// Copyright(c) 2015-2016, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const std::string vkNamespace = R"( #if !defined(VULKAN_HPP_NAMESPACE) #define VULKAN_HPP_NAMESPACE vk #endif namespace VULKAN_HPP_NAMESPACE { )"; const std::string exceptionHeader = R"( #if defined(_MSC_VER) && (_MSC_VER == 1800) # define noexcept _NOEXCEPT #endif class ErrorCategoryImpl : public std::error_category { public: virtual const char* name() const noexcept override { return "VULKAN_HPP_NAMESPACE::Result"; } virtual std::string message(int ev) const override { return to_string(static_cast(ev)); } }; #if defined(_MSC_VER) && (_MSC_VER == 1800) # undef noexcept #endif VULKAN_HPP_INLINE const std::error_category& errorCategory() { static ErrorCategoryImpl instance; return instance; } VULKAN_HPP_INLINE std::error_code make_error_code(Result e) { return std::error_code(static_cast(e), errorCategory()); } VULKAN_HPP_INLINE std::error_condition make_error_condition(Result e) { return std::error_condition(static_cast(e), errorCategory()); } )"; const std::string exceptionClassesHeader = R"( #if defined(_MSC_VER) && (_MSC_VER == 1800) # define noexcept _NOEXCEPT #endif class Error { public: virtual ~Error() = default; virtual const char* what() const noexcept = 0; }; class LogicError : public Error, public std::logic_error { public: explicit LogicError( const std::string& what ) : Error(), std::logic_error(what) {} explicit LogicError( char const * what ) : Error(), std::logic_error(what) {} virtual ~LogicError() = default; virtual const char* what() const noexcept { return std::logic_error::what(); } }; class SystemError : public Error, public std::system_error { public: SystemError( std::error_code ec ) : Error(), std::system_error(ec) {} SystemError( std::error_code ec, std::string const& what ) : Error(), std::system_error(ec, what) {} SystemError( std::error_code ec, char const * what ) : Error(), std::system_error(ec, what) {} SystemError( int ev, std::error_category const& ecat ) : Error(), std::system_error(ev, ecat) {} SystemError( int ev, std::error_category const& ecat, std::string const& what) : Error(), std::system_error(ev, ecat, what) {} SystemError( int ev, std::error_category const& ecat, char const * what) : Error(), std::system_error(ev, ecat, what) {} virtual ~SystemError() = default; virtual const char* what() const noexcept { return std::system_error::what(); } }; #if defined(_MSC_VER) && (_MSC_VER == 1800) # undef noexcept #endif )"; const std::string flagsHeader = R"( template struct FlagTraits { enum { allFlags = 0 }; }; template class Flags { public: Flags() : m_mask(0) { } Flags(BitType bit) : m_mask(static_cast(bit)) { } Flags(Flags const& rhs) : m_mask(rhs.m_mask) { } Flags & operator=(Flags const& rhs) { m_mask = rhs.m_mask; return *this; } Flags & operator|=(Flags const& rhs) { m_mask |= rhs.m_mask; return *this; } Flags & operator&=(Flags const& rhs) { m_mask &= rhs.m_mask; return *this; } Flags & operator^=(Flags const& rhs) { m_mask ^= rhs.m_mask; return *this; } Flags operator|(Flags const& rhs) const { Flags result(*this); result |= rhs; return result; } Flags operator&(Flags const& rhs) const { Flags result(*this); result &= rhs; return result; } Flags operator^(Flags const& rhs) const { Flags result(*this); result ^= rhs; return result; } bool operator!() const { return !m_mask; } Flags operator~() const { Flags result(*this); result.m_mask ^= FlagTraits::allFlags; return result; } bool operator==(Flags const& rhs) const { return m_mask == rhs.m_mask; } bool operator!=(Flags const& rhs) const { return m_mask != rhs.m_mask; } explicit operator bool() const { return !!m_mask; } explicit operator MaskType() const { return m_mask; } private: MaskType m_mask; }; template Flags operator|(BitType bit, Flags const& flags) { return flags | bit; } template Flags operator&(BitType bit, Flags const& flags) { return flags & bit; } template Flags operator^(BitType bit, Flags const& flags) { return flags ^ bit; } )"; const std::string optionalClassHeader = R"( template class Optional { public: Optional(RefType & reference) { m_ptr = &reference; } Optional(RefType * ptr) { m_ptr = ptr; } Optional(std::nullptr_t) { m_ptr = nullptr; } operator RefType*() const { return m_ptr; } RefType const* operator->() const { return m_ptr; } explicit operator bool() const { return !!m_ptr; } private: RefType *m_ptr; }; )"; const std::string arrayProxyHeader = R"( #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template class ArrayProxy { public: ArrayProxy(std::nullptr_t) : m_count(0) , m_ptr(nullptr) {} ArrayProxy(T & ptr) : m_count(1) , m_ptr(&ptr) {} ArrayProxy(uint32_t count, T * ptr) : m_count(count) , m_ptr(ptr) {} template ArrayProxy(std::array::type, N> & data) : m_count(N) , m_ptr(data.data()) {} template ArrayProxy(std::array::type, N> const& data) : m_count(N) , m_ptr(data.data()) {} template ::type>> ArrayProxy(std::vector::type, Allocator> & data) : m_count(static_cast(data.size())) , m_ptr(data.data()) {} template ::type>> ArrayProxy(std::vector::type, Allocator> const& data) : m_count(static_cast(data.size())) , m_ptr(data.data()) {} ArrayProxy(std::initializer_list const& data) : m_count(static_cast(data.end() - data.begin())) , m_ptr(data.begin()) {} const T * begin() const { return m_ptr; } const T * end() const { return m_ptr + m_count; } const T & front() const { assert(m_count && m_ptr); return *m_ptr; } const T & back() const { assert(m_count && m_ptr); return *(m_ptr + m_count - 1); } bool empty() const { return (m_count == 0); } uint32_t size() const { return m_count; } T * data() const { return m_ptr; } private: uint32_t m_count; T * m_ptr; }; #endif )"; const std::string structureChainHeader = R"( template constexpr bool isStructureChainValid() { return false; } template class StructureChainElement { public: explicit operator Element&() { return value; } explicit operator const Element&() const { return value; } private: Element value; }; template class StructureChain : private StructureChainElement... { public: StructureChain() { link(); } StructureChain(StructureChain const &rhs) { linkAndCopy(rhs); } StructureChain& operator=(StructureChain const &rhs) { linkAndCopy(rhs); return *this; } template ClassType& get() { return static_cast(*this);} private: template void link() { } template void link() { static_assert(isStructureChainValid(), "The structure chain is not valid!"); X& x = static_cast(*this); Y& y = static_cast(*this); x.pNext = &y; link(); } template void linkAndCopy(StructureChain const &rhs) { static_cast(*this) = static_cast(rhs); } template void linkAndCopy(StructureChain const &rhs) { static_assert(isStructureChainValid(), "The structure chain is not valid!"); X& x = static_cast(*this); Y& y = static_cast(*this); x = static_cast(rhs); x.pNext = &y; linkAndCopy(rhs); } }; )"; const std::string versionCheckHeader = R"( #if !defined(VULKAN_HPP_HAS_UNRESTRICTED_UNIONS) # if defined(__clang__) # if __has_feature(cxx_unrestricted_unions) # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # elif defined(__GNUC__) # define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) # if 40600 <= GCC_VERSION # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # elif defined(_MSC_VER) # if 1900 <= _MSC_VER # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # endif #endif )"; const std::string inlineHeader = R"( #if !defined(VULKAN_HPP_INLINE) # if defined(__clang___) # if __has_attribute(always_inline) # define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__ # else # define VULKAN_HPP_INLINE inline # endif # elif defined(__GNUC__) # define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__ # elif defined(_MSC_VER) # define VULKAN_HPP_INLINE __forceinline # else # define VULKAN_HPP_INLINE inline # endif #endif )"; const std::string explicitHeader = R"( #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) # define VULKAN_HPP_TYPESAFE_EXPLICIT #else # define VULKAN_HPP_TYPESAFE_EXPLICIT explicit #endif )"; const std::string resultValueHeader = R"( template struct ResultValue { ResultValue( Result r, T & v ) : result( r ) , value( v ) {} Result result; T value; operator std::tuple() { return std::tuple(result, value); } }; template struct ResultValueType { #ifdef VULKAN_HPP_NO_EXCEPTIONS typedef ResultValue type; #else typedef T type; #endif }; template <> struct ResultValueType { #ifdef VULKAN_HPP_NO_EXCEPTIONS typedef Result type; #else typedef void type; #endif }; )"; const std::string createResultValueHeader = R"( VULKAN_HPP_INLINE ResultValueType::type createResultValue( Result result, char const * message ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( result == Result::eSuccess ); return result; #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } #endif } template VULKAN_HPP_INLINE typename ResultValueType::type createResultValue( Result result, T & data, char const * message ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( result == Result::eSuccess ); return ResultValue( result, data ); #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } return data; #endif } VULKAN_HPP_INLINE Result createResultValue( Result result, char const * message, std::initializer_list successCodes ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() ); #else if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() ) { throwResultException( result, message ); } #endif return result; } template VULKAN_HPP_INLINE ResultValue createResultValue( Result result, T & data, char const * message, std::initializer_list successCodes ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() ); #else if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() ) { throwResultException( result, message ); } #endif return ResultValue( result, data ); } )"; const std::string uniqueHandleHeader = R"( #if defined(VULKAN_HPP_NO_EXCEPTIONS) && !defined(VULKAN_HPP_NO_SMART_HANDLE) # define VULKAN_HPP_NO_SMART_HANDLE #endif #ifndef VULKAN_HPP_NO_SMART_HANDLE template class UniqueHandle { public: explicit UniqueHandle( Type const& value = Type(), Deleter const& deleter = Deleter() ) : m_value( value ) , m_deleter( deleter ) {} UniqueHandle( UniqueHandle const& ) = delete; UniqueHandle( UniqueHandle && other ) : m_value( other.release() ) , m_deleter( std::move( other.m_deleter ) ) {} ~UniqueHandle() { destroy(); } UniqueHandle & operator=( UniqueHandle const& ) = delete; UniqueHandle & operator=( UniqueHandle && other ) { reset( other.release() ); m_deleter = std::move( other.m_deleter ); return *this; } explicit operator bool() const { return m_value.operator bool(); } Type const* operator->() const { return &m_value; } Type * operator->() { return &m_value; } Type const& operator*() const { return m_value; } Type & operator*() { return m_value; } const Type & get() const { return m_value; } Type & get() { return m_value; } Deleter & getDeleter() { return m_deleter; } Deleter const& getDeleter() const { return m_deleter; } void reset( Type const& value = Type() ) { if ( m_value != value ) { destroy(); m_value = value; } } Type release() { Type value = m_value; m_value = nullptr; return value; } void swap( UniqueHandle & rhs ) { std::swap(m_value, rhs.m_value); std::swap(m_deleter, rhs.m_deleter); } private: void destroy() { if ( m_value ) { m_deleter( m_value ); } } private: Type m_value; Deleter m_deleter; }; template VULKAN_HPP_INLINE void swap( UniqueHandle & lhs, UniqueHandle & rhs ) { lhs.swap( rhs ); } #endif )"; std::string replaceWithMap(std::string const &input, std::map replacements) { // This will match ${someVariable} and contain someVariable in match group 1 std::regex re(R"(\$\{([^\}]+)\})"); auto it = std::sregex_iterator(input.begin(), input.end(), re); auto end = std::sregex_iterator(); // No match, just return the original string if (it == end) { return input; } std::string result = ""; while (it != end) { std::smatch match = *it; auto itReplacement = replacements.find(match[1].str()); assert(itReplacement != replacements.end()); result += match.prefix().str() + ((itReplacement != replacements.end()) ? itReplacement->second : match[0].str()); ++it; // we've passed the last match. Append the rest of the orignal string if (it == end) { result += match.suffix().str(); } } return result; } struct ParamData { std::string type; std::string name; std::string arraySize; std::string pureType; std::string len; bool optional; }; struct CommandData { CommandData(std::string const& t, std::string const& fn) : returnType(t) , fullName(fn) , returnParam(~0) , templateParam(~0) , twoStep(false) {} std::string className; std::string enhancedReturnType; std::string fullName; std::vector params; std::string protect; std::string reducedName; size_t returnParam; std::string returnType; std::set skippedParams; std::vector successCodes; size_t templateParam; bool twoStep; std::map vectorParams; }; struct DependencyData { enum class Category { COMMAND, ENUM, FLAGS, FUNC_POINTER, HANDLE, REQUIRED, SCALAR, STRUCT, UNION }; DependencyData(Category c, std::string const& n) : category(c) , name(n) {} Category category; std::string name; std::set dependencies; std::set forwardDependencies; }; struct NameValue { std::string name; std::string value; }; struct EnumData { EnumData(std::string const& n, bool b = false) : name(n) , bitmask(b) {} void addEnumMember(std::string const& name, std::string const& tag); std::string name; std::string prefix; std::string postfix; std::vector members; std::string protect; bool bitmask; }; struct FlagData { std::string protect; }; struct HandleData { std::vector commands; std::string protect; }; struct ScalarData { std::string protect; }; struct MemberData { std::string type; std::string name; std::string arraySize; std::string pureType; }; struct StructData { StructData() : returnedOnly(false) {} bool returnedOnly; bool isUnion; std::vector members; std::string protect; std::vector structExtends; }; struct DeleterData { std::string pool; std::string call; }; #if !defined(NDEBUG) struct ExtensionData { std::string protect; std::vector requires; }; #endif struct VkData { std::map commands; std::list dependencies; std::map> deleterTypes; // map from parent type to set of child types std::map deleterData; // map from child types to corresponding deleter data std::map enums; std::map flags; std::map handles; std::map scalars; std::map structs; std::set extendedStructs; // structs which are referenced by the structextends tag std::set tags; std::string typesafeCheck; std::string version; std::set vkTypes; std::string vulkanLicenseHeader; #if !defined(NDEBUG) std::map extensions; #endif }; void createDefaults( VkData const& vkData, std::map & defaultValues ); void determineEnhancedReturnType(CommandData & commandData); void determineReducedName(CommandData & commandData); void determineReturnParam(CommandData & commandData); void determineSkippedParams(CommandData & commandData); void determineTemplateParam(CommandData & commandData); void determineVectorParams(CommandData & commandData); void enterProtect(std::ostream &os, std::string const& protect); std::string extractTag(std::string const& name); std::string findTag(std::string const& name, std::set const& tags); std::string generateEnumNameForFlags(std::string const& name); bool hasPointerParam(std::vector const& params); void leaveProtect(std::ostream &os, std::string const& protect); void linkCommandToHandle(VkData & vkData, CommandData & commandData); std::string readArraySize(tinyxml2::XMLNode * node, std::string& name); bool readCommandParam( tinyxml2::XMLElement * element, std::set & dependencies, std::vector & params ); void readCommandParams(tinyxml2::XMLElement* element, std::set & dependencies, CommandData & commandData); tinyxml2::XMLNode* readCommandParamType(tinyxml2::XMLNode* node, ParamData& param); CommandData& readCommandProto(tinyxml2::XMLElement * element, VkData & vkData); void readCommands( tinyxml2::XMLElement * element, VkData & vkData ); void readCommandsCommand(tinyxml2::XMLElement * element, VkData & vkData); std::vector readCommandSuccessCodes(tinyxml2::XMLElement* element, std::set const& tags); void readComment(tinyxml2::XMLElement * element, std::string & header); void readEnums( tinyxml2::XMLElement * element, VkData & vkData ); void readEnumsEnum( tinyxml2::XMLElement * element, EnumData & enumData ); void readDisabledExtensionRequire(tinyxml2::XMLElement * element, VkData & vkData); void readExtensionCommand(tinyxml2::XMLElement * element, std::map & commands, std::string const& protect); void readExtensionEnum(tinyxml2::XMLElement * element, std::map & enums, std::string const& tag); void readExtensionRequire(tinyxml2::XMLElement * element, VkData & vkData, std::string const& protect, std::string const& tag); void readExtensions( tinyxml2::XMLElement * element, VkData & vkData ); void readExtensionsExtension(tinyxml2::XMLElement * element, VkData & vkData); void readExtensionType(tinyxml2::XMLElement * element, VkData & vkData, std::string const& protect); tinyxml2::XMLNode* readType(tinyxml2::XMLNode* element, std::string & type, std::string & pureType); void readTypeBasetype( tinyxml2::XMLElement * element, std::list & dependencies ); void readTypeBitmask( tinyxml2::XMLElement * element, VkData & vkData); void readTypeDefine( tinyxml2::XMLElement * element, VkData & vkData ); void readTypeFuncpointer( tinyxml2::XMLElement * element, std::list & dependencies ); void readTypeHandle(tinyxml2::XMLElement * element, VkData & vkData); void readTypeStruct( tinyxml2::XMLElement * element, VkData & vkData, bool isUnion ); void readTypeStructMember( tinyxml2::XMLElement * element, VkData & vkData, StructData & structData ); void readTags(tinyxml2::XMLElement * element, std::set & tags); void readTypes(tinyxml2::XMLElement * element, VkData & vkData); std::string reduceName(std::string const& name, bool singular = false); void registerDeleter(VkData & vkData, CommandData const& commandData); std::string startLowerCase(std::string const& input); std::string startUpperCase(std::string const& input); void sortDependencies( std::list & dependencies ); std::string strip(std::string const& value, std::string const& prefix, std::string const& postfix = std::string()); std::string stripPluralS(std::string const& name); std::string toCamelCase(std::string const& value); std::vector tokenize(std::string tokenString, char separator); std::string toUpperCase(std::string const& name); std::string trimEnd(std::string const& input); void writeCall(std::ostream & os, CommandData const& commandData, std::set const& vkTypes, bool firstCall, bool singular); std::string generateCall(CommandData const& commandData, std::set const& vkTypes, bool firstCall, bool singular); void writeCallCountParameter(std::ostream & os, CommandData const& commandData, bool singular, std::map::const_iterator it); void writeCallParameter(std::ostream & os, ParamData const& paramData, std::set const& vkTypes); void writeCallPlainTypeParameter(std::ostream & os, ParamData const& paramData); void writeCallVectorParameter(std::ostream & os, CommandData const& commandData, std::set const& vkTypes, bool firstCall, bool singular, std::map::const_iterator it); void writeCallVulkanTypeParameter(std::ostream & os, ParamData const& paramData); void writeDeleterClasses(std::ostream & os, std::pair> const& deleterTypes, std::map const& deleterData); void writeDeleterForwardDeclarations(std::ostream &os, std::pair> const& deleterTypes, std::map const& deleterData); void writeEnumsToString(std::ostream & os, EnumData const& enumData); void writeFlagsToString(std::ostream & os, std::string const& flagsName, EnumData const &enumData); void writeFunction(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool definition, bool enhanced, bool singular, bool unique, bool isStructureChain); void writeFunctionBodyEnhanced(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool singular, bool isStructureChain); void writeFunctionBodyEnhancedCall(std::ostream &os, std::string const& indentation, std::set const& vkTypes, CommandData const& commandData, bool singular); void writeFunctionBodyEnhancedCallResult(std::ostream &os, std::string const& indentation, std::set const& vkTypes, CommandData const& commandData, bool singular); void writeFunctionBodyEnhancedCallTwoStep(std::ostream & os, std::string const& indentation, std::set const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData); void writeFunctionBodyEnhancedCallTwoStepChecked(std::ostream & os, std::string const& indentation, std::set const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData); void writeFunctionBodyEnhancedCallTwoStepIterate(std::ostream & os, std::string const& indentation, std::set const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData); void writeFunctionBodyEnhancedLocalCountVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData); std::string writeFunctionBodyEnhancedLocalReturnVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool singular, bool isStructureChain); void writeFunctionBodyEnhancedMultiVectorSizeCheck(std::ostream & os, std::string const& indentation, CommandData const& commandData); void writeFunctionBodyEnhancedReturnResultValue(std::ostream & os, std::string const& indentation, std::string const& returnName, CommandData const& commandData, bool singular); void writeFunctionBodyStandard(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData); void writeFunctionBodyUnique(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool singular); void writeFunctionHeaderArguments(std::ostream & os, VkData const& vkData, CommandData const& commandData, bool enhanced, bool singular, bool withDefaults); void writeFunctionHeaderArgumentsEnhanced(std::ostream & os, VkData const& vkData, CommandData const& commandData, bool singular, bool withDefaults); void writeFunctionHeaderArgumentsStandard(std::ostream & os, CommandData const& commandData); void writeFunctionHeaderName(std::ostream & os, std::string const& name, bool singular, bool unique); void writeFunctionHeaderReturnType(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool enhanced, bool singular, bool unique, bool isStructureChain); void writeFunctionHeaderTemplate(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool withDefault, bool isStructureChain); void writeReinterpretCast(std::ostream & os, bool leadingConst, bool vulkanType, std::string const& type, bool trailingPointerToConst); void writeStandardOrEnhanced(std::ostream & os, std::string const& standard, std::string const& enhanced); void writeStructConstructor( std::ostream & os, std::string const& name, StructData const& structData, std::set const& vkTypes, std::map const& defaultValues ); void writeStructSetter( std::ostream & os, std::string const& structureName, MemberData const& memberData, std::set const& vkTypes, std::map const& structs ); void writeTypeCommand(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData); void writeTypeCommand(std::ostream &os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool definition); void writeTypeEnum(std::ostream & os, EnumData const& enumData); bool isErrorEnum(std::string const& enumName); std::string stripErrorEnumPrefix(std::string const& enumName); void writeExceptionsForEnum(std::ostream & os, EnumData const& enumData); void writeThrowExceptions(std::ostream& os, EnumData const& enumData); void writeTypeFlags(std::ostream & os, std::string const& flagsName, FlagData const& flagData, EnumData const& enumData); void writeTypeHandle(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, HandleData const& handle, std::list const& dependencies); void writeTypeScalar( std::ostream & os, DependencyData const& dependencyData ); void writeTypeStruct( std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, std::map const& defaultValues ); void writeTypeUnion( std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, std::map const& defaultValues ); void writeTypes(std::ostream & os, VkData const& vkData, std::map const& defaultValues); void writeVersionCheck(std::ostream & os, std::string const& version); void writeTypesafeCheck(std::ostream & os, std::string const& typesafeCheck); void EnumData::addEnumMember(std::string const &name, std::string const& tag) { NameValue nv; nv.name = "e" + toCamelCase(strip(name, prefix, postfix)); nv.value = name; if (bitmask) { size_t pos = nv.name.find("Bit"); if (pos != std::string::npos) { nv.name.erase(pos, 3); } } if (!tag.empty() && (nv.name.substr(nv.name.length() - tag.length()) == toCamelCase(tag))) { nv.name = nv.name.substr(0, nv.name.length() - tag.length()) + tag; } members.push_back(nv); } void createDefaults( VkData const& vkData, std::map & defaultValues ) { for (auto dependency : vkData.dependencies) { assert( defaultValues.find( dependency.name ) == defaultValues.end() ); switch( dependency.category ) { case DependencyData::Category::COMMAND : // commands should never be asked for defaults break; case DependencyData::Category::ENUM : { assert(vkData.enums.find(dependency.name) != vkData.enums.end()); EnumData const & enumData = vkData.enums.find(dependency.name)->second; if (!enumData.members.empty()) { defaultValues[dependency.name] = dependency.name + "::" + vkData.enums.find(dependency.name)->second.members.front().name; } else { defaultValues[dependency.name] = dependency.name + "()"; } } break; case DependencyData::Category::FLAGS : case DependencyData::Category::HANDLE: case DependencyData::Category::STRUCT: case DependencyData::Category::UNION : // just call the default constructor for flags, structs, and structs (which are mapped to classes) defaultValues[dependency.name] = dependency.name + "()"; break; case DependencyData::Category::FUNC_POINTER : // func_pointers default to nullptr defaultValues[dependency.name] = "nullptr"; break; case DependencyData::Category::REQUIRED : // all required default to "0" case DependencyData::Category::SCALAR : // all scalars default to "0" defaultValues[dependency.name] = "0"; break; default : assert( false ); break; } } } void determineReducedName(CommandData & commandData) { commandData.reducedName = commandData.fullName; std::string searchName = commandData.params[0].pureType; size_t pos = commandData.fullName.find(searchName); if ((pos == std::string::npos) && isupper(searchName[0])) { searchName[0] = tolower(searchName[0]); pos = commandData.fullName.find(searchName); } if (pos != std::string::npos) { commandData.reducedName.erase(pos, searchName.length()); } else if ((searchName == "commandBuffer") && (commandData.fullName.find("cmd") == 0)) { commandData.reducedName.erase(0, 3); pos = 0; } if ((pos == 0) && isupper(commandData.reducedName[0])) { commandData.reducedName[0] = tolower(commandData.reducedName[0]); } } void determineEnhancedReturnType(CommandData & commandData) { std::string returnType; // if there is a return parameter of type void or Result, and if it's of type Result it either has just one success code // or two success codes, where the second one is of type eIncomplete and it's a two-step process // -> we can return that parameter if ((commandData.returnParam != ~0) && ((commandData.returnType == "void") || ((commandData.returnType == "Result") && ((commandData.successCodes.size() == 1) || ((commandData.successCodes.size() == 2) && (commandData.successCodes[1] == "eIncomplete") && commandData.twoStep))))) { if (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end()) { // the return parameter is a vector-type parameter if (commandData.params[commandData.returnParam].pureType == "void") { // for a vector of void, we use a vector of uint8_t, instead commandData.enhancedReturnType = "std::vector"; } else { // for the other parameters, we use a vector of the pure type commandData.enhancedReturnType = "std::vector<" + commandData.params[commandData.returnParam].pureType + ",Allocator>"; } } else { // it's a simple parameter -> get the type and just remove the trailing '*' (originally, it's a pointer) assert(commandData.params[commandData.returnParam].type.back() == '*'); assert(commandData.params[commandData.returnParam].type.find("const") == std::string::npos); commandData.enhancedReturnType = commandData.params[commandData.returnParam].type; commandData.enhancedReturnType.pop_back(); } } else if ((commandData.returnType == "Result") && (commandData.successCodes.size() == 1)) { // an original return of type "Result" with just one successCode is changed to void, errors throw an exception commandData.enhancedReturnType = "void"; } else { // the return type just stays the original return type commandData.enhancedReturnType = commandData.returnType; } } void determineReturnParam(CommandData & commandData) { // for return types of type Result or void, we can replace determine a parameter to return if ((commandData.returnType == "Result") || (commandData.returnType == "void")) { for (size_t i = 0; i < commandData.params.size(); i++) { if ((commandData.params[i].type.find('*') != std::string::npos) && (commandData.params[i].type.find("const") == std::string::npos) && std::find_if(commandData.vectorParams.begin(), commandData.vectorParams.end(), [i](std::pair const& vp) { return vp.second == i; }) == commandData.vectorParams.end() && ((commandData.vectorParams.find(i) == commandData.vectorParams.end()) || commandData.twoStep || (commandData.successCodes.size() == 1))) { // it's a non-const pointer, not a vector-size parameter, if it's a vector parameter, its a two-step process or there's just one success code // -> look for another non-cost pointer argument auto paramIt = std::find_if(commandData.params.begin() + i + 1, commandData.params.end(), [](ParamData const& pd) { return (pd.type.find('*') != std::string::npos) && (pd.type.find("const") == std::string::npos); }); // if there is another such argument, we can't decide which one to return -> return none (~0) // otherwise return the index of the selcted parameter commandData.returnParam = paramIt != commandData.params.end() ? ~0 : i; } } } } void determineSkippedParams(CommandData & commandData) { // the size-parameters of vector parameters are not explicitly used in the enhanced API std::for_each(commandData.vectorParams.begin(), commandData.vectorParams.end(), [&commandData](std::pair const& vp) { if (vp.second != ~0) commandData.skippedParams.insert(vp.second); }); // and the return parameter is also skipped if (commandData.returnParam != ~0) { commandData.skippedParams.insert(commandData.returnParam); } } void determineTemplateParam(CommandData & commandData) { for (size_t i = 0; i < commandData.params.size(); i++) { // any vector parameter on the pure type void is templatized in the enhanced API if ((commandData.vectorParams.find(i) != commandData.vectorParams.end()) && (commandData.params[i].pureType == "void")) { #if !defined(NDEBUG) for (size_t j = i + 1; j < commandData.params.size(); j++) { assert((commandData.vectorParams.find(j) == commandData.vectorParams.end()) || (commandData.params[j].pureType != "void")); } #endif commandData.templateParam = i; break; } } assert((commandData.templateParam == ~0) || (commandData.vectorParams.find(commandData.templateParam) != commandData.vectorParams.end())); } void determineVectorParams(CommandData & commandData) { // look for the parameters whose len equals the name of an other parameter for (auto it = commandData.params.begin(), begin = it, end = commandData.params.end(); it != end; ++it) { if (!it->len.empty()) { auto findLambda = [it](ParamData const& pd) { return pd.name == it->len; }; auto findIt = std::find_if(begin, it, findLambda); // look for a parameter named as the len of this parameter assert((std::count_if(begin, end, findLambda) == 0) || (findIt < it)); // make sure, there is no other parameter like that // add this parameter as a vector parameter, using the len-name parameter as the second value (or ~0 if there is nothing like that) commandData.vectorParams.insert(std::make_pair(std::distance(begin, it), findIt < it ? std::distance(begin, findIt) : ~0)); assert((commandData.vectorParams[std::distance(begin, it)] != ~0) || (it->len == "null-terminated") || (it->len == "pAllocateInfo::descriptorSetCount") || (it->len == "pAllocateInfo::commandBufferCount")); } } } void enterProtect(std::ostream &os, std::string const& protect) { if (!protect.empty()) { os << "#ifdef " << protect << std::endl; } } std::string extractTag(std::string const& name) { // the name is supposed to look like: VK__ size_t start = name.find('_'); assert((start != std::string::npos) && (name.substr(0, start) == "VK")); size_t end = name.find('_', start + 1); assert(end != std::string::npos); return name.substr(start + 1, end - start - 1); } std::string findTag(std::string const& name, std::set const& tags) { // find the tag in a name, return that tag or an empty string auto tagIt = std::find_if(tags.begin(), tags.end(), [&name](std::string const& t) { size_t pos = name.find(t); return (pos != std::string::npos) && (pos == name.length() - t.length()); }); return tagIt != tags.end() ? *tagIt : ""; } std::string generateEnumNameForFlags(std::string const& name) { // create a string, where the substring "Flags" is replaced by "FlagBits" std::string generatedName = name; size_t pos = generatedName.rfind("Flags"); assert(pos != std::string::npos); generatedName.replace(pos, 5, "FlagBits"); return generatedName; } bool hasPointerParam(std::vector const& params) { // check if any of the parameters is a pointer auto it = std::find_if(params.begin(), params.end(), [](ParamData const& pd) { return (pd.type.find('*') != std::string::npos); }); return it != params.end(); } void leaveProtect(std::ostream &os, std::string const& protect) { if (!protect.empty()) { os << "#endif /*" << protect << "*/" << std::endl; } } void linkCommandToHandle(VkData & vkData, CommandData & commandData) { // first, find the handle named like the type of the first argument // if there is no such handle, look for the unnamed "handle", that gathers all the functions not tied to a specific handle assert(!commandData.params.empty()); std::map::iterator hit = vkData.handles.find(commandData.params[0].pureType); if (hit == vkData.handles.end()) { hit = vkData.handles.find(""); } assert(hit != vkData.handles.end()); // put the command into the handle's list of commands, and store the handle in the commands className hit->second.commands.push_back(commandData.fullName); commandData.className = hit->first; // add the dependencies of the command to the dependencies of the handle DependencyData const& commandDD = vkData.dependencies.back(); std::list::iterator handleDD = std::find_if(vkData.dependencies.begin(), vkData.dependencies.end(), [hit](DependencyData const& dd) { return dd.name == hit->first; }); assert((handleDD != vkData.dependencies.end()) || hit->first.empty()); if (handleDD != vkData.dependencies.end()) { std::copy_if(commandDD.dependencies.begin(), commandDD.dependencies.end(), std::inserter(handleDD->dependencies, handleDD->dependencies.end()), [hit](std::string const& d) { return d != hit->first; }); } } std::string readArraySize(tinyxml2::XMLNode * node, std::string& name) { std::string arraySize; if (name.back() == ']') { // if the parameter has '[' and ']' in its name, get the stuff inbetween those as the array size and erase that part from the parameter name assert(!node->NextSibling()); size_t pos = name.find('['); assert(pos != std::string::npos); arraySize = name.substr(pos + 1, name.length() - 2 - pos); name.erase(pos); } else { // otherwise look for a sibling of this node node = node->NextSibling(); if (node && node->ToText()) { std::string value = node->Value(); if (value == "[") { // if this node has '[' as its value, the next node holds the array size, and the node after that needs to hold ']', and there should be no more siblings node = node->NextSibling(); assert(node && node->ToElement() && (strcmp(node->Value(), "enum") == 0)); arraySize = node->ToElement()->GetText(); node = node->NextSibling(); assert(node && node->ToText() && (strcmp(node->Value(), "]") == 0)); } else { // otherwise, the node holds '[' and ']', so get the stuff in between those as the array size assert((value.front() == '[') && (value.back() == ']')); arraySize = value.substr(1, value.length() - 2); } assert(!node->NextSibling() || ((strcmp(node->NextSibling()->Value(), "comment") == 0) && !node->NextSibling()->NextSibling())); } } return arraySize; } bool readCommandParam( tinyxml2::XMLElement * element, std::set & dependencies, std::vector & params ) { ParamData param; if (element->Attribute("len")) { param.len = element->Attribute("len"); } // get the type of the parameter, and put it into the list of dependencies tinyxml2::XMLNode * child = readCommandParamType(element->FirstChild(), param); dependencies.insert(param.pureType); assert( child->ToElement() && ( strcmp( child->Value(), "name" ) == 0 ) ); param.name = child->ToElement()->GetText(); param.arraySize = readArraySize(child, param.name); param.optional = element->Attribute("optional") && (strcmp(element->Attribute("optional"), "true") == 0); params.push_back(param); // an optional parameter with "false,true" value is supposed to be part of a two-step algorithm: first get the size, than use it return element->Attribute("optional") && (strcmp(element->Attribute("optional"), "false,true") == 0); } void readCommandParams(tinyxml2::XMLElement* element, std::set & dependencies, CommandData & commandData) { // iterate over the siblings of the element and read the command parameters assert(element); while (element = element->NextSiblingElement()) { std::string value = element->Value(); if (value == "param") { commandData.twoStep |= readCommandParam(element, dependencies, commandData.params); } else { // ignore these values! assert((value == "implicitexternsyncparams") || (value == "validity")); } } } tinyxml2::XMLNode* readCommandParamType(tinyxml2::XMLNode* node, ParamData& param) { assert(node); if (node->ToText()) { // start type with "const" or "struct", if needed std::string value = trimEnd(node->Value()); assert((value == "const") || (value == "struct")); param.type = value + " "; node = node->NextSibling(); assert(node); } // get the pure type assert(node->ToElement() && (strcmp(node->Value(), "type") == 0) && node->ToElement()->GetText()); std::string type = strip(node->ToElement()->GetText(), "Vk"); param.type += type; param.pureType = type; // end with "*", "**", or "* const*", if needed node = node->NextSibling(); assert(node); if (node->ToText()) { std::string value = trimEnd(node->Value()); assert((value == "*") || (value == "**") || (value == "* const*")); param.type += value; node = node->NextSibling(); } return node; } CommandData& readCommandProto(tinyxml2::XMLElement * element, VkData & vkData) { tinyxml2::XMLElement * typeElement = element->FirstChildElement(); assert( typeElement && ( strcmp( typeElement->Value(), "type" ) == 0 ) ); tinyxml2::XMLElement * nameElement = typeElement->NextSiblingElement(); assert( nameElement && ( strcmp( nameElement->Value(), "name" ) == 0 ) ); assert( !nameElement->NextSiblingElement() ); // get return type and name of the command std::string type = strip( typeElement->GetText(), "Vk" ); std::string name = startLowerCase(strip(nameElement->GetText(), "vk")); // add an empty DependencyData to this name vkData.dependencies.push_back( DependencyData( DependencyData::Category::COMMAND, name ) ); // insert an empty CommandData into the commands-map, and return the newly created CommandData assert( vkData.commands.find( name ) == vkData.commands.end() ); return vkData.commands.insert( std::make_pair( name, CommandData(type, name) ) ).first->second; } void readCommands(tinyxml2::XMLElement * element, VkData & vkData) { for (tinyxml2::XMLElement* child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { assert(strcmp(child->Value(), "command") == 0); readCommandsCommand(child, vkData); } } void readCommandsCommand(tinyxml2::XMLElement * element, VkData & vkData) { tinyxml2::XMLElement * child = element->FirstChildElement(); assert( child && ( strcmp( child->Value(), "proto" ) == 0 ) ); CommandData& commandData = readCommandProto(child, vkData); commandData.successCodes = readCommandSuccessCodes(element, vkData.tags); readCommandParams(child, vkData.dependencies.back().dependencies, commandData); determineReducedName(commandData); linkCommandToHandle(vkData, commandData); registerDeleter(vkData, commandData); determineVectorParams(commandData); determineReturnParam(commandData); determineTemplateParam(commandData); determineEnhancedReturnType(commandData); determineSkippedParams(commandData); } std::vector readCommandSuccessCodes(tinyxml2::XMLElement* element, std::set const& tags) { std::vector results; if (element->Attribute("successcodes")) { std::string successCodes = element->Attribute("successcodes"); results = tokenize(successCodes, ','); for (auto & code : results) { std::string tag = findTag(code, tags); // on each success code: prepend 'e', strip "VK_" and a tag, convert it to camel case, and add the tag again code = std::string("e") + toCamelCase(strip(code, "VK_", tag)) + tag; } } return results; } void readComment(tinyxml2::XMLElement * element, std::string & header) { assert(element->GetText()); std::string text = element->GetText(); if (text.find("\nCopyright") == 0) { assert(header.empty()); header = text; // erase the part after the Copyright text size_t pos = header.find("\n\n-----"); assert(pos != std::string::npos); header.erase(pos); // replace any '\n' with "\n// " for (size_t pos = header.find('\n'); pos != std::string::npos; pos = header.find('\n', pos + 1)) { header.replace(pos, 1, "\n// "); } // and add a little message on our own header += "\n\n// This header is generated from the Khronos Vulkan XML API Registry."; } } void readEnums( tinyxml2::XMLElement * element, VkData & vkData ) { if (!element->Attribute("name")) { throw std::runtime_error(std::string("spec error: enums element is missing the name attribute")); } std::string name = strip(element->Attribute("name"), "Vk"); if ( name != "API Constants" ) // skip the "API Constants" { // add an empty DependencyData on this name into the dependencies list vkData.dependencies.push_back( DependencyData( DependencyData::Category::ENUM, name ) ); // ad an empty EnumData on this name into the enums map std::map::iterator it = vkData.enums.insert( std::make_pair( name, EnumData(name) ) ).first; if (name == "Result") { // special handling for VKResult, as its enums just have VK_ in common it->second.prefix = "VK_"; } else { if (!element->Attribute("type")) { throw std::runtime_error(std::string("spec error: enums name=\"" + name + "\" is missing the type attribute")); } std::string type = element->Attribute("type"); if (type != "bitmask" && type != "enum") { throw std::runtime_error(std::string("spec error: enums name=\"" + name + "\" has unknown type " + type)); } it->second.bitmask = (type == "bitmask"); if (it->second.bitmask) { // for a bitmask enum, start with "VK", cut off the trailing "FlagBits", and convert that name to upper case // end that with "Bit" size_t pos = name.find("FlagBits"); assert(pos != std::string::npos); it->second.prefix = "VK" + toUpperCase(name.substr(0, pos)) + "_"; } else { // for a non-bitmask enum, start with "VK", and convert the name to upper case it->second.prefix = "VK" + toUpperCase(name) + "_"; } // if the enum name contains a tag move it from the prefix to the postfix to generate correct enum value names. for (std::set::const_iterator tit = vkData.tags.begin(); tit != vkData.tags.end(); ++tit) { if ((tit->length() < it->second.prefix.length()) && (it->second.prefix.substr(it->second.prefix.length() - tit->length() - 1) == (*tit + "_"))) { it->second.prefix.erase(it->second.prefix.length() - tit->length() - 1); it->second.postfix = "_" + *tit; break; } else if ((tit->length() < it->second.name.length()) && (it->second.name.substr(it->second.name.length() - tit->length()) == *tit)) { it->second.postfix = "_" + *tit; break; } } } readEnumsEnum( element, it->second ); // add this enum to the set of Vulkan data types assert( vkData.vkTypes.find( name ) == vkData.vkTypes.end() ); vkData.vkTypes.insert( name ); } } void readEnumsEnum( tinyxml2::XMLElement * element, EnumData & enumData ) { // read the names of the enum values tinyxml2::XMLElement * child = element->FirstChildElement(); while (child) { if ( child->Attribute( "name" ) ) { enumData.addEnumMember(child->Attribute("name"), ""); } child = child->NextSiblingElement(); } } void readDisabledExtensionRequire(tinyxml2::XMLElement * element, VkData & vkData) { for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { std::string value = child->Value(); if ((value == "command") || (value == "type")) { // disable a command or a type ! assert(child->Attribute("name")); std::string name = (value == "command") ? startLowerCase(strip(child->Attribute("name"), "vk")) : strip(child->Attribute("name"), "Vk"); // search this name in the dependencies list and remove it std::list::const_iterator depIt = std::find_if(vkData.dependencies.begin(), vkData.dependencies.end(), [&name](DependencyData const& dd) { return(dd.name == name); }); assert(depIt != vkData.dependencies.end()); vkData.dependencies.erase(depIt); // erase it from all dependency sets for (auto & dep : vkData.dependencies) { dep.dependencies.erase(name); } if (value == "command") { // first unlink the command from its class auto commandsIt = vkData.commands.find(name); assert(commandsIt != vkData.commands.end()); assert(!commandsIt->second.className.empty()); auto handlesIt = vkData.handles.find(commandsIt->second.className); assert(handlesIt != vkData.handles.end()); auto it = std::find(handlesIt->second.commands.begin(), handlesIt->second.commands.end(), name); assert(it != handlesIt->second.commands.end()); handlesIt->second.commands.erase(it); // then remove the command vkData.commands.erase(name); } else { // a type simply needs to be removed from the structs and vkTypes sets assert((vkData.structs.find(name) != vkData.structs.end()) && (vkData.vkTypes.find(name) != vkData.vkTypes.end())); vkData.structs.erase(name); vkData.vkTypes.erase(name); } } else { // nothing to do for enums, no other values ever encountered assert(value == "enum"); } } } void readExtensionCommand(tinyxml2::XMLElement * element, std::map & commands, std::string const& protect) { // just add the protect string to the CommandData if (!protect.empty()) { assert(element->Attribute("name")); std::string name = startLowerCase(strip(element->Attribute("name"), "vk")); std::map::iterator cit = commands.find(name); assert(cit != commands.end()); cit->second.protect = protect; } } void readExtensionEnum(tinyxml2::XMLElement * element, std::map & enums, std::string const& tag) { // TODO process enums which don't extend existing enums if (element->Attribute("extends")) { assert(element->Attribute("name")); assert(enums.find(strip(element->Attribute("extends"), "Vk")) != enums.end()); assert(!!element->Attribute("bitpos") + !!element->Attribute("offset") + !!element->Attribute("value") == 1); auto enumIt = enums.find(strip(element->Attribute("extends"), "Vk")); assert(enumIt != enums.end()); enumIt->second.addEnumMember(element->Attribute("name"), tag); } } void readExtensionRequire(tinyxml2::XMLElement * element, VkData & vkData, std::string const& protect, std::string const& tag) { for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { std::string value = child->Value(); if ( value == "command" ) { readExtensionCommand(child, vkData.commands, protect); } else if (value == "type") { readExtensionType(child, vkData, protect); } else if ( value == "enum") { readExtensionEnum(child, vkData.enums, tag); } else { assert((value == "comment") || (value=="usage")); } } } void readExtensions(tinyxml2::XMLElement * element, VkData & vkData) { for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { assert( strcmp( child->Value(), "extension" ) == 0 ); readExtensionsExtension( child, vkData ); } } void readExtensionsExtension(tinyxml2::XMLElement * element, VkData & vkData) { if (strcmp(element->Attribute("supported"), "disabled") == 0) { // kick out all the disabled stuff we've read before !! for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { assert(strcmp(child->Value(), "require") == 0); readDisabledExtensionRequire(child, vkData); } } else { assert( element->Attribute( "name" ) ); std::string name = element->Attribute("name"); std::string tag = extractTag(name); assert(vkData.tags.find(tag) != vkData.tags.end()); std::string protect; if (element->Attribute("protect")) { protect = element->Attribute("protect"); } #if !defined(NDEBUG) assert(vkData.extensions.find(name) == vkData.extensions.end()); ExtensionData & extension = vkData.extensions.insert(std::make_pair(name, ExtensionData())).first->second; extension.protect = protect; if (element->Attribute("requires")) { extension.requires = tokenize(element->Attribute("requires"), ','); } #endif for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { assert(strcmp(child->Value(), "require") == 0); readExtensionRequire(child, vkData, protect, tag); } } } void readExtensionType(tinyxml2::XMLElement * element, VkData & vkData, std::string const& protect) { // add the protect-string to the appropriate type: enum, flag, handle, scalar, or struct if (!protect.empty()) { assert(element->Attribute("name")); std::string name = strip(element->Attribute("name"), "Vk"); std::map::iterator eit = vkData.enums.find(name); if (eit != vkData.enums.end()) { eit->second.protect = protect; } else { std::map::iterator fit = vkData.flags.find(name); if (fit != vkData.flags.end()) { fit->second.protect = protect; // if the enum of this flags is auto-generated, protect it as well std::string enumName = generateEnumNameForFlags(name); std::map::iterator eit = vkData.enums.find(enumName); assert(eit != vkData.enums.end()); if (eit->second.members.empty()) { eit->second.protect = protect; } } else { std::map::iterator hait = vkData.handles.find(name); if (hait != vkData.handles.end()) { hait->second.protect = protect; } else { std::map::iterator scit = vkData.scalars.find(name); if (scit != vkData.scalars.end()) { scit->second.protect = protect; } else { std::map::iterator stit = vkData.structs.find(name); assert(stit != vkData.structs.end() && stit->second.protect.empty()); stit->second.protect = protect; } } } } } } tinyxml2::XMLNode* readType(tinyxml2::XMLNode* element, std::string & type, std::string & pureType) { assert(element); if (element->ToText()) { std::string value = trimEnd(element->Value()); assert((value == "const") || (value == "struct")); type = value + " "; element = element->NextSibling(); assert(element); } assert(element->ToElement()); assert((strcmp(element->Value(), "type") == 0) && element->ToElement() && element->ToElement()->GetText()); pureType = strip(element->ToElement()->GetText(), "Vk"); type += pureType; element = element->NextSibling(); assert(element); if (element->ToText()) { std::string value = trimEnd(element->Value()); assert((value == "*") || (value == "**") || (value == "* const*")); type += value; element = element->NextSibling(); } return element; } void readTypeBasetype( tinyxml2::XMLElement * element, std::list & dependencies ) { tinyxml2::XMLElement * typeElement = element->FirstChildElement(); assert( typeElement && ( strcmp( typeElement->Value(), "type" ) == 0 ) && typeElement->GetText() ); std::string type = typeElement->GetText(); assert( ( type == "uint32_t" ) || ( type == "uint64_t" ) ); tinyxml2::XMLElement * nameElement = typeElement->NextSiblingElement(); assert( nameElement && ( strcmp( nameElement->Value(), "name" ) == 0 ) && nameElement->GetText() ); std::string name = strip( nameElement->GetText(), "Vk" ); // skip "Flags", if ( name != "Flags" ) { dependencies.push_back( DependencyData( DependencyData::Category::SCALAR, name ) ); dependencies.back().dependencies.insert( type ); } else { assert( type == "uint32_t" ); } } void readTypeBitmask(tinyxml2::XMLElement * element, VkData & vkData) { tinyxml2::XMLElement * typeElement = element->FirstChildElement(); assert( typeElement && ( strcmp( typeElement->Value(), "type" ) == 0 ) && typeElement->GetText() && ( strcmp( typeElement->GetText(), "VkFlags" ) == 0 ) ); std::string type = typeElement->GetText(); tinyxml2::XMLElement * nameElement = typeElement->NextSiblingElement(); assert( nameElement && ( strcmp( nameElement->Value(), "name" ) == 0 ) && nameElement->GetText() ); std::string name = strip( nameElement->GetText(), "Vk" ); assert( !nameElement->NextSiblingElement() ); std::string requires; if (element->Attribute("requires")) { requires = strip(element->Attribute("requires"), "Vk"); } else { // Generate FlagBits name, add a DependencyData for that name, and add it to the list of enums and vulkan types requires = generateEnumNameForFlags(name); vkData.dependencies.push_back(DependencyData(DependencyData::Category::ENUM, requires)); vkData.enums.insert(std::make_pair(requires, EnumData(requires, true))); vkData.vkTypes.insert(requires); } // add a DependencyData for the bitmask name, with the required type as its first dependency vkData.dependencies.push_back( DependencyData( DependencyData::Category::FLAGS, name ) ); vkData.dependencies.back().dependencies.insert( requires ); vkData.flags.insert(std::make_pair(name, FlagData())); assert( vkData.vkTypes.find( name ) == vkData.vkTypes.end() ); vkData.vkTypes.insert( name ); } void readTypeDefine( tinyxml2::XMLElement * element, VkData & vkData ) { tinyxml2::XMLElement * child = element->FirstChildElement(); if (child && (strcmp(child->GetText(), "VK_HEADER_VERSION") == 0)) { vkData.version = element->LastChild()->ToText()->Value(); } else if (element->Attribute("name") && strcmp(element->Attribute("name"), "VK_DEFINE_NON_DISPATCHABLE_HANDLE") == 0) { // filter out the check for the different types of VK_DEFINE_NON_DISPATCHABLE_HANDLE std::string text = element->LastChild()->ToText()->Value(); size_t start = text.find("#if defined(__LP64__)"); size_t end = text.find_first_of("\r\n", start + 1); vkData.typesafeCheck = text.substr(start, end - start); } // ignore all the other defines } void readTypeFuncpointer( tinyxml2::XMLElement * element, std::list & dependencies ) { tinyxml2::XMLElement * child = element->FirstChildElement(); assert( child && ( strcmp( child->Value(), "name" ) == 0 ) && child->GetText() ); dependencies.push_back( DependencyData( DependencyData::Category::FUNC_POINTER, child->GetText() ) ); } void readTypeHandle(tinyxml2::XMLElement * element, VkData & vkData) { tinyxml2::XMLElement * typeElement = element->FirstChildElement(); assert( typeElement && ( strcmp( typeElement->Value(), "type" ) == 0 ) && typeElement->GetText() ); #if !defined(NDEBUG) std::string type = typeElement->GetText(); assert((type.find("VK_DEFINE_HANDLE") == 0) || (type.find("VK_DEFINE_NON_DISPATCHABLE_HANDLE") == 0)); #endif tinyxml2::XMLElement * nameElement = typeElement->NextSiblingElement(); assert( nameElement && ( strcmp( nameElement->Value(), "name" ) == 0 ) && nameElement->GetText() ); std::string name = strip( nameElement->GetText(), "Vk" ); vkData.dependencies.push_back( DependencyData( DependencyData::Category::HANDLE, name ) ); assert(vkData.vkTypes.find(name) == vkData.vkTypes.end()); vkData.vkTypes.insert(name); assert(vkData.handles.find(name) == vkData.handles.end()); vkData.handles[name]; } void readTypeStruct( tinyxml2::XMLElement * element, VkData & vkData, bool isUnion ) { assert( !element->Attribute( "returnedonly" ) || ( strcmp( element->Attribute( "returnedonly" ), "true" ) == 0 ) ); assert( element->Attribute( "name" ) ); std::string name = strip( element->Attribute( "name" ), "Vk" ); if ( name == "Rect3D" ) { // for whatever reason, VkRect3D is listed in vk.xml, but does not appear in vulkan.h!! return; } vkData.dependencies.push_back( DependencyData( isUnion ? DependencyData::Category::UNION : DependencyData::Category::STRUCT, name ) ); assert( vkData.structs.find( name ) == vkData.structs.end() ); std::map::iterator it = vkData.structs.insert( std::make_pair( name, StructData() ) ).first; it->second.returnedOnly = !!element->Attribute( "returnedonly" ); it->second.isUnion = isUnion; if (element->Attribute("structextends")) { std::vector structExtends = tokenize(element->Attribute("structextends"), ','); for (auto const& s : structExtends) { assert(s.substr(0, 2) == "Vk"); std::string strippedName = s.substr(2); it->second.structExtends.push_back(strippedName); vkData.extendedStructs.insert(strippedName); } assert(!it->second.structExtends.empty()); } for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { assert( child->Value() ); std::string value = child->Value(); assert((value == "comment") || (value == "member")); if (value == "member") { readTypeStructMember(child, vkData, it->second); } } assert( vkData.vkTypes.find( name ) == vkData.vkTypes.end() ); vkData.vkTypes.insert( name ); } void readTypeStructMember(tinyxml2::XMLElement * element, VkData & vkData, StructData & structData) { structData.members.push_back(MemberData()); MemberData & member = structData.members.back(); tinyxml2::XMLNode* child = readType(element->FirstChild(), member.type, member.pureType); vkData.dependencies.back().dependencies.insert(member.pureType); assert((child->ToElement() && strcmp(child->Value(), "name") == 0)); member.name = child->ToElement()->GetText(); member.arraySize = readArraySize(child, member.name); } void readTags(tinyxml2::XMLElement * element, std::set & tags) { tags.insert("EXT"); tags.insert("KHR"); for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { assert(child->Attribute("name")); tags.insert(child->Attribute("name")); } } void readTypes(tinyxml2::XMLElement * element, VkData & vkData) { for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { assert(child->Value()); std::string value = child->Value(); assert((value == "comment") || (value == "type")); if (value == "type") { if (child->Attribute("category")) { std::string category = child->Attribute("category"); if (category == "basetype") { readTypeBasetype(child, vkData.dependencies); } else if (category == "bitmask") { readTypeBitmask(child, vkData); } else if (category == "define") { readTypeDefine(child, vkData); } else if (category == "funcpointer") { readTypeFuncpointer(child, vkData.dependencies); } else if (category == "handle") { readTypeHandle(child, vkData); } else if (category == "struct") { readTypeStruct(child, vkData, false); } else if (category == "union") { readTypeStruct(child, vkData, true); } else { assert((category == "enum") || (category == "include")); } } else { assert(child->Attribute("name")); vkData.dependencies.push_back(DependencyData(DependencyData::Category::REQUIRED, child->Attribute("name"))); } } } } std::string reduceName(std::string const& name, bool singular) { std::string reducedName; if ((name[0] == 'p') && (1 < name.length()) && (isupper(name[1]) || name[1] == 'p')) { reducedName = strip(name, "p"); reducedName[0] = tolower(reducedName[0]); } else { reducedName = name; } if (singular) { size_t pos = reducedName.rfind('s'); assert(pos != std::string::npos); reducedName.erase(pos, 1); } return reducedName; } void registerDeleter(VkData & vkData, CommandData const& commandData) { if ((commandData.fullName.substr(0, 7) == "destroy") || (commandData.fullName.substr(0, 4) == "free")) { std::string key; size_t valueIndex; switch (commandData.params.size()) { case 2: case 3: assert(commandData.params.back().pureType == "AllocationCallbacks"); key = (commandData.params.size() == 2) ? "" : commandData.params[0].pureType; valueIndex = commandData.params.size() - 2; break; case 4: key = commandData.params[0].pureType; valueIndex = 3; assert(vkData.deleterData.find(commandData.params[valueIndex].pureType) == vkData.deleterData.end()); vkData.deleterData[commandData.params[valueIndex].pureType].pool = commandData.params[1].pureType; break; default: assert(false); } if (commandData.fullName == "destroyDevice") { key = "PhysicalDevice"; } assert(vkData.deleterTypes[key].find(commandData.params[valueIndex].pureType) == vkData.deleterTypes[key].end()); vkData.deleterTypes[key].insert(commandData.params[valueIndex].pureType); vkData.deleterData[commandData.params[valueIndex].pureType].call = commandData.reducedName; } } void sortDependencies( std::list & dependencies ) { std::set listedTypes = { "VkFlags" }; std::list sortedDependencies; while ( !dependencies.empty() ) { bool found = false; for ( std::list::iterator it = dependencies.begin() ; it != dependencies.end() ; ++it ) { if (std::find_if(it->dependencies.begin(), it->dependencies.end(), [&listedTypes](std::string const& d) { return listedTypes.find(d) == listedTypes.end(); }) == it->dependencies.end()) { sortedDependencies.push_back( *it ); listedTypes.insert( it->name ); dependencies.erase( it ); found = true; break; } } if (!found) { // resolve direct circular dependencies for (std::list::iterator it = dependencies.begin(); !found && it != dependencies.end(); ++it) { for (std::set::const_iterator dit = it->dependencies.begin(); dit != it->dependencies.end(); ++dit) { std::list::const_iterator depIt = std::find_if(dependencies.begin(), dependencies.end(), [&dit](DependencyData const& dd) { return(dd.name == *dit); }); if (depIt != dependencies.end()) { if (depIt->dependencies.find(it->name) != depIt->dependencies.end()) { // we only have just one case, for now! assert((it->category == DependencyData::Category::HANDLE) && (depIt->category == DependencyData::Category::STRUCT)); it->forwardDependencies.insert(*dit); it->dependencies.erase(*dit); found = true; break; } } #if !defined(NDEBUG) else { assert(std::find_if(sortedDependencies.begin(), sortedDependencies.end(), [&dit](DependencyData const& dd) { return(dd.name == *dit); }) != sortedDependencies.end()); } #endif } } } assert( found ); } dependencies.swap(sortedDependencies); } std::string startLowerCase(std::string const& input) { return static_cast(tolower(input[0])) + input.substr(1); } std::string startUpperCase(std::string const& input) { return static_cast(toupper(input[0])) + input.substr(1); } std::string strip(std::string const& value, std::string const& prefix, std::string const& postfix) { std::string strippedValue = value; if (strippedValue.substr(0, prefix.length()) == prefix) { strippedValue.erase(0, prefix.length()); } if (!postfix.empty() && (strippedValue.substr(strippedValue.length() - postfix.length()) == postfix)) { strippedValue.erase(strippedValue.length() - postfix.length()); } return strippedValue; } std::string stripPluralS(std::string const& name) { std::string strippedName(name); size_t pos = strippedName.rfind('s'); assert(pos != std::string::npos); strippedName.erase(pos, 1); return strippedName; } std::string toCamelCase(std::string const& value) { assert(!value.empty() && (isupper(value[0]) || isdigit(value[0]))); std::string result; result.reserve(value.size()); result.push_back(value[0]); for (size_t i = 1; i < value.size(); i++) { if (value[i] != '_') { if ((value[i - 1] == '_') || isdigit(value[i-1])) { result.push_back(value[i]); } else { result.push_back(tolower(value[i])); } } } return result; } std::vector tokenize(std::string tokenString, char separator) { std::vector tokens; size_t start = 0, end; do { end = tokenString.find(separator, start); tokens.push_back(tokenString.substr(start, end - start)); start = end + 1; } while (end != std::string::npos); return tokens; } std::string toUpperCase(std::string const& name) { assert(isupper(name.front())); std::string convertedName; for (size_t i = 0; i const& vkTypes, bool firstCall, bool singular) { std::ostringstream call; writeCall(call, commandData, vkTypes, firstCall, singular); return call.str(); } void writeCall(std::ostream & os, CommandData const& commandData, std::set const& vkTypes, bool firstCall, bool singular) { // get the parameter indices of the counter for vector parameters std::map countIndices; for (std::map::const_iterator it = commandData.vectorParams.begin(); it != commandData.vectorParams.end(); ++it) { countIndices.insert(std::make_pair(it->second, it->first)); } // the original function call os << "vk" << startUpperCase(commandData.fullName) << "( "; if (!commandData.className.empty()) { // if it's member of a class -> add the first parameter with "m_" as prefix os << "m_" << commandData.params[0].name; } for (size_t i=commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++) { if (0 < i) { os << ", "; } std::map::const_iterator it = countIndices.find(i); if (it != countIndices.end()) { writeCallCountParameter(os, commandData, singular, it); } else if ((it = commandData.vectorParams.find(i)) != commandData.vectorParams.end()) { writeCallVectorParameter(os, commandData, vkTypes, firstCall, singular, it); } else { if (vkTypes.find(commandData.params[i].pureType) != vkTypes.end()) { writeCallVulkanTypeParameter(os, commandData.params[i]); } else { writeCallPlainTypeParameter(os, commandData.params[i]); } } } os << " )"; } void writeCallCountParameter(std::ostream & os, CommandData const& commandData, bool singular, std::map::const_iterator it) { // this parameter is a count parameter for a vector parameter if ((commandData.returnParam == it->second) && commandData.twoStep) { // the corresponding vector parameter is the return parameter and it's a two-step algorithm // -> use the pointer to a local variable named like the counter parameter without leading 'p' os << "&" << startLowerCase(strip(commandData.params[it->first].name, "p")); } else { // the corresponding vector parameter is not the return parameter, or it's not a two-step algorithm if (singular) { // for the singular version, the count is just 1. os << "1 "; } else { // for the non-singular version, the count is the size of the vector parameter // -> use the vector parameter name without leading 'p' to get the size (in number of elements, not in bytes) os << startLowerCase(strip(commandData.params[it->second].name, "p")) << ".size() "; } if (commandData.templateParam == it->second) { // if the vector parameter is templatized -> multiply by the size of that type to get the size in bytes os << "* sizeof( T ) "; } } } void writeCallPlainTypeParameter(std::ostream & os, ParamData const& paramData) { // this parameter is just a plain type if (paramData.type.back() == '*') { // it's a pointer std::string parameterName = startLowerCase(strip(paramData.name, "p")); if (paramData.type.find("const") != std::string::npos) { // it's a const pointer if (paramData.pureType == "char") { // it's a const pointer to char -> it's a string -> get the data via c_str() os << parameterName; if (paramData.optional) { // it's optional -> might use nullptr os << " ? " << parameterName << "->c_str() : nullptr"; } else { os << ".c_str()"; } } else { // it's const pointer to void (only other type that occurs) -> just use the name assert((paramData.pureType == "void") && !paramData.optional); os << paramData.name; } } else { // it's a non-const pointer, and char is the only type that occurs -> use the address of the parameter assert(paramData.type.find("char") == std::string::npos); os << "&" << parameterName; } } else { // it's a plain parameter -> just use its name os << paramData.name; } } void writeCallVectorParameter(std::ostream & os, CommandData const& commandData, std::set const& vkTypes, bool firstCall, bool singular, std::map::const_iterator it) { // this parameter is a vector parameter assert(commandData.params[it->first].type.back() == '*'); if ((commandData.returnParam == it->first) && commandData.twoStep && firstCall) { // this parameter is the return parameter, and it's the first call of a two-step algorithm -> just just nullptr os << "nullptr"; } else { std::string parameterName = startLowerCase(strip(commandData.params[it->first].name, "p")); std::set::const_iterator vkit = vkTypes.find(commandData.params[it->first].pureType); if ((vkit != vkTypes.end()) || (it->first == commandData.templateParam)) { // CHECK for !commandData.params[it->first].optional // this parameter is a vulkan type or a templated type -> need to reinterpret cast writeReinterpretCast(os, commandData.params[it->first].type.find("const") == 0, vkit != vkTypes.end(), commandData.params[it->first].pureType, commandData.params[it->first].type.rfind("* const") != std::string::npos); os << "( "; if (singular) { // in singular case, strip the plural-S from the name, and use the pointer to that thing os << "&" << stripPluralS(parameterName); } else { // in plural case, get the pointer to the data os << parameterName << ".data()"; } os << " )"; } else if (commandData.params[it->first].pureType == "char") { // the parameter is a vector to char -> it might be optional // besides that, the parameter now is a std::string -> get the pointer via c_str() os << parameterName; if (commandData.params[it->first].optional) { os << " ? " << parameterName << "->c_str() : nullptr"; } else { os << ".c_str()"; } } else { // this parameter is just a vetor -> get the pointer to its data os << parameterName << ".data()"; } } } void writeCallVulkanTypeParameter(std::ostream & os, ParamData const& paramData) { // this parameter is a vulkan type if (paramData.type.back() == '*') { // it's a pointer -> needs a reinterpret cast to the vulkan type std::string parameterName = startLowerCase(strip(paramData.name, "p")); writeReinterpretCast(os, paramData.type.find("const") != std::string::npos, true, paramData.pureType, false); os << "( "; if (paramData.optional) { // for an optional parameter, we need also a static_cast from optional type to const-pointer to pure type os << "static_cast( " << parameterName << " )"; } else { // other parameters can just use the pointer os << "&" << parameterName; } os << " )"; } else { // a non-pointer parameter needs a static_cast from vk::-type to vulkan type os << "static_cast( " << paramData.name << " )"; } } void writeFunction(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool definition, bool enhanced, bool singular, bool unique, bool isStructureChain) { if (enhanced && (!singular || isStructureChain)) { writeFunctionHeaderTemplate(os, indentation, commandData, !definition, isStructureChain); } os << indentation << (definition ? "VULKAN_HPP_INLINE " : ""); writeFunctionHeaderReturnType(os, indentation, commandData, enhanced, singular, unique, isStructureChain); if (definition && !commandData.className.empty()) { os << commandData.className << "::"; } writeFunctionHeaderName(os, commandData.reducedName, singular, unique); writeFunctionHeaderArguments(os, vkData, commandData, enhanced, singular, !definition); os << (definition ? "" : ";") << std::endl; if (definition) { // write the function body os << indentation << "{" << std::endl; if (enhanced) { if (unique) { writeFunctionBodyUnique(os, indentation, vkData, commandData, singular); } else { writeFunctionBodyEnhanced(os, indentation, vkData, commandData, singular, isStructureChain); } } else { writeFunctionBodyStandard(os, indentation, vkData, commandData); } os << indentation << "}" << std::endl; } } void writeFunctionBodyEnhanced(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool singular, bool isStructureChain) { if (1 < commandData.vectorParams.size()) { writeFunctionBodyEnhancedMultiVectorSizeCheck(os, indentation, commandData); } std::string returnName; if (commandData.returnParam != ~0) { returnName = writeFunctionBodyEnhancedLocalReturnVariable(os, indentation, commandData, singular, isStructureChain); } if (commandData.twoStep) { assert(!singular); writeFunctionBodyEnhancedLocalCountVariable(os, indentation, commandData); // we now might have to check the result, resize the returned vector accordingly, and call the function again std::map::const_iterator returnit = commandData.vectorParams.find(commandData.returnParam); assert(returnit != commandData.vectorParams.end() && (returnit->second != ~0)); std::string sizeName = startLowerCase(strip(commandData.params[returnit->second].name, "p")); if (commandData.returnType == "Result") { if (1 < commandData.successCodes.size()) { writeFunctionBodyEnhancedCallTwoStepIterate(os, indentation, vkData.vkTypes, returnName, sizeName, commandData); } else { writeFunctionBodyEnhancedCallTwoStepChecked(os, indentation, vkData.vkTypes, returnName, sizeName, commandData); } } else { writeFunctionBodyEnhancedCallTwoStep(os, indentation, vkData.vkTypes, returnName, sizeName, commandData); } } else { if (commandData.returnType == "Result") { writeFunctionBodyEnhancedCallResult(os, indentation, vkData.vkTypes, commandData, singular); } else { writeFunctionBodyEnhancedCall(os, indentation, vkData.vkTypes, commandData, singular); } } if ((commandData.returnType == "Result") || !commandData.successCodes.empty()) { writeFunctionBodyEnhancedReturnResultValue(os, indentation, returnName, commandData, singular); } else if ((commandData.returnParam != ~0) && (commandData.returnType != commandData.enhancedReturnType)) { // for the other returning cases, when the return type is somhow enhanced, just return the local returnVariable os << indentation << " return " << returnName << ";" << std::endl; } } void writeFunctionBodyEnhanced(std::ostream &os, std::string const& templateString, std::string const& indentation, std::set const& vkTypes, CommandData const& commandData, bool singular) { os << replaceWithMap(templateString, { { "call", generateCall(commandData, vkTypes, true, singular) }, { "i", indentation } }); } void writeFunctionBodyEnhancedCall(std::ostream &os, std::string const& indentation, std::set const& vkTypes, CommandData const& commandData, bool singular) { std::string const templateString = "${i} return ${call};\n"; std::string const templateStringVoid = "${i} ${call};\n"; writeFunctionBodyEnhanced(os, commandData.returnType == "void" ? templateStringVoid : templateString, indentation, vkTypes, commandData, singular); } void writeFunctionBodyEnhancedCallResult(std::ostream &os, std::string const& indentation, std::set const& vkTypes, CommandData const& commandData, bool singular) { std::string const templateString = "${i} Result result = static_cast( ${call} );\n"; writeFunctionBodyEnhanced(os, templateString, indentation, vkTypes, commandData, singular); } void writeFunctionBodyTwoStep(std::ostream & os, std::string const &templateString, std::string const& indentation, std::set const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData) { std::map replacements = { { "sizeName", sizeName }, { "returnName", returnName }, { "call1", generateCall(commandData, vkTypes, true, false) }, { "call2", generateCall(commandData, vkTypes, false, false) }, { "i", indentation } }; os << replaceWithMap(templateString, replacements); } void writeFunctionBodyEnhancedCallTwoStep(std::ostream & os, std::string const& indentation, std::set const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData) { std::string const templateString = R"(${i} ${call1}; ${i} ${returnName}.resize( ${sizeName} ); ${i} ${call2}; )"; writeFunctionBodyTwoStep(os, templateString, indentation, vkTypes, returnName, sizeName, commandData); } void writeFunctionBodyEnhancedCallTwoStepChecked(std::ostream & os, std::string const& indentation, std::set const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData) { std::string const templateString = R"(${i} Result result = static_cast( ${call1} ); ${i} if ( ( result == Result::eSuccess ) && ${sizeName} ) ${i} { ${i} ${returnName}.resize( ${sizeName} ); ${i} result = static_cast( ${call2} ); ${i} } )"; writeFunctionBodyTwoStep(os, templateString, indentation, vkTypes, returnName, sizeName, commandData); } void writeFunctionBodyEnhancedCallTwoStepIterate(std::ostream & os, std::string const& indentation, std::set const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData) { std::string const templateString = R"(${i} Result result; ${i} do ${i} { ${i} result = static_cast( ${call1} ); ${i} if ( ( result == Result::eSuccess ) && ${sizeName} ) ${i} { ${i} ${returnName}.resize( ${sizeName} ); ${i} result = static_cast( ${call2} ); ${i} } ${i} } while ( result == Result::eIncomplete ); ${i} assert( ${sizeName} <= ${returnName}.size() ); ${i} ${returnName}.resize( ${sizeName} ); )"; writeFunctionBodyTwoStep(os, templateString, indentation, vkTypes, returnName, sizeName, commandData); } void writeFunctionBodyEnhancedLocalCountVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData) { // local count variable to hold the size of the vector to fill assert(commandData.returnParam != ~0); std::map::const_iterator returnit = commandData.vectorParams.find(commandData.returnParam); assert(returnit != commandData.vectorParams.end() && (returnit->second != ~0)); assert((commandData.returnType == "Result") || (commandData.returnType == "void")); // take the pure type of the size parameter; strip the leading 'p' from its name for its local name os << indentation << " " << commandData.params[returnit->second].pureType << " " << startLowerCase(strip(commandData.params[returnit->second].name, "p")) << ";" << std::endl; } std::string writeFunctionBodyEnhancedLocalReturnVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool singular, bool isStructureChain) { bool returnsVector = !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end()); std::string returnName = startLowerCase(strip(commandData.params[commandData.returnParam].name, "p")); // there is a returned parameter -> we need a local variable to hold that value if (commandData.returnType != commandData.enhancedReturnType) { // the returned parameter is somehow enhanced by us os << indentation << " "; if (singular) { if (isStructureChain) { std::string const &pureType = commandData.params[commandData.returnParam].pureType; // For StructureChains use the template parameters os << "StructureChain structureChain;" << std::endl; returnName = stripPluralS(returnName); os << indentation << " " << pureType << "& " << returnName << " = structureChain.template get<" << pureType << ">()"; returnName = "structureChain"; } else { // in singular case, just use the return parameters pure type for the return variable returnName = stripPluralS(returnName); os << commandData.params[commandData.returnParam].pureType << " " << returnName; } } else { // in non-singular case, use the enhanced type for the return variable (like vector<...>) if (isStructureChain) { std::string const &returnType = commandData.enhancedReturnType; // For StructureChains use the template parameters os << "StructureChain structureChain;" << std::endl; os << indentation << " " << returnType << "& " << returnName << " = structureChain.template get<" << returnType << ">()"; returnName = "structureChain"; } else { os << commandData.enhancedReturnType << " " << returnName; } std::map::const_iterator it = commandData.vectorParams.find(commandData.returnParam); if (it != commandData.vectorParams.end() && !commandData.twoStep) { // if the return parameter is a vector parameter, and not part of a two-step algorithm, initialize its size std::string size; if (it->second == ~0) { assert(!commandData.params[commandData.returnParam].len.empty()); // the size of the vector is not given by an other parameter, but by some member of a parameter, described as 'parameter::member' // -> replace the '::' by '.' and filter out the leading 'p' to access that value size = startLowerCase(strip(commandData.params[commandData.returnParam].len, "p")); size_t pos = size.find("::"); assert(pos != std::string::npos); size.replace(pos, 2, "."); } else { // the size of the vector is given by an other parameter // that means (as this is not a two-step algorithm) it's size is determined by some other vector parameter! // -> look for it and get it's actual size for (auto const& vectorParam : commandData.vectorParams) { if ((vectorParam.first != commandData.returnParam) && (vectorParam.second == it->second)) { size = startLowerCase(strip(commandData.params[vectorParam.first].name, "p")) + ".size()"; break; } } } assert(!size.empty()); os << "( " << size << (returnsVector ? ", {}, {alloc} )" : " )"); } else if ( returnsVector ) { os << "( {alloc} )"; } } os << ";" << std::endl; } else { // the return parameter is not enhanced -> the type is supposed to be a Result and there are more than one success codes! assert((commandData.returnType == "Result") && (1 < commandData.successCodes.size())); os << indentation << " " << commandData.params[commandData.returnParam].pureType << " " << returnName << ";" << std::endl; } return returnName; } void writeFunctionBodyEnhancedMultiVectorSizeCheck(std::ostream & os, std::string const& indentation, CommandData const& commandData) { std::string const templateString = R"#(#ifdef VULKAN_HPP_NO_EXCEPTIONS ${i} assert( ${firstVectorName}.size() == ${secondVectorName}.size() ); #else ${i} if ( ${firstVectorName}.size() != ${secondVectorName}.size() ) ${i} { ${i} throw LogicError( "VULKAN_HPP_NAMESPACE::${className}::${reducedName}: ${firstVectorName}.size() != ${secondVectorName}.size()" ); ${i} } #endif // VULKAN_HPP_NO_EXCEPTIONS )#"; // add some error checks if multiple vectors need to have the same size for (std::map::const_iterator it0 = commandData.vectorParams.begin(); it0 != commandData.vectorParams.end(); ++it0) { if (it0->first != commandData.returnParam) { for (std::map::const_iterator it1 = std::next(it0); it1 != commandData.vectorParams.end(); ++it1) { if ((it1->first != commandData.returnParam) && (it0->second == it1->second)) { os << replaceWithMap(templateString, std::map( { { "firstVectorName", startLowerCase(strip(commandData.params[it0->first].name, "p")) }, { "secondVectorName", startLowerCase(strip(commandData.params[it1->first].name, "p")) }, { "className", commandData.className }, { "reducedName", commandData.reducedName}, { "i", indentation} })); } } } } } void writeFunctionBodyEnhancedReturnResultValue(std::ostream & os, std::string const& indentation, std::string const& returnName, CommandData const& commandData, bool singular) { // if the return type is "Result" or there is at least one success code, create the Result/Value construct to return os << indentation << " return createResultValue( result, "; if (commandData.returnParam != ~0) { // if there's a return parameter, list it in the Result/Value constructor os << returnName << ", "; } // now the function name (with full namespace) as a string os << "\"VULKAN_HPP_NAMESPACE::" << (commandData.className.empty() ? "" : commandData.className + "::") << (singular ? stripPluralS(commandData.reducedName) : commandData.reducedName) << "\""; if (!commandData.twoStep && (1 < commandData.successCodes.size())) { // and for the single-step algorithms with more than one success code list them all os << ", { Result::" << commandData.successCodes[0]; for (size_t i = 1; i < commandData.successCodes.size(); i++) { os << ", Result::" << commandData.successCodes[i]; } os << " }"; } os << " );" << std::endl; } void writeFunctionBodyStandard(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData) { os << indentation << " "; bool castReturn = false; if (commandData.returnType != "void") { // there's something to return... os << "return "; castReturn = (vkData.vkTypes.find(commandData.returnType) != vkData.vkTypes.end()); if (castReturn) { // the return-type is a vulkan type -> need to cast to vk::-type os << "static_cast<" << commandData.returnType << ">( "; } } // call the original function os << "vk" << startUpperCase(commandData.fullName) << "( "; if (!commandData.className.empty()) { // the command is part of a class -> the first argument is the member variable, starting with "m_" os << "m_" << commandData.params[0].name; } // list all the arguments for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++) { if (0 < i) { os << ", "; } if (vkData.vkTypes.find(commandData.params[i].pureType) != vkData.vkTypes.end()) { // the parameter is a vulkan type if (commandData.params[i].type.back() == '*') { // it's a pointer -> need to reinterpret_cast it writeReinterpretCast(os, commandData.params[i].type.find("const") == 0, true, commandData.params[i].pureType, commandData.params[i].type.find("* const") != std::string::npos); } else { // it's a value -> need to static_cast ist os << "static_cast"; } os << "( " << commandData.params[i].name << " )"; } else { // it's a non-vulkan type -> just use it os << commandData.params[i].name; } } os << " )"; if (castReturn) { // if we cast the return -> close the static_cast os << " )"; } os << ";" << std::endl; } void writeFunctionBodyUnique(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool singular) { // the unique version needs a Deleter object for destruction of the newly created stuff std::string type = commandData.params[commandData.returnParam].pureType; std::string typeValue = startLowerCase(type); os << indentation << " " << type << "Deleter deleter( "; if (vkData.deleterData.find(commandData.className) != vkData.deleterData.end()) { // if the Deleter is specific to the command's class, add '*this' to the deleter os << "*this, "; } // get the DeleterData corresponding to the returned type std::map::const_iterator ddit = vkData.deleterData.find(type); assert(ddit != vkData.deleterData.end()); if (ddit->second.pool.empty()) { // if this type isn't pooled, use the allocator (provided as a function argument) os << "allocator"; } else { // otherwise use the pool, which always is a member of the second argument os << startLowerCase(strip(commandData.params[1].name, "p")) << "." << startLowerCase(ddit->second.pool); } os << " );" << std::endl; bool returnsVector = !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end()); if (returnsVector) { // if a vector of data is returned, use a local variable to hold the returned data from the non-unique function call os << indentation << " std::vector<" << type << ",Allocator> " << typeValue << "s = "; } else { // otherwise create a Unique stuff out of the returned data from the non-unique function call os << indentation << " return Unique" << type << "( "; } // the call to the non-unique function os << (singular ? stripPluralS(commandData.fullName) : commandData.fullName) << "( "; bool argEncountered = false; for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++) { if (commandData.skippedParams.find(i) == commandData.skippedParams.end()) { if (argEncountered) { os << ", "; } argEncountered = true; // strip off the leading 'p' for pointer arguments std::string argumentName = (commandData.params[i].type.back() == '*') ? startLowerCase(strip(commandData.params[i].name, "p")) : commandData.params[i].name; if (singular && (commandData.vectorParams.find(i) != commandData.vectorParams.end())) { // and strip off the plural 's' if appropriate argumentName = stripPluralS(argumentName); } os << argumentName; } } if (returnsVector) { os << ", alloc"; } os << " )"; if (returnsVector) { std::string const stringTemplate = R"(; ${i} std::vector unique${type}s; ${i} unique${type}s.reserve( ${typeValue}s.size() ); ${i} for ( auto ${typeValue} : ${typeValue}s ) ${i} { ${i} unique${type}s.push_back( Unique${type}( ${typeValue}, deleter ) ); ${i} } ${i} return unique${type}s; )"; os << replaceWithMap(stringTemplate, std::map{ { "i", indentation }, { "type", type }, { "typeValue", typeValue } }); } else { // for non-vector returns, just add the deleter (local variable) to the Unique-stuff constructor os << ", deleter );" << std::endl; } } void writeFunctionHeaderArguments(std::ostream & os, VkData const& vkData, CommandData const& commandData, bool enhanced, bool singular, bool withDefaults) { os << "("; if (enhanced) { writeFunctionHeaderArgumentsEnhanced(os, vkData, commandData, singular, withDefaults); } else { writeFunctionHeaderArgumentsStandard(os, commandData); } os << ")"; if (!commandData.className.empty()) { os << " const"; } } void writeFunctionHeaderArgumentsEnhanced(std::ostream & os, VkData const& vkData, CommandData const& commandData, bool singular, bool withDefaults) { bool returnsVector = !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end()); // check if there's at least one argument left to put in here if (commandData.skippedParams.size() + (commandData.className.empty() ? 0 : 1) < commandData.params.size()) { // determine the last argument, where we might provide some default for size_t lastArgument = ~0; for (size_t i = commandData.params.size() - 1; i < commandData.params.size(); i--) { if (commandData.skippedParams.find(i) == commandData.skippedParams.end()) { lastArgument = i; break; } } os << " "; bool argEncountered = false; for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++) { if (commandData.skippedParams.find(i) == commandData.skippedParams.end()) { if (argEncountered) { os << ", "; } std::string strippedParameterName = startLowerCase(strip(commandData.params[i].name, "p")); std::map::const_iterator it = commandData.vectorParams.find(i); size_t rightStarPos = commandData.params[i].type.rfind('*'); if (it == commandData.vectorParams.end()) { // the argument ist not a vector if (rightStarPos == std::string::npos) { // and its not a pointer -> just use its type and name here os << commandData.params[i].type << " " << commandData.params[i].name; if (!commandData.params[i].arraySize.empty()) { os << "[" << commandData.params[i].arraySize << "]"; } if (withDefaults && (lastArgument == i)) { // check if the very last argument is a flag without any bits -> provide some empty default for it std::map::const_iterator flagIt = vkData.flags.find(commandData.params[i].pureType); if (flagIt != vkData.flags.end()) { // get the enum corresponding to this flag, to check if it's empty std::list::const_iterator depIt = std::find_if(vkData.dependencies.begin(), vkData.dependencies.end(), [&flagIt](DependencyData const& dd) { return(dd.name == flagIt->first); }); assert((depIt != vkData.dependencies.end()) && (depIt->dependencies.size() == 1)); std::map::const_iterator enumIt = vkData.enums.find(*depIt->dependencies.begin()); assert(enumIt != vkData.enums.end()); if (enumIt->second.members.empty()) { // there are no bits in this flag -> provide the default os << " = " << commandData.params[i].pureType << "()"; } } } } else { // the argument is not a vector, but a pointer assert(commandData.params[i].type[rightStarPos] == '*'); if (commandData.params[i].optional) { // for an optional argument, trim the trailing '*' from the type, and the leading 'p' from the name os << "Optional<" << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << "> " << strippedParameterName; if (withDefaults) { os << " = nullptr"; } } else if (commandData.params[i].pureType == "void") { // for void-pointer, just use type and name os << commandData.params[i].type << " " << commandData.params[i].name; } else if (commandData.params[i].pureType != "char") { // for non-char-pointer, change to reference os << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << " & " << strippedParameterName; } else { // for char-pointer, change to const reference to std::string os << "const std::string & " << strippedParameterName; } } } else { // the argument is a vector // it's optional, if it's marked as optional and there's no size specified bool optional = commandData.params[i].optional && (it->second == ~0); assert((rightStarPos != std::string::npos) && (commandData.params[i].type[rightStarPos] == '*')); if (commandData.params[i].type.find("char") != std::string::npos) { // it's a char-vector -> use a std::string (either optional or a const-reference if (optional) { os << "Optional " << strippedParameterName; if (withDefaults) { os << " = nullptr"; } } else { os << "const std::string & " << strippedParameterName; } } else { // it's a non-char vector (they are never optional) assert(!optional); if (singular) { // in singular case, change from pointer to reference os << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << " & " << stripPluralS(strippedParameterName); } else { // otherwise, use our ArrayProxy bool isConst = (commandData.params[i].type.find("const") != std::string::npos); os << "ArrayProxy<" << ((commandData.templateParam == i) ? (isConst ? "const T" : "T") : trimEnd(commandData.params[i].type.substr(0, rightStarPos))) << "> " << strippedParameterName; } } } argEncountered = true; } } os << (returnsVector ? ", " : " "); } if (returnsVector) { os << "Allocator const & alloc "; if (withDefaults) { os << "= Allocator() "; } } } void writeFunctionHeaderArgumentsStandard(std::ostream & os, CommandData const& commandData) { // for the standard case, just list all the arguments as we've got them bool argEncountered = false; for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++) { if (argEncountered) { os << ","; } os << " " << commandData.params[i].type << " " << commandData.params[i].name; if (!commandData.params[i].arraySize.empty()) { os << "[" << commandData.params[i].arraySize << "]"; } argEncountered = true; } if (argEncountered) { os << " "; } } void writeFunctionHeaderName(std::ostream & os, std::string const& name, bool singular, bool unique) { os << (singular ? stripPluralS(name) : name); if (unique) { os << "Unique"; } } void writeFunctionHeaderReturnType(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool enhanced, bool singular, bool unique, bool isStructureChain) { std::string templateString; std::string returnType; if (enhanced) { // the enhanced function might return some pretty complex return stuff if (unique) { // the unique version returns something prefixed with 'Unique'; potentially a vector of that stuff // it's a vector, if it's not the singular version and the return parameter is a vector parameter bool returnsVector = !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end()); templateString = returnsVector ? "std::vector " : "Unique${returnType} "; returnType = isStructureChain ? "StructureChain" : commandData.params[commandData.returnParam].pureType; } else if ((commandData.enhancedReturnType != commandData.returnType) && (commandData.returnType != "void")) { // if the enhanced return type differs from the original return type, and it's not void, we return a ResultValueType<...>::type if (isStructureChain || (!singular && (commandData.enhancedReturnType.find("Allocator") != std::string::npos))) { // for the non-singular case with allocation, we need to prepend with 'typename' to keep compilers happy templateString = "typename "; } templateString += "ResultValueType<${returnType}>::type "; assert(commandData.returnType == "Result"); // in singular case, we create the ResultValueType from the pure return type, otherwise from the enhanced return type if (isStructureChain) { returnType = "StructureChain"; } else { returnType = singular ? commandData.params[commandData.returnParam].pureType : commandData.enhancedReturnType; } } else if ((commandData.returnParam != ~0) && (1 < commandData.successCodes.size())) { // if there is a return parameter at all, and there are multiple success codes, we return a ResultValue<...> with the pure return type assert(commandData.returnType == "Result"); templateString = "ResultValue<${returnType}> "; returnType = isStructureChain ? "StructureChain" : commandData.params[commandData.returnParam].pureType; } else { // and in every other case, we just return the enhanced return type. templateString = "${returnType} "; returnType = isStructureChain ? "StructureChain" : commandData.enhancedReturnType; } } else { // the non-enhanced function just uses the return type templateString = "${returnType} "; returnType = commandData.returnType; } os << replaceWithMap(templateString, { { "returnType", returnType } }); } void writeFunctionHeaderTemplate(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool withDefault, bool isStructureChain) { if (isStructureChain) { os << indentation << "template " << std::endl; } else if ((commandData.templateParam != ~0) && ((commandData.templateParam != commandData.returnParam) || (commandData.enhancedReturnType == "Result"))) { // if there's a template parameter, not being the return parameter or where the enhanced return type is 'Result' -> templatize on type 'T' assert(commandData.enhancedReturnType.find("Allocator") == std::string::npos); os << indentation << "template " << std::endl; } else if ((commandData.enhancedReturnType.find("Allocator") != std::string::npos)) { // otherwise, if there's an Allocator used in the enhanced return type, we templatize on that Allocator assert((commandData.enhancedReturnType.substr(0, 12) == "std::vector<") && (commandData.enhancedReturnType.find(',') != std::string::npos) && (12 < commandData.enhancedReturnType.find(','))); os << indentation << "template ' os << " = std::allocator<" << commandData.enhancedReturnType.substr(12, commandData.enhancedReturnType.find(',') - 12) << ">"; } os << "> " << std::endl; } } void writeReinterpretCast(std::ostream & os, bool leadingConst, bool vulkanType, std::string const& type, bool trailingPointerToConst) { os << "reinterpret_cast<"; if (leadingConst) { os << "const "; } if (vulkanType) { os << "Vk"; } os << type; if (trailingPointerToConst) { os << "* const"; } os << "*>"; } void writeStandardOrEnhanced(std::ostream & os, std::string const& standard, std::string const& enhanced) { if (standard == enhanced) { // standard and enhanced string are equal -> just use one of them and we're done os << standard; } else { // standard and enhanced string differ -> use both, wrapping the enhanced by !VULKAN_HPP_DISABLE_ENHANCED_MODE // determine the argument list of that standard, and compare it with that of the enhanced // if they are equal -> need to have just one; if they differ -> need to have both size_t standardStart = standard.find('('); size_t standardCount = standard.find(')', standardStart) - standardStart; size_t enhancedStart = enhanced.find('('); bool unchangedInterface = (standard.substr(standardStart, standardCount) == enhanced.substr(enhancedStart, standardCount)); if (unchangedInterface) { os << "#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE" << std::endl; } os << standard << (unchangedInterface ? "#else" : "#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE") << std::endl << enhanced << "#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/" << std::endl; } } void writeStructConstructor( std::ostream & os, std::string const& name, StructData const& structData, std::set const& vkTypes, std::map const& defaultValues ) { // the constructor with all the elements as arguments, with defaults os << " " << name << "( "; bool listedArgument = false; for (size_t i = 0; i::const_iterator defaultIt = defaultValues.find(structData.members[i].pureType); assert(defaultIt != defaultValues.end()); if (structData.members[i].arraySize.empty()) { // the arguments name get a trailing '_', to distinguish them from the actual struct members // pointer arguments get a nullptr as default os << structData.members[i].type << " " << structData.members[i].name << "_ = " << (structData.members[i].type.back() == '*' ? "nullptr" : defaultIt->second); } else { // array members are provided as const reference to a std::array // the arguments name get a trailing '_', to distinguish them from the actual struct members // list as many default values as there are elements in the array os << "std::array<" << structData.members[i].type << "," << structData.members[i].arraySize << "> const& " << structData.members[i].name << "_ = { { " << defaultIt->second; size_t n = atoi(structData.members[i].arraySize.c_str()); assert(0 < n); for (size_t j = 1; j < n; j++) { os << ", " << defaultIt->second; } os << " } }"; } listedArgument = true; } } os << " )" << std::endl; // copy over the simple arguments bool firstArgument = true; for (size_t i = 0; i < structData.members.size(); i++) { if (structData.members[i].arraySize.empty()) { // here, we can only handle non-array arguments std::string templateString = " ${sep} ${member}( ${value} )\n"; std::string sep = firstArgument ? ":" : ","; std::string member = structData.members[i].name; std::string value; // 'pNext' and 'sType' don't get an argument, use nullptr and the correct StructureType enum value to initialize them if (structData.members[i].name == "pNext") { value = "nullptr"; } else if (structData.members[i].name == "sType") { value = std::string("StructureType::e") + name; } else { // the other elements are initialized by the corresponding argument (with trailing '_', as mentioned above) value = structData.members[i].name + "_"; } os << replaceWithMap(templateString, { {"sep", sep}, {"member", member}, {"value", value} }); firstArgument = false; } } // the body of the constructor, copying over data from argument list into wrapped struct os << " {" << std::endl; for ( size_t i=0 ; i const& vkTypes ) { if (memberData.type != "StructureType") // filter out StructureType, which is supposed to be immutable ! { // the setters return a reference to the structure os << " " << structureName << "& set" << startUpperCase(memberData.name) << "( "; if (memberData.arraySize.empty()) { os << memberData.type << " "; } else { os << "std::array<" << memberData.type << "," << memberData.arraySize << "> "; } // add a trailing '_' to the argument to distinguish it from the structure member os << memberData.name << "_ )" << std::endl << " {" << std::endl; // copy over the argument, either by assigning simple data, or by memcpy array data if (memberData.arraySize.empty()) { os << " " << memberData.name << " = " << memberData.name << "_"; } else { os << " memcpy( &" << memberData.name << ", " << memberData.name << "_.data(), " << memberData.arraySize << " * sizeof( " << memberData.type << " ) )"; } os << ";" << std::endl << " return *this;" << std::endl << " }" << std::endl << std::endl; } } void writeTypeCommand(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData) { assert(vkData.commands.find(dependencyData.name) != vkData.commands.end()); CommandData const& commandData = vkData.commands.find(dependencyData.name)->second; if (commandData.className.empty()) { if (commandData.fullName == "createInstance") { // special handling for createInstance, as we need to explicitly place the forward declarations and the deleter classes here auto deleterTypesIt = vkData.deleterTypes.find(""); assert((deleterTypesIt != vkData.deleterTypes.end()) && (deleterTypesIt->second.size() == 1)); writeDeleterForwardDeclarations(os, *deleterTypesIt, vkData.deleterData); writeTypeCommand(os, " ", vkData, commandData, false); writeDeleterClasses(os, *deleterTypesIt, vkData.deleterData); } else { writeTypeCommand(os, " ", vkData, commandData, false); } writeTypeCommand(os, " ", vkData, commandData, true); os << std::endl; } } void writeTypeCommand(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool definition) { enterProtect(os, commandData.protect); bool isStructureChain = vkData.extendedStructs.find(commandData.enhancedReturnType) != vkData.extendedStructs.end(); // first create the standard version of the function std::ostringstream standard; writeFunction(standard, indentation, vkData, commandData, definition, false, false, false, false); // then the enhanced version, composed by up to five parts std::ostringstream enhanced; writeFunction(enhanced, indentation, vkData, commandData, definition, true, false, false, false); if (isStructureChain) { writeFunction(enhanced, indentation, vkData, commandData, definition, true, false, false, true); } // then a singular version, if a sized vector would be returned std::map::const_iterator returnVector = commandData.vectorParams.find(commandData.returnParam); bool singular = (returnVector != commandData.vectorParams.end()) && (returnVector->second != ~0) && (commandData.params[returnVector->second].type.back() != '*'); if (singular) { writeFunction(enhanced, indentation, vkData, commandData, definition, true, true, false, false); } // special handling for createDevice and createInstance ! bool specialWriteUnique = (commandData.reducedName == "createDevice") || (commandData.reducedName == "createInstance"); // and then the same for the Unique* versions (a Deleter is available for the commandData's class, and the function starts with 'allocate' or 'create') if (((vkData.deleterData.find(commandData.className) != vkData.deleterData.end()) || specialWriteUnique) && ((commandData.reducedName.substr(0, 8) == "allocate") || (commandData.reducedName.substr(0, 6) == "create"))) { enhanced << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl; writeFunction(enhanced, indentation, vkData, commandData, definition, true, false, true, false); if (singular) { writeFunction(enhanced, indentation, vkData, commandData, definition, true, true, true, false); } enhanced << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl; } // and write one or both of them writeStandardOrEnhanced(os, standard.str(), enhanced.str()); leaveProtect(os, commandData.protect); os << std::endl; } void writeTypeEnum( std::ostream & os, EnumData const& enumData ) { // a named enum per enum, listing all its values by setting them to the original Vulkan names enterProtect(os, enumData.protect); os << " enum class " << enumData.name << std::endl << " {" << std::endl; for ( size_t i=0 ; i(result) < 0 ); switch ( result ) { )"; for ( size_t i=0 ; i> const& deleterTypes, std::map const& deleterData) { // A Deleter class for each of the Unique* classes... but only if smart handles are not switched off os << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl; bool first = true; // get type and name of the parent (holder) type std::string parentType = deleterTypes.first; std::string parentName = parentType.empty() ? "" : startLowerCase(parentType); // iterate over the deleter types parented by this type for (auto const& deleterType : deleterTypes.second) { std::string deleterName = startLowerCase(deleterType); bool standardDeleter = !parentType.empty() && (deleterType != "Device"); // this detects the 'standard' case for a deleter if (!first) { os << std::endl; } first = false; os << " class " << deleterType << "Deleter" << std::endl << " {" << std::endl << " public:" << std::endl << " " << deleterType << "Deleter( "; if (standardDeleter) { // the standard deleter gets a parent type in the constructor os << parentType << " " << parentName << " = " << parentType << "(), "; } // if this Deleter is pooled, make such a pool the last argument, otherwise an Optional allocator auto const& dd = deleterData.find(deleterType); assert(dd != deleterData.end()); std::string poolName = (dd->second.pool.empty() ? "" : startLowerCase(dd->second.pool)); if (poolName.empty()) { os << "Optional allocator = nullptr )" << std::endl; } else { assert(!dd->second.pool.empty()); os << dd->second.pool << " " << poolName << " = " << dd->second.pool << "() )" << std::endl; } // now the initializer list of the Deleter constructor os << " : "; if (standardDeleter) { // the standard deleter has a parent type as a member os << "m_" << parentName << "( " << parentName << " )" << std::endl << " , "; } if (poolName.empty()) { // non-pooled deleter have an allocator as a member os << "m_allocator( allocator )" << std::endl; } else { // pooled deleter have a pool as a member os << "m_" << poolName << "( " << poolName << " )" << std::endl; } // besides that, the constructor is empty os << " {}" << std::endl << std::endl; // the operator() calls the delete/destroy function os << " void operator()( " << deleterType << " " << deleterName << " )" << std::endl << " {" << std::endl; // the delete/destroy function is either part of the parent member of the deleter argument if (standardDeleter) { os << " m_" << parentName << "."; } else { os << " " << deleterName << "."; } os << dd->second.call << "( "; if (!poolName.empty()) { // pooled Deleter gets the pool as the first argument os << "m_" << poolName << ", "; } if (standardDeleter) { // the standard deleter gets the deleter argument as an argument os << deleterName; } // the non-pooled deleter get the allocate as an argument (potentially after the deleterName if (poolName.empty()) { if (standardDeleter) { os << ", "; } os << "m_allocator"; } os << " );" << std::endl << " }" << std::endl << std::endl; // now the members of the Deleter class os << " private:" << std::endl; if (standardDeleter) { // the parentType for the standard deleter os << " " << parentType << " m_" << parentName << ";" << std::endl; } // the allocator for the non-pooled deleters, the pool for the pooled ones if (poolName.empty()) { os << " Optional m_allocator;" << std::endl; } else { os << " " << dd->second.pool << " m_" << poolName << ";" << std::endl; } os << " };" << std::endl; } os << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl << std::endl; } void writeDeleterForwardDeclarations(std::ostream &os, std::pair> const& deleterTypes, std::map const& deleterData) { // if smart handles are supported, all the Deleter classes need to be forward declared os << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl; bool first = true; std::string firstName = deleterTypes.first.empty() ? "" : startLowerCase(deleterTypes.first); for (auto const& dt : deleterTypes.second) { os << " class " << dt << "Deleter;" << std::endl; os << " using Unique" << dt << " = UniqueHandle<" << dt << ", " << dt << "Deleter>;" << std::endl; } os << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl << std::endl; } void writeEnumsToString(std::ostream & os, EnumData const& enumData) { // the helper functions to make strings out of enum values enterProtect(os, enumData.protect); os << " VULKAN_HPP_INLINE std::string to_string(" << enumData.name << (enumData.members.empty() ? ")" : " value)") << std::endl << " {" << std::endl; if (enumData.members.empty()) { // no enum values in this enum -> return "(void)" os << " return \"(void)\";" << std::endl; } else { // otherwise switch over the value and return the a stringized version of that value (without leading 'e') os << " switch (value)" << std::endl << " {" << std::endl; for (auto const& member : enumData.members) { os << " case " << enumData.name << "::" << member.name << ": return \"" << member.name.substr(1) << "\";" << std::endl; } os << " default: return \"invalid\";" << std::endl << " }" << std::endl; } os << " }" << std::endl; leaveProtect(os, enumData.protect); os << std::endl; } void writeFlagsToString(std::ostream & os, std::string const& flagsName, EnumData const &enumData) { // the helper functions to make strings out of flag values enterProtect(os, enumData.protect); os << " VULKAN_HPP_INLINE std::string to_string(" << flagsName << (enumData.members.empty() ? ")" : " value)") << std::endl << " {" << std::endl; if (enumData.members.empty()) { // no flags values in this enum -> return "{}" os << " return \"{}\";" << std::endl; } else { os << " if (!value) return \"{}\";" << std::endl << " std::string result;" << std::endl; // 'or' together all the bits in the value for (auto itMember = enumData.members.begin(); itMember != enumData.members.end(); ++itMember) { os << " if (value & " << enumData.name << "::" << itMember->name << ") result += \"" << itMember->name.substr(1) << " | \";" << std::endl; } // cut off the last three characters from the result (being " | ") os << " return \"{\" + result.substr(0, result.size() - 3) + \"}\";" << std::endl; } os << " }" << std::endl; leaveProtect(os, enumData.protect); os << std::endl; } void writeTypeFlags(std::ostream & os, std::string const& flagsName, FlagData const& flagData, EnumData const& enumData) { enterProtect(os, flagData.protect); // each Flags class is using on the class 'Flags' with the corresponding FlagBits enum as the template parameter os << " using " << flagsName << " = Flags<" << enumData.name << ", Vk" << flagsName << ">;" << std::endl; std::stringstream allFlags; for (size_t i = 0; i < enumData.members.size(); i++) { if (i != 0) { allFlags << " | "; } allFlags << "VkFlags(" << enumData.name << "::" << enumData.members[i].name << ")"; } if (!enumData.members.empty()) { const std::string templateString = R"( VULKAN_HPP_INLINE ${flagsName} operator|( ${enumName} bit0, ${enumName} bit1 ) { return ${flagsName}( bit0 ) | bit1; } VULKAN_HPP_INLINE ${flagsName} operator~( ${enumName} bits ) { return ~( ${flagsName}( bits ) ); } template <> struct FlagTraits<${enumName}> { enum { allFlags = ${allFlags} }; }; )"; os << replaceWithMap(templateString, { { "flagsName", flagsName}, { "enumName", enumData.name }, { "allFlags", allFlags.str() } } ); } leaveProtect(os, flagData.protect); os << std::endl; } void writeTypeHandle(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, HandleData const& handleData, std::list const& dependencies) { enterProtect(os, handleData.protect); // check if there are any forward dependenices for this handle -> list them first if (!dependencyData.forwardDependencies.empty()) { os << " // forward declarations" << std::endl; for (std::set::const_iterator it = dependencyData.forwardDependencies.begin(); it != dependencyData.forwardDependencies.end(); ++it) { assert(vkData.structs.find(*it) != vkData.structs.end()); os << " struct " << *it << ";" << std::endl; } os << std::endl; } // then write any forward declaration of Deleters used by this handle std::map>::const_iterator deleterTypesIt = vkData.deleterTypes.find(dependencyData.name); if (deleterTypesIt != vkData.deleterTypes.end()) { writeDeleterForwardDeclarations(os, *deleterTypesIt, vkData.deleterData); } const std::string memberName = startLowerCase(dependencyData.name); const std::string templateString = R"( class ${className} { public: ${className}() : m_${memberName}(VK_NULL_HANDLE) {} ${className}( std::nullptr_t ) : m_${memberName}(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT ${className}( Vk${className} ${memberName} ) : m_${memberName}( ${memberName} ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) ${className} & operator=(Vk${className} ${memberName}) { m_${memberName} = ${memberName}; return *this; } #endif ${className} & operator=( std::nullptr_t ) { m_${memberName} = VK_NULL_HANDLE; return *this; } bool operator==( ${className} const & rhs ) const { return m_${memberName} == rhs.m_${memberName}; } bool operator!=(${className} const & rhs ) const { return m_${memberName} != rhs.m_${memberName}; } bool operator<(${className} const & rhs ) const { return m_${memberName} < rhs.m_${memberName}; } ${commands} VULKAN_HPP_TYPESAFE_EXPLICIT operator Vk${className}() const { return m_${memberName}; } explicit operator bool() const { return m_${memberName} != VK_NULL_HANDLE; } bool operator!() const { return m_${memberName} == VK_NULL_HANDLE; } private: Vk${className} m_${memberName}; }; static_assert( sizeof( ${className} ) == sizeof( Vk${className} ), "handle and wrapper have different size!" ); )"; std::ostringstream commands; // now list all the commands that are mapped to members of this class for (size_t i = 0; i < handleData.commands.size(); i++) { std::string commandName = handleData.commands[i]; std::map::const_iterator cit = vkData.commands.find(commandName); assert((cit != vkData.commands.end()) && !cit->second.className.empty()); writeTypeCommand(commands, " ", vkData, cit->second, false); } os << replaceWithMap(templateString, { { "className", dependencyData.name }, { "memberName", memberName }, { "commands", commands.str() } }); // then the actual Deleter classes can be listed deleterTypesIt = vkData.deleterTypes.find(dependencyData.name); if (deleterTypesIt != vkData.deleterTypes.end()) { writeDeleterClasses(os, *deleterTypesIt, vkData.deleterData); } // and finally the commands, that are member functions of this handle for (size_t i = 0; i < handleData.commands.size(); i++) { std::string commandName = handleData.commands[i]; std::map::const_iterator cit = vkData.commands.find(commandName); assert((cit != vkData.commands.end()) && !cit->second.className.empty()); std::list::const_iterator dep = std::find_if(dependencies.begin(), dependencies.end(), [commandName](DependencyData const& dd) { return dd.name == commandName; }); assert(dep != dependencies.end() && (dep->name == cit->second.fullName)); writeTypeCommand(os, " ", vkData, cit->second, true); } leaveProtect(os, handleData.protect); } void writeTypeScalar( std::ostream & os, DependencyData const& dependencyData ) { assert( dependencyData.dependencies.size() == 1 ); os << " using " << dependencyData.name << " = " << *dependencyData.dependencies.begin() << ";" << std::endl << std::endl; } bool containsUnion(std::string const& type, std::map const& structs) { // a simple recursive check if a type is or contains a union std::map::const_iterator sit = structs.find(type); bool found = (sit != structs.end()); if (found) { found = sit->second.isUnion; for (std::vector::const_iterator mit = sit->second.members.begin(); mit != sit->second.members.end() && !found; ++mit) { found = (mit->type == mit->pureType) && containsUnion(mit->type, structs); } } return found; } void writeTypeStruct( std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, std::map const& defaultValues ) { std::map::const_iterator it = vkData.structs.find( dependencyData.name ); assert( it != vkData.structs.end() ); enterProtect(os, it->second.protect); os << " struct " << dependencyData.name << std::endl << " {" << std::endl; // only structs that are not returnedOnly get a constructor! if ( !it->second.returnedOnly ) { writeStructConstructor( os, dependencyData.name, it->second, vkData.vkTypes, defaultValues ); } // create the setters if (!it->second.returnedOnly) { for (size_t i = 0; isecond.members.size(); i++) { writeStructSetter( os, dependencyData.name, it->second.members[i], vkData.vkTypes ); } } // the cast-operator to the wrapped struct os << " operator const Vk" << dependencyData.name << "&() const" << std::endl << " {" << std::endl << " return *reinterpret_cast(this);" << std::endl << " }" << std::endl << std::endl; // operator==() and operator!=() // only structs without a union as a member can have a meaningfull == and != operation; we filter them out if (!containsUnion(dependencyData.name, vkData.structs)) { // two structs are compared by comparing each of the elements os << " bool operator==( " << dependencyData.name << " const& rhs ) const" << std::endl << " {" << std::endl << " return "; for (size_t i = 0; i < it->second.members.size(); i++) { if (i != 0) { os << std::endl << " && "; } if (!it->second.members[i].arraySize.empty()) { os << "( memcmp( " << it->second.members[i].name << ", rhs." << it->second.members[i].name << ", " << it->second.members[i].arraySize << " * sizeof( " << it->second.members[i].type << " ) ) == 0 )"; } else { os << "( " << it->second.members[i].name << " == rhs." << it->second.members[i].name << " )"; } } os << ";" << std::endl << " }" << std::endl << std::endl << " bool operator!=( " << dependencyData.name << " const& rhs ) const" << std::endl << " {" << std::endl << " return !operator==( rhs );" << std::endl << " }" << std::endl << std::endl; } // the member variables for (size_t i = 0; i < it->second.members.size(); i++) { if (it->second.members[i].type == "StructureType") { assert((i == 0) && (it->second.members[i].name == "sType")); os << " private:" << std::endl << " StructureType sType;" << std::endl << std::endl << " public:" << std::endl; } else { os << " " << it->second.members[i].type << " " << it->second.members[i].name; if (!it->second.members[i].arraySize.empty()) { os << "[" << it->second.members[i].arraySize << "]"; } os << ";" << std::endl; } } os << " };" << std::endl << " static_assert( sizeof( " << dependencyData.name << " ) == sizeof( Vk" << dependencyData.name << " ), \"struct and wrapper have different size!\" );" << std::endl; leaveProtect(os, it->second.protect); os << std::endl; } void writeStructureChainValidation(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData) { std::map::const_iterator it = vkData.structs.find(dependencyData.name); assert(it != vkData.structs.end()); if (!it->second.structExtends.empty()) { enterProtect(os, it->second.protect); // write out allowed structure chains for (auto extendName : it->second.structExtends) { std::map::const_iterator itExtend = vkData.structs.find(extendName); assert(itExtend != vkData.structs.end()); enterProtect(os, itExtend->second.protect); os << " template <> constexpr bool isStructureChainValid<" << extendName << ", " << dependencyData.name << ">() { return true; }" << std::endl; leaveProtect(os, itExtend->second.protect); } leaveProtect(os, it->second.protect); } } void writeTypeUnion( std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, std::map const& defaultValues ) { std::map::const_iterator it = vkData.structs.find(dependencyData.name); assert(it != vkData.structs.end()); std::ostringstream oss; os << " union " << dependencyData.name << std::endl << " {" << std::endl; for ( size_t i=0 ; isecond.members.size() ; i++ ) { // one constructor per union element os << " " << dependencyData.name << "( "; if ( it->second.members[i].arraySize.empty() ) { os << it->second.members[i].type << " "; } else { os << "const std::array<" << it->second.members[i].type << "," << it->second.members[i].arraySize << ">& "; } os << it->second.members[i].name << "_"; // just the very first constructor gets default arguments if ( i == 0 ) { std::map::const_iterator defaultIt = defaultValues.find( it->second.members[i].pureType ); assert(defaultIt != defaultValues.end() ); if ( it->second.members[i].arraySize.empty() ) { os << " = " << defaultIt->second; } else { os << " = { {" << defaultIt->second << "} }"; } } os << " )" << std::endl << " {" << std::endl << " "; if ( it->second.members[i].arraySize.empty() ) { os << it->second.members[i].name << " = " << it->second.members[i].name << "_"; } else { os << "memcpy( &" << it->second.members[i].name << ", " << it->second.members[i].name << "_.data(), " << it->second.members[i].arraySize << " * sizeof( " << it->second.members[i].type << " ) )"; } os << ";" << std::endl << " }" << std::endl << std::endl; } for (size_t i = 0; isecond.members.size(); i++) { // one setter per union element assert(!it->second.returnedOnly); writeStructSetter(os, dependencyData.name, it->second.members[i], vkData.vkTypes); } // the implicit cast operator to the native type os << " operator Vk" << dependencyData.name << " const& () const" << std::endl << " {" << std::endl << " return *reinterpret_cast(this);" << std::endl << " }" << std::endl << std::endl; // the union member variables // if there's at least one Vk... type in this union, check for unrestricted unions support bool needsUnrestrictedUnions = false; for (size_t i = 0; i < it->second.members.size() && !needsUnrestrictedUnions; i++) { needsUnrestrictedUnions = (vkData.vkTypes.find(it->second.members[i].type) != vkData.vkTypes.end()); } if (needsUnrestrictedUnions) { os << "#ifdef VULKAN_HPP_HAS_UNRESTRICTED_UNIONS" << std::endl; for (size_t i = 0; i < it->second.members.size(); i++) { os << " " << it->second.members[i].type << " " << it->second.members[i].name; if (!it->second.members[i].arraySize.empty()) { os << "[" << it->second.members[i].arraySize << "]"; } os << ";" << std::endl; } os << "#else" << std::endl; } for (size_t i = 0; i < it->second.members.size(); i++) { os << " "; if (vkData.vkTypes.find(it->second.members[i].type) != vkData.vkTypes.end()) { os << "Vk"; } os << it->second.members[i].type << " " << it->second.members[i].name; if (!it->second.members[i].arraySize.empty()) { os << "[" << it->second.members[i].arraySize << "]"; } os << ";" << std::endl; } if (needsUnrestrictedUnions) { os << "#endif // VULKAN_HPP_HAS_UNRESTRICTED_UNIONS" << std::endl; } os << " };" << std::endl << std::endl; } void writeTypes(std::ostream & os, VkData const& vkData, std::map const& defaultValues) { for ( std::list::const_iterator it = vkData.dependencies.begin() ; it != vkData.dependencies.end() ; ++it ) { switch( it->category ) { case DependencyData::Category::COMMAND : writeTypeCommand( os, vkData, *it ); break; case DependencyData::Category::ENUM : assert( vkData.enums.find( it->name ) != vkData.enums.end() ); writeTypeEnum( os, vkData.enums.find( it->name )->second ); break; case DependencyData::Category::FLAGS : assert(vkData.flags.find(it->name) != vkData.flags.end()); writeTypeFlags( os, it->name, vkData.flags.find( it->name)->second, vkData.enums.find(generateEnumNameForFlags(it->name))->second ); break; case DependencyData::Category::FUNC_POINTER : case DependencyData::Category::REQUIRED : // skip FUNC_POINTER and REQUIRED, they just needed to be in the dependencies list to resolve dependencies break; case DependencyData::Category::HANDLE : assert(vkData.handles.find(it->name) != vkData.handles.end()); writeTypeHandle(os, vkData, *it, vkData.handles.find(it->name)->second, vkData.dependencies); break; case DependencyData::Category::SCALAR : writeTypeScalar( os, *it ); break; case DependencyData::Category::STRUCT : writeTypeStruct( os, vkData, *it, defaultValues ); break; case DependencyData::Category::UNION : assert( vkData.structs.find( it->name ) != vkData.structs.end() ); writeTypeUnion( os, vkData, *it, defaultValues ); break; default : assert( false ); break; } } } void writeVersionCheck(std::ostream & os, std::string const& version) { os << "static_assert( VK_HEADER_VERSION == " << version << " , \"Wrong VK_HEADER_VERSION!\" );" << std::endl << std::endl; } void writeTypesafeCheck(std::ostream & os, std::string const& typesafeCheck) { os << "// 32-bit vulkan is not typesafe for handles, so don't allow copy constructors on this platform by default." << std::endl << "// To enable this feature on 32-bit platforms please define VULKAN_HPP_TYPESAFE_CONVERSION" << std::endl << typesafeCheck << std::endl << "# if !defined( VULKAN_HPP_TYPESAFE_CONVERSION )" << std::endl << "# define VULKAN_HPP_TYPESAFE_CONVERSION" << std::endl << "# endif" << std::endl << "#endif" << std::endl; } int main( int argc, char **argv ) { try { tinyxml2::XMLDocument doc; std::string filename = (argc == 1) ? VK_SPEC : argv[1]; std::cout << "Loading vk.xml from " << filename << std::endl; std::cout << "Writing vulkan.hpp to " << VULKAN_HPP << std::endl; tinyxml2::XMLError error = doc.LoadFile(filename.c_str()); if (error != tinyxml2::XML_SUCCESS) { std::cout << "VkGenerate: failed to load file " << argv[1] << " . Error code: " << error << std::endl; return -1; } tinyxml2::XMLElement * registryElement = doc.FirstChildElement(); assert(strcmp(registryElement->Value(), "registry") == 0); assert(!registryElement->NextSiblingElement()); VkData vkData; vkData.handles[""]; // insert the default "handle" without class (for createInstance, and such) vkData.tags.insert("KHX"); // insert a non-listed tag for (tinyxml2::XMLElement * child = registryElement->FirstChildElement(); child; child = child->NextSiblingElement()) { assert(child->Value()); const std::string value = child->Value(); if (value == "commands") { readCommands(child, vkData); } else if (value == "comment") { // get the vulkan license header and skip any leading spaces readComment(child, vkData.vulkanLicenseHeader); vkData.vulkanLicenseHeader.erase(vkData.vulkanLicenseHeader.begin(), std::find_if(vkData.vulkanLicenseHeader.begin(), vkData.vulkanLicenseHeader.end(), [](char c) { return !std::isspace(c); })); } else if (value == "enums") { readEnums(child, vkData); } else if (value == "extensions") { readExtensions(child, vkData); } else if (value == "tags") { readTags(child, vkData.tags); } else if (value == "types") { readTypes(child, vkData); } else { assert((value == "feature") || (value == "vendorids")); } } sortDependencies(vkData.dependencies); #if !defined(NDEBUG) for (auto const& ext : vkData.extensions) { for (auto const& req : ext.second.requires) { auto reqExt = vkData.extensions.find(req); assert(reqExt != vkData.extensions.end()); assert(reqExt->second.protect.empty() || (reqExt->second.protect == ext.second.protect)); } } #endif std::map defaultValues; createDefaults(vkData, defaultValues); std::ofstream ofs(VULKAN_HPP); ofs << vkData.vulkanLicenseHeader << std::endl << R"( #ifndef VULKAN_HPP #define VULKAN_HPP #include #include #include #include #include #include #include #include #include #include #include #include #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE # include # include #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ )"; writeVersionCheck(ofs, vkData.version); writeTypesafeCheck(ofs, vkData.typesafeCheck); ofs << versionCheckHeader << inlineHeader << explicitHeader << std::endl << vkNamespace << flagsHeader << optionalClassHeader << arrayProxyHeader << uniqueHandleHeader << structureChainHeader; // first of all, write out vk::Result and the exception handling stuff std::list::const_iterator it = std::find_if(vkData.dependencies.begin(), vkData.dependencies.end(), [](DependencyData const& dp) { return dp.name == "Result"; }); assert(it != vkData.dependencies.end()); writeTypeEnum(ofs, vkData.enums.find(it->name)->second); writeEnumsToString(ofs, vkData.enums.find(it->name)->second); ofs << "#ifndef VULKAN_HPP_NO_EXCEPTIONS"; ofs << exceptionHeader; ofs << exceptionClassesHeader; writeExceptionsForEnum(ofs, vkData.enums.find(it->name)->second); writeThrowExceptions(ofs, vkData.enums.find(it->name)->second); ofs << "#endif" << std::endl; vkData.dependencies.erase(it); ofs << "} // namespace VULKAN_HPP_NAMESPACE" << std::endl << std::endl << "namespace std" << std::endl << "{" << std::endl << " template <>" << std::endl << " struct is_error_code_enum : public true_type" << std::endl << " {};" << std::endl << "}" << std::endl << std::endl << "namespace VULKAN_HPP_NAMESPACE" << std::endl << "{" << std::endl << resultValueHeader << createResultValueHeader; assert(vkData.deleterTypes.find("") != vkData.deleterTypes.end()); writeTypes(ofs, vkData, defaultValues); // write all template functions for the structure pointer chain validation for (auto it = vkData.dependencies.begin(); it != vkData.dependencies.end(); ++it) { switch (it->category) { case DependencyData::Category::STRUCT: writeStructureChainValidation(ofs, vkData, *it); break; } } // write all the to_string functions for enums and flags for (auto it = vkData.dependencies.begin(); it != vkData.dependencies.end(); ++it) { switch (it->category) { case DependencyData::Category::ENUM: assert(vkData.enums.find(it->name) != vkData.enums.end()); writeEnumsToString(ofs, vkData.enums.find(it->name)->second); break; case DependencyData::Category::FLAGS: writeFlagsToString(ofs, it->name, vkData.enums.find(*it->dependencies.begin())->second); break; } } ofs << "} // namespace VULKAN_HPP_NAMESPACE" << std::endl << std::endl << "#endif" << std::endl; } catch (std::exception const& e) { std::cout << "caught exception: " << e.what() << std::endl; return -1; } catch (...) { std::cout << "caught unknown exception" << std::endl; return -1; } }