// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : SecondaryCommandBuffer // Draw several cubes using primary and secondary command buffers #include "../utils/geometries.hpp" #include "../utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "vulkan/vulkan.hpp" #include "SPIRV/GlslangToSpv.h" #include static char const* AppName = "SecondaryCommandBuffer"; static char const* EngineName = "Vulkan.hpp"; int main(int /*argc*/, char ** /*argv*/) { try { vk::UniqueInstance instance = vk::su::createInstance(AppName, EngineName, {}, vk::su::getInstanceExtensions()); #if !defined(NDEBUG) vk::UniqueDebugUtilsMessengerEXT debugUtilsMessenger = vk::su::createDebugUtilsMessenger(instance); #endif vk::PhysicalDevice physicalDevice = instance->enumeratePhysicalDevices().front(); vk::su::SurfaceData surfaceData(instance, AppName, AppName, vk::Extent2D(500, 500)); std::pair graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex(physicalDevice, *surfaceData.surface); vk::UniqueDevice device = vk::su::createDevice(physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions()); vk::UniqueCommandPool commandPool = vk::su::createCommandPool(device, graphicsAndPresentQueueFamilyIndex.first); vk::UniqueCommandBuffer commandBuffer = std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::ePrimary, 1)).front()); vk::Queue graphicsQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.first, 0); vk::Queue presentQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.second, 0); vk::su::SwapChainData swapChainData(physicalDevice, device, *surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc, vk::UniqueSwapchainKHR(), graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second); vk::su::DepthBufferData depthBufferData(physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent); vk::su::BufferData uniformBufferData(physicalDevice, device, sizeof(glm::mat4x4), vk::BufferUsageFlagBits::eUniformBuffer); vk::su::copyToDevice(device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix(surfaceData.extent)); vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout(device, { {vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex}, {vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment} }); vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), 1, &descriptorSetLayout.get())); vk::UniqueRenderPass renderPass = vk::su::createRenderPass(device, vk::su::pickSurfaceFormat(physicalDevice.getSurfaceFormatsKHR(surfaceData.surface.get())).format, depthBufferData.format, vk::AttachmentLoadOp::eClear, vk::ImageLayout::eColorAttachmentOptimal); glslang::InitializeProcess(); vk::UniqueShaderModule vertexShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T); vk::UniqueShaderModule fragmentShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C); glslang::FinalizeProcess(); std::vector framebuffers = vk::su::createFramebuffers(device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent); vk::su::BufferData vertexBufferData(physicalDevice, device, sizeof(texturedCubeData), vk::BufferUsageFlagBits::eVertexBuffer); vk::su::copyToDevice(device, vertexBufferData.deviceMemory, texturedCubeData, sizeof(texturedCubeData) / sizeof(texturedCubeData[0])); vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo()); vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline(device, pipelineCache, std::make_pair(*vertexShaderModule, nullptr), std::make_pair(*fragmentShaderModule, nullptr), sizeof(texturedCubeData[0]), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } }, vk::FrontFace::eClockwise, true, pipelineLayout, renderPass); commandBuffer->begin(vk::CommandBufferBeginInfo()); vk::su::TextureData greenTextureData(physicalDevice, device); greenTextureData.setImage(device, commandBuffer, vk::su::MonochromeImageGenerator({ 118, 185, 0 })); vk::su::TextureData checkeredTextureData(physicalDevice, device); checkeredTextureData.setImage(device, commandBuffer, vk::su::CheckerboardImageGenerator()); // create two identical descriptor sets, each with a different texture but identical UBOs vk::UniqueDescriptorPool descriptorPool = vk::su::createDescriptorPool(device, { {vk::DescriptorType::eUniformBuffer, 2}, {vk::DescriptorType::eCombinedImageSampler, 2} }); vk::DescriptorSetLayout layouts[] = { descriptorSetLayout.get(), descriptorSetLayout.get() }; std::vector descriptorSets = device->allocateDescriptorSetsUnique(vk::DescriptorSetAllocateInfo(descriptorPool.get(), 2, layouts)); assert(descriptorSets.size() == 2); vk::su::updateDescriptorSets(device, descriptorSets[0], {{vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, vk::UniqueBufferView()}}, greenTextureData); vk::su::updateDescriptorSets(device, descriptorSets[1], {{vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, vk::UniqueBufferView()}}, checkeredTextureData); /* VULKAN_KEY_START */ // create four secondary command buffers, for each quadrant of the screen std::vector secondaryCommandBuffers = device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::eSecondary, 4)); // Get the index of the next available swapchain image: vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique(vk::SemaphoreCreateInfo()); vk::ResultValue currentBuffer = device->acquireNextImageKHR(swapChainData.swapChain.get(), vk::su::FenceTimeout, imageAcquiredSemaphore.get(), nullptr); assert(currentBuffer.result == vk::Result::eSuccess); assert(currentBuffer.value < framebuffers.size()); vk::su::setImageLayout(commandBuffer, swapChainData.images[currentBuffer.value], swapChainData.colorFormat, vk::ImageLayout::eUndefined, vk::ImageLayout::eColorAttachmentOptimal); const vk::DeviceSize offset = 0; vk::Viewport viewport(0.0f, 0.0f, 200.0f, 200.0f, 0.0f, 1.0f); vk::Rect2D scissor(vk::Offset2D(0, 0), vk::Extent2D(surfaceData.extent)); // now we record four separate command buffers, one for each quadrant of the screen vk::CommandBufferInheritanceInfo commandBufferInheritanceInfo(renderPass.get(), 0, framebuffers[currentBuffer.value].get()); vk::CommandBufferBeginInfo secondaryBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit | vk::CommandBufferUsageFlagBits::eRenderPassContinue, &commandBufferInheritanceInfo); for (int i = 0; i < 4; i++) { viewport.x = 25.0f + 250.0f * (i % 2); viewport.y = 25.0f + 250.0f * (i / 2); secondaryCommandBuffers[i]->begin(secondaryBeginInfo); secondaryCommandBuffers[i]->bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline.get()); secondaryCommandBuffers[i]->bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSets[i == 0 || i == 3].get(), nullptr); secondaryCommandBuffers[i]->bindVertexBuffers(0, vertexBufferData.buffer.get(), offset); secondaryCommandBuffers[i]->setViewport(0, viewport); secondaryCommandBuffers[i]->setScissor(0, scissor); secondaryCommandBuffers[i]->draw(12 * 3, 1, 0, 0); secondaryCommandBuffers[i]->end(); } vk::ClearValue clearValues[2]; clearValues[0].color = vk::ClearColorValue(std::array({ 0.2f, 0.2f, 0.2f, 0.2f })); clearValues[1].depthStencil = vk::ClearDepthStencilValue(1.0f, 0); vk::RenderPassBeginInfo renderPassBeginInfo(renderPass.get(), framebuffers[currentBuffer.value].get(), vk::Rect2D(vk::Offset2D(0, 0), surfaceData.extent), 2, clearValues); // specifying VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS means this render pass may ONLY call vkCmdExecuteCommands commandBuffer->beginRenderPass(renderPassBeginInfo, vk::SubpassContents::eSecondaryCommandBuffers); commandBuffer->executeCommands(vk::uniqueToRaw(secondaryCommandBuffers)); commandBuffer->endRenderPass(); vk::ImageMemoryBarrier prePresentBarrier(vk::AccessFlagBits::eColorAttachmentWrite, vk::AccessFlagBits::eMemoryRead, vk::ImageLayout::eColorAttachmentOptimal, vk::ImageLayout::ePresentSrcKHR, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, swapChainData.images[currentBuffer.value], vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1)); commandBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eBottomOfPipe, vk::DependencyFlags(), nullptr, nullptr, prePresentBarrier); commandBuffer->end(); vk::UniqueFence drawFence = device->createFenceUnique(vk::FenceCreateInfo()); vk::PipelineStageFlags waitDestinationStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); vk::SubmitInfo submitInfo(1, &imageAcquiredSemaphore.get(), &waitDestinationStageMask, 1, &commandBuffer.get()); graphicsQueue.submit(submitInfo, drawFence.get()); while (vk::Result::eTimeout == device->waitForFences(drawFence.get(), VK_TRUE, vk::su::FenceTimeout)) ; presentQueue.presentKHR(vk::PresentInfoKHR(0, nullptr, 1, &swapChainData.swapChain.get(), ¤tBuffer.value)); Sleep(1000); /* VULKAN_KEY_END */ device->waitIdle(); #if defined(VK_USE_PLATFORM_WIN32_KHR) DestroyWindow(surfaceData.window); #else #pragma error "unhandled platform" #endif } catch (vk::SystemError err) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit(-1); } catch (std::runtime_error err) { std::cout << "std::runtime_error: " << err.what() << std::endl; exit(-1); } catch (...) { std::cout << "unknown error\n"; exit(-1); } return 0; }