std::unique_ptr drawFence = vk::raii::su::make_unique( *device, vk::FenceCreateInfo() ); vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput ); vk::SubmitInfo submitInfo( **imageAcquiredSemaphore, waitDestinationStageMask, **commandBuffer ); graphicsQueue->submit( submitInfo, **drawFence ); while ( vk::Result::eTimeout == device->waitForFences( { **drawFence }, VK_TRUE, vk::su::FenceTimeout ) ) ; vk::PresentInfoKHR presentInfoKHR( nullptr, **swapChainData.swapChain, imageIndex ); result = presentQueue->presentKHR( presentInfoKHR ); switch ( result ) { case vk::Result::eSuccess: break; case vk::Result::eSuboptimalKHR: std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n"; break; default: assert( false ); // an unexpected result is returned ! } std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) ); } catch ( vk::SystemError & err ) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit( -1 ); } catch ( std::exception & err ) { std::cout << "std::exception: " << err.what() << std::endl; exit( -1 ); } catch ( ... ) { std::cout << "unknown error\n"; exit( -1 ); } return 0; }