// Copyright (c) 2015-2017 The Khronos Group Inc. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and/or associated documentation files (the // "Materials"), to deal in the Materials without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Materials, and to // permit persons to whom the Materials are furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Materials. // // THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. // This header is generated from the Khronos Vulkan XML API Registry. #ifndef VULKAN_HPP #define VULKAN_HPP #include #include #include #include #include #include #include #include #include #include #include #include #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE # include # include #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ static_assert( VK_HEADER_VERSION == 50 , "Wrong VK_HEADER_VERSION!" ); // 32-bit vulkan is not typesafe for handles, so don't allow copy constructors on this platform by default. // To enable this feature on 32-bit platforms please define VULKAN_HPP_TYPESAFE_CONVERSION #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) # if !defined( VULKAN_HPP_TYPESAFE_CONVERSION ) # define VULKAN_HPP_TYPESAFE_CONVERSION # endif #endif #if !defined(VULKAN_HPP_HAS_UNRESTRICTED_UNIONS) # if defined(__clang__) # if __has_feature(cxx_unrestricted_unions) # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # elif defined(__GNUC__) # define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) # if 40600 <= GCC_VERSION # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # elif defined(_MSC_VER) # if 1900 <= _MSC_VER # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # endif #endif #if !defined(VULKAN_HPP_INLINE) # if defined(__clang___) # if __has_attribute(always_inline) # define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__ # else # define VULKAN_HPP_INLINE inline # endif # elif defined(__GNUC__) # define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__ # elif defined(_MSC_VER) # define VULKAN_HPP_INLINE __forceinline # else # define VULKAN_HPP_INLINE inline # endif #endif #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) # define VULKAN_HPP_TYPESAFE_EXPLICIT #else # define VULKAN_HPP_TYPESAFE_EXPLICIT explicit #endif namespace vk { template struct FlagTraits { enum { allFlags = 0 }; }; template class Flags { public: Flags() : m_mask(0) { } Flags(BitType bit) : m_mask(static_cast(bit)) { } Flags(Flags const& rhs) : m_mask(rhs.m_mask) { } Flags & operator=(Flags const& rhs) { m_mask = rhs.m_mask; return *this; } Flags & operator|=(Flags const& rhs) { m_mask |= rhs.m_mask; return *this; } Flags & operator&=(Flags const& rhs) { m_mask &= rhs.m_mask; return *this; } Flags & operator^=(Flags const& rhs) { m_mask ^= rhs.m_mask; return *this; } Flags operator|(Flags const& rhs) const { Flags result(*this); result |= rhs; return result; } Flags operator&(Flags const& rhs) const { Flags result(*this); result &= rhs; return result; } Flags operator^(Flags const& rhs) const { Flags result(*this); result ^= rhs; return result; } bool operator!() const { return !m_mask; } Flags operator~() const { Flags result(*this); result.m_mask ^= FlagTraits::allFlags; return result; } bool operator==(Flags const& rhs) const { return m_mask == rhs.m_mask; } bool operator!=(Flags const& rhs) const { return m_mask != rhs.m_mask; } explicit operator bool() const { return !!m_mask; } explicit operator MaskType() const { return m_mask; } private: MaskType m_mask; }; template Flags operator|(BitType bit, Flags const& flags) { return flags | bit; } template Flags operator&(BitType bit, Flags const& flags) { return flags & bit; } template Flags operator^(BitType bit, Flags const& flags) { return flags ^ bit; } template class Optional { public: Optional(RefType & reference) { m_ptr = &reference; } Optional(RefType * ptr) { m_ptr = ptr; } Optional(std::nullptr_t) { m_ptr = nullptr; } operator RefType*() const { return m_ptr; } RefType const* operator->() const { return m_ptr; } explicit operator bool() const { return !!m_ptr; } private: RefType *m_ptr; }; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template class ArrayProxy { public: ArrayProxy(std::nullptr_t) : m_count(0) , m_ptr(nullptr) {} ArrayProxy(T & ptr) : m_count(1) , m_ptr(&ptr) {} ArrayProxy(uint32_t count, T * ptr) : m_count(count) , m_ptr(ptr) {} template ArrayProxy(std::array::type, N> & data) : m_count(N) , m_ptr(data.data()) {} template ArrayProxy(std::array::type, N> const& data) : m_count(N) , m_ptr(data.data()) {} template ::type>> ArrayProxy(std::vector::type, Allocator> & data) : m_count(static_cast(data.size())) , m_ptr(data.data()) {} template ::type>> ArrayProxy(std::vector::type, Allocator> const& data) : m_count(static_cast(data.size())) , m_ptr(data.data()) {} ArrayProxy(std::initializer_list const& data) : m_count(static_cast(data.end() - data.begin())) , m_ptr(data.begin()) {} const T * begin() const { return m_ptr; } const T * end() const { return m_ptr + m_count; } const T & front() const { assert(m_count && m_ptr); return *m_ptr; } const T & back() const { assert(m_count && m_ptr); return *(m_ptr + m_count - 1); } bool empty() const { return (m_count == 0); } uint32_t size() const { return m_count; } T * data() const { return m_ptr; } private: uint32_t m_count; T * m_ptr; }; #endif #if defined(VULKAN_HPP_NO_EXCEPTIONS) && !defined(VULKAN_HPP_NO_SMART_HANDLE) # define VULKAN_HPP_NO_SMART_HANDLE #endif #ifndef VULKAN_HPP_NO_SMART_HANDLE template class UniqueHandle { public: explicit UniqueHandle( Type const& value = Type(), Deleter const& deleter = Deleter() ) : m_value( value ) , m_deleter( deleter ) {} UniqueHandle( UniqueHandle const& ) = delete; UniqueHandle( UniqueHandle && other ) : m_value( other.release() ) , m_deleter( std::move( other.m_deleter ) ) {} ~UniqueHandle() { destroy(); } UniqueHandle & operator=( UniqueHandle const& ) = delete; UniqueHandle & operator=( UniqueHandle && other ) { reset( other.release() ); m_deleter = std::move( other.m_deleter ); return *this; } explicit operator bool() const { return m_value.operator bool(); } Type const* operator->() const { return &m_value; } Type const& operator*() const { return m_value; } Type get() const { return m_value; } Deleter & getDeleter() { return m_deleter; } Deleter const& getDeleter() const { return m_deleter; } void reset( Type const& value = Type() ) { if ( m_value != value ) { destroy(); m_value = value; } } Type release() { Type value = m_value; m_value = nullptr; return value; } void swap( UniqueHandle & rhs ) { std::swap(m_value, rhs.m_value); std::swap(m_deleter, rhs.m_deleter); } private: void destroy() { if ( m_value ) { m_deleter( m_value ); } } private: Type m_value; Deleter m_deleter; }; template VULKAN_HPP_INLINE void swap( UniqueHandle & lhs, UniqueHandle & rhs ) { lhs.swap( rhs ); } #endif enum class Result { eSuccess = VK_SUCCESS, eNotReady = VK_NOT_READY, eTimeout = VK_TIMEOUT, eEventSet = VK_EVENT_SET, eEventReset = VK_EVENT_RESET, eIncomplete = VK_INCOMPLETE, eErrorOutOfHostMemory = VK_ERROR_OUT_OF_HOST_MEMORY, eErrorOutOfDeviceMemory = VK_ERROR_OUT_OF_DEVICE_MEMORY, eErrorInitializationFailed = VK_ERROR_INITIALIZATION_FAILED, eErrorDeviceLost = VK_ERROR_DEVICE_LOST, eErrorMemoryMapFailed = VK_ERROR_MEMORY_MAP_FAILED, eErrorLayerNotPresent = VK_ERROR_LAYER_NOT_PRESENT, eErrorExtensionNotPresent = VK_ERROR_EXTENSION_NOT_PRESENT, eErrorFeatureNotPresent = VK_ERROR_FEATURE_NOT_PRESENT, eErrorIncompatibleDriver = VK_ERROR_INCOMPATIBLE_DRIVER, eErrorTooManyObjects = VK_ERROR_TOO_MANY_OBJECTS, eErrorFormatNotSupported = VK_ERROR_FORMAT_NOT_SUPPORTED, eErrorFragmentedPool = VK_ERROR_FRAGMENTED_POOL, eErrorSurfaceLostKHR = VK_ERROR_SURFACE_LOST_KHR, eErrorNativeWindowInUseKHR = VK_ERROR_NATIVE_WINDOW_IN_USE_KHR, eSuboptimalKHR = VK_SUBOPTIMAL_KHR, eErrorOutOfDateKHR = VK_ERROR_OUT_OF_DATE_KHR, eErrorIncompatibleDisplayKHR = VK_ERROR_INCOMPATIBLE_DISPLAY_KHR, eErrorValidationFailedEXT = VK_ERROR_VALIDATION_FAILED_EXT, eErrorInvalidShaderNV = VK_ERROR_INVALID_SHADER_NV, eErrorOutOfPoolMemoryKHR = VK_ERROR_OUT_OF_POOL_MEMORY_KHR, eErrorInvalidExternalHandleKHR = VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR }; VULKAN_HPP_INLINE std::string to_string(Result value) { switch (value) { case Result::eSuccess: return "Success"; case Result::eNotReady: return "NotReady"; case Result::eTimeout: return "Timeout"; case Result::eEventSet: return "EventSet"; case Result::eEventReset: return "EventReset"; case Result::eIncomplete: return "Incomplete"; case Result::eErrorOutOfHostMemory: return "ErrorOutOfHostMemory"; case Result::eErrorOutOfDeviceMemory: return "ErrorOutOfDeviceMemory"; case Result::eErrorInitializationFailed: return "ErrorInitializationFailed"; case Result::eErrorDeviceLost: return "ErrorDeviceLost"; case Result::eErrorMemoryMapFailed: return "ErrorMemoryMapFailed"; case Result::eErrorLayerNotPresent: return "ErrorLayerNotPresent"; case Result::eErrorExtensionNotPresent: return "ErrorExtensionNotPresent"; case Result::eErrorFeatureNotPresent: return "ErrorFeatureNotPresent"; case Result::eErrorIncompatibleDriver: return "ErrorIncompatibleDriver"; case Result::eErrorTooManyObjects: return "ErrorTooManyObjects"; case Result::eErrorFormatNotSupported: return "ErrorFormatNotSupported"; case Result::eErrorFragmentedPool: return "ErrorFragmentedPool"; case Result::eErrorSurfaceLostKHR: return "ErrorSurfaceLostKHR"; case Result::eErrorNativeWindowInUseKHR: return "ErrorNativeWindowInUseKHR"; case Result::eSuboptimalKHR: return "SuboptimalKHR"; case Result::eErrorOutOfDateKHR: return "ErrorOutOfDateKHR"; case Result::eErrorIncompatibleDisplayKHR: return "ErrorIncompatibleDisplayKHR"; case Result::eErrorValidationFailedEXT: return "ErrorValidationFailedEXT"; case Result::eErrorInvalidShaderNV: return "ErrorInvalidShaderNV"; case Result::eErrorOutOfPoolMemoryKHR: return "ErrorOutOfPoolMemoryKHR"; case Result::eErrorInvalidExternalHandleKHR: return "ErrorInvalidExternalHandleKHR"; default: return "invalid"; } } #if defined(_MSC_VER) && (_MSC_VER == 1800) # define noexcept _NOEXCEPT #endif class ErrorCategoryImpl : public std::error_category { public: virtual const char* name() const noexcept override { return "vk::Result"; } virtual std::string message(int ev) const override { return to_string(static_cast(ev)); } }; #if defined(_MSC_VER) && (_MSC_VER == 1800) # undef noexcept #endif VULKAN_HPP_INLINE const std::error_category& errorCategory() { static ErrorCategoryImpl instance; return instance; } VULKAN_HPP_INLINE std::error_code make_error_code(Result e) { return std::error_code(static_cast(e), errorCategory()); } VULKAN_HPP_INLINE std::error_condition make_error_condition(Result e) { return std::error_condition(static_cast(e), errorCategory()); } #if defined(_MSC_VER) && (_MSC_VER == 1800) # define noexcept _NOEXCEPT #endif class Error { public: virtual ~Error() = default; virtual const char* what() const noexcept = 0; }; class LogicError : public Error, public std::logic_error { public: explicit LogicError( const std::string& what ) : Error(), std::logic_error(what) {} explicit LogicError( char const * what ) : Error(), std::logic_error(what) {} virtual ~LogicError() = default; virtual const char* what() const noexcept { return std::logic_error::what(); } }; class SystemError : public Error, public std::system_error { public: SystemError( std::error_code ec ) : Error(), std::system_error(ec) {} SystemError( std::error_code ec, std::string const& what ) : Error(), std::system_error(ec, what) {} SystemError( std::error_code ec, char const * what ) : Error(), std::system_error(ec, what) {} SystemError( int ev, std::error_category const& ecat ) : Error(), std::system_error(ev, ecat) {} SystemError( int ev, std::error_category const& ecat, std::string const& what) : Error(), std::system_error(ev, ecat, what) {} SystemError( int ev, std::error_category const& ecat, char const * what) : Error(), std::system_error(ev, ecat, what) {} virtual ~SystemError() = default; virtual const char* what() const noexcept { return std::system_error::what(); } }; #if defined(_MSC_VER) && (_MSC_VER == 1800) # undef noexcept #endif class OutOfHostMemoryError : public SystemError { public: OutOfHostMemoryError( std::string const& message ) : SystemError( make_error_code( Result::eErrorOutOfHostMemory ), message ) {} OutOfHostMemoryError( char const * message ) : SystemError( make_error_code( Result::eErrorOutOfHostMemory ), message ) {} }; class OutOfDeviceMemoryError : public SystemError { public: OutOfDeviceMemoryError( std::string const& message ) : SystemError( make_error_code( Result::eErrorOutOfDeviceMemory ), message ) {} OutOfDeviceMemoryError( char const * message ) : SystemError( make_error_code( Result::eErrorOutOfDeviceMemory ), message ) {} }; class InitializationFailedError : public SystemError { public: InitializationFailedError( std::string const& message ) : SystemError( make_error_code( Result::eErrorInitializationFailed ), message ) {} InitializationFailedError( char const * message ) : SystemError( make_error_code( Result::eErrorInitializationFailed ), message ) {} }; class DeviceLostError : public SystemError { public: DeviceLostError( std::string const& message ) : SystemError( make_error_code( Result::eErrorDeviceLost ), message ) {} DeviceLostError( char const * message ) : SystemError( make_error_code( Result::eErrorDeviceLost ), message ) {} }; class MemoryMapFailedError : public SystemError { public: MemoryMapFailedError( std::string const& message ) : SystemError( make_error_code( Result::eErrorMemoryMapFailed ), message ) {} MemoryMapFailedError( char const * message ) : SystemError( make_error_code( Result::eErrorMemoryMapFailed ), message ) {} }; class LayerNotPresentError : public SystemError { public: LayerNotPresentError( std::string const& message ) : SystemError( make_error_code( Result::eErrorLayerNotPresent ), message ) {} LayerNotPresentError( char const * message ) : SystemError( make_error_code( Result::eErrorLayerNotPresent ), message ) {} }; class ExtensionNotPresentError : public SystemError { public: ExtensionNotPresentError( std::string const& message ) : SystemError( make_error_code( Result::eErrorExtensionNotPresent ), message ) {} ExtensionNotPresentError( char const * message ) : SystemError( make_error_code( Result::eErrorExtensionNotPresent ), message ) {} }; class FeatureNotPresentError : public SystemError { public: FeatureNotPresentError( std::string const& message ) : SystemError( make_error_code( Result::eErrorFeatureNotPresent ), message ) {} FeatureNotPresentError( char const * message ) : SystemError( make_error_code( Result::eErrorFeatureNotPresent ), message ) {} }; class IncompatibleDriverError : public SystemError { public: IncompatibleDriverError( std::string const& message ) : SystemError( make_error_code( Result::eErrorIncompatibleDriver ), message ) {} IncompatibleDriverError( char const * message ) : SystemError( make_error_code( Result::eErrorIncompatibleDriver ), message ) {} }; class TooManyObjectsError : public SystemError { public: TooManyObjectsError( std::string const& message ) : SystemError( make_error_code( Result::eErrorTooManyObjects ), message ) {} TooManyObjectsError( char const * message ) : SystemError( make_error_code( Result::eErrorTooManyObjects ), message ) {} }; class FormatNotSupportedError : public SystemError { public: FormatNotSupportedError( std::string const& message ) : SystemError( make_error_code( Result::eErrorFormatNotSupported ), message ) {} FormatNotSupportedError( char const * message ) : SystemError( make_error_code( Result::eErrorFormatNotSupported ), message ) {} }; class FragmentedPoolError : public SystemError { public: FragmentedPoolError( std::string const& message ) : SystemError( make_error_code( Result::eErrorFragmentedPool ), message ) {} FragmentedPoolError( char const * message ) : SystemError( make_error_code( Result::eErrorFragmentedPool ), message ) {} }; class SurfaceLostKHRError : public SystemError { public: SurfaceLostKHRError( std::string const& message ) : SystemError( make_error_code( Result::eErrorSurfaceLostKHR ), message ) {} SurfaceLostKHRError( char const * message ) : SystemError( make_error_code( Result::eErrorSurfaceLostKHR ), message ) {} }; class NativeWindowInUseKHRError : public SystemError { public: NativeWindowInUseKHRError( std::string const& message ) : SystemError( make_error_code( Result::eErrorNativeWindowInUseKHR ), message ) {} NativeWindowInUseKHRError( char const * message ) : SystemError( make_error_code( Result::eErrorNativeWindowInUseKHR ), message ) {} }; class OutOfDateKHRError : public SystemError { public: OutOfDateKHRError( std::string const& message ) : SystemError( make_error_code( Result::eErrorOutOfDateKHR ), message ) {} OutOfDateKHRError( char const * message ) : SystemError( make_error_code( Result::eErrorOutOfDateKHR ), message ) {} }; class IncompatibleDisplayKHRError : public SystemError { public: IncompatibleDisplayKHRError( std::string const& message ) : SystemError( make_error_code( Result::eErrorIncompatibleDisplayKHR ), message ) {} IncompatibleDisplayKHRError( char const * message ) : SystemError( make_error_code( Result::eErrorIncompatibleDisplayKHR ), message ) {} }; class ValidationFailedEXTError : public SystemError { public: ValidationFailedEXTError( std::string const& message ) : SystemError( make_error_code( Result::eErrorValidationFailedEXT ), message ) {} ValidationFailedEXTError( char const * message ) : SystemError( make_error_code( Result::eErrorValidationFailedEXT ), message ) {} }; class InvalidShaderNVError : public SystemError { public: InvalidShaderNVError( std::string const& message ) : SystemError( make_error_code( Result::eErrorInvalidShaderNV ), message ) {} InvalidShaderNVError( char const * message ) : SystemError( make_error_code( Result::eErrorInvalidShaderNV ), message ) {} }; class OutOfPoolMemoryKHRError : public SystemError { public: OutOfPoolMemoryKHRError( std::string const& message ) : SystemError( make_error_code( Result::eErrorOutOfPoolMemoryKHR ), message ) {} OutOfPoolMemoryKHRError( char const * message ) : SystemError( make_error_code( Result::eErrorOutOfPoolMemoryKHR ), message ) {} }; class InvalidExternalHandleKHRError : public SystemError { public: InvalidExternalHandleKHRError( std::string const& message ) : SystemError( make_error_code( Result::eErrorInvalidExternalHandleKHR ), message ) {} InvalidExternalHandleKHRError( char const * message ) : SystemError( make_error_code( Result::eErrorInvalidExternalHandleKHR ), message ) {} }; VULKAN_HPP_INLINE void throwResultException( Result result, char const * message ) { assert ( static_cast(result) < 0 ); switch ( result ) { case Result::eErrorOutOfHostMemory: throw OutOfHostMemoryError ( message ); case Result::eErrorOutOfDeviceMemory: throw OutOfDeviceMemoryError ( message ); case Result::eErrorInitializationFailed: throw InitializationFailedError ( message ); case Result::eErrorDeviceLost: throw DeviceLostError ( message ); case Result::eErrorMemoryMapFailed: throw MemoryMapFailedError ( message ); case Result::eErrorLayerNotPresent: throw LayerNotPresentError ( message ); case Result::eErrorExtensionNotPresent: throw ExtensionNotPresentError ( message ); case Result::eErrorFeatureNotPresent: throw FeatureNotPresentError ( message ); case Result::eErrorIncompatibleDriver: throw IncompatibleDriverError ( message ); case Result::eErrorTooManyObjects: throw TooManyObjectsError ( message ); case Result::eErrorFormatNotSupported: throw FormatNotSupportedError ( message ); case Result::eErrorFragmentedPool: throw FragmentedPoolError ( message ); case Result::eErrorSurfaceLostKHR: throw SurfaceLostKHRError ( message ); case Result::eErrorNativeWindowInUseKHR: throw NativeWindowInUseKHRError ( message ); case Result::eErrorOutOfDateKHR: throw OutOfDateKHRError ( message ); case Result::eErrorIncompatibleDisplayKHR: throw IncompatibleDisplayKHRError ( message ); case Result::eErrorValidationFailedEXT: throw ValidationFailedEXTError ( message ); case Result::eErrorInvalidShaderNV: throw InvalidShaderNVError ( message ); case Result::eErrorOutOfPoolMemoryKHR: throw OutOfPoolMemoryKHRError ( message ); case Result::eErrorInvalidExternalHandleKHR: throw InvalidExternalHandleKHRError ( message ); default: throw SystemError( make_error_code( result ) ); } } } // namespace vk namespace std { template <> struct is_error_code_enum : public true_type {}; } namespace vk { template struct ResultValue { ResultValue( Result r, T & v ) : result( r ) , value( v ) {} Result result; T value; operator std::tuple() { return std::tuple(result, value); } }; template struct ResultValueType { #ifdef VULKAN_HPP_NO_EXCEPTIONS typedef ResultValue type; #else typedef T type; #endif }; template <> struct ResultValueType { #ifdef VULKAN_HPP_NO_EXCEPTIONS typedef Result type; #else typedef void type; #endif }; VULKAN_HPP_INLINE ResultValueType::type createResultValue( Result result, char const * message ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( result == Result::eSuccess ); return result; #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } #endif } template VULKAN_HPP_INLINE typename ResultValueType::type createResultValue( Result result, T & data, char const * message ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( result == Result::eSuccess ); return ResultValue( result, data ); #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } return data; #endif } VULKAN_HPP_INLINE Result createResultValue( Result result, char const * message, std::initializer_list successCodes ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() ); #else if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() ) { throwResultException( result, message ); } #endif return result; } template VULKAN_HPP_INLINE ResultValue createResultValue( Result result, T & data, char const * message, std::initializer_list successCodes ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() ); #else if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() ) { throwResultException( result, message ); } #endif return ResultValue( result, data ); } using SampleMask = uint32_t; using Bool32 = uint32_t; using DeviceSize = uint64_t; enum class FramebufferCreateFlagBits { }; using FramebufferCreateFlags = Flags; enum class QueryPoolCreateFlagBits { }; using QueryPoolCreateFlags = Flags; enum class RenderPassCreateFlagBits { }; using RenderPassCreateFlags = Flags; enum class SamplerCreateFlagBits { }; using SamplerCreateFlags = Flags; enum class PipelineLayoutCreateFlagBits { }; using PipelineLayoutCreateFlags = Flags; enum class PipelineCacheCreateFlagBits { }; using PipelineCacheCreateFlags = Flags; enum class PipelineDepthStencilStateCreateFlagBits { }; using PipelineDepthStencilStateCreateFlags = Flags; enum class PipelineDynamicStateCreateFlagBits { }; using PipelineDynamicStateCreateFlags = Flags; enum class PipelineColorBlendStateCreateFlagBits { }; using PipelineColorBlendStateCreateFlags = Flags; enum class PipelineMultisampleStateCreateFlagBits { }; using PipelineMultisampleStateCreateFlags = Flags; enum class PipelineRasterizationStateCreateFlagBits { }; using PipelineRasterizationStateCreateFlags = Flags; enum class PipelineViewportStateCreateFlagBits { }; using PipelineViewportStateCreateFlags = Flags; enum class PipelineTessellationStateCreateFlagBits { }; using PipelineTessellationStateCreateFlags = Flags; enum class PipelineInputAssemblyStateCreateFlagBits { }; using PipelineInputAssemblyStateCreateFlags = Flags; enum class PipelineVertexInputStateCreateFlagBits { }; using PipelineVertexInputStateCreateFlags = Flags; enum class PipelineShaderStageCreateFlagBits { }; using PipelineShaderStageCreateFlags = Flags; enum class BufferViewCreateFlagBits { }; using BufferViewCreateFlags = Flags; enum class InstanceCreateFlagBits { }; using InstanceCreateFlags = Flags; enum class DeviceCreateFlagBits { }; using DeviceCreateFlags = Flags; enum class DeviceQueueCreateFlagBits { }; using DeviceQueueCreateFlags = Flags; enum class ImageViewCreateFlagBits { }; using ImageViewCreateFlags = Flags; enum class SemaphoreCreateFlagBits { }; using SemaphoreCreateFlags = Flags; enum class ShaderModuleCreateFlagBits { }; using ShaderModuleCreateFlags = Flags; enum class EventCreateFlagBits { }; using EventCreateFlags = Flags; enum class MemoryMapFlagBits { }; using MemoryMapFlags = Flags; enum class DescriptorPoolResetFlagBits { }; using DescriptorPoolResetFlags = Flags; enum class DescriptorUpdateTemplateCreateFlagBitsKHR { }; using DescriptorUpdateTemplateCreateFlagsKHR = Flags; enum class DisplayModeCreateFlagBitsKHR { }; using DisplayModeCreateFlagsKHR = Flags; enum class DisplaySurfaceCreateFlagBitsKHR { }; using DisplaySurfaceCreateFlagsKHR = Flags; #ifdef VK_USE_PLATFORM_ANDROID_KHR enum class AndroidSurfaceCreateFlagBitsKHR { }; #endif /*VK_USE_PLATFORM_ANDROID_KHR*/ #ifdef VK_USE_PLATFORM_ANDROID_KHR using AndroidSurfaceCreateFlagsKHR = Flags; #endif /*VK_USE_PLATFORM_ANDROID_KHR*/ #ifdef VK_USE_PLATFORM_MIR_KHR enum class MirSurfaceCreateFlagBitsKHR { }; #endif /*VK_USE_PLATFORM_MIR_KHR*/ #ifdef VK_USE_PLATFORM_MIR_KHR using MirSurfaceCreateFlagsKHR = Flags; #endif /*VK_USE_PLATFORM_MIR_KHR*/ #ifdef VK_USE_PLATFORM_VI_NN enum class ViSurfaceCreateFlagBitsNN { }; #endif /*VK_USE_PLATFORM_VI_NN*/ #ifdef VK_USE_PLATFORM_VI_NN using ViSurfaceCreateFlagsNN = Flags; #endif /*VK_USE_PLATFORM_VI_NN*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR enum class WaylandSurfaceCreateFlagBitsKHR { }; #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR using WaylandSurfaceCreateFlagsKHR = Flags; #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR enum class Win32SurfaceCreateFlagBitsKHR { }; #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR using Win32SurfaceCreateFlagsKHR = Flags; #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR enum class XlibSurfaceCreateFlagBitsKHR { }; #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR using XlibSurfaceCreateFlagsKHR = Flags; #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR enum class XcbSurfaceCreateFlagBitsKHR { }; #endif /*VK_USE_PLATFORM_XCB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR using XcbSurfaceCreateFlagsKHR = Flags; #endif /*VK_USE_PLATFORM_XCB_KHR*/ #ifdef VK_USE_PLATFORM_IOS_MVK enum class IOSSurfaceCreateFlagBitsMVK { }; #endif /*VK_USE_PLATFORM_IOS_MVK*/ #ifdef VK_USE_PLATFORM_IOS_MVK using IOSSurfaceCreateFlagsMVK = Flags; #endif /*VK_USE_PLATFORM_IOS_MVK*/ #ifdef VK_USE_PLATFORM_MACOS_MVK enum class MacOSSurfaceCreateFlagBitsMVK { }; #endif /*VK_USE_PLATFORM_MACOS_MVK*/ #ifdef VK_USE_PLATFORM_MACOS_MVK using MacOSSurfaceCreateFlagsMVK = Flags; #endif /*VK_USE_PLATFORM_MACOS_MVK*/ enum class CommandPoolTrimFlagBitsKHR { }; using CommandPoolTrimFlagsKHR = Flags; enum class PipelineViewportSwizzleStateCreateFlagBitsNV { }; using PipelineViewportSwizzleStateCreateFlagsNV = Flags; enum class PipelineDiscardRectangleStateCreateFlagBitsEXT { }; using PipelineDiscardRectangleStateCreateFlagsEXT = Flags; class DeviceMemory { public: DeviceMemory() : m_deviceMemory(VK_NULL_HANDLE) {} DeviceMemory( std::nullptr_t ) : m_deviceMemory(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT DeviceMemory( VkDeviceMemory deviceMemory ) : m_deviceMemory( deviceMemory ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) DeviceMemory & operator=(VkDeviceMemory deviceMemory) { m_deviceMemory = deviceMemory; return *this; } #endif DeviceMemory & operator=( std::nullptr_t ) { m_deviceMemory = VK_NULL_HANDLE; return *this; } bool operator==( DeviceMemory const & rhs ) const { return m_deviceMemory == rhs.m_deviceMemory; } bool operator!=(DeviceMemory const & rhs ) const { return m_deviceMemory != rhs.m_deviceMemory; } bool operator<(DeviceMemory const & rhs ) const { return m_deviceMemory < rhs.m_deviceMemory; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDeviceMemory() const { return m_deviceMemory; } explicit operator bool() const { return m_deviceMemory != VK_NULL_HANDLE; } bool operator!() const { return m_deviceMemory == VK_NULL_HANDLE; } private: VkDeviceMemory m_deviceMemory; }; static_assert( sizeof( DeviceMemory ) == sizeof( VkDeviceMemory ), "handle and wrapper have different size!" ); class CommandPool { public: CommandPool() : m_commandPool(VK_NULL_HANDLE) {} CommandPool( std::nullptr_t ) : m_commandPool(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT CommandPool( VkCommandPool commandPool ) : m_commandPool( commandPool ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) CommandPool & operator=(VkCommandPool commandPool) { m_commandPool = commandPool; return *this; } #endif CommandPool & operator=( std::nullptr_t ) { m_commandPool = VK_NULL_HANDLE; return *this; } bool operator==( CommandPool const & rhs ) const { return m_commandPool == rhs.m_commandPool; } bool operator!=(CommandPool const & rhs ) const { return m_commandPool != rhs.m_commandPool; } bool operator<(CommandPool const & rhs ) const { return m_commandPool < rhs.m_commandPool; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkCommandPool() const { return m_commandPool; } explicit operator bool() const { return m_commandPool != VK_NULL_HANDLE; } bool operator!() const { return m_commandPool == VK_NULL_HANDLE; } private: VkCommandPool m_commandPool; }; static_assert( sizeof( CommandPool ) == sizeof( VkCommandPool ), "handle and wrapper have different size!" ); class Buffer { public: Buffer() : m_buffer(VK_NULL_HANDLE) {} Buffer( std::nullptr_t ) : m_buffer(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Buffer( VkBuffer buffer ) : m_buffer( buffer ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Buffer & operator=(VkBuffer buffer) { m_buffer = buffer; return *this; } #endif Buffer & operator=( std::nullptr_t ) { m_buffer = VK_NULL_HANDLE; return *this; } bool operator==( Buffer const & rhs ) const { return m_buffer == rhs.m_buffer; } bool operator!=(Buffer const & rhs ) const { return m_buffer != rhs.m_buffer; } bool operator<(Buffer const & rhs ) const { return m_buffer < rhs.m_buffer; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkBuffer() const { return m_buffer; } explicit operator bool() const { return m_buffer != VK_NULL_HANDLE; } bool operator!() const { return m_buffer == VK_NULL_HANDLE; } private: VkBuffer m_buffer; }; static_assert( sizeof( Buffer ) == sizeof( VkBuffer ), "handle and wrapper have different size!" ); class BufferView { public: BufferView() : m_bufferView(VK_NULL_HANDLE) {} BufferView( std::nullptr_t ) : m_bufferView(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT BufferView( VkBufferView bufferView ) : m_bufferView( bufferView ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) BufferView & operator=(VkBufferView bufferView) { m_bufferView = bufferView; return *this; } #endif BufferView & operator=( std::nullptr_t ) { m_bufferView = VK_NULL_HANDLE; return *this; } bool operator==( BufferView const & rhs ) const { return m_bufferView == rhs.m_bufferView; } bool operator!=(BufferView const & rhs ) const { return m_bufferView != rhs.m_bufferView; } bool operator<(BufferView const & rhs ) const { return m_bufferView < rhs.m_bufferView; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkBufferView() const { return m_bufferView; } explicit operator bool() const { return m_bufferView != VK_NULL_HANDLE; } bool operator!() const { return m_bufferView == VK_NULL_HANDLE; } private: VkBufferView m_bufferView; }; static_assert( sizeof( BufferView ) == sizeof( VkBufferView ), "handle and wrapper have different size!" ); class Image { public: Image() : m_image(VK_NULL_HANDLE) {} Image( std::nullptr_t ) : m_image(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Image( VkImage image ) : m_image( image ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Image & operator=(VkImage image) { m_image = image; return *this; } #endif Image & operator=( std::nullptr_t ) { m_image = VK_NULL_HANDLE; return *this; } bool operator==( Image const & rhs ) const { return m_image == rhs.m_image; } bool operator!=(Image const & rhs ) const { return m_image != rhs.m_image; } bool operator<(Image const & rhs ) const { return m_image < rhs.m_image; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkImage() const { return m_image; } explicit operator bool() const { return m_image != VK_NULL_HANDLE; } bool operator!() const { return m_image == VK_NULL_HANDLE; } private: VkImage m_image; }; static_assert( sizeof( Image ) == sizeof( VkImage ), "handle and wrapper have different size!" ); class ImageView { public: ImageView() : m_imageView(VK_NULL_HANDLE) {} ImageView( std::nullptr_t ) : m_imageView(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT ImageView( VkImageView imageView ) : m_imageView( imageView ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) ImageView & operator=(VkImageView imageView) { m_imageView = imageView; return *this; } #endif ImageView & operator=( std::nullptr_t ) { m_imageView = VK_NULL_HANDLE; return *this; } bool operator==( ImageView const & rhs ) const { return m_imageView == rhs.m_imageView; } bool operator!=(ImageView const & rhs ) const { return m_imageView != rhs.m_imageView; } bool operator<(ImageView const & rhs ) const { return m_imageView < rhs.m_imageView; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkImageView() const { return m_imageView; } explicit operator bool() const { return m_imageView != VK_NULL_HANDLE; } bool operator!() const { return m_imageView == VK_NULL_HANDLE; } private: VkImageView m_imageView; }; static_assert( sizeof( ImageView ) == sizeof( VkImageView ), "handle and wrapper have different size!" ); class ShaderModule { public: ShaderModule() : m_shaderModule(VK_NULL_HANDLE) {} ShaderModule( std::nullptr_t ) : m_shaderModule(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT ShaderModule( VkShaderModule shaderModule ) : m_shaderModule( shaderModule ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) ShaderModule & operator=(VkShaderModule shaderModule) { m_shaderModule = shaderModule; return *this; } #endif ShaderModule & operator=( std::nullptr_t ) { m_shaderModule = VK_NULL_HANDLE; return *this; } bool operator==( ShaderModule const & rhs ) const { return m_shaderModule == rhs.m_shaderModule; } bool operator!=(ShaderModule const & rhs ) const { return m_shaderModule != rhs.m_shaderModule; } bool operator<(ShaderModule const & rhs ) const { return m_shaderModule < rhs.m_shaderModule; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkShaderModule() const { return m_shaderModule; } explicit operator bool() const { return m_shaderModule != VK_NULL_HANDLE; } bool operator!() const { return m_shaderModule == VK_NULL_HANDLE; } private: VkShaderModule m_shaderModule; }; static_assert( sizeof( ShaderModule ) == sizeof( VkShaderModule ), "handle and wrapper have different size!" ); class Pipeline { public: Pipeline() : m_pipeline(VK_NULL_HANDLE) {} Pipeline( std::nullptr_t ) : m_pipeline(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Pipeline( VkPipeline pipeline ) : m_pipeline( pipeline ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Pipeline & operator=(VkPipeline pipeline) { m_pipeline = pipeline; return *this; } #endif Pipeline & operator=( std::nullptr_t ) { m_pipeline = VK_NULL_HANDLE; return *this; } bool operator==( Pipeline const & rhs ) const { return m_pipeline == rhs.m_pipeline; } bool operator!=(Pipeline const & rhs ) const { return m_pipeline != rhs.m_pipeline; } bool operator<(Pipeline const & rhs ) const { return m_pipeline < rhs.m_pipeline; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkPipeline() const { return m_pipeline; } explicit operator bool() const { return m_pipeline != VK_NULL_HANDLE; } bool operator!() const { return m_pipeline == VK_NULL_HANDLE; } private: VkPipeline m_pipeline; }; static_assert( sizeof( Pipeline ) == sizeof( VkPipeline ), "handle and wrapper have different size!" ); class PipelineLayout { public: PipelineLayout() : m_pipelineLayout(VK_NULL_HANDLE) {} PipelineLayout( std::nullptr_t ) : m_pipelineLayout(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT PipelineLayout( VkPipelineLayout pipelineLayout ) : m_pipelineLayout( pipelineLayout ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) PipelineLayout & operator=(VkPipelineLayout pipelineLayout) { m_pipelineLayout = pipelineLayout; return *this; } #endif PipelineLayout & operator=( std::nullptr_t ) { m_pipelineLayout = VK_NULL_HANDLE; return *this; } bool operator==( PipelineLayout const & rhs ) const { return m_pipelineLayout == rhs.m_pipelineLayout; } bool operator!=(PipelineLayout const & rhs ) const { return m_pipelineLayout != rhs.m_pipelineLayout; } bool operator<(PipelineLayout const & rhs ) const { return m_pipelineLayout < rhs.m_pipelineLayout; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkPipelineLayout() const { return m_pipelineLayout; } explicit operator bool() const { return m_pipelineLayout != VK_NULL_HANDLE; } bool operator!() const { return m_pipelineLayout == VK_NULL_HANDLE; } private: VkPipelineLayout m_pipelineLayout; }; static_assert( sizeof( PipelineLayout ) == sizeof( VkPipelineLayout ), "handle and wrapper have different size!" ); class Sampler { public: Sampler() : m_sampler(VK_NULL_HANDLE) {} Sampler( std::nullptr_t ) : m_sampler(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Sampler( VkSampler sampler ) : m_sampler( sampler ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Sampler & operator=(VkSampler sampler) { m_sampler = sampler; return *this; } #endif Sampler & operator=( std::nullptr_t ) { m_sampler = VK_NULL_HANDLE; return *this; } bool operator==( Sampler const & rhs ) const { return m_sampler == rhs.m_sampler; } bool operator!=(Sampler const & rhs ) const { return m_sampler != rhs.m_sampler; } bool operator<(Sampler const & rhs ) const { return m_sampler < rhs.m_sampler; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSampler() const { return m_sampler; } explicit operator bool() const { return m_sampler != VK_NULL_HANDLE; } bool operator!() const { return m_sampler == VK_NULL_HANDLE; } private: VkSampler m_sampler; }; static_assert( sizeof( Sampler ) == sizeof( VkSampler ), "handle and wrapper have different size!" ); class DescriptorSet { public: DescriptorSet() : m_descriptorSet(VK_NULL_HANDLE) {} DescriptorSet( std::nullptr_t ) : m_descriptorSet(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT DescriptorSet( VkDescriptorSet descriptorSet ) : m_descriptorSet( descriptorSet ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) DescriptorSet & operator=(VkDescriptorSet descriptorSet) { m_descriptorSet = descriptorSet; return *this; } #endif DescriptorSet & operator=( std::nullptr_t ) { m_descriptorSet = VK_NULL_HANDLE; return *this; } bool operator==( DescriptorSet const & rhs ) const { return m_descriptorSet == rhs.m_descriptorSet; } bool operator!=(DescriptorSet const & rhs ) const { return m_descriptorSet != rhs.m_descriptorSet; } bool operator<(DescriptorSet const & rhs ) const { return m_descriptorSet < rhs.m_descriptorSet; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDescriptorSet() const { return m_descriptorSet; } explicit operator bool() const { return m_descriptorSet != VK_NULL_HANDLE; } bool operator!() const { return m_descriptorSet == VK_NULL_HANDLE; } private: VkDescriptorSet m_descriptorSet; }; static_assert( sizeof( DescriptorSet ) == sizeof( VkDescriptorSet ), "handle and wrapper have different size!" ); class DescriptorSetLayout { public: DescriptorSetLayout() : m_descriptorSetLayout(VK_NULL_HANDLE) {} DescriptorSetLayout( std::nullptr_t ) : m_descriptorSetLayout(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT DescriptorSetLayout( VkDescriptorSetLayout descriptorSetLayout ) : m_descriptorSetLayout( descriptorSetLayout ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) DescriptorSetLayout & operator=(VkDescriptorSetLayout descriptorSetLayout) { m_descriptorSetLayout = descriptorSetLayout; return *this; } #endif DescriptorSetLayout & operator=( std::nullptr_t ) { m_descriptorSetLayout = VK_NULL_HANDLE; return *this; } bool operator==( DescriptorSetLayout const & rhs ) const { return m_descriptorSetLayout == rhs.m_descriptorSetLayout; } bool operator!=(DescriptorSetLayout const & rhs ) const { return m_descriptorSetLayout != rhs.m_descriptorSetLayout; } bool operator<(DescriptorSetLayout const & rhs ) const { return m_descriptorSetLayout < rhs.m_descriptorSetLayout; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDescriptorSetLayout() const { return m_descriptorSetLayout; } explicit operator bool() const { return m_descriptorSetLayout != VK_NULL_HANDLE; } bool operator!() const { return m_descriptorSetLayout == VK_NULL_HANDLE; } private: VkDescriptorSetLayout m_descriptorSetLayout; }; static_assert( sizeof( DescriptorSetLayout ) == sizeof( VkDescriptorSetLayout ), "handle and wrapper have different size!" ); class DescriptorPool { public: DescriptorPool() : m_descriptorPool(VK_NULL_HANDLE) {} DescriptorPool( std::nullptr_t ) : m_descriptorPool(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT DescriptorPool( VkDescriptorPool descriptorPool ) : m_descriptorPool( descriptorPool ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) DescriptorPool & operator=(VkDescriptorPool descriptorPool) { m_descriptorPool = descriptorPool; return *this; } #endif DescriptorPool & operator=( std::nullptr_t ) { m_descriptorPool = VK_NULL_HANDLE; return *this; } bool operator==( DescriptorPool const & rhs ) const { return m_descriptorPool == rhs.m_descriptorPool; } bool operator!=(DescriptorPool const & rhs ) const { return m_descriptorPool != rhs.m_descriptorPool; } bool operator<(DescriptorPool const & rhs ) const { return m_descriptorPool < rhs.m_descriptorPool; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDescriptorPool() const { return m_descriptorPool; } explicit operator bool() const { return m_descriptorPool != VK_NULL_HANDLE; } bool operator!() const { return m_descriptorPool == VK_NULL_HANDLE; } private: VkDescriptorPool m_descriptorPool; }; static_assert( sizeof( DescriptorPool ) == sizeof( VkDescriptorPool ), "handle and wrapper have different size!" ); class Fence { public: Fence() : m_fence(VK_NULL_HANDLE) {} Fence( std::nullptr_t ) : m_fence(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Fence( VkFence fence ) : m_fence( fence ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Fence & operator=(VkFence fence) { m_fence = fence; return *this; } #endif Fence & operator=( std::nullptr_t ) { m_fence = VK_NULL_HANDLE; return *this; } bool operator==( Fence const & rhs ) const { return m_fence == rhs.m_fence; } bool operator!=(Fence const & rhs ) const { return m_fence != rhs.m_fence; } bool operator<(Fence const & rhs ) const { return m_fence < rhs.m_fence; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkFence() const { return m_fence; } explicit operator bool() const { return m_fence != VK_NULL_HANDLE; } bool operator!() const { return m_fence == VK_NULL_HANDLE; } private: VkFence m_fence; }; static_assert( sizeof( Fence ) == sizeof( VkFence ), "handle and wrapper have different size!" ); class Semaphore { public: Semaphore() : m_semaphore(VK_NULL_HANDLE) {} Semaphore( std::nullptr_t ) : m_semaphore(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Semaphore( VkSemaphore semaphore ) : m_semaphore( semaphore ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Semaphore & operator=(VkSemaphore semaphore) { m_semaphore = semaphore; return *this; } #endif Semaphore & operator=( std::nullptr_t ) { m_semaphore = VK_NULL_HANDLE; return *this; } bool operator==( Semaphore const & rhs ) const { return m_semaphore == rhs.m_semaphore; } bool operator!=(Semaphore const & rhs ) const { return m_semaphore != rhs.m_semaphore; } bool operator<(Semaphore const & rhs ) const { return m_semaphore < rhs.m_semaphore; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSemaphore() const { return m_semaphore; } explicit operator bool() const { return m_semaphore != VK_NULL_HANDLE; } bool operator!() const { return m_semaphore == VK_NULL_HANDLE; } private: VkSemaphore m_semaphore; }; static_assert( sizeof( Semaphore ) == sizeof( VkSemaphore ), "handle and wrapper have different size!" ); class Event { public: Event() : m_event(VK_NULL_HANDLE) {} Event( std::nullptr_t ) : m_event(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Event( VkEvent event ) : m_event( event ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Event & operator=(VkEvent event) { m_event = event; return *this; } #endif Event & operator=( std::nullptr_t ) { m_event = VK_NULL_HANDLE; return *this; } bool operator==( Event const & rhs ) const { return m_event == rhs.m_event; } bool operator!=(Event const & rhs ) const { return m_event != rhs.m_event; } bool operator<(Event const & rhs ) const { return m_event < rhs.m_event; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkEvent() const { return m_event; } explicit operator bool() const { return m_event != VK_NULL_HANDLE; } bool operator!() const { return m_event == VK_NULL_HANDLE; } private: VkEvent m_event; }; static_assert( sizeof( Event ) == sizeof( VkEvent ), "handle and wrapper have different size!" ); class QueryPool { public: QueryPool() : m_queryPool(VK_NULL_HANDLE) {} QueryPool( std::nullptr_t ) : m_queryPool(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT QueryPool( VkQueryPool queryPool ) : m_queryPool( queryPool ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) QueryPool & operator=(VkQueryPool queryPool) { m_queryPool = queryPool; return *this; } #endif QueryPool & operator=( std::nullptr_t ) { m_queryPool = VK_NULL_HANDLE; return *this; } bool operator==( QueryPool const & rhs ) const { return m_queryPool == rhs.m_queryPool; } bool operator!=(QueryPool const & rhs ) const { return m_queryPool != rhs.m_queryPool; } bool operator<(QueryPool const & rhs ) const { return m_queryPool < rhs.m_queryPool; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkQueryPool() const { return m_queryPool; } explicit operator bool() const { return m_queryPool != VK_NULL_HANDLE; } bool operator!() const { return m_queryPool == VK_NULL_HANDLE; } private: VkQueryPool m_queryPool; }; static_assert( sizeof( QueryPool ) == sizeof( VkQueryPool ), "handle and wrapper have different size!" ); class Framebuffer { public: Framebuffer() : m_framebuffer(VK_NULL_HANDLE) {} Framebuffer( std::nullptr_t ) : m_framebuffer(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Framebuffer( VkFramebuffer framebuffer ) : m_framebuffer( framebuffer ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Framebuffer & operator=(VkFramebuffer framebuffer) { m_framebuffer = framebuffer; return *this; } #endif Framebuffer & operator=( std::nullptr_t ) { m_framebuffer = VK_NULL_HANDLE; return *this; } bool operator==( Framebuffer const & rhs ) const { return m_framebuffer == rhs.m_framebuffer; } bool operator!=(Framebuffer const & rhs ) const { return m_framebuffer != rhs.m_framebuffer; } bool operator<(Framebuffer const & rhs ) const { return m_framebuffer < rhs.m_framebuffer; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkFramebuffer() const { return m_framebuffer; } explicit operator bool() const { return m_framebuffer != VK_NULL_HANDLE; } bool operator!() const { return m_framebuffer == VK_NULL_HANDLE; } private: VkFramebuffer m_framebuffer; }; static_assert( sizeof( Framebuffer ) == sizeof( VkFramebuffer ), "handle and wrapper have different size!" ); class RenderPass { public: RenderPass() : m_renderPass(VK_NULL_HANDLE) {} RenderPass( std::nullptr_t ) : m_renderPass(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT RenderPass( VkRenderPass renderPass ) : m_renderPass( renderPass ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) RenderPass & operator=(VkRenderPass renderPass) { m_renderPass = renderPass; return *this; } #endif RenderPass & operator=( std::nullptr_t ) { m_renderPass = VK_NULL_HANDLE; return *this; } bool operator==( RenderPass const & rhs ) const { return m_renderPass == rhs.m_renderPass; } bool operator!=(RenderPass const & rhs ) const { return m_renderPass != rhs.m_renderPass; } bool operator<(RenderPass const & rhs ) const { return m_renderPass < rhs.m_renderPass; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkRenderPass() const { return m_renderPass; } explicit operator bool() const { return m_renderPass != VK_NULL_HANDLE; } bool operator!() const { return m_renderPass == VK_NULL_HANDLE; } private: VkRenderPass m_renderPass; }; static_assert( sizeof( RenderPass ) == sizeof( VkRenderPass ), "handle and wrapper have different size!" ); class PipelineCache { public: PipelineCache() : m_pipelineCache(VK_NULL_HANDLE) {} PipelineCache( std::nullptr_t ) : m_pipelineCache(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT PipelineCache( VkPipelineCache pipelineCache ) : m_pipelineCache( pipelineCache ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) PipelineCache & operator=(VkPipelineCache pipelineCache) { m_pipelineCache = pipelineCache; return *this; } #endif PipelineCache & operator=( std::nullptr_t ) { m_pipelineCache = VK_NULL_HANDLE; return *this; } bool operator==( PipelineCache const & rhs ) const { return m_pipelineCache == rhs.m_pipelineCache; } bool operator!=(PipelineCache const & rhs ) const { return m_pipelineCache != rhs.m_pipelineCache; } bool operator<(PipelineCache const & rhs ) const { return m_pipelineCache < rhs.m_pipelineCache; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkPipelineCache() const { return m_pipelineCache; } explicit operator bool() const { return m_pipelineCache != VK_NULL_HANDLE; } bool operator!() const { return m_pipelineCache == VK_NULL_HANDLE; } private: VkPipelineCache m_pipelineCache; }; static_assert( sizeof( PipelineCache ) == sizeof( VkPipelineCache ), "handle and wrapper have different size!" ); class ObjectTableNVX { public: ObjectTableNVX() : m_objectTableNVX(VK_NULL_HANDLE) {} ObjectTableNVX( std::nullptr_t ) : m_objectTableNVX(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT ObjectTableNVX( VkObjectTableNVX objectTableNVX ) : m_objectTableNVX( objectTableNVX ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) ObjectTableNVX & operator=(VkObjectTableNVX objectTableNVX) { m_objectTableNVX = objectTableNVX; return *this; } #endif ObjectTableNVX & operator=( std::nullptr_t ) { m_objectTableNVX = VK_NULL_HANDLE; return *this; } bool operator==( ObjectTableNVX const & rhs ) const { return m_objectTableNVX == rhs.m_objectTableNVX; } bool operator!=(ObjectTableNVX const & rhs ) const { return m_objectTableNVX != rhs.m_objectTableNVX; } bool operator<(ObjectTableNVX const & rhs ) const { return m_objectTableNVX < rhs.m_objectTableNVX; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkObjectTableNVX() const { return m_objectTableNVX; } explicit operator bool() const { return m_objectTableNVX != VK_NULL_HANDLE; } bool operator!() const { return m_objectTableNVX == VK_NULL_HANDLE; } private: VkObjectTableNVX m_objectTableNVX; }; static_assert( sizeof( ObjectTableNVX ) == sizeof( VkObjectTableNVX ), "handle and wrapper have different size!" ); class IndirectCommandsLayoutNVX { public: IndirectCommandsLayoutNVX() : m_indirectCommandsLayoutNVX(VK_NULL_HANDLE) {} IndirectCommandsLayoutNVX( std::nullptr_t ) : m_indirectCommandsLayoutNVX(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT IndirectCommandsLayoutNVX( VkIndirectCommandsLayoutNVX indirectCommandsLayoutNVX ) : m_indirectCommandsLayoutNVX( indirectCommandsLayoutNVX ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) IndirectCommandsLayoutNVX & operator=(VkIndirectCommandsLayoutNVX indirectCommandsLayoutNVX) { m_indirectCommandsLayoutNVX = indirectCommandsLayoutNVX; return *this; } #endif IndirectCommandsLayoutNVX & operator=( std::nullptr_t ) { m_indirectCommandsLayoutNVX = VK_NULL_HANDLE; return *this; } bool operator==( IndirectCommandsLayoutNVX const & rhs ) const { return m_indirectCommandsLayoutNVX == rhs.m_indirectCommandsLayoutNVX; } bool operator!=(IndirectCommandsLayoutNVX const & rhs ) const { return m_indirectCommandsLayoutNVX != rhs.m_indirectCommandsLayoutNVX; } bool operator<(IndirectCommandsLayoutNVX const & rhs ) const { return m_indirectCommandsLayoutNVX < rhs.m_indirectCommandsLayoutNVX; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkIndirectCommandsLayoutNVX() const { return m_indirectCommandsLayoutNVX; } explicit operator bool() const { return m_indirectCommandsLayoutNVX != VK_NULL_HANDLE; } bool operator!() const { return m_indirectCommandsLayoutNVX == VK_NULL_HANDLE; } private: VkIndirectCommandsLayoutNVX m_indirectCommandsLayoutNVX; }; static_assert( sizeof( IndirectCommandsLayoutNVX ) == sizeof( VkIndirectCommandsLayoutNVX ), "handle and wrapper have different size!" ); class DescriptorUpdateTemplateKHR { public: DescriptorUpdateTemplateKHR() : m_descriptorUpdateTemplateKHR(VK_NULL_HANDLE) {} DescriptorUpdateTemplateKHR( std::nullptr_t ) : m_descriptorUpdateTemplateKHR(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT DescriptorUpdateTemplateKHR( VkDescriptorUpdateTemplateKHR descriptorUpdateTemplateKHR ) : m_descriptorUpdateTemplateKHR( descriptorUpdateTemplateKHR ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) DescriptorUpdateTemplateKHR & operator=(VkDescriptorUpdateTemplateKHR descriptorUpdateTemplateKHR) { m_descriptorUpdateTemplateKHR = descriptorUpdateTemplateKHR; return *this; } #endif DescriptorUpdateTemplateKHR & operator=( std::nullptr_t ) { m_descriptorUpdateTemplateKHR = VK_NULL_HANDLE; return *this; } bool operator==( DescriptorUpdateTemplateKHR const & rhs ) const { return m_descriptorUpdateTemplateKHR == rhs.m_descriptorUpdateTemplateKHR; } bool operator!=(DescriptorUpdateTemplateKHR const & rhs ) const { return m_descriptorUpdateTemplateKHR != rhs.m_descriptorUpdateTemplateKHR; } bool operator<(DescriptorUpdateTemplateKHR const & rhs ) const { return m_descriptorUpdateTemplateKHR < rhs.m_descriptorUpdateTemplateKHR; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDescriptorUpdateTemplateKHR() const { return m_descriptorUpdateTemplateKHR; } explicit operator bool() const { return m_descriptorUpdateTemplateKHR != VK_NULL_HANDLE; } bool operator!() const { return m_descriptorUpdateTemplateKHR == VK_NULL_HANDLE; } private: VkDescriptorUpdateTemplateKHR m_descriptorUpdateTemplateKHR; }; static_assert( sizeof( DescriptorUpdateTemplateKHR ) == sizeof( VkDescriptorUpdateTemplateKHR ), "handle and wrapper have different size!" ); class SamplerYCbCrConversionKHR { public: SamplerYCbCrConversionKHR() : m_samplerYCbCrConversionKHR(VK_NULL_HANDLE) {} SamplerYCbCrConversionKHR( std::nullptr_t ) : m_samplerYCbCrConversionKHR(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT SamplerYCbCrConversionKHR( VkSamplerYCbCrConversionKHR samplerYCbCrConversionKHR ) : m_samplerYCbCrConversionKHR( samplerYCbCrConversionKHR ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) SamplerYCbCrConversionKHR & operator=(VkSamplerYCbCrConversionKHR samplerYCbCrConversionKHR) { m_samplerYCbCrConversionKHR = samplerYCbCrConversionKHR; return *this; } #endif SamplerYCbCrConversionKHR & operator=( std::nullptr_t ) { m_samplerYCbCrConversionKHR = VK_NULL_HANDLE; return *this; } bool operator==( SamplerYCbCrConversionKHR const & rhs ) const { return m_samplerYCbCrConversionKHR == rhs.m_samplerYCbCrConversionKHR; } bool operator!=(SamplerYCbCrConversionKHR const & rhs ) const { return m_samplerYCbCrConversionKHR != rhs.m_samplerYCbCrConversionKHR; } bool operator<(SamplerYCbCrConversionKHR const & rhs ) const { return m_samplerYCbCrConversionKHR < rhs.m_samplerYCbCrConversionKHR; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSamplerYCbCrConversionKHR() const { return m_samplerYCbCrConversionKHR; } explicit operator bool() const { return m_samplerYCbCrConversionKHR != VK_NULL_HANDLE; } bool operator!() const { return m_samplerYCbCrConversionKHR == VK_NULL_HANDLE; } private: VkSamplerYCbCrConversionKHR m_samplerYCbCrConversionKHR; }; static_assert( sizeof( SamplerYCbCrConversionKHR ) == sizeof( VkSamplerYCbCrConversionKHR ), "handle and wrapper have different size!" ); class DisplayKHR { public: DisplayKHR() : m_displayKHR(VK_NULL_HANDLE) {} DisplayKHR( std::nullptr_t ) : m_displayKHR(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT DisplayKHR( VkDisplayKHR displayKHR ) : m_displayKHR( displayKHR ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) DisplayKHR & operator=(VkDisplayKHR displayKHR) { m_displayKHR = displayKHR; return *this; } #endif DisplayKHR & operator=( std::nullptr_t ) { m_displayKHR = VK_NULL_HANDLE; return *this; } bool operator==( DisplayKHR const & rhs ) const { return m_displayKHR == rhs.m_displayKHR; } bool operator!=(DisplayKHR const & rhs ) const { return m_displayKHR != rhs.m_displayKHR; } bool operator<(DisplayKHR const & rhs ) const { return m_displayKHR < rhs.m_displayKHR; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDisplayKHR() const { return m_displayKHR; } explicit operator bool() const { return m_displayKHR != VK_NULL_HANDLE; } bool operator!() const { return m_displayKHR == VK_NULL_HANDLE; } private: VkDisplayKHR m_displayKHR; }; static_assert( sizeof( DisplayKHR ) == sizeof( VkDisplayKHR ), "handle and wrapper have different size!" ); class DisplayModeKHR { public: DisplayModeKHR() : m_displayModeKHR(VK_NULL_HANDLE) {} DisplayModeKHR( std::nullptr_t ) : m_displayModeKHR(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT DisplayModeKHR( VkDisplayModeKHR displayModeKHR ) : m_displayModeKHR( displayModeKHR ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) DisplayModeKHR & operator=(VkDisplayModeKHR displayModeKHR) { m_displayModeKHR = displayModeKHR; return *this; } #endif DisplayModeKHR & operator=( std::nullptr_t ) { m_displayModeKHR = VK_NULL_HANDLE; return *this; } bool operator==( DisplayModeKHR const & rhs ) const { return m_displayModeKHR == rhs.m_displayModeKHR; } bool operator!=(DisplayModeKHR const & rhs ) const { return m_displayModeKHR != rhs.m_displayModeKHR; } bool operator<(DisplayModeKHR const & rhs ) const { return m_displayModeKHR < rhs.m_displayModeKHR; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDisplayModeKHR() const { return m_displayModeKHR; } explicit operator bool() const { return m_displayModeKHR != VK_NULL_HANDLE; } bool operator!() const { return m_displayModeKHR == VK_NULL_HANDLE; } private: VkDisplayModeKHR m_displayModeKHR; }; static_assert( sizeof( DisplayModeKHR ) == sizeof( VkDisplayModeKHR ), "handle and wrapper have different size!" ); class SurfaceKHR { public: SurfaceKHR() : m_surfaceKHR(VK_NULL_HANDLE) {} SurfaceKHR( std::nullptr_t ) : m_surfaceKHR(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT SurfaceKHR( VkSurfaceKHR surfaceKHR ) : m_surfaceKHR( surfaceKHR ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) SurfaceKHR & operator=(VkSurfaceKHR surfaceKHR) { m_surfaceKHR = surfaceKHR; return *this; } #endif SurfaceKHR & operator=( std::nullptr_t ) { m_surfaceKHR = VK_NULL_HANDLE; return *this; } bool operator==( SurfaceKHR const & rhs ) const { return m_surfaceKHR == rhs.m_surfaceKHR; } bool operator!=(SurfaceKHR const & rhs ) const { return m_surfaceKHR != rhs.m_surfaceKHR; } bool operator<(SurfaceKHR const & rhs ) const { return m_surfaceKHR < rhs.m_surfaceKHR; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSurfaceKHR() const { return m_surfaceKHR; } explicit operator bool() const { return m_surfaceKHR != VK_NULL_HANDLE; } bool operator!() const { return m_surfaceKHR == VK_NULL_HANDLE; } private: VkSurfaceKHR m_surfaceKHR; }; static_assert( sizeof( SurfaceKHR ) == sizeof( VkSurfaceKHR ), "handle and wrapper have different size!" ); class SwapchainKHR { public: SwapchainKHR() : m_swapchainKHR(VK_NULL_HANDLE) {} SwapchainKHR( std::nullptr_t ) : m_swapchainKHR(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT SwapchainKHR( VkSwapchainKHR swapchainKHR ) : m_swapchainKHR( swapchainKHR ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) SwapchainKHR & operator=(VkSwapchainKHR swapchainKHR) { m_swapchainKHR = swapchainKHR; return *this; } #endif SwapchainKHR & operator=( std::nullptr_t ) { m_swapchainKHR = VK_NULL_HANDLE; return *this; } bool operator==( SwapchainKHR const & rhs ) const { return m_swapchainKHR == rhs.m_swapchainKHR; } bool operator!=(SwapchainKHR const & rhs ) const { return m_swapchainKHR != rhs.m_swapchainKHR; } bool operator<(SwapchainKHR const & rhs ) const { return m_swapchainKHR < rhs.m_swapchainKHR; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkSwapchainKHR() const { return m_swapchainKHR; } explicit operator bool() const { return m_swapchainKHR != VK_NULL_HANDLE; } bool operator!() const { return m_swapchainKHR == VK_NULL_HANDLE; } private: VkSwapchainKHR m_swapchainKHR; }; static_assert( sizeof( SwapchainKHR ) == sizeof( VkSwapchainKHR ), "handle and wrapper have different size!" ); class DebugReportCallbackEXT { public: DebugReportCallbackEXT() : m_debugReportCallbackEXT(VK_NULL_HANDLE) {} DebugReportCallbackEXT( std::nullptr_t ) : m_debugReportCallbackEXT(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT DebugReportCallbackEXT( VkDebugReportCallbackEXT debugReportCallbackEXT ) : m_debugReportCallbackEXT( debugReportCallbackEXT ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) DebugReportCallbackEXT & operator=(VkDebugReportCallbackEXT debugReportCallbackEXT) { m_debugReportCallbackEXT = debugReportCallbackEXT; return *this; } #endif DebugReportCallbackEXT & operator=( std::nullptr_t ) { m_debugReportCallbackEXT = VK_NULL_HANDLE; return *this; } bool operator==( DebugReportCallbackEXT const & rhs ) const { return m_debugReportCallbackEXT == rhs.m_debugReportCallbackEXT; } bool operator!=(DebugReportCallbackEXT const & rhs ) const { return m_debugReportCallbackEXT != rhs.m_debugReportCallbackEXT; } bool operator<(DebugReportCallbackEXT const & rhs ) const { return m_debugReportCallbackEXT < rhs.m_debugReportCallbackEXT; } VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDebugReportCallbackEXT() const { return m_debugReportCallbackEXT; } explicit operator bool() const { return m_debugReportCallbackEXT != VK_NULL_HANDLE; } bool operator!() const { return m_debugReportCallbackEXT == VK_NULL_HANDLE; } private: VkDebugReportCallbackEXT m_debugReportCallbackEXT; }; static_assert( sizeof( DebugReportCallbackEXT ) == sizeof( VkDebugReportCallbackEXT ), "handle and wrapper have different size!" ); struct Offset2D { Offset2D( int32_t x_ = 0, int32_t y_ = 0 ) : x( x_ ) , y( y_ ) { } Offset2D( VkOffset2D const & rhs ) { memcpy( this, &rhs, sizeof( Offset2D ) ); } Offset2D& operator=( VkOffset2D const & rhs ) { memcpy( this, &rhs, sizeof( Offset2D ) ); return *this; } Offset2D& setX( int32_t x_ ) { x = x_; return *this; } Offset2D& setY( int32_t y_ ) { y = y_; return *this; } operator const VkOffset2D&() const { return *reinterpret_cast(this); } bool operator==( Offset2D const& rhs ) const { return ( x == rhs.x ) && ( y == rhs.y ); } bool operator!=( Offset2D const& rhs ) const { return !operator==( rhs ); } int32_t x; int32_t y; }; static_assert( sizeof( Offset2D ) == sizeof( VkOffset2D ), "struct and wrapper have different size!" ); struct Offset3D { Offset3D( int32_t x_ = 0, int32_t y_ = 0, int32_t z_ = 0 ) : x( x_ ) , y( y_ ) , z( z_ ) { } Offset3D( VkOffset3D const & rhs ) { memcpy( this, &rhs, sizeof( Offset3D ) ); } Offset3D& operator=( VkOffset3D const & rhs ) { memcpy( this, &rhs, sizeof( Offset3D ) ); return *this; } Offset3D& setX( int32_t x_ ) { x = x_; return *this; } Offset3D& setY( int32_t y_ ) { y = y_; return *this; } Offset3D& setZ( int32_t z_ ) { z = z_; return *this; } operator const VkOffset3D&() const { return *reinterpret_cast(this); } bool operator==( Offset3D const& rhs ) const { return ( x == rhs.x ) && ( y == rhs.y ) && ( z == rhs.z ); } bool operator!=( Offset3D const& rhs ) const { return !operator==( rhs ); } int32_t x; int32_t y; int32_t z; }; static_assert( sizeof( Offset3D ) == sizeof( VkOffset3D ), "struct and wrapper have different size!" ); struct Extent2D { Extent2D( uint32_t width_ = 0, uint32_t height_ = 0 ) : width( width_ ) , height( height_ ) { } Extent2D( VkExtent2D const & rhs ) { memcpy( this, &rhs, sizeof( Extent2D ) ); } Extent2D& operator=( VkExtent2D const & rhs ) { memcpy( this, &rhs, sizeof( Extent2D ) ); return *this; } Extent2D& setWidth( uint32_t width_ ) { width = width_; return *this; } Extent2D& setHeight( uint32_t height_ ) { height = height_; return *this; } operator const VkExtent2D&() const { return *reinterpret_cast(this); } bool operator==( Extent2D const& rhs ) const { return ( width == rhs.width ) && ( height == rhs.height ); } bool operator!=( Extent2D const& rhs ) const { return !operator==( rhs ); } uint32_t width; uint32_t height; }; static_assert( sizeof( Extent2D ) == sizeof( VkExtent2D ), "struct and wrapper have different size!" ); struct Extent3D { Extent3D( uint32_t width_ = 0, uint32_t height_ = 0, uint32_t depth_ = 0 ) : width( width_ ) , height( height_ ) , depth( depth_ ) { } Extent3D( VkExtent3D const & rhs ) { memcpy( this, &rhs, sizeof( Extent3D ) ); } Extent3D& operator=( VkExtent3D const & rhs ) { memcpy( this, &rhs, sizeof( Extent3D ) ); return *this; } Extent3D& setWidth( uint32_t width_ ) { width = width_; return *this; } Extent3D& setHeight( uint32_t height_ ) { height = height_; return *this; } Extent3D& setDepth( uint32_t depth_ ) { depth = depth_; return *this; } operator const VkExtent3D&() const { return *reinterpret_cast(this); } bool operator==( Extent3D const& rhs ) const { return ( width == rhs.width ) && ( height == rhs.height ) && ( depth == rhs.depth ); } bool operator!=( Extent3D const& rhs ) const { return !operator==( rhs ); } uint32_t width; uint32_t height; uint32_t depth; }; static_assert( sizeof( Extent3D ) == sizeof( VkExtent3D ), "struct and wrapper have different size!" ); struct Viewport { Viewport( float x_ = 0, float y_ = 0, float width_ = 0, float height_ = 0, float minDepth_ = 0, float maxDepth_ = 0 ) : x( x_ ) , y( y_ ) , width( width_ ) , height( height_ ) , minDepth( minDepth_ ) , maxDepth( maxDepth_ ) { } Viewport( VkViewport const & rhs ) { memcpy( this, &rhs, sizeof( Viewport ) ); } Viewport& operator=( VkViewport const & rhs ) { memcpy( this, &rhs, sizeof( Viewport ) ); return *this; } Viewport& setX( float x_ ) { x = x_; return *this; } Viewport& setY( float y_ ) { y = y_; return *this; } Viewport& setWidth( float width_ ) { width = width_; return *this; } Viewport& setHeight( float height_ ) { height = height_; return *this; } Viewport& setMinDepth( float minDepth_ ) { minDepth = minDepth_; return *this; } Viewport& setMaxDepth( float maxDepth_ ) { maxDepth = maxDepth_; return *this; } operator const VkViewport&() const { return *reinterpret_cast(this); } bool operator==( Viewport const& rhs ) const { return ( x == rhs.x ) && ( y == rhs.y ) && ( width == rhs.width ) && ( height == rhs.height ) && ( minDepth == rhs.minDepth ) && ( maxDepth == rhs.maxDepth ); } bool operator!=( Viewport const& rhs ) const { return !operator==( rhs ); } float x; float y; float width; float height; float minDepth; float maxDepth; }; static_assert( sizeof( Viewport ) == sizeof( VkViewport ), "struct and wrapper have different size!" ); struct Rect2D { Rect2D( Offset2D offset_ = Offset2D(), Extent2D extent_ = Extent2D() ) : offset( offset_ ) , extent( extent_ ) { } Rect2D( VkRect2D const & rhs ) { memcpy( this, &rhs, sizeof( Rect2D ) ); } Rect2D& operator=( VkRect2D const & rhs ) { memcpy( this, &rhs, sizeof( Rect2D ) ); return *this; } Rect2D& setOffset( Offset2D offset_ ) { offset = offset_; return *this; } Rect2D& setExtent( Extent2D extent_ ) { extent = extent_; return *this; } operator const VkRect2D&() const { return *reinterpret_cast(this); } bool operator==( Rect2D const& rhs ) const { return ( offset == rhs.offset ) && ( extent == rhs.extent ); } bool operator!=( Rect2D const& rhs ) const { return !operator==( rhs ); } Offset2D offset; Extent2D extent; }; static_assert( sizeof( Rect2D ) == sizeof( VkRect2D ), "struct and wrapper have different size!" ); struct ClearRect { ClearRect( Rect2D rect_ = Rect2D(), uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0 ) : rect( rect_ ) , baseArrayLayer( baseArrayLayer_ ) , layerCount( layerCount_ ) { } ClearRect( VkClearRect const & rhs ) { memcpy( this, &rhs, sizeof( ClearRect ) ); } ClearRect& operator=( VkClearRect const & rhs ) { memcpy( this, &rhs, sizeof( ClearRect ) ); return *this; } ClearRect& setRect( Rect2D rect_ ) { rect = rect_; return *this; } ClearRect& setBaseArrayLayer( uint32_t baseArrayLayer_ ) { baseArrayLayer = baseArrayLayer_; return *this; } ClearRect& setLayerCount( uint32_t layerCount_ ) { layerCount = layerCount_; return *this; } operator const VkClearRect&() const { return *reinterpret_cast(this); } bool operator==( ClearRect const& rhs ) const { return ( rect == rhs.rect ) && ( baseArrayLayer == rhs.baseArrayLayer ) && ( layerCount == rhs.layerCount ); } bool operator!=( ClearRect const& rhs ) const { return !operator==( rhs ); } Rect2D rect; uint32_t baseArrayLayer; uint32_t layerCount; }; static_assert( sizeof( ClearRect ) == sizeof( VkClearRect ), "struct and wrapper have different size!" ); struct ExtensionProperties { operator const VkExtensionProperties&() const { return *reinterpret_cast(this); } bool operator==( ExtensionProperties const& rhs ) const { return ( memcmp( extensionName, rhs.extensionName, VK_MAX_EXTENSION_NAME_SIZE * sizeof( char ) ) == 0 ) && ( specVersion == rhs.specVersion ); } bool operator!=( ExtensionProperties const& rhs ) const { return !operator==( rhs ); } char extensionName[VK_MAX_EXTENSION_NAME_SIZE]; uint32_t specVersion; }; static_assert( sizeof( ExtensionProperties ) == sizeof( VkExtensionProperties ), "struct and wrapper have different size!" ); struct LayerProperties { operator const VkLayerProperties&() const { return *reinterpret_cast(this); } bool operator==( LayerProperties const& rhs ) const { return ( memcmp( layerName, rhs.layerName, VK_MAX_EXTENSION_NAME_SIZE * sizeof( char ) ) == 0 ) && ( specVersion == rhs.specVersion ) && ( implementationVersion == rhs.implementationVersion ) && ( memcmp( description, rhs.description, VK_MAX_DESCRIPTION_SIZE * sizeof( char ) ) == 0 ); } bool operator!=( LayerProperties const& rhs ) const { return !operator==( rhs ); } char layerName[VK_MAX_EXTENSION_NAME_SIZE]; uint32_t specVersion; uint32_t implementationVersion; char description[VK_MAX_DESCRIPTION_SIZE]; }; static_assert( sizeof( LayerProperties ) == sizeof( VkLayerProperties ), "struct and wrapper have different size!" ); struct AllocationCallbacks { AllocationCallbacks( void* pUserData_ = nullptr, PFN_vkAllocationFunction pfnAllocation_ = nullptr, PFN_vkReallocationFunction pfnReallocation_ = nullptr, PFN_vkFreeFunction pfnFree_ = nullptr, PFN_vkInternalAllocationNotification pfnInternalAllocation_ = nullptr, PFN_vkInternalFreeNotification pfnInternalFree_ = nullptr ) : pUserData( pUserData_ ) , pfnAllocation( pfnAllocation_ ) , pfnReallocation( pfnReallocation_ ) , pfnFree( pfnFree_ ) , pfnInternalAllocation( pfnInternalAllocation_ ) , pfnInternalFree( pfnInternalFree_ ) { } AllocationCallbacks( VkAllocationCallbacks const & rhs ) { memcpy( this, &rhs, sizeof( AllocationCallbacks ) ); } AllocationCallbacks& operator=( VkAllocationCallbacks const & rhs ) { memcpy( this, &rhs, sizeof( AllocationCallbacks ) ); return *this; } AllocationCallbacks& setPUserData( void* pUserData_ ) { pUserData = pUserData_; return *this; } AllocationCallbacks& setPfnAllocation( PFN_vkAllocationFunction pfnAllocation_ ) { pfnAllocation = pfnAllocation_; return *this; } AllocationCallbacks& setPfnReallocation( PFN_vkReallocationFunction pfnReallocation_ ) { pfnReallocation = pfnReallocation_; return *this; } AllocationCallbacks& setPfnFree( PFN_vkFreeFunction pfnFree_ ) { pfnFree = pfnFree_; return *this; } AllocationCallbacks& setPfnInternalAllocation( PFN_vkInternalAllocationNotification pfnInternalAllocation_ ) { pfnInternalAllocation = pfnInternalAllocation_; return *this; } AllocationCallbacks& setPfnInternalFree( PFN_vkInternalFreeNotification pfnInternalFree_ ) { pfnInternalFree = pfnInternalFree_; return *this; } operator const VkAllocationCallbacks&() const { return *reinterpret_cast(this); } bool operator==( AllocationCallbacks const& rhs ) const { return ( pUserData == rhs.pUserData ) && ( pfnAllocation == rhs.pfnAllocation ) && ( pfnReallocation == rhs.pfnReallocation ) && ( pfnFree == rhs.pfnFree ) && ( pfnInternalAllocation == rhs.pfnInternalAllocation ) && ( pfnInternalFree == rhs.pfnInternalFree ); } bool operator!=( AllocationCallbacks const& rhs ) const { return !operator==( rhs ); } void* pUserData; PFN_vkAllocationFunction pfnAllocation; PFN_vkReallocationFunction pfnReallocation; PFN_vkFreeFunction pfnFree; PFN_vkInternalAllocationNotification pfnInternalAllocation; PFN_vkInternalFreeNotification pfnInternalFree; }; static_assert( sizeof( AllocationCallbacks ) == sizeof( VkAllocationCallbacks ), "struct and wrapper have different size!" ); struct MemoryRequirements { operator const VkMemoryRequirements&() const { return *reinterpret_cast(this); } bool operator==( MemoryRequirements const& rhs ) const { return ( size == rhs.size ) && ( alignment == rhs.alignment ) && ( memoryTypeBits == rhs.memoryTypeBits ); } bool operator!=( MemoryRequirements const& rhs ) const { return !operator==( rhs ); } DeviceSize size; DeviceSize alignment; uint32_t memoryTypeBits; }; static_assert( sizeof( MemoryRequirements ) == sizeof( VkMemoryRequirements ), "struct and wrapper have different size!" ); struct DescriptorBufferInfo { DescriptorBufferInfo( Buffer buffer_ = Buffer(), DeviceSize offset_ = 0, DeviceSize range_ = 0 ) : buffer( buffer_ ) , offset( offset_ ) , range( range_ ) { } DescriptorBufferInfo( VkDescriptorBufferInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorBufferInfo ) ); } DescriptorBufferInfo& operator=( VkDescriptorBufferInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorBufferInfo ) ); return *this; } DescriptorBufferInfo& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } DescriptorBufferInfo& setOffset( DeviceSize offset_ ) { offset = offset_; return *this; } DescriptorBufferInfo& setRange( DeviceSize range_ ) { range = range_; return *this; } operator const VkDescriptorBufferInfo&() const { return *reinterpret_cast(this); } bool operator==( DescriptorBufferInfo const& rhs ) const { return ( buffer == rhs.buffer ) && ( offset == rhs.offset ) && ( range == rhs.range ); } bool operator!=( DescriptorBufferInfo const& rhs ) const { return !operator==( rhs ); } Buffer buffer; DeviceSize offset; DeviceSize range; }; static_assert( sizeof( DescriptorBufferInfo ) == sizeof( VkDescriptorBufferInfo ), "struct and wrapper have different size!" ); struct SubresourceLayout { operator const VkSubresourceLayout&() const { return *reinterpret_cast(this); } bool operator==( SubresourceLayout const& rhs ) const { return ( offset == rhs.offset ) && ( size == rhs.size ) && ( rowPitch == rhs.rowPitch ) && ( arrayPitch == rhs.arrayPitch ) && ( depthPitch == rhs.depthPitch ); } bool operator!=( SubresourceLayout const& rhs ) const { return !operator==( rhs ); } DeviceSize offset; DeviceSize size; DeviceSize rowPitch; DeviceSize arrayPitch; DeviceSize depthPitch; }; static_assert( sizeof( SubresourceLayout ) == sizeof( VkSubresourceLayout ), "struct and wrapper have different size!" ); struct BufferCopy { BufferCopy( DeviceSize srcOffset_ = 0, DeviceSize dstOffset_ = 0, DeviceSize size_ = 0 ) : srcOffset( srcOffset_ ) , dstOffset( dstOffset_ ) , size( size_ ) { } BufferCopy( VkBufferCopy const & rhs ) { memcpy( this, &rhs, sizeof( BufferCopy ) ); } BufferCopy& operator=( VkBufferCopy const & rhs ) { memcpy( this, &rhs, sizeof( BufferCopy ) ); return *this; } BufferCopy& setSrcOffset( DeviceSize srcOffset_ ) { srcOffset = srcOffset_; return *this; } BufferCopy& setDstOffset( DeviceSize dstOffset_ ) { dstOffset = dstOffset_; return *this; } BufferCopy& setSize( DeviceSize size_ ) { size = size_; return *this; } operator const VkBufferCopy&() const { return *reinterpret_cast(this); } bool operator==( BufferCopy const& rhs ) const { return ( srcOffset == rhs.srcOffset ) && ( dstOffset == rhs.dstOffset ) && ( size == rhs.size ); } bool operator!=( BufferCopy const& rhs ) const { return !operator==( rhs ); } DeviceSize srcOffset; DeviceSize dstOffset; DeviceSize size; }; static_assert( sizeof( BufferCopy ) == sizeof( VkBufferCopy ), "struct and wrapper have different size!" ); struct SpecializationMapEntry { SpecializationMapEntry( uint32_t constantID_ = 0, uint32_t offset_ = 0, size_t size_ = 0 ) : constantID( constantID_ ) , offset( offset_ ) , size( size_ ) { } SpecializationMapEntry( VkSpecializationMapEntry const & rhs ) { memcpy( this, &rhs, sizeof( SpecializationMapEntry ) ); } SpecializationMapEntry& operator=( VkSpecializationMapEntry const & rhs ) { memcpy( this, &rhs, sizeof( SpecializationMapEntry ) ); return *this; } SpecializationMapEntry& setConstantID( uint32_t constantID_ ) { constantID = constantID_; return *this; } SpecializationMapEntry& setOffset( uint32_t offset_ ) { offset = offset_; return *this; } SpecializationMapEntry& setSize( size_t size_ ) { size = size_; return *this; } operator const VkSpecializationMapEntry&() const { return *reinterpret_cast(this); } bool operator==( SpecializationMapEntry const& rhs ) const { return ( constantID == rhs.constantID ) && ( offset == rhs.offset ) && ( size == rhs.size ); } bool operator!=( SpecializationMapEntry const& rhs ) const { return !operator==( rhs ); } uint32_t constantID; uint32_t offset; size_t size; }; static_assert( sizeof( SpecializationMapEntry ) == sizeof( VkSpecializationMapEntry ), "struct and wrapper have different size!" ); struct SpecializationInfo { SpecializationInfo( uint32_t mapEntryCount_ = 0, const SpecializationMapEntry* pMapEntries_ = nullptr, size_t dataSize_ = 0, const void* pData_ = nullptr ) : mapEntryCount( mapEntryCount_ ) , pMapEntries( pMapEntries_ ) , dataSize( dataSize_ ) , pData( pData_ ) { } SpecializationInfo( VkSpecializationInfo const & rhs ) { memcpy( this, &rhs, sizeof( SpecializationInfo ) ); } SpecializationInfo& operator=( VkSpecializationInfo const & rhs ) { memcpy( this, &rhs, sizeof( SpecializationInfo ) ); return *this; } SpecializationInfo& setMapEntryCount( uint32_t mapEntryCount_ ) { mapEntryCount = mapEntryCount_; return *this; } SpecializationInfo& setPMapEntries( const SpecializationMapEntry* pMapEntries_ ) { pMapEntries = pMapEntries_; return *this; } SpecializationInfo& setDataSize( size_t dataSize_ ) { dataSize = dataSize_; return *this; } SpecializationInfo& setPData( const void* pData_ ) { pData = pData_; return *this; } operator const VkSpecializationInfo&() const { return *reinterpret_cast(this); } bool operator==( SpecializationInfo const& rhs ) const { return ( mapEntryCount == rhs.mapEntryCount ) && ( pMapEntries == rhs.pMapEntries ) && ( dataSize == rhs.dataSize ) && ( pData == rhs.pData ); } bool operator!=( SpecializationInfo const& rhs ) const { return !operator==( rhs ); } uint32_t mapEntryCount; const SpecializationMapEntry* pMapEntries; size_t dataSize; const void* pData; }; static_assert( sizeof( SpecializationInfo ) == sizeof( VkSpecializationInfo ), "struct and wrapper have different size!" ); union ClearColorValue { ClearColorValue( const std::array& float32_ = { {0} } ) { memcpy( &float32, float32_.data(), 4 * sizeof( float ) ); } ClearColorValue( const std::array& int32_ ) { memcpy( &int32, int32_.data(), 4 * sizeof( int32_t ) ); } ClearColorValue( const std::array& uint32_ ) { memcpy( &uint32, uint32_.data(), 4 * sizeof( uint32_t ) ); } ClearColorValue& setFloat32( std::array float32_ ) { memcpy( &float32, float32_.data(), 4 * sizeof( float ) ); return *this; } ClearColorValue& setInt32( std::array int32_ ) { memcpy( &int32, int32_.data(), 4 * sizeof( int32_t ) ); return *this; } ClearColorValue& setUint32( std::array uint32_ ) { memcpy( &uint32, uint32_.data(), 4 * sizeof( uint32_t ) ); return *this; } operator VkClearColorValue const& () const { return *reinterpret_cast(this); } float float32[4]; int32_t int32[4]; uint32_t uint32[4]; }; struct ClearDepthStencilValue { ClearDepthStencilValue( float depth_ = 0, uint32_t stencil_ = 0 ) : depth( depth_ ) , stencil( stencil_ ) { } ClearDepthStencilValue( VkClearDepthStencilValue const & rhs ) { memcpy( this, &rhs, sizeof( ClearDepthStencilValue ) ); } ClearDepthStencilValue& operator=( VkClearDepthStencilValue const & rhs ) { memcpy( this, &rhs, sizeof( ClearDepthStencilValue ) ); return *this; } ClearDepthStencilValue& setDepth( float depth_ ) { depth = depth_; return *this; } ClearDepthStencilValue& setStencil( uint32_t stencil_ ) { stencil = stencil_; return *this; } operator const VkClearDepthStencilValue&() const { return *reinterpret_cast(this); } bool operator==( ClearDepthStencilValue const& rhs ) const { return ( depth == rhs.depth ) && ( stencil == rhs.stencil ); } bool operator!=( ClearDepthStencilValue const& rhs ) const { return !operator==( rhs ); } float depth; uint32_t stencil; }; static_assert( sizeof( ClearDepthStencilValue ) == sizeof( VkClearDepthStencilValue ), "struct and wrapper have different size!" ); union ClearValue { ClearValue( ClearColorValue color_ = ClearColorValue() ) { color = color_; } ClearValue( ClearDepthStencilValue depthStencil_ ) { depthStencil = depthStencil_; } ClearValue& setColor( ClearColorValue color_ ) { color = color_; return *this; } ClearValue& setDepthStencil( ClearDepthStencilValue depthStencil_ ) { depthStencil = depthStencil_; return *this; } operator VkClearValue const& () const { return *reinterpret_cast(this); } #ifdef VULKAN_HPP_HAS_UNRESTRICTED_UNIONS ClearColorValue color; ClearDepthStencilValue depthStencil; #else VkClearColorValue color; VkClearDepthStencilValue depthStencil; #endif // VULKAN_HPP_HAS_UNRESTRICTED_UNIONS }; struct PhysicalDeviceFeatures { PhysicalDeviceFeatures( Bool32 robustBufferAccess_ = 0, Bool32 fullDrawIndexUint32_ = 0, Bool32 imageCubeArray_ = 0, Bool32 independentBlend_ = 0, Bool32 geometryShader_ = 0, Bool32 tessellationShader_ = 0, Bool32 sampleRateShading_ = 0, Bool32 dualSrcBlend_ = 0, Bool32 logicOp_ = 0, Bool32 multiDrawIndirect_ = 0, Bool32 drawIndirectFirstInstance_ = 0, Bool32 depthClamp_ = 0, Bool32 depthBiasClamp_ = 0, Bool32 fillModeNonSolid_ = 0, Bool32 depthBounds_ = 0, Bool32 wideLines_ = 0, Bool32 largePoints_ = 0, Bool32 alphaToOne_ = 0, Bool32 multiViewport_ = 0, Bool32 samplerAnisotropy_ = 0, Bool32 textureCompressionETC2_ = 0, Bool32 textureCompressionASTC_LDR_ = 0, Bool32 textureCompressionBC_ = 0, Bool32 occlusionQueryPrecise_ = 0, Bool32 pipelineStatisticsQuery_ = 0, Bool32 vertexPipelineStoresAndAtomics_ = 0, Bool32 fragmentStoresAndAtomics_ = 0, Bool32 shaderTessellationAndGeometryPointSize_ = 0, Bool32 shaderImageGatherExtended_ = 0, Bool32 shaderStorageImageExtendedFormats_ = 0, Bool32 shaderStorageImageMultisample_ = 0, Bool32 shaderStorageImageReadWithoutFormat_ = 0, Bool32 shaderStorageImageWriteWithoutFormat_ = 0, Bool32 shaderUniformBufferArrayDynamicIndexing_ = 0, Bool32 shaderSampledImageArrayDynamicIndexing_ = 0, Bool32 shaderStorageBufferArrayDynamicIndexing_ = 0, Bool32 shaderStorageImageArrayDynamicIndexing_ = 0, Bool32 shaderClipDistance_ = 0, Bool32 shaderCullDistance_ = 0, Bool32 shaderFloat64_ = 0, Bool32 shaderInt64_ = 0, Bool32 shaderInt16_ = 0, Bool32 shaderResourceResidency_ = 0, Bool32 shaderResourceMinLod_ = 0, Bool32 sparseBinding_ = 0, Bool32 sparseResidencyBuffer_ = 0, Bool32 sparseResidencyImage2D_ = 0, Bool32 sparseResidencyImage3D_ = 0, Bool32 sparseResidency2Samples_ = 0, Bool32 sparseResidency4Samples_ = 0, Bool32 sparseResidency8Samples_ = 0, Bool32 sparseResidency16Samples_ = 0, Bool32 sparseResidencyAliased_ = 0, Bool32 variableMultisampleRate_ = 0, Bool32 inheritedQueries_ = 0 ) : robustBufferAccess( robustBufferAccess_ ) , fullDrawIndexUint32( fullDrawIndexUint32_ ) , imageCubeArray( imageCubeArray_ ) , independentBlend( independentBlend_ ) , geometryShader( geometryShader_ ) , tessellationShader( tessellationShader_ ) , sampleRateShading( sampleRateShading_ ) , dualSrcBlend( dualSrcBlend_ ) , logicOp( logicOp_ ) , multiDrawIndirect( multiDrawIndirect_ ) , drawIndirectFirstInstance( drawIndirectFirstInstance_ ) , depthClamp( depthClamp_ ) , depthBiasClamp( depthBiasClamp_ ) , fillModeNonSolid( fillModeNonSolid_ ) , depthBounds( depthBounds_ ) , wideLines( wideLines_ ) , largePoints( largePoints_ ) , alphaToOne( alphaToOne_ ) , multiViewport( multiViewport_ ) , samplerAnisotropy( samplerAnisotropy_ ) , textureCompressionETC2( textureCompressionETC2_ ) , textureCompressionASTC_LDR( textureCompressionASTC_LDR_ ) , textureCompressionBC( textureCompressionBC_ ) , occlusionQueryPrecise( occlusionQueryPrecise_ ) , pipelineStatisticsQuery( pipelineStatisticsQuery_ ) , vertexPipelineStoresAndAtomics( vertexPipelineStoresAndAtomics_ ) , fragmentStoresAndAtomics( fragmentStoresAndAtomics_ ) , shaderTessellationAndGeometryPointSize( shaderTessellationAndGeometryPointSize_ ) , shaderImageGatherExtended( shaderImageGatherExtended_ ) , shaderStorageImageExtendedFormats( shaderStorageImageExtendedFormats_ ) , shaderStorageImageMultisample( shaderStorageImageMultisample_ ) , shaderStorageImageReadWithoutFormat( shaderStorageImageReadWithoutFormat_ ) , shaderStorageImageWriteWithoutFormat( shaderStorageImageWriteWithoutFormat_ ) , shaderUniformBufferArrayDynamicIndexing( shaderUniformBufferArrayDynamicIndexing_ ) , shaderSampledImageArrayDynamicIndexing( shaderSampledImageArrayDynamicIndexing_ ) , shaderStorageBufferArrayDynamicIndexing( shaderStorageBufferArrayDynamicIndexing_ ) , shaderStorageImageArrayDynamicIndexing( shaderStorageImageArrayDynamicIndexing_ ) , shaderClipDistance( shaderClipDistance_ ) , shaderCullDistance( shaderCullDistance_ ) , shaderFloat64( shaderFloat64_ ) , shaderInt64( shaderInt64_ ) , shaderInt16( shaderInt16_ ) , shaderResourceResidency( shaderResourceResidency_ ) , shaderResourceMinLod( shaderResourceMinLod_ ) , sparseBinding( sparseBinding_ ) , sparseResidencyBuffer( sparseResidencyBuffer_ ) , sparseResidencyImage2D( sparseResidencyImage2D_ ) , sparseResidencyImage3D( sparseResidencyImage3D_ ) , sparseResidency2Samples( sparseResidency2Samples_ ) , sparseResidency4Samples( sparseResidency4Samples_ ) , sparseResidency8Samples( sparseResidency8Samples_ ) , sparseResidency16Samples( sparseResidency16Samples_ ) , sparseResidencyAliased( sparseResidencyAliased_ ) , variableMultisampleRate( variableMultisampleRate_ ) , inheritedQueries( inheritedQueries_ ) { } PhysicalDeviceFeatures( VkPhysicalDeviceFeatures const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceFeatures ) ); } PhysicalDeviceFeatures& operator=( VkPhysicalDeviceFeatures const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceFeatures ) ); return *this; } PhysicalDeviceFeatures& setRobustBufferAccess( Bool32 robustBufferAccess_ ) { robustBufferAccess = robustBufferAccess_; return *this; } PhysicalDeviceFeatures& setFullDrawIndexUint32( Bool32 fullDrawIndexUint32_ ) { fullDrawIndexUint32 = fullDrawIndexUint32_; return *this; } PhysicalDeviceFeatures& setImageCubeArray( Bool32 imageCubeArray_ ) { imageCubeArray = imageCubeArray_; return *this; } PhysicalDeviceFeatures& setIndependentBlend( Bool32 independentBlend_ ) { independentBlend = independentBlend_; return *this; } PhysicalDeviceFeatures& setGeometryShader( Bool32 geometryShader_ ) { geometryShader = geometryShader_; return *this; } PhysicalDeviceFeatures& setTessellationShader( Bool32 tessellationShader_ ) { tessellationShader = tessellationShader_; return *this; } PhysicalDeviceFeatures& setSampleRateShading( Bool32 sampleRateShading_ ) { sampleRateShading = sampleRateShading_; return *this; } PhysicalDeviceFeatures& setDualSrcBlend( Bool32 dualSrcBlend_ ) { dualSrcBlend = dualSrcBlend_; return *this; } PhysicalDeviceFeatures& setLogicOp( Bool32 logicOp_ ) { logicOp = logicOp_; return *this; } PhysicalDeviceFeatures& setMultiDrawIndirect( Bool32 multiDrawIndirect_ ) { multiDrawIndirect = multiDrawIndirect_; return *this; } PhysicalDeviceFeatures& setDrawIndirectFirstInstance( Bool32 drawIndirectFirstInstance_ ) { drawIndirectFirstInstance = drawIndirectFirstInstance_; return *this; } PhysicalDeviceFeatures& setDepthClamp( Bool32 depthClamp_ ) { depthClamp = depthClamp_; return *this; } PhysicalDeviceFeatures& setDepthBiasClamp( Bool32 depthBiasClamp_ ) { depthBiasClamp = depthBiasClamp_; return *this; } PhysicalDeviceFeatures& setFillModeNonSolid( Bool32 fillModeNonSolid_ ) { fillModeNonSolid = fillModeNonSolid_; return *this; } PhysicalDeviceFeatures& setDepthBounds( Bool32 depthBounds_ ) { depthBounds = depthBounds_; return *this; } PhysicalDeviceFeatures& setWideLines( Bool32 wideLines_ ) { wideLines = wideLines_; return *this; } PhysicalDeviceFeatures& setLargePoints( Bool32 largePoints_ ) { largePoints = largePoints_; return *this; } PhysicalDeviceFeatures& setAlphaToOne( Bool32 alphaToOne_ ) { alphaToOne = alphaToOne_; return *this; } PhysicalDeviceFeatures& setMultiViewport( Bool32 multiViewport_ ) { multiViewport = multiViewport_; return *this; } PhysicalDeviceFeatures& setSamplerAnisotropy( Bool32 samplerAnisotropy_ ) { samplerAnisotropy = samplerAnisotropy_; return *this; } PhysicalDeviceFeatures& setTextureCompressionETC2( Bool32 textureCompressionETC2_ ) { textureCompressionETC2 = textureCompressionETC2_; return *this; } PhysicalDeviceFeatures& setTextureCompressionASTC_LDR( Bool32 textureCompressionASTC_LDR_ ) { textureCompressionASTC_LDR = textureCompressionASTC_LDR_; return *this; } PhysicalDeviceFeatures& setTextureCompressionBC( Bool32 textureCompressionBC_ ) { textureCompressionBC = textureCompressionBC_; return *this; } PhysicalDeviceFeatures& setOcclusionQueryPrecise( Bool32 occlusionQueryPrecise_ ) { occlusionQueryPrecise = occlusionQueryPrecise_; return *this; } PhysicalDeviceFeatures& setPipelineStatisticsQuery( Bool32 pipelineStatisticsQuery_ ) { pipelineStatisticsQuery = pipelineStatisticsQuery_; return *this; } PhysicalDeviceFeatures& setVertexPipelineStoresAndAtomics( Bool32 vertexPipelineStoresAndAtomics_ ) { vertexPipelineStoresAndAtomics = vertexPipelineStoresAndAtomics_; return *this; } PhysicalDeviceFeatures& setFragmentStoresAndAtomics( Bool32 fragmentStoresAndAtomics_ ) { fragmentStoresAndAtomics = fragmentStoresAndAtomics_; return *this; } PhysicalDeviceFeatures& setShaderTessellationAndGeometryPointSize( Bool32 shaderTessellationAndGeometryPointSize_ ) { shaderTessellationAndGeometryPointSize = shaderTessellationAndGeometryPointSize_; return *this; } PhysicalDeviceFeatures& setShaderImageGatherExtended( Bool32 shaderImageGatherExtended_ ) { shaderImageGatherExtended = shaderImageGatherExtended_; return *this; } PhysicalDeviceFeatures& setShaderStorageImageExtendedFormats( Bool32 shaderStorageImageExtendedFormats_ ) { shaderStorageImageExtendedFormats = shaderStorageImageExtendedFormats_; return *this; } PhysicalDeviceFeatures& setShaderStorageImageMultisample( Bool32 shaderStorageImageMultisample_ ) { shaderStorageImageMultisample = shaderStorageImageMultisample_; return *this; } PhysicalDeviceFeatures& setShaderStorageImageReadWithoutFormat( Bool32 shaderStorageImageReadWithoutFormat_ ) { shaderStorageImageReadWithoutFormat = shaderStorageImageReadWithoutFormat_; return *this; } PhysicalDeviceFeatures& setShaderStorageImageWriteWithoutFormat( Bool32 shaderStorageImageWriteWithoutFormat_ ) { shaderStorageImageWriteWithoutFormat = shaderStorageImageWriteWithoutFormat_; return *this; } PhysicalDeviceFeatures& setShaderUniformBufferArrayDynamicIndexing( Bool32 shaderUniformBufferArrayDynamicIndexing_ ) { shaderUniformBufferArrayDynamicIndexing = shaderUniformBufferArrayDynamicIndexing_; return *this; } PhysicalDeviceFeatures& setShaderSampledImageArrayDynamicIndexing( Bool32 shaderSampledImageArrayDynamicIndexing_ ) { shaderSampledImageArrayDynamicIndexing = shaderSampledImageArrayDynamicIndexing_; return *this; } PhysicalDeviceFeatures& setShaderStorageBufferArrayDynamicIndexing( Bool32 shaderStorageBufferArrayDynamicIndexing_ ) { shaderStorageBufferArrayDynamicIndexing = shaderStorageBufferArrayDynamicIndexing_; return *this; } PhysicalDeviceFeatures& setShaderStorageImageArrayDynamicIndexing( Bool32 shaderStorageImageArrayDynamicIndexing_ ) { shaderStorageImageArrayDynamicIndexing = shaderStorageImageArrayDynamicIndexing_; return *this; } PhysicalDeviceFeatures& setShaderClipDistance( Bool32 shaderClipDistance_ ) { shaderClipDistance = shaderClipDistance_; return *this; } PhysicalDeviceFeatures& setShaderCullDistance( Bool32 shaderCullDistance_ ) { shaderCullDistance = shaderCullDistance_; return *this; } PhysicalDeviceFeatures& setShaderFloat64( Bool32 shaderFloat64_ ) { shaderFloat64 = shaderFloat64_; return *this; } PhysicalDeviceFeatures& setShaderInt64( Bool32 shaderInt64_ ) { shaderInt64 = shaderInt64_; return *this; } PhysicalDeviceFeatures& setShaderInt16( Bool32 shaderInt16_ ) { shaderInt16 = shaderInt16_; return *this; } PhysicalDeviceFeatures& setShaderResourceResidency( Bool32 shaderResourceResidency_ ) { shaderResourceResidency = shaderResourceResidency_; return *this; } PhysicalDeviceFeatures& setShaderResourceMinLod( Bool32 shaderResourceMinLod_ ) { shaderResourceMinLod = shaderResourceMinLod_; return *this; } PhysicalDeviceFeatures& setSparseBinding( Bool32 sparseBinding_ ) { sparseBinding = sparseBinding_; return *this; } PhysicalDeviceFeatures& setSparseResidencyBuffer( Bool32 sparseResidencyBuffer_ ) { sparseResidencyBuffer = sparseResidencyBuffer_; return *this; } PhysicalDeviceFeatures& setSparseResidencyImage2D( Bool32 sparseResidencyImage2D_ ) { sparseResidencyImage2D = sparseResidencyImage2D_; return *this; } PhysicalDeviceFeatures& setSparseResidencyImage3D( Bool32 sparseResidencyImage3D_ ) { sparseResidencyImage3D = sparseResidencyImage3D_; return *this; } PhysicalDeviceFeatures& setSparseResidency2Samples( Bool32 sparseResidency2Samples_ ) { sparseResidency2Samples = sparseResidency2Samples_; return *this; } PhysicalDeviceFeatures& setSparseResidency4Samples( Bool32 sparseResidency4Samples_ ) { sparseResidency4Samples = sparseResidency4Samples_; return *this; } PhysicalDeviceFeatures& setSparseResidency8Samples( Bool32 sparseResidency8Samples_ ) { sparseResidency8Samples = sparseResidency8Samples_; return *this; } PhysicalDeviceFeatures& setSparseResidency16Samples( Bool32 sparseResidency16Samples_ ) { sparseResidency16Samples = sparseResidency16Samples_; return *this; } PhysicalDeviceFeatures& setSparseResidencyAliased( Bool32 sparseResidencyAliased_ ) { sparseResidencyAliased = sparseResidencyAliased_; return *this; } PhysicalDeviceFeatures& setVariableMultisampleRate( Bool32 variableMultisampleRate_ ) { variableMultisampleRate = variableMultisampleRate_; return *this; } PhysicalDeviceFeatures& setInheritedQueries( Bool32 inheritedQueries_ ) { inheritedQueries = inheritedQueries_; return *this; } operator const VkPhysicalDeviceFeatures&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceFeatures const& rhs ) const { return ( robustBufferAccess == rhs.robustBufferAccess ) && ( fullDrawIndexUint32 == rhs.fullDrawIndexUint32 ) && ( imageCubeArray == rhs.imageCubeArray ) && ( independentBlend == rhs.independentBlend ) && ( geometryShader == rhs.geometryShader ) && ( tessellationShader == rhs.tessellationShader ) && ( sampleRateShading == rhs.sampleRateShading ) && ( dualSrcBlend == rhs.dualSrcBlend ) && ( logicOp == rhs.logicOp ) && ( multiDrawIndirect == rhs.multiDrawIndirect ) && ( drawIndirectFirstInstance == rhs.drawIndirectFirstInstance ) && ( depthClamp == rhs.depthClamp ) && ( depthBiasClamp == rhs.depthBiasClamp ) && ( fillModeNonSolid == rhs.fillModeNonSolid ) && ( depthBounds == rhs.depthBounds ) && ( wideLines == rhs.wideLines ) && ( largePoints == rhs.largePoints ) && ( alphaToOne == rhs.alphaToOne ) && ( multiViewport == rhs.multiViewport ) && ( samplerAnisotropy == rhs.samplerAnisotropy ) && ( textureCompressionETC2 == rhs.textureCompressionETC2 ) && ( textureCompressionASTC_LDR == rhs.textureCompressionASTC_LDR ) && ( textureCompressionBC == rhs.textureCompressionBC ) && ( occlusionQueryPrecise == rhs.occlusionQueryPrecise ) && ( pipelineStatisticsQuery == rhs.pipelineStatisticsQuery ) && ( vertexPipelineStoresAndAtomics == rhs.vertexPipelineStoresAndAtomics ) && ( fragmentStoresAndAtomics == rhs.fragmentStoresAndAtomics ) && ( shaderTessellationAndGeometryPointSize == rhs.shaderTessellationAndGeometryPointSize ) && ( shaderImageGatherExtended == rhs.shaderImageGatherExtended ) && ( shaderStorageImageExtendedFormats == rhs.shaderStorageImageExtendedFormats ) && ( shaderStorageImageMultisample == rhs.shaderStorageImageMultisample ) && ( shaderStorageImageReadWithoutFormat == rhs.shaderStorageImageReadWithoutFormat ) && ( shaderStorageImageWriteWithoutFormat == rhs.shaderStorageImageWriteWithoutFormat ) && ( shaderUniformBufferArrayDynamicIndexing == rhs.shaderUniformBufferArrayDynamicIndexing ) && ( shaderSampledImageArrayDynamicIndexing == rhs.shaderSampledImageArrayDynamicIndexing ) && ( shaderStorageBufferArrayDynamicIndexing == rhs.shaderStorageBufferArrayDynamicIndexing ) && ( shaderStorageImageArrayDynamicIndexing == rhs.shaderStorageImageArrayDynamicIndexing ) && ( shaderClipDistance == rhs.shaderClipDistance ) && ( shaderCullDistance == rhs.shaderCullDistance ) && ( shaderFloat64 == rhs.shaderFloat64 ) && ( shaderInt64 == rhs.shaderInt64 ) && ( shaderInt16 == rhs.shaderInt16 ) && ( shaderResourceResidency == rhs.shaderResourceResidency ) && ( shaderResourceMinLod == rhs.shaderResourceMinLod ) && ( sparseBinding == rhs.sparseBinding ) && ( sparseResidencyBuffer == rhs.sparseResidencyBuffer ) && ( sparseResidencyImage2D == rhs.sparseResidencyImage2D ) && ( sparseResidencyImage3D == rhs.sparseResidencyImage3D ) && ( sparseResidency2Samples == rhs.sparseResidency2Samples ) && ( sparseResidency4Samples == rhs.sparseResidency4Samples ) && ( sparseResidency8Samples == rhs.sparseResidency8Samples ) && ( sparseResidency16Samples == rhs.sparseResidency16Samples ) && ( sparseResidencyAliased == rhs.sparseResidencyAliased ) && ( variableMultisampleRate == rhs.variableMultisampleRate ) && ( inheritedQueries == rhs.inheritedQueries ); } bool operator!=( PhysicalDeviceFeatures const& rhs ) const { return !operator==( rhs ); } Bool32 robustBufferAccess; Bool32 fullDrawIndexUint32; Bool32 imageCubeArray; Bool32 independentBlend; Bool32 geometryShader; Bool32 tessellationShader; Bool32 sampleRateShading; Bool32 dualSrcBlend; Bool32 logicOp; Bool32 multiDrawIndirect; Bool32 drawIndirectFirstInstance; Bool32 depthClamp; Bool32 depthBiasClamp; Bool32 fillModeNonSolid; Bool32 depthBounds; Bool32 wideLines; Bool32 largePoints; Bool32 alphaToOne; Bool32 multiViewport; Bool32 samplerAnisotropy; Bool32 textureCompressionETC2; Bool32 textureCompressionASTC_LDR; Bool32 textureCompressionBC; Bool32 occlusionQueryPrecise; Bool32 pipelineStatisticsQuery; Bool32 vertexPipelineStoresAndAtomics; Bool32 fragmentStoresAndAtomics; Bool32 shaderTessellationAndGeometryPointSize; Bool32 shaderImageGatherExtended; Bool32 shaderStorageImageExtendedFormats; Bool32 shaderStorageImageMultisample; Bool32 shaderStorageImageReadWithoutFormat; Bool32 shaderStorageImageWriteWithoutFormat; Bool32 shaderUniformBufferArrayDynamicIndexing; Bool32 shaderSampledImageArrayDynamicIndexing; Bool32 shaderStorageBufferArrayDynamicIndexing; Bool32 shaderStorageImageArrayDynamicIndexing; Bool32 shaderClipDistance; Bool32 shaderCullDistance; Bool32 shaderFloat64; Bool32 shaderInt64; Bool32 shaderInt16; Bool32 shaderResourceResidency; Bool32 shaderResourceMinLod; Bool32 sparseBinding; Bool32 sparseResidencyBuffer; Bool32 sparseResidencyImage2D; Bool32 sparseResidencyImage3D; Bool32 sparseResidency2Samples; Bool32 sparseResidency4Samples; Bool32 sparseResidency8Samples; Bool32 sparseResidency16Samples; Bool32 sparseResidencyAliased; Bool32 variableMultisampleRate; Bool32 inheritedQueries; }; static_assert( sizeof( PhysicalDeviceFeatures ) == sizeof( VkPhysicalDeviceFeatures ), "struct and wrapper have different size!" ); struct PhysicalDeviceSparseProperties { operator const VkPhysicalDeviceSparseProperties&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceSparseProperties const& rhs ) const { return ( residencyStandard2DBlockShape == rhs.residencyStandard2DBlockShape ) && ( residencyStandard2DMultisampleBlockShape == rhs.residencyStandard2DMultisampleBlockShape ) && ( residencyStandard3DBlockShape == rhs.residencyStandard3DBlockShape ) && ( residencyAlignedMipSize == rhs.residencyAlignedMipSize ) && ( residencyNonResidentStrict == rhs.residencyNonResidentStrict ); } bool operator!=( PhysicalDeviceSparseProperties const& rhs ) const { return !operator==( rhs ); } Bool32 residencyStandard2DBlockShape; Bool32 residencyStandard2DMultisampleBlockShape; Bool32 residencyStandard3DBlockShape; Bool32 residencyAlignedMipSize; Bool32 residencyNonResidentStrict; }; static_assert( sizeof( PhysicalDeviceSparseProperties ) == sizeof( VkPhysicalDeviceSparseProperties ), "struct and wrapper have different size!" ); struct DrawIndirectCommand { DrawIndirectCommand( uint32_t vertexCount_ = 0, uint32_t instanceCount_ = 0, uint32_t firstVertex_ = 0, uint32_t firstInstance_ = 0 ) : vertexCount( vertexCount_ ) , instanceCount( instanceCount_ ) , firstVertex( firstVertex_ ) , firstInstance( firstInstance_ ) { } DrawIndirectCommand( VkDrawIndirectCommand const & rhs ) { memcpy( this, &rhs, sizeof( DrawIndirectCommand ) ); } DrawIndirectCommand& operator=( VkDrawIndirectCommand const & rhs ) { memcpy( this, &rhs, sizeof( DrawIndirectCommand ) ); return *this; } DrawIndirectCommand& setVertexCount( uint32_t vertexCount_ ) { vertexCount = vertexCount_; return *this; } DrawIndirectCommand& setInstanceCount( uint32_t instanceCount_ ) { instanceCount = instanceCount_; return *this; } DrawIndirectCommand& setFirstVertex( uint32_t firstVertex_ ) { firstVertex = firstVertex_; return *this; } DrawIndirectCommand& setFirstInstance( uint32_t firstInstance_ ) { firstInstance = firstInstance_; return *this; } operator const VkDrawIndirectCommand&() const { return *reinterpret_cast(this); } bool operator==( DrawIndirectCommand const& rhs ) const { return ( vertexCount == rhs.vertexCount ) && ( instanceCount == rhs.instanceCount ) && ( firstVertex == rhs.firstVertex ) && ( firstInstance == rhs.firstInstance ); } bool operator!=( DrawIndirectCommand const& rhs ) const { return !operator==( rhs ); } uint32_t vertexCount; uint32_t instanceCount; uint32_t firstVertex; uint32_t firstInstance; }; static_assert( sizeof( DrawIndirectCommand ) == sizeof( VkDrawIndirectCommand ), "struct and wrapper have different size!" ); struct DrawIndexedIndirectCommand { DrawIndexedIndirectCommand( uint32_t indexCount_ = 0, uint32_t instanceCount_ = 0, uint32_t firstIndex_ = 0, int32_t vertexOffset_ = 0, uint32_t firstInstance_ = 0 ) : indexCount( indexCount_ ) , instanceCount( instanceCount_ ) , firstIndex( firstIndex_ ) , vertexOffset( vertexOffset_ ) , firstInstance( firstInstance_ ) { } DrawIndexedIndirectCommand( VkDrawIndexedIndirectCommand const & rhs ) { memcpy( this, &rhs, sizeof( DrawIndexedIndirectCommand ) ); } DrawIndexedIndirectCommand& operator=( VkDrawIndexedIndirectCommand const & rhs ) { memcpy( this, &rhs, sizeof( DrawIndexedIndirectCommand ) ); return *this; } DrawIndexedIndirectCommand& setIndexCount( uint32_t indexCount_ ) { indexCount = indexCount_; return *this; } DrawIndexedIndirectCommand& setInstanceCount( uint32_t instanceCount_ ) { instanceCount = instanceCount_; return *this; } DrawIndexedIndirectCommand& setFirstIndex( uint32_t firstIndex_ ) { firstIndex = firstIndex_; return *this; } DrawIndexedIndirectCommand& setVertexOffset( int32_t vertexOffset_ ) { vertexOffset = vertexOffset_; return *this; } DrawIndexedIndirectCommand& setFirstInstance( uint32_t firstInstance_ ) { firstInstance = firstInstance_; return *this; } operator const VkDrawIndexedIndirectCommand&() const { return *reinterpret_cast(this); } bool operator==( DrawIndexedIndirectCommand const& rhs ) const { return ( indexCount == rhs.indexCount ) && ( instanceCount == rhs.instanceCount ) && ( firstIndex == rhs.firstIndex ) && ( vertexOffset == rhs.vertexOffset ) && ( firstInstance == rhs.firstInstance ); } bool operator!=( DrawIndexedIndirectCommand const& rhs ) const { return !operator==( rhs ); } uint32_t indexCount; uint32_t instanceCount; uint32_t firstIndex; int32_t vertexOffset; uint32_t firstInstance; }; static_assert( sizeof( DrawIndexedIndirectCommand ) == sizeof( VkDrawIndexedIndirectCommand ), "struct and wrapper have different size!" ); struct DispatchIndirectCommand { DispatchIndirectCommand( uint32_t x_ = 0, uint32_t y_ = 0, uint32_t z_ = 0 ) : x( x_ ) , y( y_ ) , z( z_ ) { } DispatchIndirectCommand( VkDispatchIndirectCommand const & rhs ) { memcpy( this, &rhs, sizeof( DispatchIndirectCommand ) ); } DispatchIndirectCommand& operator=( VkDispatchIndirectCommand const & rhs ) { memcpy( this, &rhs, sizeof( DispatchIndirectCommand ) ); return *this; } DispatchIndirectCommand& setX( uint32_t x_ ) { x = x_; return *this; } DispatchIndirectCommand& setY( uint32_t y_ ) { y = y_; return *this; } DispatchIndirectCommand& setZ( uint32_t z_ ) { z = z_; return *this; } operator const VkDispatchIndirectCommand&() const { return *reinterpret_cast(this); } bool operator==( DispatchIndirectCommand const& rhs ) const { return ( x == rhs.x ) && ( y == rhs.y ) && ( z == rhs.z ); } bool operator!=( DispatchIndirectCommand const& rhs ) const { return !operator==( rhs ); } uint32_t x; uint32_t y; uint32_t z; }; static_assert( sizeof( DispatchIndirectCommand ) == sizeof( VkDispatchIndirectCommand ), "struct and wrapper have different size!" ); struct DisplayPlanePropertiesKHR { operator const VkDisplayPlanePropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayPlanePropertiesKHR const& rhs ) const { return ( currentDisplay == rhs.currentDisplay ) && ( currentStackIndex == rhs.currentStackIndex ); } bool operator!=( DisplayPlanePropertiesKHR const& rhs ) const { return !operator==( rhs ); } DisplayKHR currentDisplay; uint32_t currentStackIndex; }; static_assert( sizeof( DisplayPlanePropertiesKHR ) == sizeof( VkDisplayPlanePropertiesKHR ), "struct and wrapper have different size!" ); struct DisplayModeParametersKHR { DisplayModeParametersKHR( Extent2D visibleRegion_ = Extent2D(), uint32_t refreshRate_ = 0 ) : visibleRegion( visibleRegion_ ) , refreshRate( refreshRate_ ) { } DisplayModeParametersKHR( VkDisplayModeParametersKHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplayModeParametersKHR ) ); } DisplayModeParametersKHR& operator=( VkDisplayModeParametersKHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplayModeParametersKHR ) ); return *this; } DisplayModeParametersKHR& setVisibleRegion( Extent2D visibleRegion_ ) { visibleRegion = visibleRegion_; return *this; } DisplayModeParametersKHR& setRefreshRate( uint32_t refreshRate_ ) { refreshRate = refreshRate_; return *this; } operator const VkDisplayModeParametersKHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayModeParametersKHR const& rhs ) const { return ( visibleRegion == rhs.visibleRegion ) && ( refreshRate == rhs.refreshRate ); } bool operator!=( DisplayModeParametersKHR const& rhs ) const { return !operator==( rhs ); } Extent2D visibleRegion; uint32_t refreshRate; }; static_assert( sizeof( DisplayModeParametersKHR ) == sizeof( VkDisplayModeParametersKHR ), "struct and wrapper have different size!" ); struct DisplayModePropertiesKHR { operator const VkDisplayModePropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayModePropertiesKHR const& rhs ) const { return ( displayMode == rhs.displayMode ) && ( parameters == rhs.parameters ); } bool operator!=( DisplayModePropertiesKHR const& rhs ) const { return !operator==( rhs ); } DisplayModeKHR displayMode; DisplayModeParametersKHR parameters; }; static_assert( sizeof( DisplayModePropertiesKHR ) == sizeof( VkDisplayModePropertiesKHR ), "struct and wrapper have different size!" ); struct RectLayerKHR { RectLayerKHR( Offset2D offset_ = Offset2D(), Extent2D extent_ = Extent2D(), uint32_t layer_ = 0 ) : offset( offset_ ) , extent( extent_ ) , layer( layer_ ) { } RectLayerKHR( VkRectLayerKHR const & rhs ) { memcpy( this, &rhs, sizeof( RectLayerKHR ) ); } RectLayerKHR& operator=( VkRectLayerKHR const & rhs ) { memcpy( this, &rhs, sizeof( RectLayerKHR ) ); return *this; } RectLayerKHR& setOffset( Offset2D offset_ ) { offset = offset_; return *this; } RectLayerKHR& setExtent( Extent2D extent_ ) { extent = extent_; return *this; } RectLayerKHR& setLayer( uint32_t layer_ ) { layer = layer_; return *this; } operator const VkRectLayerKHR&() const { return *reinterpret_cast(this); } bool operator==( RectLayerKHR const& rhs ) const { return ( offset == rhs.offset ) && ( extent == rhs.extent ) && ( layer == rhs.layer ); } bool operator!=( RectLayerKHR const& rhs ) const { return !operator==( rhs ); } Offset2D offset; Extent2D extent; uint32_t layer; }; static_assert( sizeof( RectLayerKHR ) == sizeof( VkRectLayerKHR ), "struct and wrapper have different size!" ); struct PresentRegionKHR { PresentRegionKHR( uint32_t rectangleCount_ = 0, const RectLayerKHR* pRectangles_ = nullptr ) : rectangleCount( rectangleCount_ ) , pRectangles( pRectangles_ ) { } PresentRegionKHR( VkPresentRegionKHR const & rhs ) { memcpy( this, &rhs, sizeof( PresentRegionKHR ) ); } PresentRegionKHR& operator=( VkPresentRegionKHR const & rhs ) { memcpy( this, &rhs, sizeof( PresentRegionKHR ) ); return *this; } PresentRegionKHR& setRectangleCount( uint32_t rectangleCount_ ) { rectangleCount = rectangleCount_; return *this; } PresentRegionKHR& setPRectangles( const RectLayerKHR* pRectangles_ ) { pRectangles = pRectangles_; return *this; } operator const VkPresentRegionKHR&() const { return *reinterpret_cast(this); } bool operator==( PresentRegionKHR const& rhs ) const { return ( rectangleCount == rhs.rectangleCount ) && ( pRectangles == rhs.pRectangles ); } bool operator!=( PresentRegionKHR const& rhs ) const { return !operator==( rhs ); } uint32_t rectangleCount; const RectLayerKHR* pRectangles; }; static_assert( sizeof( PresentRegionKHR ) == sizeof( VkPresentRegionKHR ), "struct and wrapper have different size!" ); struct XYColorEXT { XYColorEXT( float x_ = 0, float y_ = 0 ) : x( x_ ) , y( y_ ) { } XYColorEXT( VkXYColorEXT const & rhs ) { memcpy( this, &rhs, sizeof( XYColorEXT ) ); } XYColorEXT& operator=( VkXYColorEXT const & rhs ) { memcpy( this, &rhs, sizeof( XYColorEXT ) ); return *this; } XYColorEXT& setX( float x_ ) { x = x_; return *this; } XYColorEXT& setY( float y_ ) { y = y_; return *this; } operator const VkXYColorEXT&() const { return *reinterpret_cast(this); } bool operator==( XYColorEXT const& rhs ) const { return ( x == rhs.x ) && ( y == rhs.y ); } bool operator!=( XYColorEXT const& rhs ) const { return !operator==( rhs ); } float x; float y; }; static_assert( sizeof( XYColorEXT ) == sizeof( VkXYColorEXT ), "struct and wrapper have different size!" ); struct RefreshCycleDurationGOOGLE { RefreshCycleDurationGOOGLE( uint64_t refreshDuration_ = 0 ) : refreshDuration( refreshDuration_ ) { } RefreshCycleDurationGOOGLE( VkRefreshCycleDurationGOOGLE const & rhs ) { memcpy( this, &rhs, sizeof( RefreshCycleDurationGOOGLE ) ); } RefreshCycleDurationGOOGLE& operator=( VkRefreshCycleDurationGOOGLE const & rhs ) { memcpy( this, &rhs, sizeof( RefreshCycleDurationGOOGLE ) ); return *this; } RefreshCycleDurationGOOGLE& setRefreshDuration( uint64_t refreshDuration_ ) { refreshDuration = refreshDuration_; return *this; } operator const VkRefreshCycleDurationGOOGLE&() const { return *reinterpret_cast(this); } bool operator==( RefreshCycleDurationGOOGLE const& rhs ) const { return ( refreshDuration == rhs.refreshDuration ); } bool operator!=( RefreshCycleDurationGOOGLE const& rhs ) const { return !operator==( rhs ); } uint64_t refreshDuration; }; static_assert( sizeof( RefreshCycleDurationGOOGLE ) == sizeof( VkRefreshCycleDurationGOOGLE ), "struct and wrapper have different size!" ); struct PastPresentationTimingGOOGLE { PastPresentationTimingGOOGLE( uint32_t presentID_ = 0, uint64_t desiredPresentTime_ = 0, uint64_t actualPresentTime_ = 0, uint64_t earliestPresentTime_ = 0, uint64_t presentMargin_ = 0 ) : presentID( presentID_ ) , desiredPresentTime( desiredPresentTime_ ) , actualPresentTime( actualPresentTime_ ) , earliestPresentTime( earliestPresentTime_ ) , presentMargin( presentMargin_ ) { } PastPresentationTimingGOOGLE( VkPastPresentationTimingGOOGLE const & rhs ) { memcpy( this, &rhs, sizeof( PastPresentationTimingGOOGLE ) ); } PastPresentationTimingGOOGLE& operator=( VkPastPresentationTimingGOOGLE const & rhs ) { memcpy( this, &rhs, sizeof( PastPresentationTimingGOOGLE ) ); return *this; } PastPresentationTimingGOOGLE& setPresentID( uint32_t presentID_ ) { presentID = presentID_; return *this; } PastPresentationTimingGOOGLE& setDesiredPresentTime( uint64_t desiredPresentTime_ ) { desiredPresentTime = desiredPresentTime_; return *this; } PastPresentationTimingGOOGLE& setActualPresentTime( uint64_t actualPresentTime_ ) { actualPresentTime = actualPresentTime_; return *this; } PastPresentationTimingGOOGLE& setEarliestPresentTime( uint64_t earliestPresentTime_ ) { earliestPresentTime = earliestPresentTime_; return *this; } PastPresentationTimingGOOGLE& setPresentMargin( uint64_t presentMargin_ ) { presentMargin = presentMargin_; return *this; } operator const VkPastPresentationTimingGOOGLE&() const { return *reinterpret_cast(this); } bool operator==( PastPresentationTimingGOOGLE const& rhs ) const { return ( presentID == rhs.presentID ) && ( desiredPresentTime == rhs.desiredPresentTime ) && ( actualPresentTime == rhs.actualPresentTime ) && ( earliestPresentTime == rhs.earliestPresentTime ) && ( presentMargin == rhs.presentMargin ); } bool operator!=( PastPresentationTimingGOOGLE const& rhs ) const { return !operator==( rhs ); } uint32_t presentID; uint64_t desiredPresentTime; uint64_t actualPresentTime; uint64_t earliestPresentTime; uint64_t presentMargin; }; static_assert( sizeof( PastPresentationTimingGOOGLE ) == sizeof( VkPastPresentationTimingGOOGLE ), "struct and wrapper have different size!" ); struct PresentTimeGOOGLE { PresentTimeGOOGLE( uint32_t presentID_ = 0, uint64_t desiredPresentTime_ = 0 ) : presentID( presentID_ ) , desiredPresentTime( desiredPresentTime_ ) { } PresentTimeGOOGLE( VkPresentTimeGOOGLE const & rhs ) { memcpy( this, &rhs, sizeof( PresentTimeGOOGLE ) ); } PresentTimeGOOGLE& operator=( VkPresentTimeGOOGLE const & rhs ) { memcpy( this, &rhs, sizeof( PresentTimeGOOGLE ) ); return *this; } PresentTimeGOOGLE& setPresentID( uint32_t presentID_ ) { presentID = presentID_; return *this; } PresentTimeGOOGLE& setDesiredPresentTime( uint64_t desiredPresentTime_ ) { desiredPresentTime = desiredPresentTime_; return *this; } operator const VkPresentTimeGOOGLE&() const { return *reinterpret_cast(this); } bool operator==( PresentTimeGOOGLE const& rhs ) const { return ( presentID == rhs.presentID ) && ( desiredPresentTime == rhs.desiredPresentTime ); } bool operator!=( PresentTimeGOOGLE const& rhs ) const { return !operator==( rhs ); } uint32_t presentID; uint64_t desiredPresentTime; }; static_assert( sizeof( PresentTimeGOOGLE ) == sizeof( VkPresentTimeGOOGLE ), "struct and wrapper have different size!" ); struct ViewportWScalingNV { ViewportWScalingNV( float xcoeff_ = 0, float ycoeff_ = 0 ) : xcoeff( xcoeff_ ) , ycoeff( ycoeff_ ) { } ViewportWScalingNV( VkViewportWScalingNV const & rhs ) { memcpy( this, &rhs, sizeof( ViewportWScalingNV ) ); } ViewportWScalingNV& operator=( VkViewportWScalingNV const & rhs ) { memcpy( this, &rhs, sizeof( ViewportWScalingNV ) ); return *this; } ViewportWScalingNV& setXcoeff( float xcoeff_ ) { xcoeff = xcoeff_; return *this; } ViewportWScalingNV& setYcoeff( float ycoeff_ ) { ycoeff = ycoeff_; return *this; } operator const VkViewportWScalingNV&() const { return *reinterpret_cast(this); } bool operator==( ViewportWScalingNV const& rhs ) const { return ( xcoeff == rhs.xcoeff ) && ( ycoeff == rhs.ycoeff ); } bool operator!=( ViewportWScalingNV const& rhs ) const { return !operator==( rhs ); } float xcoeff; float ycoeff; }; static_assert( sizeof( ViewportWScalingNV ) == sizeof( VkViewportWScalingNV ), "struct and wrapper have different size!" ); enum class ImageLayout { eUndefined = VK_IMAGE_LAYOUT_UNDEFINED, eGeneral = VK_IMAGE_LAYOUT_GENERAL, eColorAttachmentOptimal = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, eDepthStencilAttachmentOptimal = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, eDepthStencilReadOnlyOptimal = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, eShaderReadOnlyOptimal = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, eTransferSrcOptimal = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, eTransferDstOptimal = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, ePreinitialized = VK_IMAGE_LAYOUT_PREINITIALIZED, ePresentSrcKHR = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, eSharedPresentKHR = VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR, eDepthReadOnlyStencilAttachmentOptimalKHR = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR, eDepthAttachmentStencilReadOnlyOptimalKHR = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR }; struct DescriptorImageInfo { DescriptorImageInfo( Sampler sampler_ = Sampler(), ImageView imageView_ = ImageView(), ImageLayout imageLayout_ = ImageLayout::eUndefined ) : sampler( sampler_ ) , imageView( imageView_ ) , imageLayout( imageLayout_ ) { } DescriptorImageInfo( VkDescriptorImageInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorImageInfo ) ); } DescriptorImageInfo& operator=( VkDescriptorImageInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorImageInfo ) ); return *this; } DescriptorImageInfo& setSampler( Sampler sampler_ ) { sampler = sampler_; return *this; } DescriptorImageInfo& setImageView( ImageView imageView_ ) { imageView = imageView_; return *this; } DescriptorImageInfo& setImageLayout( ImageLayout imageLayout_ ) { imageLayout = imageLayout_; return *this; } operator const VkDescriptorImageInfo&() const { return *reinterpret_cast(this); } bool operator==( DescriptorImageInfo const& rhs ) const { return ( sampler == rhs.sampler ) && ( imageView == rhs.imageView ) && ( imageLayout == rhs.imageLayout ); } bool operator!=( DescriptorImageInfo const& rhs ) const { return !operator==( rhs ); } Sampler sampler; ImageView imageView; ImageLayout imageLayout; }; static_assert( sizeof( DescriptorImageInfo ) == sizeof( VkDescriptorImageInfo ), "struct and wrapper have different size!" ); struct AttachmentReference { AttachmentReference( uint32_t attachment_ = 0, ImageLayout layout_ = ImageLayout::eUndefined ) : attachment( attachment_ ) , layout( layout_ ) { } AttachmentReference( VkAttachmentReference const & rhs ) { memcpy( this, &rhs, sizeof( AttachmentReference ) ); } AttachmentReference& operator=( VkAttachmentReference const & rhs ) { memcpy( this, &rhs, sizeof( AttachmentReference ) ); return *this; } AttachmentReference& setAttachment( uint32_t attachment_ ) { attachment = attachment_; return *this; } AttachmentReference& setLayout( ImageLayout layout_ ) { layout = layout_; return *this; } operator const VkAttachmentReference&() const { return *reinterpret_cast(this); } bool operator==( AttachmentReference const& rhs ) const { return ( attachment == rhs.attachment ) && ( layout == rhs.layout ); } bool operator!=( AttachmentReference const& rhs ) const { return !operator==( rhs ); } uint32_t attachment; ImageLayout layout; }; static_assert( sizeof( AttachmentReference ) == sizeof( VkAttachmentReference ), "struct and wrapper have different size!" ); enum class AttachmentLoadOp { eLoad = VK_ATTACHMENT_LOAD_OP_LOAD, eClear = VK_ATTACHMENT_LOAD_OP_CLEAR, eDontCare = VK_ATTACHMENT_LOAD_OP_DONT_CARE }; enum class AttachmentStoreOp { eStore = VK_ATTACHMENT_STORE_OP_STORE, eDontCare = VK_ATTACHMENT_STORE_OP_DONT_CARE }; enum class ImageType { e1D = VK_IMAGE_TYPE_1D, e2D = VK_IMAGE_TYPE_2D, e3D = VK_IMAGE_TYPE_3D }; enum class ImageTiling { eOptimal = VK_IMAGE_TILING_OPTIMAL, eLinear = VK_IMAGE_TILING_LINEAR }; enum class ImageViewType { e1D = VK_IMAGE_VIEW_TYPE_1D, e2D = VK_IMAGE_VIEW_TYPE_2D, e3D = VK_IMAGE_VIEW_TYPE_3D, eCube = VK_IMAGE_VIEW_TYPE_CUBE, e1DArray = VK_IMAGE_VIEW_TYPE_1D_ARRAY, e2DArray = VK_IMAGE_VIEW_TYPE_2D_ARRAY, eCubeArray = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY }; enum class CommandBufferLevel { ePrimary = VK_COMMAND_BUFFER_LEVEL_PRIMARY, eSecondary = VK_COMMAND_BUFFER_LEVEL_SECONDARY }; enum class ComponentSwizzle { eIdentity = VK_COMPONENT_SWIZZLE_IDENTITY, eZero = VK_COMPONENT_SWIZZLE_ZERO, eOne = VK_COMPONENT_SWIZZLE_ONE, eR = VK_COMPONENT_SWIZZLE_R, eG = VK_COMPONENT_SWIZZLE_G, eB = VK_COMPONENT_SWIZZLE_B, eA = VK_COMPONENT_SWIZZLE_A }; struct ComponentMapping { ComponentMapping( ComponentSwizzle r_ = ComponentSwizzle::eIdentity, ComponentSwizzle g_ = ComponentSwizzle::eIdentity, ComponentSwizzle b_ = ComponentSwizzle::eIdentity, ComponentSwizzle a_ = ComponentSwizzle::eIdentity ) : r( r_ ) , g( g_ ) , b( b_ ) , a( a_ ) { } ComponentMapping( VkComponentMapping const & rhs ) { memcpy( this, &rhs, sizeof( ComponentMapping ) ); } ComponentMapping& operator=( VkComponentMapping const & rhs ) { memcpy( this, &rhs, sizeof( ComponentMapping ) ); return *this; } ComponentMapping& setR( ComponentSwizzle r_ ) { r = r_; return *this; } ComponentMapping& setG( ComponentSwizzle g_ ) { g = g_; return *this; } ComponentMapping& setB( ComponentSwizzle b_ ) { b = b_; return *this; } ComponentMapping& setA( ComponentSwizzle a_ ) { a = a_; return *this; } operator const VkComponentMapping&() const { return *reinterpret_cast(this); } bool operator==( ComponentMapping const& rhs ) const { return ( r == rhs.r ) && ( g == rhs.g ) && ( b == rhs.b ) && ( a == rhs.a ); } bool operator!=( ComponentMapping const& rhs ) const { return !operator==( rhs ); } ComponentSwizzle r; ComponentSwizzle g; ComponentSwizzle b; ComponentSwizzle a; }; static_assert( sizeof( ComponentMapping ) == sizeof( VkComponentMapping ), "struct and wrapper have different size!" ); enum class DescriptorType { eSampler = VK_DESCRIPTOR_TYPE_SAMPLER, eCombinedImageSampler = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, eSampledImage = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, eStorageImage = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, eUniformTexelBuffer = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, eStorageTexelBuffer = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, eUniformBuffer = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, eStorageBuffer = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, eUniformBufferDynamic = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, eStorageBufferDynamic = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, eInputAttachment = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT }; struct DescriptorPoolSize { DescriptorPoolSize( DescriptorType type_ = DescriptorType::eSampler, uint32_t descriptorCount_ = 0 ) : type( type_ ) , descriptorCount( descriptorCount_ ) { } DescriptorPoolSize( VkDescriptorPoolSize const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorPoolSize ) ); } DescriptorPoolSize& operator=( VkDescriptorPoolSize const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorPoolSize ) ); return *this; } DescriptorPoolSize& setType( DescriptorType type_ ) { type = type_; return *this; } DescriptorPoolSize& setDescriptorCount( uint32_t descriptorCount_ ) { descriptorCount = descriptorCount_; return *this; } operator const VkDescriptorPoolSize&() const { return *reinterpret_cast(this); } bool operator==( DescriptorPoolSize const& rhs ) const { return ( type == rhs.type ) && ( descriptorCount == rhs.descriptorCount ); } bool operator!=( DescriptorPoolSize const& rhs ) const { return !operator==( rhs ); } DescriptorType type; uint32_t descriptorCount; }; static_assert( sizeof( DescriptorPoolSize ) == sizeof( VkDescriptorPoolSize ), "struct and wrapper have different size!" ); struct DescriptorUpdateTemplateEntryKHR { DescriptorUpdateTemplateEntryKHR( uint32_t dstBinding_ = 0, uint32_t dstArrayElement_ = 0, uint32_t descriptorCount_ = 0, DescriptorType descriptorType_ = DescriptorType::eSampler, size_t offset_ = 0, size_t stride_ = 0 ) : dstBinding( dstBinding_ ) , dstArrayElement( dstArrayElement_ ) , descriptorCount( descriptorCount_ ) , descriptorType( descriptorType_ ) , offset( offset_ ) , stride( stride_ ) { } DescriptorUpdateTemplateEntryKHR( VkDescriptorUpdateTemplateEntryKHR const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorUpdateTemplateEntryKHR ) ); } DescriptorUpdateTemplateEntryKHR& operator=( VkDescriptorUpdateTemplateEntryKHR const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorUpdateTemplateEntryKHR ) ); return *this; } DescriptorUpdateTemplateEntryKHR& setDstBinding( uint32_t dstBinding_ ) { dstBinding = dstBinding_; return *this; } DescriptorUpdateTemplateEntryKHR& setDstArrayElement( uint32_t dstArrayElement_ ) { dstArrayElement = dstArrayElement_; return *this; } DescriptorUpdateTemplateEntryKHR& setDescriptorCount( uint32_t descriptorCount_ ) { descriptorCount = descriptorCount_; return *this; } DescriptorUpdateTemplateEntryKHR& setDescriptorType( DescriptorType descriptorType_ ) { descriptorType = descriptorType_; return *this; } DescriptorUpdateTemplateEntryKHR& setOffset( size_t offset_ ) { offset = offset_; return *this; } DescriptorUpdateTemplateEntryKHR& setStride( size_t stride_ ) { stride = stride_; return *this; } operator const VkDescriptorUpdateTemplateEntryKHR&() const { return *reinterpret_cast(this); } bool operator==( DescriptorUpdateTemplateEntryKHR const& rhs ) const { return ( dstBinding == rhs.dstBinding ) && ( dstArrayElement == rhs.dstArrayElement ) && ( descriptorCount == rhs.descriptorCount ) && ( descriptorType == rhs.descriptorType ) && ( offset == rhs.offset ) && ( stride == rhs.stride ); } bool operator!=( DescriptorUpdateTemplateEntryKHR const& rhs ) const { return !operator==( rhs ); } uint32_t dstBinding; uint32_t dstArrayElement; uint32_t descriptorCount; DescriptorType descriptorType; size_t offset; size_t stride; }; static_assert( sizeof( DescriptorUpdateTemplateEntryKHR ) == sizeof( VkDescriptorUpdateTemplateEntryKHR ), "struct and wrapper have different size!" ); enum class QueryType { eOcclusion = VK_QUERY_TYPE_OCCLUSION, ePipelineStatistics = VK_QUERY_TYPE_PIPELINE_STATISTICS, eTimestamp = VK_QUERY_TYPE_TIMESTAMP }; enum class BorderColor { eFloatTransparentBlack = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK, eIntTransparentBlack = VK_BORDER_COLOR_INT_TRANSPARENT_BLACK, eFloatOpaqueBlack = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK, eIntOpaqueBlack = VK_BORDER_COLOR_INT_OPAQUE_BLACK, eFloatOpaqueWhite = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE, eIntOpaqueWhite = VK_BORDER_COLOR_INT_OPAQUE_WHITE }; enum class PipelineBindPoint { eGraphics = VK_PIPELINE_BIND_POINT_GRAPHICS, eCompute = VK_PIPELINE_BIND_POINT_COMPUTE }; enum class PipelineCacheHeaderVersion { eOne = VK_PIPELINE_CACHE_HEADER_VERSION_ONE }; enum class PrimitiveTopology { ePointList = VK_PRIMITIVE_TOPOLOGY_POINT_LIST, eLineList = VK_PRIMITIVE_TOPOLOGY_LINE_LIST, eLineStrip = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, eTriangleList = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, eTriangleStrip = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, eTriangleFan = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, eLineListWithAdjacency = VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY, eLineStripWithAdjacency = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY, eTriangleListWithAdjacency = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY, eTriangleStripWithAdjacency = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY, ePatchList = VK_PRIMITIVE_TOPOLOGY_PATCH_LIST }; enum class SharingMode { eExclusive = VK_SHARING_MODE_EXCLUSIVE, eConcurrent = VK_SHARING_MODE_CONCURRENT }; enum class IndexType { eUint16 = VK_INDEX_TYPE_UINT16, eUint32 = VK_INDEX_TYPE_UINT32 }; enum class Filter { eNearest = VK_FILTER_NEAREST, eLinear = VK_FILTER_LINEAR, eCubicIMG = VK_FILTER_CUBIC_IMG }; enum class SamplerMipmapMode { eNearest = VK_SAMPLER_MIPMAP_MODE_NEAREST, eLinear = VK_SAMPLER_MIPMAP_MODE_LINEAR }; enum class SamplerAddressMode { eRepeat = VK_SAMPLER_ADDRESS_MODE_REPEAT, eMirroredRepeat = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT, eClampToEdge = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, eClampToBorder = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER, eMirrorClampToEdge = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE }; enum class CompareOp { eNever = VK_COMPARE_OP_NEVER, eLess = VK_COMPARE_OP_LESS, eEqual = VK_COMPARE_OP_EQUAL, eLessOrEqual = VK_COMPARE_OP_LESS_OR_EQUAL, eGreater = VK_COMPARE_OP_GREATER, eNotEqual = VK_COMPARE_OP_NOT_EQUAL, eGreaterOrEqual = VK_COMPARE_OP_GREATER_OR_EQUAL, eAlways = VK_COMPARE_OP_ALWAYS }; enum class PolygonMode { eFill = VK_POLYGON_MODE_FILL, eLine = VK_POLYGON_MODE_LINE, ePoint = VK_POLYGON_MODE_POINT }; enum class CullModeFlagBits { eNone = VK_CULL_MODE_NONE, eFront = VK_CULL_MODE_FRONT_BIT, eBack = VK_CULL_MODE_BACK_BIT, eFrontAndBack = VK_CULL_MODE_FRONT_AND_BACK }; using CullModeFlags = Flags; VULKAN_HPP_INLINE CullModeFlags operator|( CullModeFlagBits bit0, CullModeFlagBits bit1 ) { return CullModeFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE CullModeFlags operator~( CullModeFlagBits bits ) { return ~( CullModeFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(CullModeFlagBits::eNone) | VkFlags(CullModeFlagBits::eFront) | VkFlags(CullModeFlagBits::eBack) | VkFlags(CullModeFlagBits::eFrontAndBack) }; }; enum class FrontFace { eCounterClockwise = VK_FRONT_FACE_COUNTER_CLOCKWISE, eClockwise = VK_FRONT_FACE_CLOCKWISE }; enum class BlendFactor { eZero = VK_BLEND_FACTOR_ZERO, eOne = VK_BLEND_FACTOR_ONE, eSrcColor = VK_BLEND_FACTOR_SRC_COLOR, eOneMinusSrcColor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, eDstColor = VK_BLEND_FACTOR_DST_COLOR, eOneMinusDstColor = VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, eSrcAlpha = VK_BLEND_FACTOR_SRC_ALPHA, eOneMinusSrcAlpha = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, eDstAlpha = VK_BLEND_FACTOR_DST_ALPHA, eOneMinusDstAlpha = VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA, eConstantColor = VK_BLEND_FACTOR_CONSTANT_COLOR, eOneMinusConstantColor = VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, eConstantAlpha = VK_BLEND_FACTOR_CONSTANT_ALPHA, eOneMinusConstantAlpha = VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA, eSrcAlphaSaturate = VK_BLEND_FACTOR_SRC_ALPHA_SATURATE, eSrc1Color = VK_BLEND_FACTOR_SRC1_COLOR, eOneMinusSrc1Color = VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR, eSrc1Alpha = VK_BLEND_FACTOR_SRC1_ALPHA, eOneMinusSrc1Alpha = VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA }; enum class BlendOp { eAdd = VK_BLEND_OP_ADD, eSubtract = VK_BLEND_OP_SUBTRACT, eReverseSubtract = VK_BLEND_OP_REVERSE_SUBTRACT, eMin = VK_BLEND_OP_MIN, eMax = VK_BLEND_OP_MAX }; enum class StencilOp { eKeep = VK_STENCIL_OP_KEEP, eZero = VK_STENCIL_OP_ZERO, eReplace = VK_STENCIL_OP_REPLACE, eIncrementAndClamp = VK_STENCIL_OP_INCREMENT_AND_CLAMP, eDecrementAndClamp = VK_STENCIL_OP_DECREMENT_AND_CLAMP, eInvert = VK_STENCIL_OP_INVERT, eIncrementAndWrap = VK_STENCIL_OP_INCREMENT_AND_WRAP, eDecrementAndWrap = VK_STENCIL_OP_DECREMENT_AND_WRAP }; struct StencilOpState { StencilOpState( StencilOp failOp_ = StencilOp::eKeep, StencilOp passOp_ = StencilOp::eKeep, StencilOp depthFailOp_ = StencilOp::eKeep, CompareOp compareOp_ = CompareOp::eNever, uint32_t compareMask_ = 0, uint32_t writeMask_ = 0, uint32_t reference_ = 0 ) : failOp( failOp_ ) , passOp( passOp_ ) , depthFailOp( depthFailOp_ ) , compareOp( compareOp_ ) , compareMask( compareMask_ ) , writeMask( writeMask_ ) , reference( reference_ ) { } StencilOpState( VkStencilOpState const & rhs ) { memcpy( this, &rhs, sizeof( StencilOpState ) ); } StencilOpState& operator=( VkStencilOpState const & rhs ) { memcpy( this, &rhs, sizeof( StencilOpState ) ); return *this; } StencilOpState& setFailOp( StencilOp failOp_ ) { failOp = failOp_; return *this; } StencilOpState& setPassOp( StencilOp passOp_ ) { passOp = passOp_; return *this; } StencilOpState& setDepthFailOp( StencilOp depthFailOp_ ) { depthFailOp = depthFailOp_; return *this; } StencilOpState& setCompareOp( CompareOp compareOp_ ) { compareOp = compareOp_; return *this; } StencilOpState& setCompareMask( uint32_t compareMask_ ) { compareMask = compareMask_; return *this; } StencilOpState& setWriteMask( uint32_t writeMask_ ) { writeMask = writeMask_; return *this; } StencilOpState& setReference( uint32_t reference_ ) { reference = reference_; return *this; } operator const VkStencilOpState&() const { return *reinterpret_cast(this); } bool operator==( StencilOpState const& rhs ) const { return ( failOp == rhs.failOp ) && ( passOp == rhs.passOp ) && ( depthFailOp == rhs.depthFailOp ) && ( compareOp == rhs.compareOp ) && ( compareMask == rhs.compareMask ) && ( writeMask == rhs.writeMask ) && ( reference == rhs.reference ); } bool operator!=( StencilOpState const& rhs ) const { return !operator==( rhs ); } StencilOp failOp; StencilOp passOp; StencilOp depthFailOp; CompareOp compareOp; uint32_t compareMask; uint32_t writeMask; uint32_t reference; }; static_assert( sizeof( StencilOpState ) == sizeof( VkStencilOpState ), "struct and wrapper have different size!" ); enum class LogicOp { eClear = VK_LOGIC_OP_CLEAR, eAnd = VK_LOGIC_OP_AND, eAndReverse = VK_LOGIC_OP_AND_REVERSE, eCopy = VK_LOGIC_OP_COPY, eAndInverted = VK_LOGIC_OP_AND_INVERTED, eNoOp = VK_LOGIC_OP_NO_OP, eXor = VK_LOGIC_OP_XOR, eOr = VK_LOGIC_OP_OR, eNor = VK_LOGIC_OP_NOR, eEquivalent = VK_LOGIC_OP_EQUIVALENT, eInvert = VK_LOGIC_OP_INVERT, eOrReverse = VK_LOGIC_OP_OR_REVERSE, eCopyInverted = VK_LOGIC_OP_COPY_INVERTED, eOrInverted = VK_LOGIC_OP_OR_INVERTED, eNand = VK_LOGIC_OP_NAND, eSet = VK_LOGIC_OP_SET }; enum class InternalAllocationType { eExecutable = VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE }; enum class SystemAllocationScope { eCommand = VK_SYSTEM_ALLOCATION_SCOPE_COMMAND, eObject = VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, eCache = VK_SYSTEM_ALLOCATION_SCOPE_CACHE, eDevice = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE, eInstance = VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE }; enum class PhysicalDeviceType { eOther = VK_PHYSICAL_DEVICE_TYPE_OTHER, eIntegratedGpu = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU, eDiscreteGpu = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU, eVirtualGpu = VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU, eCpu = VK_PHYSICAL_DEVICE_TYPE_CPU }; enum class VertexInputRate { eVertex = VK_VERTEX_INPUT_RATE_VERTEX, eInstance = VK_VERTEX_INPUT_RATE_INSTANCE }; struct VertexInputBindingDescription { VertexInputBindingDescription( uint32_t binding_ = 0, uint32_t stride_ = 0, VertexInputRate inputRate_ = VertexInputRate::eVertex ) : binding( binding_ ) , stride( stride_ ) , inputRate( inputRate_ ) { } VertexInputBindingDescription( VkVertexInputBindingDescription const & rhs ) { memcpy( this, &rhs, sizeof( VertexInputBindingDescription ) ); } VertexInputBindingDescription& operator=( VkVertexInputBindingDescription const & rhs ) { memcpy( this, &rhs, sizeof( VertexInputBindingDescription ) ); return *this; } VertexInputBindingDescription& setBinding( uint32_t binding_ ) { binding = binding_; return *this; } VertexInputBindingDescription& setStride( uint32_t stride_ ) { stride = stride_; return *this; } VertexInputBindingDescription& setInputRate( VertexInputRate inputRate_ ) { inputRate = inputRate_; return *this; } operator const VkVertexInputBindingDescription&() const { return *reinterpret_cast(this); } bool operator==( VertexInputBindingDescription const& rhs ) const { return ( binding == rhs.binding ) && ( stride == rhs.stride ) && ( inputRate == rhs.inputRate ); } bool operator!=( VertexInputBindingDescription const& rhs ) const { return !operator==( rhs ); } uint32_t binding; uint32_t stride; VertexInputRate inputRate; }; static_assert( sizeof( VertexInputBindingDescription ) == sizeof( VkVertexInputBindingDescription ), "struct and wrapper have different size!" ); enum class Format { eUndefined = VK_FORMAT_UNDEFINED, eR4G4UnormPack8 = VK_FORMAT_R4G4_UNORM_PACK8, eR4G4B4A4UnormPack16 = VK_FORMAT_R4G4B4A4_UNORM_PACK16, eB4G4R4A4UnormPack16 = VK_FORMAT_B4G4R4A4_UNORM_PACK16, eR5G6B5UnormPack16 = VK_FORMAT_R5G6B5_UNORM_PACK16, eB5G6R5UnormPack16 = VK_FORMAT_B5G6R5_UNORM_PACK16, eR5G5B5A1UnormPack16 = VK_FORMAT_R5G5B5A1_UNORM_PACK16, eB5G5R5A1UnormPack16 = VK_FORMAT_B5G5R5A1_UNORM_PACK16, eA1R5G5B5UnormPack16 = VK_FORMAT_A1R5G5B5_UNORM_PACK16, eR8Unorm = VK_FORMAT_R8_UNORM, eR8Snorm = VK_FORMAT_R8_SNORM, eR8Uscaled = VK_FORMAT_R8_USCALED, eR8Sscaled = VK_FORMAT_R8_SSCALED, eR8Uint = VK_FORMAT_R8_UINT, eR8Sint = VK_FORMAT_R8_SINT, eR8Srgb = VK_FORMAT_R8_SRGB, eR8G8Unorm = VK_FORMAT_R8G8_UNORM, eR8G8Snorm = VK_FORMAT_R8G8_SNORM, eR8G8Uscaled = VK_FORMAT_R8G8_USCALED, eR8G8Sscaled = VK_FORMAT_R8G8_SSCALED, eR8G8Uint = VK_FORMAT_R8G8_UINT, eR8G8Sint = VK_FORMAT_R8G8_SINT, eR8G8Srgb = VK_FORMAT_R8G8_SRGB, eR8G8B8Unorm = VK_FORMAT_R8G8B8_UNORM, eR8G8B8Snorm = VK_FORMAT_R8G8B8_SNORM, eR8G8B8Uscaled = VK_FORMAT_R8G8B8_USCALED, eR8G8B8Sscaled = VK_FORMAT_R8G8B8_SSCALED, eR8G8B8Uint = VK_FORMAT_R8G8B8_UINT, eR8G8B8Sint = VK_FORMAT_R8G8B8_SINT, eR8G8B8Srgb = VK_FORMAT_R8G8B8_SRGB, eB8G8R8Unorm = VK_FORMAT_B8G8R8_UNORM, eB8G8R8Snorm = VK_FORMAT_B8G8R8_SNORM, eB8G8R8Uscaled = VK_FORMAT_B8G8R8_USCALED, eB8G8R8Sscaled = VK_FORMAT_B8G8R8_SSCALED, eB8G8R8Uint = VK_FORMAT_B8G8R8_UINT, eB8G8R8Sint = VK_FORMAT_B8G8R8_SINT, eB8G8R8Srgb = VK_FORMAT_B8G8R8_SRGB, eR8G8B8A8Unorm = VK_FORMAT_R8G8B8A8_UNORM, eR8G8B8A8Snorm = VK_FORMAT_R8G8B8A8_SNORM, eR8G8B8A8Uscaled = VK_FORMAT_R8G8B8A8_USCALED, eR8G8B8A8Sscaled = VK_FORMAT_R8G8B8A8_SSCALED, eR8G8B8A8Uint = VK_FORMAT_R8G8B8A8_UINT, eR8G8B8A8Sint = VK_FORMAT_R8G8B8A8_SINT, eR8G8B8A8Srgb = VK_FORMAT_R8G8B8A8_SRGB, eB8G8R8A8Unorm = VK_FORMAT_B8G8R8A8_UNORM, eB8G8R8A8Snorm = VK_FORMAT_B8G8R8A8_SNORM, eB8G8R8A8Uscaled = VK_FORMAT_B8G8R8A8_USCALED, eB8G8R8A8Sscaled = VK_FORMAT_B8G8R8A8_SSCALED, eB8G8R8A8Uint = VK_FORMAT_B8G8R8A8_UINT, eB8G8R8A8Sint = VK_FORMAT_B8G8R8A8_SINT, eB8G8R8A8Srgb = VK_FORMAT_B8G8R8A8_SRGB, eA8B8G8R8UnormPack32 = VK_FORMAT_A8B8G8R8_UNORM_PACK32, eA8B8G8R8SnormPack32 = VK_FORMAT_A8B8G8R8_SNORM_PACK32, eA8B8G8R8UscaledPack32 = VK_FORMAT_A8B8G8R8_USCALED_PACK32, eA8B8G8R8SscaledPack32 = VK_FORMAT_A8B8G8R8_SSCALED_PACK32, eA8B8G8R8UintPack32 = VK_FORMAT_A8B8G8R8_UINT_PACK32, eA8B8G8R8SintPack32 = VK_FORMAT_A8B8G8R8_SINT_PACK32, eA8B8G8R8SrgbPack32 = VK_FORMAT_A8B8G8R8_SRGB_PACK32, eA2R10G10B10UnormPack32 = VK_FORMAT_A2R10G10B10_UNORM_PACK32, eA2R10G10B10SnormPack32 = VK_FORMAT_A2R10G10B10_SNORM_PACK32, eA2R10G10B10UscaledPack32 = VK_FORMAT_A2R10G10B10_USCALED_PACK32, eA2R10G10B10SscaledPack32 = VK_FORMAT_A2R10G10B10_SSCALED_PACK32, eA2R10G10B10UintPack32 = VK_FORMAT_A2R10G10B10_UINT_PACK32, eA2R10G10B10SintPack32 = VK_FORMAT_A2R10G10B10_SINT_PACK32, eA2B10G10R10UnormPack32 = VK_FORMAT_A2B10G10R10_UNORM_PACK32, eA2B10G10R10SnormPack32 = VK_FORMAT_A2B10G10R10_SNORM_PACK32, eA2B10G10R10UscaledPack32 = VK_FORMAT_A2B10G10R10_USCALED_PACK32, eA2B10G10R10SscaledPack32 = VK_FORMAT_A2B10G10R10_SSCALED_PACK32, eA2B10G10R10UintPack32 = VK_FORMAT_A2B10G10R10_UINT_PACK32, eA2B10G10R10SintPack32 = VK_FORMAT_A2B10G10R10_SINT_PACK32, eR16Unorm = VK_FORMAT_R16_UNORM, eR16Snorm = VK_FORMAT_R16_SNORM, eR16Uscaled = VK_FORMAT_R16_USCALED, eR16Sscaled = VK_FORMAT_R16_SSCALED, eR16Uint = VK_FORMAT_R16_UINT, eR16Sint = VK_FORMAT_R16_SINT, eR16Sfloat = VK_FORMAT_R16_SFLOAT, eR16G16Unorm = VK_FORMAT_R16G16_UNORM, eR16G16Snorm = VK_FORMAT_R16G16_SNORM, eR16G16Uscaled = VK_FORMAT_R16G16_USCALED, eR16G16Sscaled = VK_FORMAT_R16G16_SSCALED, eR16G16Uint = VK_FORMAT_R16G16_UINT, eR16G16Sint = VK_FORMAT_R16G16_SINT, eR16G16Sfloat = VK_FORMAT_R16G16_SFLOAT, eR16G16B16Unorm = VK_FORMAT_R16G16B16_UNORM, eR16G16B16Snorm = VK_FORMAT_R16G16B16_SNORM, eR16G16B16Uscaled = VK_FORMAT_R16G16B16_USCALED, eR16G16B16Sscaled = VK_FORMAT_R16G16B16_SSCALED, eR16G16B16Uint = VK_FORMAT_R16G16B16_UINT, eR16G16B16Sint = VK_FORMAT_R16G16B16_SINT, eR16G16B16Sfloat = VK_FORMAT_R16G16B16_SFLOAT, eR16G16B16A16Unorm = VK_FORMAT_R16G16B16A16_UNORM, eR16G16B16A16Snorm = VK_FORMAT_R16G16B16A16_SNORM, eR16G16B16A16Uscaled = VK_FORMAT_R16G16B16A16_USCALED, eR16G16B16A16Sscaled = VK_FORMAT_R16G16B16A16_SSCALED, eR16G16B16A16Uint = VK_FORMAT_R16G16B16A16_UINT, eR16G16B16A16Sint = VK_FORMAT_R16G16B16A16_SINT, eR16G16B16A16Sfloat = VK_FORMAT_R16G16B16A16_SFLOAT, eR32Uint = VK_FORMAT_R32_UINT, eR32Sint = VK_FORMAT_R32_SINT, eR32Sfloat = VK_FORMAT_R32_SFLOAT, eR32G32Uint = VK_FORMAT_R32G32_UINT, eR32G32Sint = VK_FORMAT_R32G32_SINT, eR32G32Sfloat = VK_FORMAT_R32G32_SFLOAT, eR32G32B32Uint = VK_FORMAT_R32G32B32_UINT, eR32G32B32Sint = VK_FORMAT_R32G32B32_SINT, eR32G32B32Sfloat = VK_FORMAT_R32G32B32_SFLOAT, eR32G32B32A32Uint = VK_FORMAT_R32G32B32A32_UINT, eR32G32B32A32Sint = VK_FORMAT_R32G32B32A32_SINT, eR32G32B32A32Sfloat = VK_FORMAT_R32G32B32A32_SFLOAT, eR64Uint = VK_FORMAT_R64_UINT, eR64Sint = VK_FORMAT_R64_SINT, eR64Sfloat = VK_FORMAT_R64_SFLOAT, eR64G64Uint = VK_FORMAT_R64G64_UINT, eR64G64Sint = VK_FORMAT_R64G64_SINT, eR64G64Sfloat = VK_FORMAT_R64G64_SFLOAT, eR64G64B64Uint = VK_FORMAT_R64G64B64_UINT, eR64G64B64Sint = VK_FORMAT_R64G64B64_SINT, eR64G64B64Sfloat = VK_FORMAT_R64G64B64_SFLOAT, eR64G64B64A64Uint = VK_FORMAT_R64G64B64A64_UINT, eR64G64B64A64Sint = VK_FORMAT_R64G64B64A64_SINT, eR64G64B64A64Sfloat = VK_FORMAT_R64G64B64A64_SFLOAT, eB10G11R11UfloatPack32 = VK_FORMAT_B10G11R11_UFLOAT_PACK32, eE5B9G9R9UfloatPack32 = VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, eD16Unorm = VK_FORMAT_D16_UNORM, eX8D24UnormPack32 = VK_FORMAT_X8_D24_UNORM_PACK32, eD32Sfloat = VK_FORMAT_D32_SFLOAT, eS8Uint = VK_FORMAT_S8_UINT, eD16UnormS8Uint = VK_FORMAT_D16_UNORM_S8_UINT, eD24UnormS8Uint = VK_FORMAT_D24_UNORM_S8_UINT, eD32SfloatS8Uint = VK_FORMAT_D32_SFLOAT_S8_UINT, eBc1RgbUnormBlock = VK_FORMAT_BC1_RGB_UNORM_BLOCK, eBc1RgbSrgbBlock = VK_FORMAT_BC1_RGB_SRGB_BLOCK, eBc1RgbaUnormBlock = VK_FORMAT_BC1_RGBA_UNORM_BLOCK, eBc1RgbaSrgbBlock = VK_FORMAT_BC1_RGBA_SRGB_BLOCK, eBc2UnormBlock = VK_FORMAT_BC2_UNORM_BLOCK, eBc2SrgbBlock = VK_FORMAT_BC2_SRGB_BLOCK, eBc3UnormBlock = VK_FORMAT_BC3_UNORM_BLOCK, eBc3SrgbBlock = VK_FORMAT_BC3_SRGB_BLOCK, eBc4UnormBlock = VK_FORMAT_BC4_UNORM_BLOCK, eBc4SnormBlock = VK_FORMAT_BC4_SNORM_BLOCK, eBc5UnormBlock = VK_FORMAT_BC5_UNORM_BLOCK, eBc5SnormBlock = VK_FORMAT_BC5_SNORM_BLOCK, eBc6HUfloatBlock = VK_FORMAT_BC6H_UFLOAT_BLOCK, eBc6HSfloatBlock = VK_FORMAT_BC6H_SFLOAT_BLOCK, eBc7UnormBlock = VK_FORMAT_BC7_UNORM_BLOCK, eBc7SrgbBlock = VK_FORMAT_BC7_SRGB_BLOCK, eEtc2R8G8B8UnormBlock = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, eEtc2R8G8B8SrgbBlock = VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, eEtc2R8G8B8A1UnormBlock = VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK, eEtc2R8G8B8A1SrgbBlock = VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, eEtc2R8G8B8A8UnormBlock = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, eEtc2R8G8B8A8SrgbBlock = VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK, eEacR11UnormBlock = VK_FORMAT_EAC_R11_UNORM_BLOCK, eEacR11SnormBlock = VK_FORMAT_EAC_R11_SNORM_BLOCK, eEacR11G11UnormBlock = VK_FORMAT_EAC_R11G11_UNORM_BLOCK, eEacR11G11SnormBlock = VK_FORMAT_EAC_R11G11_SNORM_BLOCK, eAstc4x4UnormBlock = VK_FORMAT_ASTC_4x4_UNORM_BLOCK, eAstc4x4SrgbBlock = VK_FORMAT_ASTC_4x4_SRGB_BLOCK, eAstc5x4UnormBlock = VK_FORMAT_ASTC_5x4_UNORM_BLOCK, eAstc5x4SrgbBlock = VK_FORMAT_ASTC_5x4_SRGB_BLOCK, eAstc5x5UnormBlock = VK_FORMAT_ASTC_5x5_UNORM_BLOCK, eAstc5x5SrgbBlock = VK_FORMAT_ASTC_5x5_SRGB_BLOCK, eAstc6x5UnormBlock = VK_FORMAT_ASTC_6x5_UNORM_BLOCK, eAstc6x5SrgbBlock = VK_FORMAT_ASTC_6x5_SRGB_BLOCK, eAstc6x6UnormBlock = VK_FORMAT_ASTC_6x6_UNORM_BLOCK, eAstc6x6SrgbBlock = VK_FORMAT_ASTC_6x6_SRGB_BLOCK, eAstc8x5UnormBlock = VK_FORMAT_ASTC_8x5_UNORM_BLOCK, eAstc8x5SrgbBlock = VK_FORMAT_ASTC_8x5_SRGB_BLOCK, eAstc8x6UnormBlock = VK_FORMAT_ASTC_8x6_UNORM_BLOCK, eAstc8x6SrgbBlock = VK_FORMAT_ASTC_8x6_SRGB_BLOCK, eAstc8x8UnormBlock = VK_FORMAT_ASTC_8x8_UNORM_BLOCK, eAstc8x8SrgbBlock = VK_FORMAT_ASTC_8x8_SRGB_BLOCK, eAstc10x5UnormBlock = VK_FORMAT_ASTC_10x5_UNORM_BLOCK, eAstc10x5SrgbBlock = VK_FORMAT_ASTC_10x5_SRGB_BLOCK, eAstc10x6UnormBlock = VK_FORMAT_ASTC_10x6_UNORM_BLOCK, eAstc10x6SrgbBlock = VK_FORMAT_ASTC_10x6_SRGB_BLOCK, eAstc10x8UnormBlock = VK_FORMAT_ASTC_10x8_UNORM_BLOCK, eAstc10x8SrgbBlock = VK_FORMAT_ASTC_10x8_SRGB_BLOCK, eAstc10x10UnormBlock = VK_FORMAT_ASTC_10x10_UNORM_BLOCK, eAstc10x10SrgbBlock = VK_FORMAT_ASTC_10x10_SRGB_BLOCK, eAstc12x10UnormBlock = VK_FORMAT_ASTC_12x10_UNORM_BLOCK, eAstc12x10SrgbBlock = VK_FORMAT_ASTC_12x10_SRGB_BLOCK, eAstc12x12UnormBlock = VK_FORMAT_ASTC_12x12_UNORM_BLOCK, eAstc12x12SrgbBlock = VK_FORMAT_ASTC_12x12_SRGB_BLOCK, ePvrtc12BppUnormBlockIMG = VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG, ePvrtc14BppUnormBlockIMG = VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG, ePvrtc22BppUnormBlockIMG = VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG, ePvrtc24BppUnormBlockIMG = VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG, ePvrtc12BppSrgbBlockIMG = VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG, ePvrtc14BppSrgbBlockIMG = VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG, ePvrtc22BppSrgbBlockIMG = VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG, ePvrtc24BppSrgbBlockIMG = VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG, eG8B8G8R8422UnormKHR = VK_FORMAT_G8B8G8R8_422_UNORM_KHR, eB8G8R8G8422UnormKHR = VK_FORMAT_B8G8R8G8_422_UNORM_KHR, eG8B8R83Plane420UnormKHR = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR, eG8B8R82Plane420UnormKHR = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM_KHR, eG8B8R83Plane422UnormKHR = VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM_KHR, eG8B8R82Plane422UnormKHR = VK_FORMAT_G8_B8R8_2PLANE_422_UNORM_KHR, eG8B8R83Plane444UnormKHR = VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM_KHR, eR10X6UnormPack16KHR = VK_FORMAT_R10X6_UNORM_PACK16_KHR, eR10X6G10X6Unorm2Pack16KHR = VK_FORMAT_R10X6G10X6_UNORM_2PACK16_KHR, eR10X6G10X6B10X6A10X6Unorm4Pack16KHR = VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16_KHR, eG10X6B10X6G10X6R10X6422Unorm4Pack16KHR = VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16_KHR, eB10X6G10X6R10X6G10X6422Unorm4Pack16KHR = VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16_KHR, eG10X6B10X6R10X63Plane420Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16_KHR, eG10X6B10X6R10X62Plane420Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16_KHR, eG10X6B10X6R10X63Plane422Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16_KHR, eG10X6B10X6R10X62Plane422Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16_KHR, eG10X6B10X6R10X63Plane444Unorm3Pack16KHR = VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16_KHR, eR12X4UnormPack16KHR = VK_FORMAT_R12X4_UNORM_PACK16_KHR, eR12X4G12X4Unorm2Pack16KHR = VK_FORMAT_R12X4G12X4_UNORM_2PACK16_KHR, eR12X4G12X4B12X4A12X4Unorm4Pack16KHR = VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16_KHR, eG12X4B12X4G12X4R12X4422Unorm4Pack16KHR = VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16_KHR, eB12X4G12X4R12X4G12X4422Unorm4Pack16KHR = VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16_KHR, eG12X4B12X4R12X43Plane420Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16_KHR, eG12X4B12X4R12X42Plane420Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16_KHR, eG12X4B12X4R12X43Plane422Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16_KHR, eG12X4B12X4R12X42Plane422Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16_KHR, eG12X4B12X4R12X43Plane444Unorm3Pack16KHR = VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16_KHR, eG16B16G16R16422UnormKHR = VK_FORMAT_G16B16G16R16_422_UNORM_KHR, eB16G16R16G16422UnormKHR = VK_FORMAT_B16G16R16G16_422_UNORM_KHR, eG16B16R163Plane420UnormKHR = VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM_KHR, eG16B16R162Plane420UnormKHR = VK_FORMAT_G16_B16R16_2PLANE_420_UNORM_KHR, eG16B16R163Plane422UnormKHR = VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM_KHR, eG16B16R162Plane422UnormKHR = VK_FORMAT_G16_B16R16_2PLANE_422_UNORM_KHR, eG16B16R163Plane444UnormKHR = VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM_KHR }; struct VertexInputAttributeDescription { VertexInputAttributeDescription( uint32_t location_ = 0, uint32_t binding_ = 0, Format format_ = Format::eUndefined, uint32_t offset_ = 0 ) : location( location_ ) , binding( binding_ ) , format( format_ ) , offset( offset_ ) { } VertexInputAttributeDescription( VkVertexInputAttributeDescription const & rhs ) { memcpy( this, &rhs, sizeof( VertexInputAttributeDescription ) ); } VertexInputAttributeDescription& operator=( VkVertexInputAttributeDescription const & rhs ) { memcpy( this, &rhs, sizeof( VertexInputAttributeDescription ) ); return *this; } VertexInputAttributeDescription& setLocation( uint32_t location_ ) { location = location_; return *this; } VertexInputAttributeDescription& setBinding( uint32_t binding_ ) { binding = binding_; return *this; } VertexInputAttributeDescription& setFormat( Format format_ ) { format = format_; return *this; } VertexInputAttributeDescription& setOffset( uint32_t offset_ ) { offset = offset_; return *this; } operator const VkVertexInputAttributeDescription&() const { return *reinterpret_cast(this); } bool operator==( VertexInputAttributeDescription const& rhs ) const { return ( location == rhs.location ) && ( binding == rhs.binding ) && ( format == rhs.format ) && ( offset == rhs.offset ); } bool operator!=( VertexInputAttributeDescription const& rhs ) const { return !operator==( rhs ); } uint32_t location; uint32_t binding; Format format; uint32_t offset; }; static_assert( sizeof( VertexInputAttributeDescription ) == sizeof( VkVertexInputAttributeDescription ), "struct and wrapper have different size!" ); enum class StructureType { eApplicationInfo = VK_STRUCTURE_TYPE_APPLICATION_INFO, eInstanceCreateInfo = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, eDeviceQueueCreateInfo = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, eDeviceCreateInfo = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, eSubmitInfo = VK_STRUCTURE_TYPE_SUBMIT_INFO, eMemoryAllocateInfo = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, eMappedMemoryRange = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, eBindSparseInfo = VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, eFenceCreateInfo = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, eSemaphoreCreateInfo = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, eEventCreateInfo = VK_STRUCTURE_TYPE_EVENT_CREATE_INFO, eQueryPoolCreateInfo = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO, eBufferCreateInfo = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, eBufferViewCreateInfo = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO, eImageCreateInfo = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, eImageViewCreateInfo = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, eShaderModuleCreateInfo = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, ePipelineCacheCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, ePipelineShaderStageCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, ePipelineVertexInputStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, ePipelineInputAssemblyStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, ePipelineTessellationStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO, ePipelineViewportStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, ePipelineRasterizationStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, ePipelineMultisampleStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, ePipelineDepthStencilStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, ePipelineColorBlendStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, ePipelineDynamicStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, eGraphicsPipelineCreateInfo = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, eComputePipelineCreateInfo = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, ePipelineLayoutCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, eSamplerCreateInfo = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, eDescriptorSetLayoutCreateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, eDescriptorPoolCreateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, eDescriptorSetAllocateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, eWriteDescriptorSet = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, eCopyDescriptorSet = VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET, eFramebufferCreateInfo = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, eRenderPassCreateInfo = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, eCommandPoolCreateInfo = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, eCommandBufferAllocateInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, eCommandBufferInheritanceInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO, eCommandBufferBeginInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, eRenderPassBeginInfo = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, eBufferMemoryBarrier = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, eImageMemoryBarrier = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, eMemoryBarrier = VK_STRUCTURE_TYPE_MEMORY_BARRIER, eLoaderInstanceCreateInfo = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO, eLoaderDeviceCreateInfo = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO, eSwapchainCreateInfoKHR = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, ePresentInfoKHR = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, eDisplayModeCreateInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR, eDisplaySurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR, eDisplayPresentInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR, eXlibSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR, eXcbSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR, eWaylandSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR, eMirSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_MIR_SURFACE_CREATE_INFO_KHR, eAndroidSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR, eWin32SurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR, eDebugReportCallbackCreateInfoEXT = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT, ePipelineRasterizationStateRasterizationOrderAMD = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD, eDebugMarkerObjectNameInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT, eDebugMarkerObjectTagInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT, eDebugMarkerMarkerInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT, eDedicatedAllocationImageCreateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV, eDedicatedAllocationBufferCreateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV, eDedicatedAllocationMemoryAllocateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV, eTextureLodGatherFormatPropertiesAMD = VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD, eRenderPassMultiviewCreateInfoKHX = VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO_KHX, ePhysicalDeviceMultiviewFeaturesKHX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX, ePhysicalDeviceMultiviewPropertiesKHX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX, eExternalMemoryImageCreateInfoNV = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV, eExportMemoryAllocateInfoNV = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV, eImportMemoryWin32HandleInfoNV = VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV, eExportMemoryWin32HandleInfoNV = VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV, eWin32KeyedMutexAcquireReleaseInfoNV = VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV, ePhysicalDeviceFeatures2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR, ePhysicalDeviceProperties2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR, eFormatProperties2KHR = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR, eImageFormatProperties2KHR = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2_KHR, ePhysicalDeviceImageFormatInfo2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2_KHR, eQueueFamilyProperties2KHR = VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2_KHR, ePhysicalDeviceMemoryProperties2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR, eSparseImageFormatProperties2KHR = VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2_KHR, ePhysicalDeviceSparseImageFormatInfo2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2_KHR, eMemoryAllocateFlagsInfoKHX = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHX, eBindBufferMemoryInfoKHX = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHX, eBindImageMemoryInfoKHX = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHX, eDeviceGroupRenderPassBeginInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO_KHX, eDeviceGroupCommandBufferBeginInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO_KHX, eDeviceGroupSubmitInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO_KHX, eDeviceGroupBindSparseInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHX, eDeviceGroupPresentCapabilitiesKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHX, eImageSwapchainCreateInfoKHX = VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHX, eBindImageMemorySwapchainInfoKHX = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHX, eAcquireNextImageInfoKHX = VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHX, eDeviceGroupPresentInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHX, eDeviceGroupSwapchainCreateInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHX, eValidationFlagsEXT = VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT, eViSurfaceCreateInfoNN = VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN, ePhysicalDeviceGroupPropertiesKHX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHX, eDeviceGroupDeviceCreateInfoKHX = VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO_KHX, ePhysicalDeviceExternalImageFormatInfoKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO_KHR, eExternalImageFormatPropertiesKHR = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR, ePhysicalDeviceExternalBufferInfoKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO_KHR, eExternalBufferPropertiesKHR = VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES_KHR, ePhysicalDeviceIdPropertiesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR, eExternalMemoryBufferCreateInfoKHR = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR, eExternalMemoryImageCreateInfoKHR = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR, eExportMemoryAllocateInfoKHR = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR, eImportMemoryWin32HandleInfoKHR = VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR, eExportMemoryWin32HandleInfoKHR = VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR, eMemoryWin32HandlePropertiesKHR = VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR, eMemoryGetWin32HandleInfoKHR = VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR, eImportMemoryFdInfoKHR = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR, eMemoryFdPropertiesKHR = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR, eMemoryGetFdInfoKHR = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR, eWin32KeyedMutexAcquireReleaseInfoKHR = VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR, ePhysicalDeviceExternalSemaphoreInfoKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO_KHR, eExternalSemaphorePropertiesKHR = VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES_KHR, eExportSemaphoreCreateInfoKHR = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO_KHR, eImportSemaphoreWin32HandleInfoKHR = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR, eExportSemaphoreWin32HandleInfoKHR = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR, eD3D12FenceSubmitInfoKHR = VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR, eSemaphoreGetWin32HandleInfoKHR = VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR, eImportSemaphoreFdInfoKHR = VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR, eSemaphoreGetFdInfoKHR = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR, ePhysicalDevicePushDescriptorPropertiesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR, ePhysicalDevice16BitStorageFeaturesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR, ePresentRegionsKHR = VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR, eDescriptorUpdateTemplateCreateInfoKHR = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO_KHR, eObjectTableCreateInfoNVX = VK_STRUCTURE_TYPE_OBJECT_TABLE_CREATE_INFO_NVX, eIndirectCommandsLayoutCreateInfoNVX = VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NVX, eCmdProcessCommandsInfoNVX = VK_STRUCTURE_TYPE_CMD_PROCESS_COMMANDS_INFO_NVX, eCmdReserveSpaceForCommandsInfoNVX = VK_STRUCTURE_TYPE_CMD_RESERVE_SPACE_FOR_COMMANDS_INFO_NVX, eDeviceGeneratedCommandsLimitsNVX = VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_LIMITS_NVX, eDeviceGeneratedCommandsFeaturesNVX = VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_FEATURES_NVX, ePipelineViewportWScalingStateCreateInfoNV = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV, eSurfaceCapabilities2EXT = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES2_EXT, eDisplayPowerInfoEXT = VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT, eDeviceEventInfoEXT = VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT, eDisplayEventInfoEXT = VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT, eSwapchainCounterCreateInfoEXT = VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT, ePresentTimesInfoGOOGLE = VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE, ePhysicalDeviceSubgroupPropertiesKHX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES_KHX, ePhysicalDeviceMultiviewPerViewAttributesPropertiesNVX = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX, ePipelineViewportSwizzleStateCreateInfoNV = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV, ePhysicalDeviceDiscardRectanglePropertiesEXT = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT, ePipelineDiscardRectangleStateCreateInfoEXT = VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT, eHdrMetadataEXT = VK_STRUCTURE_TYPE_HDR_METADATA_EXT, eSharedPresentSurfaceCapabilitiesKHR = VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR, ePhysicalDeviceExternalFenceInfoKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO_KHR, eExternalFencePropertiesKHR = VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES_KHR, eExportFenceCreateInfoKHR = VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO_KHR, eImportFenceWin32HandleInfoKHR = VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR, eExportFenceWin32HandleInfoKHR = VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR, eFenceGetWin32HandleInfoKHR = VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR, eImportFenceFdInfoKHR = VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR, eFenceGetFdInfoKHR = VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR, ePhysicalDevicePointClippingPropertiesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR, eRenderPassInputAttachmentAspectCreateInfoKHR = VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO_KHR, eImageViewUsageCreateInfoKHR = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO_KHR, ePipelineTessellationDomainOriginStateCreateInfoKHR = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR, ePhysicalDeviceSurfaceInfo2KHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR, eSurfaceCapabilities2KHR = VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR, eSurfaceFormat2KHR = VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR, ePhysicalDeviceVariablePointerFeaturesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR, eDisplayProperties2KHR = VK_STRUCTURE_TYPE_DISPLAY_PROPERTIES_2_KHR, eDisplayPlaneProperties2KHR = VK_STRUCTURE_TYPE_DISPLAY_PLANE_PROPERTIES_2_KHR, eDisplayModeProperties2KHR = VK_STRUCTURE_TYPE_DISPLAY_MODE_PROPERTIES_2_KHR, eDisplayPlaneInfo2KHR = VK_STRUCTURE_TYPE_DISPLAY_PLANE_INFO_2_KHR, eDisplayPlaneCapabilities2KHR = VK_STRUCTURE_TYPE_DISPLAY_PLANE_CAPABILITIES_2_KHR, eIosSurfaceCreateInfoMVK = VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK, eMacosSurfaceCreateInfoMVK = VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK, eMemoryDedicatedRequirementsKHR = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR, eMemoryDedicatedAllocateInfoKHR = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR, ePhysicalDeviceSamplerFilterMinmaxPropertiesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_KHR, eSamplerReductionModeCreateInfoKHR = VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO_KHR, eBufferMemoryRequirementsInfo2KHR = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR, eImageMemoryRequirementsInfo2KHR = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR, eImageSparseMemoryRequirementsInfo2KHR = VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2_KHR, eMemoryRequirements2KHR = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR, eSparseImageMemoryRequirements2KHR = VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2_KHR, eSamplerYCbCrConversionCreateInfoKHR = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO_KHR, eSamplerSamplerYCbCrConversionCreateInfoKHR = VK_STRUCTURE_TYPE_SAMPLER_SAMPLER_YCBCR_CONVERSION_CREATE_INFO_KHR, eBindImagePlaneMemoryInfoKHR = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR, eImagePlaneMemoryRequirementsInfoKHR = VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR, ePhysicalDeviceSamplerYCbCrConversionFeaturesKHR = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR, eSamplerYCbCrConversionImageFormatPropertiesKHR = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES_KHR }; struct ApplicationInfo { ApplicationInfo( const char* pApplicationName_ = nullptr, uint32_t applicationVersion_ = 0, const char* pEngineName_ = nullptr, uint32_t engineVersion_ = 0, uint32_t apiVersion_ = 0 ) : sType( StructureType::eApplicationInfo ) , pNext( nullptr ) , pApplicationName( pApplicationName_ ) , applicationVersion( applicationVersion_ ) , pEngineName( pEngineName_ ) , engineVersion( engineVersion_ ) , apiVersion( apiVersion_ ) { } ApplicationInfo( VkApplicationInfo const & rhs ) { memcpy( this, &rhs, sizeof( ApplicationInfo ) ); } ApplicationInfo& operator=( VkApplicationInfo const & rhs ) { memcpy( this, &rhs, sizeof( ApplicationInfo ) ); return *this; } ApplicationInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ApplicationInfo& setPApplicationName( const char* pApplicationName_ ) { pApplicationName = pApplicationName_; return *this; } ApplicationInfo& setApplicationVersion( uint32_t applicationVersion_ ) { applicationVersion = applicationVersion_; return *this; } ApplicationInfo& setPEngineName( const char* pEngineName_ ) { pEngineName = pEngineName_; return *this; } ApplicationInfo& setEngineVersion( uint32_t engineVersion_ ) { engineVersion = engineVersion_; return *this; } ApplicationInfo& setApiVersion( uint32_t apiVersion_ ) { apiVersion = apiVersion_; return *this; } operator const VkApplicationInfo&() const { return *reinterpret_cast(this); } bool operator==( ApplicationInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( pApplicationName == rhs.pApplicationName ) && ( applicationVersion == rhs.applicationVersion ) && ( pEngineName == rhs.pEngineName ) && ( engineVersion == rhs.engineVersion ) && ( apiVersion == rhs.apiVersion ); } bool operator!=( ApplicationInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; const char* pApplicationName; uint32_t applicationVersion; const char* pEngineName; uint32_t engineVersion; uint32_t apiVersion; }; static_assert( sizeof( ApplicationInfo ) == sizeof( VkApplicationInfo ), "struct and wrapper have different size!" ); struct DeviceQueueCreateInfo { DeviceQueueCreateInfo( DeviceQueueCreateFlags flags_ = DeviceQueueCreateFlags(), uint32_t queueFamilyIndex_ = 0, uint32_t queueCount_ = 0, const float* pQueuePriorities_ = nullptr ) : sType( StructureType::eDeviceQueueCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , queueFamilyIndex( queueFamilyIndex_ ) , queueCount( queueCount_ ) , pQueuePriorities( pQueuePriorities_ ) { } DeviceQueueCreateInfo( VkDeviceQueueCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DeviceQueueCreateInfo ) ); } DeviceQueueCreateInfo& operator=( VkDeviceQueueCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DeviceQueueCreateInfo ) ); return *this; } DeviceQueueCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceQueueCreateInfo& setFlags( DeviceQueueCreateFlags flags_ ) { flags = flags_; return *this; } DeviceQueueCreateInfo& setQueueFamilyIndex( uint32_t queueFamilyIndex_ ) { queueFamilyIndex = queueFamilyIndex_; return *this; } DeviceQueueCreateInfo& setQueueCount( uint32_t queueCount_ ) { queueCount = queueCount_; return *this; } DeviceQueueCreateInfo& setPQueuePriorities( const float* pQueuePriorities_ ) { pQueuePriorities = pQueuePriorities_; return *this; } operator const VkDeviceQueueCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( DeviceQueueCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( queueFamilyIndex == rhs.queueFamilyIndex ) && ( queueCount == rhs.queueCount ) && ( pQueuePriorities == rhs.pQueuePriorities ); } bool operator!=( DeviceQueueCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DeviceQueueCreateFlags flags; uint32_t queueFamilyIndex; uint32_t queueCount; const float* pQueuePriorities; }; static_assert( sizeof( DeviceQueueCreateInfo ) == sizeof( VkDeviceQueueCreateInfo ), "struct and wrapper have different size!" ); struct DeviceCreateInfo { DeviceCreateInfo( DeviceCreateFlags flags_ = DeviceCreateFlags(), uint32_t queueCreateInfoCount_ = 0, const DeviceQueueCreateInfo* pQueueCreateInfos_ = nullptr, uint32_t enabledLayerCount_ = 0, const char* const* ppEnabledLayerNames_ = nullptr, uint32_t enabledExtensionCount_ = 0, const char* const* ppEnabledExtensionNames_ = nullptr, const PhysicalDeviceFeatures* pEnabledFeatures_ = nullptr ) : sType( StructureType::eDeviceCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , queueCreateInfoCount( queueCreateInfoCount_ ) , pQueueCreateInfos( pQueueCreateInfos_ ) , enabledLayerCount( enabledLayerCount_ ) , ppEnabledLayerNames( ppEnabledLayerNames_ ) , enabledExtensionCount( enabledExtensionCount_ ) , ppEnabledExtensionNames( ppEnabledExtensionNames_ ) , pEnabledFeatures( pEnabledFeatures_ ) { } DeviceCreateInfo( VkDeviceCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DeviceCreateInfo ) ); } DeviceCreateInfo& operator=( VkDeviceCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DeviceCreateInfo ) ); return *this; } DeviceCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceCreateInfo& setFlags( DeviceCreateFlags flags_ ) { flags = flags_; return *this; } DeviceCreateInfo& setQueueCreateInfoCount( uint32_t queueCreateInfoCount_ ) { queueCreateInfoCount = queueCreateInfoCount_; return *this; } DeviceCreateInfo& setPQueueCreateInfos( const DeviceQueueCreateInfo* pQueueCreateInfos_ ) { pQueueCreateInfos = pQueueCreateInfos_; return *this; } DeviceCreateInfo& setEnabledLayerCount( uint32_t enabledLayerCount_ ) { enabledLayerCount = enabledLayerCount_; return *this; } DeviceCreateInfo& setPpEnabledLayerNames( const char* const* ppEnabledLayerNames_ ) { ppEnabledLayerNames = ppEnabledLayerNames_; return *this; } DeviceCreateInfo& setEnabledExtensionCount( uint32_t enabledExtensionCount_ ) { enabledExtensionCount = enabledExtensionCount_; return *this; } DeviceCreateInfo& setPpEnabledExtensionNames( const char* const* ppEnabledExtensionNames_ ) { ppEnabledExtensionNames = ppEnabledExtensionNames_; return *this; } DeviceCreateInfo& setPEnabledFeatures( const PhysicalDeviceFeatures* pEnabledFeatures_ ) { pEnabledFeatures = pEnabledFeatures_; return *this; } operator const VkDeviceCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( DeviceCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( queueCreateInfoCount == rhs.queueCreateInfoCount ) && ( pQueueCreateInfos == rhs.pQueueCreateInfos ) && ( enabledLayerCount == rhs.enabledLayerCount ) && ( ppEnabledLayerNames == rhs.ppEnabledLayerNames ) && ( enabledExtensionCount == rhs.enabledExtensionCount ) && ( ppEnabledExtensionNames == rhs.ppEnabledExtensionNames ) && ( pEnabledFeatures == rhs.pEnabledFeatures ); } bool operator!=( DeviceCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DeviceCreateFlags flags; uint32_t queueCreateInfoCount; const DeviceQueueCreateInfo* pQueueCreateInfos; uint32_t enabledLayerCount; const char* const* ppEnabledLayerNames; uint32_t enabledExtensionCount; const char* const* ppEnabledExtensionNames; const PhysicalDeviceFeatures* pEnabledFeatures; }; static_assert( sizeof( DeviceCreateInfo ) == sizeof( VkDeviceCreateInfo ), "struct and wrapper have different size!" ); struct InstanceCreateInfo { InstanceCreateInfo( InstanceCreateFlags flags_ = InstanceCreateFlags(), const ApplicationInfo* pApplicationInfo_ = nullptr, uint32_t enabledLayerCount_ = 0, const char* const* ppEnabledLayerNames_ = nullptr, uint32_t enabledExtensionCount_ = 0, const char* const* ppEnabledExtensionNames_ = nullptr ) : sType( StructureType::eInstanceCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , pApplicationInfo( pApplicationInfo_ ) , enabledLayerCount( enabledLayerCount_ ) , ppEnabledLayerNames( ppEnabledLayerNames_ ) , enabledExtensionCount( enabledExtensionCount_ ) , ppEnabledExtensionNames( ppEnabledExtensionNames_ ) { } InstanceCreateInfo( VkInstanceCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( InstanceCreateInfo ) ); } InstanceCreateInfo& operator=( VkInstanceCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( InstanceCreateInfo ) ); return *this; } InstanceCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } InstanceCreateInfo& setFlags( InstanceCreateFlags flags_ ) { flags = flags_; return *this; } InstanceCreateInfo& setPApplicationInfo( const ApplicationInfo* pApplicationInfo_ ) { pApplicationInfo = pApplicationInfo_; return *this; } InstanceCreateInfo& setEnabledLayerCount( uint32_t enabledLayerCount_ ) { enabledLayerCount = enabledLayerCount_; return *this; } InstanceCreateInfo& setPpEnabledLayerNames( const char* const* ppEnabledLayerNames_ ) { ppEnabledLayerNames = ppEnabledLayerNames_; return *this; } InstanceCreateInfo& setEnabledExtensionCount( uint32_t enabledExtensionCount_ ) { enabledExtensionCount = enabledExtensionCount_; return *this; } InstanceCreateInfo& setPpEnabledExtensionNames( const char* const* ppEnabledExtensionNames_ ) { ppEnabledExtensionNames = ppEnabledExtensionNames_; return *this; } operator const VkInstanceCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( InstanceCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( pApplicationInfo == rhs.pApplicationInfo ) && ( enabledLayerCount == rhs.enabledLayerCount ) && ( ppEnabledLayerNames == rhs.ppEnabledLayerNames ) && ( enabledExtensionCount == rhs.enabledExtensionCount ) && ( ppEnabledExtensionNames == rhs.ppEnabledExtensionNames ); } bool operator!=( InstanceCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; InstanceCreateFlags flags; const ApplicationInfo* pApplicationInfo; uint32_t enabledLayerCount; const char* const* ppEnabledLayerNames; uint32_t enabledExtensionCount; const char* const* ppEnabledExtensionNames; }; static_assert( sizeof( InstanceCreateInfo ) == sizeof( VkInstanceCreateInfo ), "struct and wrapper have different size!" ); struct MemoryAllocateInfo { MemoryAllocateInfo( DeviceSize allocationSize_ = 0, uint32_t memoryTypeIndex_ = 0 ) : sType( StructureType::eMemoryAllocateInfo ) , pNext( nullptr ) , allocationSize( allocationSize_ ) , memoryTypeIndex( memoryTypeIndex_ ) { } MemoryAllocateInfo( VkMemoryAllocateInfo const & rhs ) { memcpy( this, &rhs, sizeof( MemoryAllocateInfo ) ); } MemoryAllocateInfo& operator=( VkMemoryAllocateInfo const & rhs ) { memcpy( this, &rhs, sizeof( MemoryAllocateInfo ) ); return *this; } MemoryAllocateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MemoryAllocateInfo& setAllocationSize( DeviceSize allocationSize_ ) { allocationSize = allocationSize_; return *this; } MemoryAllocateInfo& setMemoryTypeIndex( uint32_t memoryTypeIndex_ ) { memoryTypeIndex = memoryTypeIndex_; return *this; } operator const VkMemoryAllocateInfo&() const { return *reinterpret_cast(this); } bool operator==( MemoryAllocateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( allocationSize == rhs.allocationSize ) && ( memoryTypeIndex == rhs.memoryTypeIndex ); } bool operator!=( MemoryAllocateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DeviceSize allocationSize; uint32_t memoryTypeIndex; }; static_assert( sizeof( MemoryAllocateInfo ) == sizeof( VkMemoryAllocateInfo ), "struct and wrapper have different size!" ); struct MappedMemoryRange { MappedMemoryRange( DeviceMemory memory_ = DeviceMemory(), DeviceSize offset_ = 0, DeviceSize size_ = 0 ) : sType( StructureType::eMappedMemoryRange ) , pNext( nullptr ) , memory( memory_ ) , offset( offset_ ) , size( size_ ) { } MappedMemoryRange( VkMappedMemoryRange const & rhs ) { memcpy( this, &rhs, sizeof( MappedMemoryRange ) ); } MappedMemoryRange& operator=( VkMappedMemoryRange const & rhs ) { memcpy( this, &rhs, sizeof( MappedMemoryRange ) ); return *this; } MappedMemoryRange& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MappedMemoryRange& setMemory( DeviceMemory memory_ ) { memory = memory_; return *this; } MappedMemoryRange& setOffset( DeviceSize offset_ ) { offset = offset_; return *this; } MappedMemoryRange& setSize( DeviceSize size_ ) { size = size_; return *this; } operator const VkMappedMemoryRange&() const { return *reinterpret_cast(this); } bool operator==( MappedMemoryRange const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memory == rhs.memory ) && ( offset == rhs.offset ) && ( size == rhs.size ); } bool operator!=( MappedMemoryRange const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DeviceMemory memory; DeviceSize offset; DeviceSize size; }; static_assert( sizeof( MappedMemoryRange ) == sizeof( VkMappedMemoryRange ), "struct and wrapper have different size!" ); struct WriteDescriptorSet { WriteDescriptorSet( DescriptorSet dstSet_ = DescriptorSet(), uint32_t dstBinding_ = 0, uint32_t dstArrayElement_ = 0, uint32_t descriptorCount_ = 0, DescriptorType descriptorType_ = DescriptorType::eSampler, const DescriptorImageInfo* pImageInfo_ = nullptr, const DescriptorBufferInfo* pBufferInfo_ = nullptr, const BufferView* pTexelBufferView_ = nullptr ) : sType( StructureType::eWriteDescriptorSet ) , pNext( nullptr ) , dstSet( dstSet_ ) , dstBinding( dstBinding_ ) , dstArrayElement( dstArrayElement_ ) , descriptorCount( descriptorCount_ ) , descriptorType( descriptorType_ ) , pImageInfo( pImageInfo_ ) , pBufferInfo( pBufferInfo_ ) , pTexelBufferView( pTexelBufferView_ ) { } WriteDescriptorSet( VkWriteDescriptorSet const & rhs ) { memcpy( this, &rhs, sizeof( WriteDescriptorSet ) ); } WriteDescriptorSet& operator=( VkWriteDescriptorSet const & rhs ) { memcpy( this, &rhs, sizeof( WriteDescriptorSet ) ); return *this; } WriteDescriptorSet& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } WriteDescriptorSet& setDstSet( DescriptorSet dstSet_ ) { dstSet = dstSet_; return *this; } WriteDescriptorSet& setDstBinding( uint32_t dstBinding_ ) { dstBinding = dstBinding_; return *this; } WriteDescriptorSet& setDstArrayElement( uint32_t dstArrayElement_ ) { dstArrayElement = dstArrayElement_; return *this; } WriteDescriptorSet& setDescriptorCount( uint32_t descriptorCount_ ) { descriptorCount = descriptorCount_; return *this; } WriteDescriptorSet& setDescriptorType( DescriptorType descriptorType_ ) { descriptorType = descriptorType_; return *this; } WriteDescriptorSet& setPImageInfo( const DescriptorImageInfo* pImageInfo_ ) { pImageInfo = pImageInfo_; return *this; } WriteDescriptorSet& setPBufferInfo( const DescriptorBufferInfo* pBufferInfo_ ) { pBufferInfo = pBufferInfo_; return *this; } WriteDescriptorSet& setPTexelBufferView( const BufferView* pTexelBufferView_ ) { pTexelBufferView = pTexelBufferView_; return *this; } operator const VkWriteDescriptorSet&() const { return *reinterpret_cast(this); } bool operator==( WriteDescriptorSet const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( dstSet == rhs.dstSet ) && ( dstBinding == rhs.dstBinding ) && ( dstArrayElement == rhs.dstArrayElement ) && ( descriptorCount == rhs.descriptorCount ) && ( descriptorType == rhs.descriptorType ) && ( pImageInfo == rhs.pImageInfo ) && ( pBufferInfo == rhs.pBufferInfo ) && ( pTexelBufferView == rhs.pTexelBufferView ); } bool operator!=( WriteDescriptorSet const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DescriptorSet dstSet; uint32_t dstBinding; uint32_t dstArrayElement; uint32_t descriptorCount; DescriptorType descriptorType; const DescriptorImageInfo* pImageInfo; const DescriptorBufferInfo* pBufferInfo; const BufferView* pTexelBufferView; }; static_assert( sizeof( WriteDescriptorSet ) == sizeof( VkWriteDescriptorSet ), "struct and wrapper have different size!" ); struct CopyDescriptorSet { CopyDescriptorSet( DescriptorSet srcSet_ = DescriptorSet(), uint32_t srcBinding_ = 0, uint32_t srcArrayElement_ = 0, DescriptorSet dstSet_ = DescriptorSet(), uint32_t dstBinding_ = 0, uint32_t dstArrayElement_ = 0, uint32_t descriptorCount_ = 0 ) : sType( StructureType::eCopyDescriptorSet ) , pNext( nullptr ) , srcSet( srcSet_ ) , srcBinding( srcBinding_ ) , srcArrayElement( srcArrayElement_ ) , dstSet( dstSet_ ) , dstBinding( dstBinding_ ) , dstArrayElement( dstArrayElement_ ) , descriptorCount( descriptorCount_ ) { } CopyDescriptorSet( VkCopyDescriptorSet const & rhs ) { memcpy( this, &rhs, sizeof( CopyDescriptorSet ) ); } CopyDescriptorSet& operator=( VkCopyDescriptorSet const & rhs ) { memcpy( this, &rhs, sizeof( CopyDescriptorSet ) ); return *this; } CopyDescriptorSet& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } CopyDescriptorSet& setSrcSet( DescriptorSet srcSet_ ) { srcSet = srcSet_; return *this; } CopyDescriptorSet& setSrcBinding( uint32_t srcBinding_ ) { srcBinding = srcBinding_; return *this; } CopyDescriptorSet& setSrcArrayElement( uint32_t srcArrayElement_ ) { srcArrayElement = srcArrayElement_; return *this; } CopyDescriptorSet& setDstSet( DescriptorSet dstSet_ ) { dstSet = dstSet_; return *this; } CopyDescriptorSet& setDstBinding( uint32_t dstBinding_ ) { dstBinding = dstBinding_; return *this; } CopyDescriptorSet& setDstArrayElement( uint32_t dstArrayElement_ ) { dstArrayElement = dstArrayElement_; return *this; } CopyDescriptorSet& setDescriptorCount( uint32_t descriptorCount_ ) { descriptorCount = descriptorCount_; return *this; } operator const VkCopyDescriptorSet&() const { return *reinterpret_cast(this); } bool operator==( CopyDescriptorSet const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( srcSet == rhs.srcSet ) && ( srcBinding == rhs.srcBinding ) && ( srcArrayElement == rhs.srcArrayElement ) && ( dstSet == rhs.dstSet ) && ( dstBinding == rhs.dstBinding ) && ( dstArrayElement == rhs.dstArrayElement ) && ( descriptorCount == rhs.descriptorCount ); } bool operator!=( CopyDescriptorSet const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DescriptorSet srcSet; uint32_t srcBinding; uint32_t srcArrayElement; DescriptorSet dstSet; uint32_t dstBinding; uint32_t dstArrayElement; uint32_t descriptorCount; }; static_assert( sizeof( CopyDescriptorSet ) == sizeof( VkCopyDescriptorSet ), "struct and wrapper have different size!" ); struct BufferViewCreateInfo { BufferViewCreateInfo( BufferViewCreateFlags flags_ = BufferViewCreateFlags(), Buffer buffer_ = Buffer(), Format format_ = Format::eUndefined, DeviceSize offset_ = 0, DeviceSize range_ = 0 ) : sType( StructureType::eBufferViewCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , buffer( buffer_ ) , format( format_ ) , offset( offset_ ) , range( range_ ) { } BufferViewCreateInfo( VkBufferViewCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( BufferViewCreateInfo ) ); } BufferViewCreateInfo& operator=( VkBufferViewCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( BufferViewCreateInfo ) ); return *this; } BufferViewCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BufferViewCreateInfo& setFlags( BufferViewCreateFlags flags_ ) { flags = flags_; return *this; } BufferViewCreateInfo& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } BufferViewCreateInfo& setFormat( Format format_ ) { format = format_; return *this; } BufferViewCreateInfo& setOffset( DeviceSize offset_ ) { offset = offset_; return *this; } BufferViewCreateInfo& setRange( DeviceSize range_ ) { range = range_; return *this; } operator const VkBufferViewCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( BufferViewCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( buffer == rhs.buffer ) && ( format == rhs.format ) && ( offset == rhs.offset ) && ( range == rhs.range ); } bool operator!=( BufferViewCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; BufferViewCreateFlags flags; Buffer buffer; Format format; DeviceSize offset; DeviceSize range; }; static_assert( sizeof( BufferViewCreateInfo ) == sizeof( VkBufferViewCreateInfo ), "struct and wrapper have different size!" ); struct ShaderModuleCreateInfo { ShaderModuleCreateInfo( ShaderModuleCreateFlags flags_ = ShaderModuleCreateFlags(), size_t codeSize_ = 0, const uint32_t* pCode_ = nullptr ) : sType( StructureType::eShaderModuleCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , codeSize( codeSize_ ) , pCode( pCode_ ) { } ShaderModuleCreateInfo( VkShaderModuleCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( ShaderModuleCreateInfo ) ); } ShaderModuleCreateInfo& operator=( VkShaderModuleCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( ShaderModuleCreateInfo ) ); return *this; } ShaderModuleCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ShaderModuleCreateInfo& setFlags( ShaderModuleCreateFlags flags_ ) { flags = flags_; return *this; } ShaderModuleCreateInfo& setCodeSize( size_t codeSize_ ) { codeSize = codeSize_; return *this; } ShaderModuleCreateInfo& setPCode( const uint32_t* pCode_ ) { pCode = pCode_; return *this; } operator const VkShaderModuleCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( ShaderModuleCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( codeSize == rhs.codeSize ) && ( pCode == rhs.pCode ); } bool operator!=( ShaderModuleCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ShaderModuleCreateFlags flags; size_t codeSize; const uint32_t* pCode; }; static_assert( sizeof( ShaderModuleCreateInfo ) == sizeof( VkShaderModuleCreateInfo ), "struct and wrapper have different size!" ); struct DescriptorSetAllocateInfo { DescriptorSetAllocateInfo( DescriptorPool descriptorPool_ = DescriptorPool(), uint32_t descriptorSetCount_ = 0, const DescriptorSetLayout* pSetLayouts_ = nullptr ) : sType( StructureType::eDescriptorSetAllocateInfo ) , pNext( nullptr ) , descriptorPool( descriptorPool_ ) , descriptorSetCount( descriptorSetCount_ ) , pSetLayouts( pSetLayouts_ ) { } DescriptorSetAllocateInfo( VkDescriptorSetAllocateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorSetAllocateInfo ) ); } DescriptorSetAllocateInfo& operator=( VkDescriptorSetAllocateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorSetAllocateInfo ) ); return *this; } DescriptorSetAllocateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DescriptorSetAllocateInfo& setDescriptorPool( DescriptorPool descriptorPool_ ) { descriptorPool = descriptorPool_; return *this; } DescriptorSetAllocateInfo& setDescriptorSetCount( uint32_t descriptorSetCount_ ) { descriptorSetCount = descriptorSetCount_; return *this; } DescriptorSetAllocateInfo& setPSetLayouts( const DescriptorSetLayout* pSetLayouts_ ) { pSetLayouts = pSetLayouts_; return *this; } operator const VkDescriptorSetAllocateInfo&() const { return *reinterpret_cast(this); } bool operator==( DescriptorSetAllocateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( descriptorPool == rhs.descriptorPool ) && ( descriptorSetCount == rhs.descriptorSetCount ) && ( pSetLayouts == rhs.pSetLayouts ); } bool operator!=( DescriptorSetAllocateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DescriptorPool descriptorPool; uint32_t descriptorSetCount; const DescriptorSetLayout* pSetLayouts; }; static_assert( sizeof( DescriptorSetAllocateInfo ) == sizeof( VkDescriptorSetAllocateInfo ), "struct and wrapper have different size!" ); struct PipelineVertexInputStateCreateInfo { PipelineVertexInputStateCreateInfo( PipelineVertexInputStateCreateFlags flags_ = PipelineVertexInputStateCreateFlags(), uint32_t vertexBindingDescriptionCount_ = 0, const VertexInputBindingDescription* pVertexBindingDescriptions_ = nullptr, uint32_t vertexAttributeDescriptionCount_ = 0, const VertexInputAttributeDescription* pVertexAttributeDescriptions_ = nullptr ) : sType( StructureType::ePipelineVertexInputStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , vertexBindingDescriptionCount( vertexBindingDescriptionCount_ ) , pVertexBindingDescriptions( pVertexBindingDescriptions_ ) , vertexAttributeDescriptionCount( vertexAttributeDescriptionCount_ ) , pVertexAttributeDescriptions( pVertexAttributeDescriptions_ ) { } PipelineVertexInputStateCreateInfo( VkPipelineVertexInputStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineVertexInputStateCreateInfo ) ); } PipelineVertexInputStateCreateInfo& operator=( VkPipelineVertexInputStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineVertexInputStateCreateInfo ) ); return *this; } PipelineVertexInputStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineVertexInputStateCreateInfo& setFlags( PipelineVertexInputStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineVertexInputStateCreateInfo& setVertexBindingDescriptionCount( uint32_t vertexBindingDescriptionCount_ ) { vertexBindingDescriptionCount = vertexBindingDescriptionCount_; return *this; } PipelineVertexInputStateCreateInfo& setPVertexBindingDescriptions( const VertexInputBindingDescription* pVertexBindingDescriptions_ ) { pVertexBindingDescriptions = pVertexBindingDescriptions_; return *this; } PipelineVertexInputStateCreateInfo& setVertexAttributeDescriptionCount( uint32_t vertexAttributeDescriptionCount_ ) { vertexAttributeDescriptionCount = vertexAttributeDescriptionCount_; return *this; } PipelineVertexInputStateCreateInfo& setPVertexAttributeDescriptions( const VertexInputAttributeDescription* pVertexAttributeDescriptions_ ) { pVertexAttributeDescriptions = pVertexAttributeDescriptions_; return *this; } operator const VkPipelineVertexInputStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineVertexInputStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( vertexBindingDescriptionCount == rhs.vertexBindingDescriptionCount ) && ( pVertexBindingDescriptions == rhs.pVertexBindingDescriptions ) && ( vertexAttributeDescriptionCount == rhs.vertexAttributeDescriptionCount ) && ( pVertexAttributeDescriptions == rhs.pVertexAttributeDescriptions ); } bool operator!=( PipelineVertexInputStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineVertexInputStateCreateFlags flags; uint32_t vertexBindingDescriptionCount; const VertexInputBindingDescription* pVertexBindingDescriptions; uint32_t vertexAttributeDescriptionCount; const VertexInputAttributeDescription* pVertexAttributeDescriptions; }; static_assert( sizeof( PipelineVertexInputStateCreateInfo ) == sizeof( VkPipelineVertexInputStateCreateInfo ), "struct and wrapper have different size!" ); struct PipelineInputAssemblyStateCreateInfo { PipelineInputAssemblyStateCreateInfo( PipelineInputAssemblyStateCreateFlags flags_ = PipelineInputAssemblyStateCreateFlags(), PrimitiveTopology topology_ = PrimitiveTopology::ePointList, Bool32 primitiveRestartEnable_ = 0 ) : sType( StructureType::ePipelineInputAssemblyStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , topology( topology_ ) , primitiveRestartEnable( primitiveRestartEnable_ ) { } PipelineInputAssemblyStateCreateInfo( VkPipelineInputAssemblyStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineInputAssemblyStateCreateInfo ) ); } PipelineInputAssemblyStateCreateInfo& operator=( VkPipelineInputAssemblyStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineInputAssemblyStateCreateInfo ) ); return *this; } PipelineInputAssemblyStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineInputAssemblyStateCreateInfo& setFlags( PipelineInputAssemblyStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineInputAssemblyStateCreateInfo& setTopology( PrimitiveTopology topology_ ) { topology = topology_; return *this; } PipelineInputAssemblyStateCreateInfo& setPrimitiveRestartEnable( Bool32 primitiveRestartEnable_ ) { primitiveRestartEnable = primitiveRestartEnable_; return *this; } operator const VkPipelineInputAssemblyStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineInputAssemblyStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( topology == rhs.topology ) && ( primitiveRestartEnable == rhs.primitiveRestartEnable ); } bool operator!=( PipelineInputAssemblyStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineInputAssemblyStateCreateFlags flags; PrimitiveTopology topology; Bool32 primitiveRestartEnable; }; static_assert( sizeof( PipelineInputAssemblyStateCreateInfo ) == sizeof( VkPipelineInputAssemblyStateCreateInfo ), "struct and wrapper have different size!" ); struct PipelineTessellationStateCreateInfo { PipelineTessellationStateCreateInfo( PipelineTessellationStateCreateFlags flags_ = PipelineTessellationStateCreateFlags(), uint32_t patchControlPoints_ = 0 ) : sType( StructureType::ePipelineTessellationStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , patchControlPoints( patchControlPoints_ ) { } PipelineTessellationStateCreateInfo( VkPipelineTessellationStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineTessellationStateCreateInfo ) ); } PipelineTessellationStateCreateInfo& operator=( VkPipelineTessellationStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineTessellationStateCreateInfo ) ); return *this; } PipelineTessellationStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineTessellationStateCreateInfo& setFlags( PipelineTessellationStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineTessellationStateCreateInfo& setPatchControlPoints( uint32_t patchControlPoints_ ) { patchControlPoints = patchControlPoints_; return *this; } operator const VkPipelineTessellationStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineTessellationStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( patchControlPoints == rhs.patchControlPoints ); } bool operator!=( PipelineTessellationStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineTessellationStateCreateFlags flags; uint32_t patchControlPoints; }; static_assert( sizeof( PipelineTessellationStateCreateInfo ) == sizeof( VkPipelineTessellationStateCreateInfo ), "struct and wrapper have different size!" ); struct PipelineViewportStateCreateInfo { PipelineViewportStateCreateInfo( PipelineViewportStateCreateFlags flags_ = PipelineViewportStateCreateFlags(), uint32_t viewportCount_ = 0, const Viewport* pViewports_ = nullptr, uint32_t scissorCount_ = 0, const Rect2D* pScissors_ = nullptr ) : sType( StructureType::ePipelineViewportStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , viewportCount( viewportCount_ ) , pViewports( pViewports_ ) , scissorCount( scissorCount_ ) , pScissors( pScissors_ ) { } PipelineViewportStateCreateInfo( VkPipelineViewportStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineViewportStateCreateInfo ) ); } PipelineViewportStateCreateInfo& operator=( VkPipelineViewportStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineViewportStateCreateInfo ) ); return *this; } PipelineViewportStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineViewportStateCreateInfo& setFlags( PipelineViewportStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineViewportStateCreateInfo& setViewportCount( uint32_t viewportCount_ ) { viewportCount = viewportCount_; return *this; } PipelineViewportStateCreateInfo& setPViewports( const Viewport* pViewports_ ) { pViewports = pViewports_; return *this; } PipelineViewportStateCreateInfo& setScissorCount( uint32_t scissorCount_ ) { scissorCount = scissorCount_; return *this; } PipelineViewportStateCreateInfo& setPScissors( const Rect2D* pScissors_ ) { pScissors = pScissors_; return *this; } operator const VkPipelineViewportStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineViewportStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( viewportCount == rhs.viewportCount ) && ( pViewports == rhs.pViewports ) && ( scissorCount == rhs.scissorCount ) && ( pScissors == rhs.pScissors ); } bool operator!=( PipelineViewportStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineViewportStateCreateFlags flags; uint32_t viewportCount; const Viewport* pViewports; uint32_t scissorCount; const Rect2D* pScissors; }; static_assert( sizeof( PipelineViewportStateCreateInfo ) == sizeof( VkPipelineViewportStateCreateInfo ), "struct and wrapper have different size!" ); struct PipelineRasterizationStateCreateInfo { PipelineRasterizationStateCreateInfo( PipelineRasterizationStateCreateFlags flags_ = PipelineRasterizationStateCreateFlags(), Bool32 depthClampEnable_ = 0, Bool32 rasterizerDiscardEnable_ = 0, PolygonMode polygonMode_ = PolygonMode::eFill, CullModeFlags cullMode_ = CullModeFlags(), FrontFace frontFace_ = FrontFace::eCounterClockwise, Bool32 depthBiasEnable_ = 0, float depthBiasConstantFactor_ = 0, float depthBiasClamp_ = 0, float depthBiasSlopeFactor_ = 0, float lineWidth_ = 0 ) : sType( StructureType::ePipelineRasterizationStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , depthClampEnable( depthClampEnable_ ) , rasterizerDiscardEnable( rasterizerDiscardEnable_ ) , polygonMode( polygonMode_ ) , cullMode( cullMode_ ) , frontFace( frontFace_ ) , depthBiasEnable( depthBiasEnable_ ) , depthBiasConstantFactor( depthBiasConstantFactor_ ) , depthBiasClamp( depthBiasClamp_ ) , depthBiasSlopeFactor( depthBiasSlopeFactor_ ) , lineWidth( lineWidth_ ) { } PipelineRasterizationStateCreateInfo( VkPipelineRasterizationStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineRasterizationStateCreateInfo ) ); } PipelineRasterizationStateCreateInfo& operator=( VkPipelineRasterizationStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineRasterizationStateCreateInfo ) ); return *this; } PipelineRasterizationStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineRasterizationStateCreateInfo& setFlags( PipelineRasterizationStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineRasterizationStateCreateInfo& setDepthClampEnable( Bool32 depthClampEnable_ ) { depthClampEnable = depthClampEnable_; return *this; } PipelineRasterizationStateCreateInfo& setRasterizerDiscardEnable( Bool32 rasterizerDiscardEnable_ ) { rasterizerDiscardEnable = rasterizerDiscardEnable_; return *this; } PipelineRasterizationStateCreateInfo& setPolygonMode( PolygonMode polygonMode_ ) { polygonMode = polygonMode_; return *this; } PipelineRasterizationStateCreateInfo& setCullMode( CullModeFlags cullMode_ ) { cullMode = cullMode_; return *this; } PipelineRasterizationStateCreateInfo& setFrontFace( FrontFace frontFace_ ) { frontFace = frontFace_; return *this; } PipelineRasterizationStateCreateInfo& setDepthBiasEnable( Bool32 depthBiasEnable_ ) { depthBiasEnable = depthBiasEnable_; return *this; } PipelineRasterizationStateCreateInfo& setDepthBiasConstantFactor( float depthBiasConstantFactor_ ) { depthBiasConstantFactor = depthBiasConstantFactor_; return *this; } PipelineRasterizationStateCreateInfo& setDepthBiasClamp( float depthBiasClamp_ ) { depthBiasClamp = depthBiasClamp_; return *this; } PipelineRasterizationStateCreateInfo& setDepthBiasSlopeFactor( float depthBiasSlopeFactor_ ) { depthBiasSlopeFactor = depthBiasSlopeFactor_; return *this; } PipelineRasterizationStateCreateInfo& setLineWidth( float lineWidth_ ) { lineWidth = lineWidth_; return *this; } operator const VkPipelineRasterizationStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineRasterizationStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( depthClampEnable == rhs.depthClampEnable ) && ( rasterizerDiscardEnable == rhs.rasterizerDiscardEnable ) && ( polygonMode == rhs.polygonMode ) && ( cullMode == rhs.cullMode ) && ( frontFace == rhs.frontFace ) && ( depthBiasEnable == rhs.depthBiasEnable ) && ( depthBiasConstantFactor == rhs.depthBiasConstantFactor ) && ( depthBiasClamp == rhs.depthBiasClamp ) && ( depthBiasSlopeFactor == rhs.depthBiasSlopeFactor ) && ( lineWidth == rhs.lineWidth ); } bool operator!=( PipelineRasterizationStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineRasterizationStateCreateFlags flags; Bool32 depthClampEnable; Bool32 rasterizerDiscardEnable; PolygonMode polygonMode; CullModeFlags cullMode; FrontFace frontFace; Bool32 depthBiasEnable; float depthBiasConstantFactor; float depthBiasClamp; float depthBiasSlopeFactor; float lineWidth; }; static_assert( sizeof( PipelineRasterizationStateCreateInfo ) == sizeof( VkPipelineRasterizationStateCreateInfo ), "struct and wrapper have different size!" ); struct PipelineDepthStencilStateCreateInfo { PipelineDepthStencilStateCreateInfo( PipelineDepthStencilStateCreateFlags flags_ = PipelineDepthStencilStateCreateFlags(), Bool32 depthTestEnable_ = 0, Bool32 depthWriteEnable_ = 0, CompareOp depthCompareOp_ = CompareOp::eNever, Bool32 depthBoundsTestEnable_ = 0, Bool32 stencilTestEnable_ = 0, StencilOpState front_ = StencilOpState(), StencilOpState back_ = StencilOpState(), float minDepthBounds_ = 0, float maxDepthBounds_ = 0 ) : sType( StructureType::ePipelineDepthStencilStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , depthTestEnable( depthTestEnable_ ) , depthWriteEnable( depthWriteEnable_ ) , depthCompareOp( depthCompareOp_ ) , depthBoundsTestEnable( depthBoundsTestEnable_ ) , stencilTestEnable( stencilTestEnable_ ) , front( front_ ) , back( back_ ) , minDepthBounds( minDepthBounds_ ) , maxDepthBounds( maxDepthBounds_ ) { } PipelineDepthStencilStateCreateInfo( VkPipelineDepthStencilStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineDepthStencilStateCreateInfo ) ); } PipelineDepthStencilStateCreateInfo& operator=( VkPipelineDepthStencilStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineDepthStencilStateCreateInfo ) ); return *this; } PipelineDepthStencilStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineDepthStencilStateCreateInfo& setFlags( PipelineDepthStencilStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineDepthStencilStateCreateInfo& setDepthTestEnable( Bool32 depthTestEnable_ ) { depthTestEnable = depthTestEnable_; return *this; } PipelineDepthStencilStateCreateInfo& setDepthWriteEnable( Bool32 depthWriteEnable_ ) { depthWriteEnable = depthWriteEnable_; return *this; } PipelineDepthStencilStateCreateInfo& setDepthCompareOp( CompareOp depthCompareOp_ ) { depthCompareOp = depthCompareOp_; return *this; } PipelineDepthStencilStateCreateInfo& setDepthBoundsTestEnable( Bool32 depthBoundsTestEnable_ ) { depthBoundsTestEnable = depthBoundsTestEnable_; return *this; } PipelineDepthStencilStateCreateInfo& setStencilTestEnable( Bool32 stencilTestEnable_ ) { stencilTestEnable = stencilTestEnable_; return *this; } PipelineDepthStencilStateCreateInfo& setFront( StencilOpState front_ ) { front = front_; return *this; } PipelineDepthStencilStateCreateInfo& setBack( StencilOpState back_ ) { back = back_; return *this; } PipelineDepthStencilStateCreateInfo& setMinDepthBounds( float minDepthBounds_ ) { minDepthBounds = minDepthBounds_; return *this; } PipelineDepthStencilStateCreateInfo& setMaxDepthBounds( float maxDepthBounds_ ) { maxDepthBounds = maxDepthBounds_; return *this; } operator const VkPipelineDepthStencilStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineDepthStencilStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( depthTestEnable == rhs.depthTestEnable ) && ( depthWriteEnable == rhs.depthWriteEnable ) && ( depthCompareOp == rhs.depthCompareOp ) && ( depthBoundsTestEnable == rhs.depthBoundsTestEnable ) && ( stencilTestEnable == rhs.stencilTestEnable ) && ( front == rhs.front ) && ( back == rhs.back ) && ( minDepthBounds == rhs.minDepthBounds ) && ( maxDepthBounds == rhs.maxDepthBounds ); } bool operator!=( PipelineDepthStencilStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineDepthStencilStateCreateFlags flags; Bool32 depthTestEnable; Bool32 depthWriteEnable; CompareOp depthCompareOp; Bool32 depthBoundsTestEnable; Bool32 stencilTestEnable; StencilOpState front; StencilOpState back; float minDepthBounds; float maxDepthBounds; }; static_assert( sizeof( PipelineDepthStencilStateCreateInfo ) == sizeof( VkPipelineDepthStencilStateCreateInfo ), "struct and wrapper have different size!" ); struct PipelineCacheCreateInfo { PipelineCacheCreateInfo( PipelineCacheCreateFlags flags_ = PipelineCacheCreateFlags(), size_t initialDataSize_ = 0, const void* pInitialData_ = nullptr ) : sType( StructureType::ePipelineCacheCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , initialDataSize( initialDataSize_ ) , pInitialData( pInitialData_ ) { } PipelineCacheCreateInfo( VkPipelineCacheCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineCacheCreateInfo ) ); } PipelineCacheCreateInfo& operator=( VkPipelineCacheCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineCacheCreateInfo ) ); return *this; } PipelineCacheCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineCacheCreateInfo& setFlags( PipelineCacheCreateFlags flags_ ) { flags = flags_; return *this; } PipelineCacheCreateInfo& setInitialDataSize( size_t initialDataSize_ ) { initialDataSize = initialDataSize_; return *this; } PipelineCacheCreateInfo& setPInitialData( const void* pInitialData_ ) { pInitialData = pInitialData_; return *this; } operator const VkPipelineCacheCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineCacheCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( initialDataSize == rhs.initialDataSize ) && ( pInitialData == rhs.pInitialData ); } bool operator!=( PipelineCacheCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineCacheCreateFlags flags; size_t initialDataSize; const void* pInitialData; }; static_assert( sizeof( PipelineCacheCreateInfo ) == sizeof( VkPipelineCacheCreateInfo ), "struct and wrapper have different size!" ); struct SamplerCreateInfo { SamplerCreateInfo( SamplerCreateFlags flags_ = SamplerCreateFlags(), Filter magFilter_ = Filter::eNearest, Filter minFilter_ = Filter::eNearest, SamplerMipmapMode mipmapMode_ = SamplerMipmapMode::eNearest, SamplerAddressMode addressModeU_ = SamplerAddressMode::eRepeat, SamplerAddressMode addressModeV_ = SamplerAddressMode::eRepeat, SamplerAddressMode addressModeW_ = SamplerAddressMode::eRepeat, float mipLodBias_ = 0, Bool32 anisotropyEnable_ = 0, float maxAnisotropy_ = 0, Bool32 compareEnable_ = 0, CompareOp compareOp_ = CompareOp::eNever, float minLod_ = 0, float maxLod_ = 0, BorderColor borderColor_ = BorderColor::eFloatTransparentBlack, Bool32 unnormalizedCoordinates_ = 0 ) : sType( StructureType::eSamplerCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , magFilter( magFilter_ ) , minFilter( minFilter_ ) , mipmapMode( mipmapMode_ ) , addressModeU( addressModeU_ ) , addressModeV( addressModeV_ ) , addressModeW( addressModeW_ ) , mipLodBias( mipLodBias_ ) , anisotropyEnable( anisotropyEnable_ ) , maxAnisotropy( maxAnisotropy_ ) , compareEnable( compareEnable_ ) , compareOp( compareOp_ ) , minLod( minLod_ ) , maxLod( maxLod_ ) , borderColor( borderColor_ ) , unnormalizedCoordinates( unnormalizedCoordinates_ ) { } SamplerCreateInfo( VkSamplerCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( SamplerCreateInfo ) ); } SamplerCreateInfo& operator=( VkSamplerCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( SamplerCreateInfo ) ); return *this; } SamplerCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SamplerCreateInfo& setFlags( SamplerCreateFlags flags_ ) { flags = flags_; return *this; } SamplerCreateInfo& setMagFilter( Filter magFilter_ ) { magFilter = magFilter_; return *this; } SamplerCreateInfo& setMinFilter( Filter minFilter_ ) { minFilter = minFilter_; return *this; } SamplerCreateInfo& setMipmapMode( SamplerMipmapMode mipmapMode_ ) { mipmapMode = mipmapMode_; return *this; } SamplerCreateInfo& setAddressModeU( SamplerAddressMode addressModeU_ ) { addressModeU = addressModeU_; return *this; } SamplerCreateInfo& setAddressModeV( SamplerAddressMode addressModeV_ ) { addressModeV = addressModeV_; return *this; } SamplerCreateInfo& setAddressModeW( SamplerAddressMode addressModeW_ ) { addressModeW = addressModeW_; return *this; } SamplerCreateInfo& setMipLodBias( float mipLodBias_ ) { mipLodBias = mipLodBias_; return *this; } SamplerCreateInfo& setAnisotropyEnable( Bool32 anisotropyEnable_ ) { anisotropyEnable = anisotropyEnable_; return *this; } SamplerCreateInfo& setMaxAnisotropy( float maxAnisotropy_ ) { maxAnisotropy = maxAnisotropy_; return *this; } SamplerCreateInfo& setCompareEnable( Bool32 compareEnable_ ) { compareEnable = compareEnable_; return *this; } SamplerCreateInfo& setCompareOp( CompareOp compareOp_ ) { compareOp = compareOp_; return *this; } SamplerCreateInfo& setMinLod( float minLod_ ) { minLod = minLod_; return *this; } SamplerCreateInfo& setMaxLod( float maxLod_ ) { maxLod = maxLod_; return *this; } SamplerCreateInfo& setBorderColor( BorderColor borderColor_ ) { borderColor = borderColor_; return *this; } SamplerCreateInfo& setUnnormalizedCoordinates( Bool32 unnormalizedCoordinates_ ) { unnormalizedCoordinates = unnormalizedCoordinates_; return *this; } operator const VkSamplerCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( SamplerCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( magFilter == rhs.magFilter ) && ( minFilter == rhs.minFilter ) && ( mipmapMode == rhs.mipmapMode ) && ( addressModeU == rhs.addressModeU ) && ( addressModeV == rhs.addressModeV ) && ( addressModeW == rhs.addressModeW ) && ( mipLodBias == rhs.mipLodBias ) && ( anisotropyEnable == rhs.anisotropyEnable ) && ( maxAnisotropy == rhs.maxAnisotropy ) && ( compareEnable == rhs.compareEnable ) && ( compareOp == rhs.compareOp ) && ( minLod == rhs.minLod ) && ( maxLod == rhs.maxLod ) && ( borderColor == rhs.borderColor ) && ( unnormalizedCoordinates == rhs.unnormalizedCoordinates ); } bool operator!=( SamplerCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SamplerCreateFlags flags; Filter magFilter; Filter minFilter; SamplerMipmapMode mipmapMode; SamplerAddressMode addressModeU; SamplerAddressMode addressModeV; SamplerAddressMode addressModeW; float mipLodBias; Bool32 anisotropyEnable; float maxAnisotropy; Bool32 compareEnable; CompareOp compareOp; float minLod; float maxLod; BorderColor borderColor; Bool32 unnormalizedCoordinates; }; static_assert( sizeof( SamplerCreateInfo ) == sizeof( VkSamplerCreateInfo ), "struct and wrapper have different size!" ); struct CommandBufferAllocateInfo { CommandBufferAllocateInfo( CommandPool commandPool_ = CommandPool(), CommandBufferLevel level_ = CommandBufferLevel::ePrimary, uint32_t commandBufferCount_ = 0 ) : sType( StructureType::eCommandBufferAllocateInfo ) , pNext( nullptr ) , commandPool( commandPool_ ) , level( level_ ) , commandBufferCount( commandBufferCount_ ) { } CommandBufferAllocateInfo( VkCommandBufferAllocateInfo const & rhs ) { memcpy( this, &rhs, sizeof( CommandBufferAllocateInfo ) ); } CommandBufferAllocateInfo& operator=( VkCommandBufferAllocateInfo const & rhs ) { memcpy( this, &rhs, sizeof( CommandBufferAllocateInfo ) ); return *this; } CommandBufferAllocateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } CommandBufferAllocateInfo& setCommandPool( CommandPool commandPool_ ) { commandPool = commandPool_; return *this; } CommandBufferAllocateInfo& setLevel( CommandBufferLevel level_ ) { level = level_; return *this; } CommandBufferAllocateInfo& setCommandBufferCount( uint32_t commandBufferCount_ ) { commandBufferCount = commandBufferCount_; return *this; } operator const VkCommandBufferAllocateInfo&() const { return *reinterpret_cast(this); } bool operator==( CommandBufferAllocateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( commandPool == rhs.commandPool ) && ( level == rhs.level ) && ( commandBufferCount == rhs.commandBufferCount ); } bool operator!=( CommandBufferAllocateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; CommandPool commandPool; CommandBufferLevel level; uint32_t commandBufferCount; }; static_assert( sizeof( CommandBufferAllocateInfo ) == sizeof( VkCommandBufferAllocateInfo ), "struct and wrapper have different size!" ); struct RenderPassBeginInfo { RenderPassBeginInfo( RenderPass renderPass_ = RenderPass(), Framebuffer framebuffer_ = Framebuffer(), Rect2D renderArea_ = Rect2D(), uint32_t clearValueCount_ = 0, const ClearValue* pClearValues_ = nullptr ) : sType( StructureType::eRenderPassBeginInfo ) , pNext( nullptr ) , renderPass( renderPass_ ) , framebuffer( framebuffer_ ) , renderArea( renderArea_ ) , clearValueCount( clearValueCount_ ) , pClearValues( pClearValues_ ) { } RenderPassBeginInfo( VkRenderPassBeginInfo const & rhs ) { memcpy( this, &rhs, sizeof( RenderPassBeginInfo ) ); } RenderPassBeginInfo& operator=( VkRenderPassBeginInfo const & rhs ) { memcpy( this, &rhs, sizeof( RenderPassBeginInfo ) ); return *this; } RenderPassBeginInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } RenderPassBeginInfo& setRenderPass( RenderPass renderPass_ ) { renderPass = renderPass_; return *this; } RenderPassBeginInfo& setFramebuffer( Framebuffer framebuffer_ ) { framebuffer = framebuffer_; return *this; } RenderPassBeginInfo& setRenderArea( Rect2D renderArea_ ) { renderArea = renderArea_; return *this; } RenderPassBeginInfo& setClearValueCount( uint32_t clearValueCount_ ) { clearValueCount = clearValueCount_; return *this; } RenderPassBeginInfo& setPClearValues( const ClearValue* pClearValues_ ) { pClearValues = pClearValues_; return *this; } operator const VkRenderPassBeginInfo&() const { return *reinterpret_cast(this); } bool operator==( RenderPassBeginInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( renderPass == rhs.renderPass ) && ( framebuffer == rhs.framebuffer ) && ( renderArea == rhs.renderArea ) && ( clearValueCount == rhs.clearValueCount ) && ( pClearValues == rhs.pClearValues ); } bool operator!=( RenderPassBeginInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; RenderPass renderPass; Framebuffer framebuffer; Rect2D renderArea; uint32_t clearValueCount; const ClearValue* pClearValues; }; static_assert( sizeof( RenderPassBeginInfo ) == sizeof( VkRenderPassBeginInfo ), "struct and wrapper have different size!" ); struct EventCreateInfo { EventCreateInfo( EventCreateFlags flags_ = EventCreateFlags() ) : sType( StructureType::eEventCreateInfo ) , pNext( nullptr ) , flags( flags_ ) { } EventCreateInfo( VkEventCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( EventCreateInfo ) ); } EventCreateInfo& operator=( VkEventCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( EventCreateInfo ) ); return *this; } EventCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } EventCreateInfo& setFlags( EventCreateFlags flags_ ) { flags = flags_; return *this; } operator const VkEventCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( EventCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ); } bool operator!=( EventCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; EventCreateFlags flags; }; static_assert( sizeof( EventCreateInfo ) == sizeof( VkEventCreateInfo ), "struct and wrapper have different size!" ); struct SemaphoreCreateInfo { SemaphoreCreateInfo( SemaphoreCreateFlags flags_ = SemaphoreCreateFlags() ) : sType( StructureType::eSemaphoreCreateInfo ) , pNext( nullptr ) , flags( flags_ ) { } SemaphoreCreateInfo( VkSemaphoreCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( SemaphoreCreateInfo ) ); } SemaphoreCreateInfo& operator=( VkSemaphoreCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( SemaphoreCreateInfo ) ); return *this; } SemaphoreCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SemaphoreCreateInfo& setFlags( SemaphoreCreateFlags flags_ ) { flags = flags_; return *this; } operator const VkSemaphoreCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( SemaphoreCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ); } bool operator!=( SemaphoreCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SemaphoreCreateFlags flags; }; static_assert( sizeof( SemaphoreCreateInfo ) == sizeof( VkSemaphoreCreateInfo ), "struct and wrapper have different size!" ); struct FramebufferCreateInfo { FramebufferCreateInfo( FramebufferCreateFlags flags_ = FramebufferCreateFlags(), RenderPass renderPass_ = RenderPass(), uint32_t attachmentCount_ = 0, const ImageView* pAttachments_ = nullptr, uint32_t width_ = 0, uint32_t height_ = 0, uint32_t layers_ = 0 ) : sType( StructureType::eFramebufferCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , renderPass( renderPass_ ) , attachmentCount( attachmentCount_ ) , pAttachments( pAttachments_ ) , width( width_ ) , height( height_ ) , layers( layers_ ) { } FramebufferCreateInfo( VkFramebufferCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( FramebufferCreateInfo ) ); } FramebufferCreateInfo& operator=( VkFramebufferCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( FramebufferCreateInfo ) ); return *this; } FramebufferCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } FramebufferCreateInfo& setFlags( FramebufferCreateFlags flags_ ) { flags = flags_; return *this; } FramebufferCreateInfo& setRenderPass( RenderPass renderPass_ ) { renderPass = renderPass_; return *this; } FramebufferCreateInfo& setAttachmentCount( uint32_t attachmentCount_ ) { attachmentCount = attachmentCount_; return *this; } FramebufferCreateInfo& setPAttachments( const ImageView* pAttachments_ ) { pAttachments = pAttachments_; return *this; } FramebufferCreateInfo& setWidth( uint32_t width_ ) { width = width_; return *this; } FramebufferCreateInfo& setHeight( uint32_t height_ ) { height = height_; return *this; } FramebufferCreateInfo& setLayers( uint32_t layers_ ) { layers = layers_; return *this; } operator const VkFramebufferCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( FramebufferCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( renderPass == rhs.renderPass ) && ( attachmentCount == rhs.attachmentCount ) && ( pAttachments == rhs.pAttachments ) && ( width == rhs.width ) && ( height == rhs.height ) && ( layers == rhs.layers ); } bool operator!=( FramebufferCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; FramebufferCreateFlags flags; RenderPass renderPass; uint32_t attachmentCount; const ImageView* pAttachments; uint32_t width; uint32_t height; uint32_t layers; }; static_assert( sizeof( FramebufferCreateInfo ) == sizeof( VkFramebufferCreateInfo ), "struct and wrapper have different size!" ); struct DisplayModeCreateInfoKHR { DisplayModeCreateInfoKHR( DisplayModeCreateFlagsKHR flags_ = DisplayModeCreateFlagsKHR(), DisplayModeParametersKHR parameters_ = DisplayModeParametersKHR() ) : sType( StructureType::eDisplayModeCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , parameters( parameters_ ) { } DisplayModeCreateInfoKHR( VkDisplayModeCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplayModeCreateInfoKHR ) ); } DisplayModeCreateInfoKHR& operator=( VkDisplayModeCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplayModeCreateInfoKHR ) ); return *this; } DisplayModeCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DisplayModeCreateInfoKHR& setFlags( DisplayModeCreateFlagsKHR flags_ ) { flags = flags_; return *this; } DisplayModeCreateInfoKHR& setParameters( DisplayModeParametersKHR parameters_ ) { parameters = parameters_; return *this; } operator const VkDisplayModeCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayModeCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( parameters == rhs.parameters ); } bool operator!=( DisplayModeCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DisplayModeCreateFlagsKHR flags; DisplayModeParametersKHR parameters; }; static_assert( sizeof( DisplayModeCreateInfoKHR ) == sizeof( VkDisplayModeCreateInfoKHR ), "struct and wrapper have different size!" ); struct DisplayPresentInfoKHR { DisplayPresentInfoKHR( Rect2D srcRect_ = Rect2D(), Rect2D dstRect_ = Rect2D(), Bool32 persistent_ = 0 ) : sType( StructureType::eDisplayPresentInfoKHR ) , pNext( nullptr ) , srcRect( srcRect_ ) , dstRect( dstRect_ ) , persistent( persistent_ ) { } DisplayPresentInfoKHR( VkDisplayPresentInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplayPresentInfoKHR ) ); } DisplayPresentInfoKHR& operator=( VkDisplayPresentInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplayPresentInfoKHR ) ); return *this; } DisplayPresentInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DisplayPresentInfoKHR& setSrcRect( Rect2D srcRect_ ) { srcRect = srcRect_; return *this; } DisplayPresentInfoKHR& setDstRect( Rect2D dstRect_ ) { dstRect = dstRect_; return *this; } DisplayPresentInfoKHR& setPersistent( Bool32 persistent_ ) { persistent = persistent_; return *this; } operator const VkDisplayPresentInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayPresentInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( srcRect == rhs.srcRect ) && ( dstRect == rhs.dstRect ) && ( persistent == rhs.persistent ); } bool operator!=( DisplayPresentInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Rect2D srcRect; Rect2D dstRect; Bool32 persistent; }; static_assert( sizeof( DisplayPresentInfoKHR ) == sizeof( VkDisplayPresentInfoKHR ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_ANDROID_KHR struct AndroidSurfaceCreateInfoKHR { AndroidSurfaceCreateInfoKHR( AndroidSurfaceCreateFlagsKHR flags_ = AndroidSurfaceCreateFlagsKHR(), ANativeWindow* window_ = nullptr ) : sType( StructureType::eAndroidSurfaceCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , window( window_ ) { } AndroidSurfaceCreateInfoKHR( VkAndroidSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( AndroidSurfaceCreateInfoKHR ) ); } AndroidSurfaceCreateInfoKHR& operator=( VkAndroidSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( AndroidSurfaceCreateInfoKHR ) ); return *this; } AndroidSurfaceCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } AndroidSurfaceCreateInfoKHR& setFlags( AndroidSurfaceCreateFlagsKHR flags_ ) { flags = flags_; return *this; } AndroidSurfaceCreateInfoKHR& setWindow( ANativeWindow* window_ ) { window = window_; return *this; } operator const VkAndroidSurfaceCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( AndroidSurfaceCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( window == rhs.window ); } bool operator!=( AndroidSurfaceCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; AndroidSurfaceCreateFlagsKHR flags; ANativeWindow* window; }; static_assert( sizeof( AndroidSurfaceCreateInfoKHR ) == sizeof( VkAndroidSurfaceCreateInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_ANDROID_KHR*/ #ifdef VK_USE_PLATFORM_MIR_KHR struct MirSurfaceCreateInfoKHR { MirSurfaceCreateInfoKHR( MirSurfaceCreateFlagsKHR flags_ = MirSurfaceCreateFlagsKHR(), MirConnection* connection_ = nullptr, MirSurface* mirSurface_ = nullptr ) : sType( StructureType::eMirSurfaceCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , connection( connection_ ) , mirSurface( mirSurface_ ) { } MirSurfaceCreateInfoKHR( VkMirSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( MirSurfaceCreateInfoKHR ) ); } MirSurfaceCreateInfoKHR& operator=( VkMirSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( MirSurfaceCreateInfoKHR ) ); return *this; } MirSurfaceCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MirSurfaceCreateInfoKHR& setFlags( MirSurfaceCreateFlagsKHR flags_ ) { flags = flags_; return *this; } MirSurfaceCreateInfoKHR& setConnection( MirConnection* connection_ ) { connection = connection_; return *this; } MirSurfaceCreateInfoKHR& setMirSurface( MirSurface* mirSurface_ ) { mirSurface = mirSurface_; return *this; } operator const VkMirSurfaceCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( MirSurfaceCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( connection == rhs.connection ) && ( mirSurface == rhs.mirSurface ); } bool operator!=( MirSurfaceCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; MirSurfaceCreateFlagsKHR flags; MirConnection* connection; MirSurface* mirSurface; }; static_assert( sizeof( MirSurfaceCreateInfoKHR ) == sizeof( VkMirSurfaceCreateInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_MIR_KHR*/ #ifdef VK_USE_PLATFORM_VI_NN struct ViSurfaceCreateInfoNN { ViSurfaceCreateInfoNN( ViSurfaceCreateFlagsNN flags_ = ViSurfaceCreateFlagsNN(), void* window_ = nullptr ) : sType( StructureType::eViSurfaceCreateInfoNN ) , pNext( nullptr ) , flags( flags_ ) , window( window_ ) { } ViSurfaceCreateInfoNN( VkViSurfaceCreateInfoNN const & rhs ) { memcpy( this, &rhs, sizeof( ViSurfaceCreateInfoNN ) ); } ViSurfaceCreateInfoNN& operator=( VkViSurfaceCreateInfoNN const & rhs ) { memcpy( this, &rhs, sizeof( ViSurfaceCreateInfoNN ) ); return *this; } ViSurfaceCreateInfoNN& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ViSurfaceCreateInfoNN& setFlags( ViSurfaceCreateFlagsNN flags_ ) { flags = flags_; return *this; } ViSurfaceCreateInfoNN& setWindow( void* window_ ) { window = window_; return *this; } operator const VkViSurfaceCreateInfoNN&() const { return *reinterpret_cast(this); } bool operator==( ViSurfaceCreateInfoNN const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( window == rhs.window ); } bool operator!=( ViSurfaceCreateInfoNN const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ViSurfaceCreateFlagsNN flags; void* window; }; static_assert( sizeof( ViSurfaceCreateInfoNN ) == sizeof( VkViSurfaceCreateInfoNN ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_VI_NN*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR struct WaylandSurfaceCreateInfoKHR { WaylandSurfaceCreateInfoKHR( WaylandSurfaceCreateFlagsKHR flags_ = WaylandSurfaceCreateFlagsKHR(), struct wl_display* display_ = nullptr, struct wl_surface* surface_ = nullptr ) : sType( StructureType::eWaylandSurfaceCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , display( display_ ) , surface( surface_ ) { } WaylandSurfaceCreateInfoKHR( VkWaylandSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( WaylandSurfaceCreateInfoKHR ) ); } WaylandSurfaceCreateInfoKHR& operator=( VkWaylandSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( WaylandSurfaceCreateInfoKHR ) ); return *this; } WaylandSurfaceCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } WaylandSurfaceCreateInfoKHR& setFlags( WaylandSurfaceCreateFlagsKHR flags_ ) { flags = flags_; return *this; } WaylandSurfaceCreateInfoKHR& setDisplay( struct wl_display* display_ ) { display = display_; return *this; } WaylandSurfaceCreateInfoKHR& setSurface( struct wl_surface* surface_ ) { surface = surface_; return *this; } operator const VkWaylandSurfaceCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( WaylandSurfaceCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( display == rhs.display ) && ( surface == rhs.surface ); } bool operator!=( WaylandSurfaceCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; WaylandSurfaceCreateFlagsKHR flags; struct wl_display* display; struct wl_surface* surface; }; static_assert( sizeof( WaylandSurfaceCreateInfoKHR ) == sizeof( VkWaylandSurfaceCreateInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR struct Win32SurfaceCreateInfoKHR { Win32SurfaceCreateInfoKHR( Win32SurfaceCreateFlagsKHR flags_ = Win32SurfaceCreateFlagsKHR(), HINSTANCE hinstance_ = 0, HWND hwnd_ = 0 ) : sType( StructureType::eWin32SurfaceCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , hinstance( hinstance_ ) , hwnd( hwnd_ ) { } Win32SurfaceCreateInfoKHR( VkWin32SurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( Win32SurfaceCreateInfoKHR ) ); } Win32SurfaceCreateInfoKHR& operator=( VkWin32SurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( Win32SurfaceCreateInfoKHR ) ); return *this; } Win32SurfaceCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } Win32SurfaceCreateInfoKHR& setFlags( Win32SurfaceCreateFlagsKHR flags_ ) { flags = flags_; return *this; } Win32SurfaceCreateInfoKHR& setHinstance( HINSTANCE hinstance_ ) { hinstance = hinstance_; return *this; } Win32SurfaceCreateInfoKHR& setHwnd( HWND hwnd_ ) { hwnd = hwnd_; return *this; } operator const VkWin32SurfaceCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( Win32SurfaceCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( hinstance == rhs.hinstance ) && ( hwnd == rhs.hwnd ); } bool operator!=( Win32SurfaceCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Win32SurfaceCreateFlagsKHR flags; HINSTANCE hinstance; HWND hwnd; }; static_assert( sizeof( Win32SurfaceCreateInfoKHR ) == sizeof( VkWin32SurfaceCreateInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR struct XlibSurfaceCreateInfoKHR { XlibSurfaceCreateInfoKHR( XlibSurfaceCreateFlagsKHR flags_ = XlibSurfaceCreateFlagsKHR(), Display* dpy_ = nullptr, Window window_ = 0 ) : sType( StructureType::eXlibSurfaceCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , dpy( dpy_ ) , window( window_ ) { } XlibSurfaceCreateInfoKHR( VkXlibSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( XlibSurfaceCreateInfoKHR ) ); } XlibSurfaceCreateInfoKHR& operator=( VkXlibSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( XlibSurfaceCreateInfoKHR ) ); return *this; } XlibSurfaceCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } XlibSurfaceCreateInfoKHR& setFlags( XlibSurfaceCreateFlagsKHR flags_ ) { flags = flags_; return *this; } XlibSurfaceCreateInfoKHR& setDpy( Display* dpy_ ) { dpy = dpy_; return *this; } XlibSurfaceCreateInfoKHR& setWindow( Window window_ ) { window = window_; return *this; } operator const VkXlibSurfaceCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( XlibSurfaceCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( dpy == rhs.dpy ) && ( window == rhs.window ); } bool operator!=( XlibSurfaceCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; XlibSurfaceCreateFlagsKHR flags; Display* dpy; Window window; }; static_assert( sizeof( XlibSurfaceCreateInfoKHR ) == sizeof( VkXlibSurfaceCreateInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR struct XcbSurfaceCreateInfoKHR { XcbSurfaceCreateInfoKHR( XcbSurfaceCreateFlagsKHR flags_ = XcbSurfaceCreateFlagsKHR(), xcb_connection_t* connection_ = nullptr, xcb_window_t window_ = 0 ) : sType( StructureType::eXcbSurfaceCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , connection( connection_ ) , window( window_ ) { } XcbSurfaceCreateInfoKHR( VkXcbSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( XcbSurfaceCreateInfoKHR ) ); } XcbSurfaceCreateInfoKHR& operator=( VkXcbSurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( XcbSurfaceCreateInfoKHR ) ); return *this; } XcbSurfaceCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } XcbSurfaceCreateInfoKHR& setFlags( XcbSurfaceCreateFlagsKHR flags_ ) { flags = flags_; return *this; } XcbSurfaceCreateInfoKHR& setConnection( xcb_connection_t* connection_ ) { connection = connection_; return *this; } XcbSurfaceCreateInfoKHR& setWindow( xcb_window_t window_ ) { window = window_; return *this; } operator const VkXcbSurfaceCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( XcbSurfaceCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( connection == rhs.connection ) && ( window == rhs.window ); } bool operator!=( XcbSurfaceCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; XcbSurfaceCreateFlagsKHR flags; xcb_connection_t* connection; xcb_window_t window; }; static_assert( sizeof( XcbSurfaceCreateInfoKHR ) == sizeof( VkXcbSurfaceCreateInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_XCB_KHR*/ struct DebugMarkerMarkerInfoEXT { DebugMarkerMarkerInfoEXT( const char* pMarkerName_ = nullptr, std::array const& color_ = { { 0, 0, 0, 0 } } ) : sType( StructureType::eDebugMarkerMarkerInfoEXT ) , pNext( nullptr ) , pMarkerName( pMarkerName_ ) { memcpy( &color, color_.data(), 4 * sizeof( float ) ); } DebugMarkerMarkerInfoEXT( VkDebugMarkerMarkerInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DebugMarkerMarkerInfoEXT ) ); } DebugMarkerMarkerInfoEXT& operator=( VkDebugMarkerMarkerInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DebugMarkerMarkerInfoEXT ) ); return *this; } DebugMarkerMarkerInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DebugMarkerMarkerInfoEXT& setPMarkerName( const char* pMarkerName_ ) { pMarkerName = pMarkerName_; return *this; } DebugMarkerMarkerInfoEXT& setColor( std::array color_ ) { memcpy( &color, color_.data(), 4 * sizeof( float ) ); return *this; } operator const VkDebugMarkerMarkerInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( DebugMarkerMarkerInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( pMarkerName == rhs.pMarkerName ) && ( memcmp( color, rhs.color, 4 * sizeof( float ) ) == 0 ); } bool operator!=( DebugMarkerMarkerInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; const char* pMarkerName; float color[4]; }; static_assert( sizeof( DebugMarkerMarkerInfoEXT ) == sizeof( VkDebugMarkerMarkerInfoEXT ), "struct and wrapper have different size!" ); struct DedicatedAllocationImageCreateInfoNV { DedicatedAllocationImageCreateInfoNV( Bool32 dedicatedAllocation_ = 0 ) : sType( StructureType::eDedicatedAllocationImageCreateInfoNV ) , pNext( nullptr ) , dedicatedAllocation( dedicatedAllocation_ ) { } DedicatedAllocationImageCreateInfoNV( VkDedicatedAllocationImageCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( DedicatedAllocationImageCreateInfoNV ) ); } DedicatedAllocationImageCreateInfoNV& operator=( VkDedicatedAllocationImageCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( DedicatedAllocationImageCreateInfoNV ) ); return *this; } DedicatedAllocationImageCreateInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DedicatedAllocationImageCreateInfoNV& setDedicatedAllocation( Bool32 dedicatedAllocation_ ) { dedicatedAllocation = dedicatedAllocation_; return *this; } operator const VkDedicatedAllocationImageCreateInfoNV&() const { return *reinterpret_cast(this); } bool operator==( DedicatedAllocationImageCreateInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( dedicatedAllocation == rhs.dedicatedAllocation ); } bool operator!=( DedicatedAllocationImageCreateInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Bool32 dedicatedAllocation; }; static_assert( sizeof( DedicatedAllocationImageCreateInfoNV ) == sizeof( VkDedicatedAllocationImageCreateInfoNV ), "struct and wrapper have different size!" ); struct DedicatedAllocationBufferCreateInfoNV { DedicatedAllocationBufferCreateInfoNV( Bool32 dedicatedAllocation_ = 0 ) : sType( StructureType::eDedicatedAllocationBufferCreateInfoNV ) , pNext( nullptr ) , dedicatedAllocation( dedicatedAllocation_ ) { } DedicatedAllocationBufferCreateInfoNV( VkDedicatedAllocationBufferCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( DedicatedAllocationBufferCreateInfoNV ) ); } DedicatedAllocationBufferCreateInfoNV& operator=( VkDedicatedAllocationBufferCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( DedicatedAllocationBufferCreateInfoNV ) ); return *this; } DedicatedAllocationBufferCreateInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DedicatedAllocationBufferCreateInfoNV& setDedicatedAllocation( Bool32 dedicatedAllocation_ ) { dedicatedAllocation = dedicatedAllocation_; return *this; } operator const VkDedicatedAllocationBufferCreateInfoNV&() const { return *reinterpret_cast(this); } bool operator==( DedicatedAllocationBufferCreateInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( dedicatedAllocation == rhs.dedicatedAllocation ); } bool operator!=( DedicatedAllocationBufferCreateInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Bool32 dedicatedAllocation; }; static_assert( sizeof( DedicatedAllocationBufferCreateInfoNV ) == sizeof( VkDedicatedAllocationBufferCreateInfoNV ), "struct and wrapper have different size!" ); struct DedicatedAllocationMemoryAllocateInfoNV { DedicatedAllocationMemoryAllocateInfoNV( Image image_ = Image(), Buffer buffer_ = Buffer() ) : sType( StructureType::eDedicatedAllocationMemoryAllocateInfoNV ) , pNext( nullptr ) , image( image_ ) , buffer( buffer_ ) { } DedicatedAllocationMemoryAllocateInfoNV( VkDedicatedAllocationMemoryAllocateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( DedicatedAllocationMemoryAllocateInfoNV ) ); } DedicatedAllocationMemoryAllocateInfoNV& operator=( VkDedicatedAllocationMemoryAllocateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( DedicatedAllocationMemoryAllocateInfoNV ) ); return *this; } DedicatedAllocationMemoryAllocateInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DedicatedAllocationMemoryAllocateInfoNV& setImage( Image image_ ) { image = image_; return *this; } DedicatedAllocationMemoryAllocateInfoNV& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } operator const VkDedicatedAllocationMemoryAllocateInfoNV&() const { return *reinterpret_cast(this); } bool operator==( DedicatedAllocationMemoryAllocateInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( image == rhs.image ) && ( buffer == rhs.buffer ); } bool operator!=( DedicatedAllocationMemoryAllocateInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Image image; Buffer buffer; }; static_assert( sizeof( DedicatedAllocationMemoryAllocateInfoNV ) == sizeof( VkDedicatedAllocationMemoryAllocateInfoNV ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_WIN32_KHR struct ExportMemoryWin32HandleInfoNV { ExportMemoryWin32HandleInfoNV( const SECURITY_ATTRIBUTES* pAttributes_ = nullptr, DWORD dwAccess_ = 0 ) : sType( StructureType::eExportMemoryWin32HandleInfoNV ) , pNext( nullptr ) , pAttributes( pAttributes_ ) , dwAccess( dwAccess_ ) { } ExportMemoryWin32HandleInfoNV( VkExportMemoryWin32HandleInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( ExportMemoryWin32HandleInfoNV ) ); } ExportMemoryWin32HandleInfoNV& operator=( VkExportMemoryWin32HandleInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( ExportMemoryWin32HandleInfoNV ) ); return *this; } ExportMemoryWin32HandleInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExportMemoryWin32HandleInfoNV& setPAttributes( const SECURITY_ATTRIBUTES* pAttributes_ ) { pAttributes = pAttributes_; return *this; } ExportMemoryWin32HandleInfoNV& setDwAccess( DWORD dwAccess_ ) { dwAccess = dwAccess_; return *this; } operator const VkExportMemoryWin32HandleInfoNV&() const { return *reinterpret_cast(this); } bool operator==( ExportMemoryWin32HandleInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( pAttributes == rhs.pAttributes ) && ( dwAccess == rhs.dwAccess ); } bool operator!=( ExportMemoryWin32HandleInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; const SECURITY_ATTRIBUTES* pAttributes; DWORD dwAccess; }; static_assert( sizeof( ExportMemoryWin32HandleInfoNV ) == sizeof( VkExportMemoryWin32HandleInfoNV ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR struct Win32KeyedMutexAcquireReleaseInfoNV { Win32KeyedMutexAcquireReleaseInfoNV( uint32_t acquireCount_ = 0, const DeviceMemory* pAcquireSyncs_ = nullptr, const uint64_t* pAcquireKeys_ = nullptr, const uint32_t* pAcquireTimeoutMilliseconds_ = nullptr, uint32_t releaseCount_ = 0, const DeviceMemory* pReleaseSyncs_ = nullptr, const uint64_t* pReleaseKeys_ = nullptr ) : sType( StructureType::eWin32KeyedMutexAcquireReleaseInfoNV ) , pNext( nullptr ) , acquireCount( acquireCount_ ) , pAcquireSyncs( pAcquireSyncs_ ) , pAcquireKeys( pAcquireKeys_ ) , pAcquireTimeoutMilliseconds( pAcquireTimeoutMilliseconds_ ) , releaseCount( releaseCount_ ) , pReleaseSyncs( pReleaseSyncs_ ) , pReleaseKeys( pReleaseKeys_ ) { } Win32KeyedMutexAcquireReleaseInfoNV( VkWin32KeyedMutexAcquireReleaseInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( Win32KeyedMutexAcquireReleaseInfoNV ) ); } Win32KeyedMutexAcquireReleaseInfoNV& operator=( VkWin32KeyedMutexAcquireReleaseInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( Win32KeyedMutexAcquireReleaseInfoNV ) ); return *this; } Win32KeyedMutexAcquireReleaseInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } Win32KeyedMutexAcquireReleaseInfoNV& setAcquireCount( uint32_t acquireCount_ ) { acquireCount = acquireCount_; return *this; } Win32KeyedMutexAcquireReleaseInfoNV& setPAcquireSyncs( const DeviceMemory* pAcquireSyncs_ ) { pAcquireSyncs = pAcquireSyncs_; return *this; } Win32KeyedMutexAcquireReleaseInfoNV& setPAcquireKeys( const uint64_t* pAcquireKeys_ ) { pAcquireKeys = pAcquireKeys_; return *this; } Win32KeyedMutexAcquireReleaseInfoNV& setPAcquireTimeoutMilliseconds( const uint32_t* pAcquireTimeoutMilliseconds_ ) { pAcquireTimeoutMilliseconds = pAcquireTimeoutMilliseconds_; return *this; } Win32KeyedMutexAcquireReleaseInfoNV& setReleaseCount( uint32_t releaseCount_ ) { releaseCount = releaseCount_; return *this; } Win32KeyedMutexAcquireReleaseInfoNV& setPReleaseSyncs( const DeviceMemory* pReleaseSyncs_ ) { pReleaseSyncs = pReleaseSyncs_; return *this; } Win32KeyedMutexAcquireReleaseInfoNV& setPReleaseKeys( const uint64_t* pReleaseKeys_ ) { pReleaseKeys = pReleaseKeys_; return *this; } operator const VkWin32KeyedMutexAcquireReleaseInfoNV&() const { return *reinterpret_cast(this); } bool operator==( Win32KeyedMutexAcquireReleaseInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( acquireCount == rhs.acquireCount ) && ( pAcquireSyncs == rhs.pAcquireSyncs ) && ( pAcquireKeys == rhs.pAcquireKeys ) && ( pAcquireTimeoutMilliseconds == rhs.pAcquireTimeoutMilliseconds ) && ( releaseCount == rhs.releaseCount ) && ( pReleaseSyncs == rhs.pReleaseSyncs ) && ( pReleaseKeys == rhs.pReleaseKeys ); } bool operator!=( Win32KeyedMutexAcquireReleaseInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t acquireCount; const DeviceMemory* pAcquireSyncs; const uint64_t* pAcquireKeys; const uint32_t* pAcquireTimeoutMilliseconds; uint32_t releaseCount; const DeviceMemory* pReleaseSyncs; const uint64_t* pReleaseKeys; }; static_assert( sizeof( Win32KeyedMutexAcquireReleaseInfoNV ) == sizeof( VkWin32KeyedMutexAcquireReleaseInfoNV ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ struct DeviceGeneratedCommandsFeaturesNVX { DeviceGeneratedCommandsFeaturesNVX( Bool32 computeBindingPointSupport_ = 0 ) : sType( StructureType::eDeviceGeneratedCommandsFeaturesNVX ) , pNext( nullptr ) , computeBindingPointSupport( computeBindingPointSupport_ ) { } DeviceGeneratedCommandsFeaturesNVX( VkDeviceGeneratedCommandsFeaturesNVX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGeneratedCommandsFeaturesNVX ) ); } DeviceGeneratedCommandsFeaturesNVX& operator=( VkDeviceGeneratedCommandsFeaturesNVX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGeneratedCommandsFeaturesNVX ) ); return *this; } DeviceGeneratedCommandsFeaturesNVX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGeneratedCommandsFeaturesNVX& setComputeBindingPointSupport( Bool32 computeBindingPointSupport_ ) { computeBindingPointSupport = computeBindingPointSupport_; return *this; } operator const VkDeviceGeneratedCommandsFeaturesNVX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGeneratedCommandsFeaturesNVX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( computeBindingPointSupport == rhs.computeBindingPointSupport ); } bool operator!=( DeviceGeneratedCommandsFeaturesNVX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Bool32 computeBindingPointSupport; }; static_assert( sizeof( DeviceGeneratedCommandsFeaturesNVX ) == sizeof( VkDeviceGeneratedCommandsFeaturesNVX ), "struct and wrapper have different size!" ); struct DeviceGeneratedCommandsLimitsNVX { DeviceGeneratedCommandsLimitsNVX( uint32_t maxIndirectCommandsLayoutTokenCount_ = 0, uint32_t maxObjectEntryCounts_ = 0, uint32_t minSequenceCountBufferOffsetAlignment_ = 0, uint32_t minSequenceIndexBufferOffsetAlignment_ = 0, uint32_t minCommandsTokenBufferOffsetAlignment_ = 0 ) : sType( StructureType::eDeviceGeneratedCommandsLimitsNVX ) , pNext( nullptr ) , maxIndirectCommandsLayoutTokenCount( maxIndirectCommandsLayoutTokenCount_ ) , maxObjectEntryCounts( maxObjectEntryCounts_ ) , minSequenceCountBufferOffsetAlignment( minSequenceCountBufferOffsetAlignment_ ) , minSequenceIndexBufferOffsetAlignment( minSequenceIndexBufferOffsetAlignment_ ) , minCommandsTokenBufferOffsetAlignment( minCommandsTokenBufferOffsetAlignment_ ) { } DeviceGeneratedCommandsLimitsNVX( VkDeviceGeneratedCommandsLimitsNVX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGeneratedCommandsLimitsNVX ) ); } DeviceGeneratedCommandsLimitsNVX& operator=( VkDeviceGeneratedCommandsLimitsNVX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGeneratedCommandsLimitsNVX ) ); return *this; } DeviceGeneratedCommandsLimitsNVX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGeneratedCommandsLimitsNVX& setMaxIndirectCommandsLayoutTokenCount( uint32_t maxIndirectCommandsLayoutTokenCount_ ) { maxIndirectCommandsLayoutTokenCount = maxIndirectCommandsLayoutTokenCount_; return *this; } DeviceGeneratedCommandsLimitsNVX& setMaxObjectEntryCounts( uint32_t maxObjectEntryCounts_ ) { maxObjectEntryCounts = maxObjectEntryCounts_; return *this; } DeviceGeneratedCommandsLimitsNVX& setMinSequenceCountBufferOffsetAlignment( uint32_t minSequenceCountBufferOffsetAlignment_ ) { minSequenceCountBufferOffsetAlignment = minSequenceCountBufferOffsetAlignment_; return *this; } DeviceGeneratedCommandsLimitsNVX& setMinSequenceIndexBufferOffsetAlignment( uint32_t minSequenceIndexBufferOffsetAlignment_ ) { minSequenceIndexBufferOffsetAlignment = minSequenceIndexBufferOffsetAlignment_; return *this; } DeviceGeneratedCommandsLimitsNVX& setMinCommandsTokenBufferOffsetAlignment( uint32_t minCommandsTokenBufferOffsetAlignment_ ) { minCommandsTokenBufferOffsetAlignment = minCommandsTokenBufferOffsetAlignment_; return *this; } operator const VkDeviceGeneratedCommandsLimitsNVX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGeneratedCommandsLimitsNVX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( maxIndirectCommandsLayoutTokenCount == rhs.maxIndirectCommandsLayoutTokenCount ) && ( maxObjectEntryCounts == rhs.maxObjectEntryCounts ) && ( minSequenceCountBufferOffsetAlignment == rhs.minSequenceCountBufferOffsetAlignment ) && ( minSequenceIndexBufferOffsetAlignment == rhs.minSequenceIndexBufferOffsetAlignment ) && ( minCommandsTokenBufferOffsetAlignment == rhs.minCommandsTokenBufferOffsetAlignment ); } bool operator!=( DeviceGeneratedCommandsLimitsNVX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t maxIndirectCommandsLayoutTokenCount; uint32_t maxObjectEntryCounts; uint32_t minSequenceCountBufferOffsetAlignment; uint32_t minSequenceIndexBufferOffsetAlignment; uint32_t minCommandsTokenBufferOffsetAlignment; }; static_assert( sizeof( DeviceGeneratedCommandsLimitsNVX ) == sizeof( VkDeviceGeneratedCommandsLimitsNVX ), "struct and wrapper have different size!" ); struct CmdReserveSpaceForCommandsInfoNVX { CmdReserveSpaceForCommandsInfoNVX( ObjectTableNVX objectTable_ = ObjectTableNVX(), IndirectCommandsLayoutNVX indirectCommandsLayout_ = IndirectCommandsLayoutNVX(), uint32_t maxSequencesCount_ = 0 ) : sType( StructureType::eCmdReserveSpaceForCommandsInfoNVX ) , pNext( nullptr ) , objectTable( objectTable_ ) , indirectCommandsLayout( indirectCommandsLayout_ ) , maxSequencesCount( maxSequencesCount_ ) { } CmdReserveSpaceForCommandsInfoNVX( VkCmdReserveSpaceForCommandsInfoNVX const & rhs ) { memcpy( this, &rhs, sizeof( CmdReserveSpaceForCommandsInfoNVX ) ); } CmdReserveSpaceForCommandsInfoNVX& operator=( VkCmdReserveSpaceForCommandsInfoNVX const & rhs ) { memcpy( this, &rhs, sizeof( CmdReserveSpaceForCommandsInfoNVX ) ); return *this; } CmdReserveSpaceForCommandsInfoNVX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } CmdReserveSpaceForCommandsInfoNVX& setObjectTable( ObjectTableNVX objectTable_ ) { objectTable = objectTable_; return *this; } CmdReserveSpaceForCommandsInfoNVX& setIndirectCommandsLayout( IndirectCommandsLayoutNVX indirectCommandsLayout_ ) { indirectCommandsLayout = indirectCommandsLayout_; return *this; } CmdReserveSpaceForCommandsInfoNVX& setMaxSequencesCount( uint32_t maxSequencesCount_ ) { maxSequencesCount = maxSequencesCount_; return *this; } operator const VkCmdReserveSpaceForCommandsInfoNVX&() const { return *reinterpret_cast(this); } bool operator==( CmdReserveSpaceForCommandsInfoNVX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( objectTable == rhs.objectTable ) && ( indirectCommandsLayout == rhs.indirectCommandsLayout ) && ( maxSequencesCount == rhs.maxSequencesCount ); } bool operator!=( CmdReserveSpaceForCommandsInfoNVX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ObjectTableNVX objectTable; IndirectCommandsLayoutNVX indirectCommandsLayout; uint32_t maxSequencesCount; }; static_assert( sizeof( CmdReserveSpaceForCommandsInfoNVX ) == sizeof( VkCmdReserveSpaceForCommandsInfoNVX ), "struct and wrapper have different size!" ); struct PhysicalDeviceFeatures2KHR { PhysicalDeviceFeatures2KHR( PhysicalDeviceFeatures features_ = PhysicalDeviceFeatures() ) : sType( StructureType::ePhysicalDeviceFeatures2KHR ) , pNext( nullptr ) , features( features_ ) { } PhysicalDeviceFeatures2KHR( VkPhysicalDeviceFeatures2KHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceFeatures2KHR ) ); } PhysicalDeviceFeatures2KHR& operator=( VkPhysicalDeviceFeatures2KHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceFeatures2KHR ) ); return *this; } PhysicalDeviceFeatures2KHR& setPNext( void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceFeatures2KHR& setFeatures( PhysicalDeviceFeatures features_ ) { features = features_; return *this; } operator const VkPhysicalDeviceFeatures2KHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceFeatures2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( features == rhs.features ); } bool operator!=( PhysicalDeviceFeatures2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; PhysicalDeviceFeatures features; }; static_assert( sizeof( PhysicalDeviceFeatures2KHR ) == sizeof( VkPhysicalDeviceFeatures2KHR ), "struct and wrapper have different size!" ); struct PhysicalDevicePushDescriptorPropertiesKHR { PhysicalDevicePushDescriptorPropertiesKHR( uint32_t maxPushDescriptors_ = 0 ) : sType( StructureType::ePhysicalDevicePushDescriptorPropertiesKHR ) , pNext( nullptr ) , maxPushDescriptors( maxPushDescriptors_ ) { } PhysicalDevicePushDescriptorPropertiesKHR( VkPhysicalDevicePushDescriptorPropertiesKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDevicePushDescriptorPropertiesKHR ) ); } PhysicalDevicePushDescriptorPropertiesKHR& operator=( VkPhysicalDevicePushDescriptorPropertiesKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDevicePushDescriptorPropertiesKHR ) ); return *this; } PhysicalDevicePushDescriptorPropertiesKHR& setPNext( void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDevicePushDescriptorPropertiesKHR& setMaxPushDescriptors( uint32_t maxPushDescriptors_ ) { maxPushDescriptors = maxPushDescriptors_; return *this; } operator const VkPhysicalDevicePushDescriptorPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDevicePushDescriptorPropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( maxPushDescriptors == rhs.maxPushDescriptors ); } bool operator!=( PhysicalDevicePushDescriptorPropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint32_t maxPushDescriptors; }; static_assert( sizeof( PhysicalDevicePushDescriptorPropertiesKHR ) == sizeof( VkPhysicalDevicePushDescriptorPropertiesKHR ), "struct and wrapper have different size!" ); struct PresentRegionsKHR { PresentRegionsKHR( uint32_t swapchainCount_ = 0, const PresentRegionKHR* pRegions_ = nullptr ) : sType( StructureType::ePresentRegionsKHR ) , pNext( nullptr ) , swapchainCount( swapchainCount_ ) , pRegions( pRegions_ ) { } PresentRegionsKHR( VkPresentRegionsKHR const & rhs ) { memcpy( this, &rhs, sizeof( PresentRegionsKHR ) ); } PresentRegionsKHR& operator=( VkPresentRegionsKHR const & rhs ) { memcpy( this, &rhs, sizeof( PresentRegionsKHR ) ); return *this; } PresentRegionsKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PresentRegionsKHR& setSwapchainCount( uint32_t swapchainCount_ ) { swapchainCount = swapchainCount_; return *this; } PresentRegionsKHR& setPRegions( const PresentRegionKHR* pRegions_ ) { pRegions = pRegions_; return *this; } operator const VkPresentRegionsKHR&() const { return *reinterpret_cast(this); } bool operator==( PresentRegionsKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( swapchainCount == rhs.swapchainCount ) && ( pRegions == rhs.pRegions ); } bool operator!=( PresentRegionsKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t swapchainCount; const PresentRegionKHR* pRegions; }; static_assert( sizeof( PresentRegionsKHR ) == sizeof( VkPresentRegionsKHR ), "struct and wrapper have different size!" ); struct PhysicalDeviceVariablePointerFeaturesKHR { PhysicalDeviceVariablePointerFeaturesKHR( Bool32 variablePointersStorageBuffer_ = 0, Bool32 variablePointers_ = 0 ) : sType( StructureType::ePhysicalDeviceVariablePointerFeaturesKHR ) , pNext( nullptr ) , variablePointersStorageBuffer( variablePointersStorageBuffer_ ) , variablePointers( variablePointers_ ) { } PhysicalDeviceVariablePointerFeaturesKHR( VkPhysicalDeviceVariablePointerFeaturesKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceVariablePointerFeaturesKHR ) ); } PhysicalDeviceVariablePointerFeaturesKHR& operator=( VkPhysicalDeviceVariablePointerFeaturesKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceVariablePointerFeaturesKHR ) ); return *this; } PhysicalDeviceVariablePointerFeaturesKHR& setPNext( void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceVariablePointerFeaturesKHR& setVariablePointersStorageBuffer( Bool32 variablePointersStorageBuffer_ ) { variablePointersStorageBuffer = variablePointersStorageBuffer_; return *this; } PhysicalDeviceVariablePointerFeaturesKHR& setVariablePointers( Bool32 variablePointers_ ) { variablePointers = variablePointers_; return *this; } operator const VkPhysicalDeviceVariablePointerFeaturesKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceVariablePointerFeaturesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( variablePointersStorageBuffer == rhs.variablePointersStorageBuffer ) && ( variablePointers == rhs.variablePointers ); } bool operator!=( PhysicalDeviceVariablePointerFeaturesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; Bool32 variablePointersStorageBuffer; Bool32 variablePointers; }; static_assert( sizeof( PhysicalDeviceVariablePointerFeaturesKHR ) == sizeof( VkPhysicalDeviceVariablePointerFeaturesKHR ), "struct and wrapper have different size!" ); struct PhysicalDeviceIDPropertiesKHR { operator const VkPhysicalDeviceIDPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceIDPropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memcmp( deviceUUID, rhs.deviceUUID, VK_UUID_SIZE * sizeof( uint8_t ) ) == 0 ) && ( memcmp( driverUUID, rhs.driverUUID, VK_UUID_SIZE * sizeof( uint8_t ) ) == 0 ) && ( memcmp( deviceLUID, rhs.deviceLUID, VK_LUID_SIZE_KHR * sizeof( uint8_t ) ) == 0 ) && ( deviceNodeMask == rhs.deviceNodeMask ) && ( deviceLUIDValid == rhs.deviceLUIDValid ); } bool operator!=( PhysicalDeviceIDPropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint8_t deviceUUID[VK_UUID_SIZE]; uint8_t driverUUID[VK_UUID_SIZE]; uint8_t deviceLUID[VK_LUID_SIZE_KHR]; uint32_t deviceNodeMask; Bool32 deviceLUIDValid; }; static_assert( sizeof( PhysicalDeviceIDPropertiesKHR ) == sizeof( VkPhysicalDeviceIDPropertiesKHR ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_WIN32_KHR struct ExportMemoryWin32HandleInfoKHR { ExportMemoryWin32HandleInfoKHR( const SECURITY_ATTRIBUTES* pAttributes_ = nullptr, DWORD dwAccess_ = 0, LPCWSTR name_ = 0 ) : sType( StructureType::eExportMemoryWin32HandleInfoKHR ) , pNext( nullptr ) , pAttributes( pAttributes_ ) , dwAccess( dwAccess_ ) , name( name_ ) { } ExportMemoryWin32HandleInfoKHR( VkExportMemoryWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportMemoryWin32HandleInfoKHR ) ); } ExportMemoryWin32HandleInfoKHR& operator=( VkExportMemoryWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportMemoryWin32HandleInfoKHR ) ); return *this; } ExportMemoryWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExportMemoryWin32HandleInfoKHR& setPAttributes( const SECURITY_ATTRIBUTES* pAttributes_ ) { pAttributes = pAttributes_; return *this; } ExportMemoryWin32HandleInfoKHR& setDwAccess( DWORD dwAccess_ ) { dwAccess = dwAccess_; return *this; } ExportMemoryWin32HandleInfoKHR& setName( LPCWSTR name_ ) { name = name_; return *this; } operator const VkExportMemoryWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ExportMemoryWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( pAttributes == rhs.pAttributes ) && ( dwAccess == rhs.dwAccess ) && ( name == rhs.name ); } bool operator!=( ExportMemoryWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; const SECURITY_ATTRIBUTES* pAttributes; DWORD dwAccess; LPCWSTR name; }; static_assert( sizeof( ExportMemoryWin32HandleInfoKHR ) == sizeof( VkExportMemoryWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR struct MemoryWin32HandlePropertiesKHR { operator const VkMemoryWin32HandlePropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( MemoryWin32HandlePropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memoryTypeBits == rhs.memoryTypeBits ); } bool operator!=( MemoryWin32HandlePropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint32_t memoryTypeBits; }; static_assert( sizeof( MemoryWin32HandlePropertiesKHR ) == sizeof( VkMemoryWin32HandlePropertiesKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ struct MemoryFdPropertiesKHR { operator const VkMemoryFdPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( MemoryFdPropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memoryTypeBits == rhs.memoryTypeBits ); } bool operator!=( MemoryFdPropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint32_t memoryTypeBits; }; static_assert( sizeof( MemoryFdPropertiesKHR ) == sizeof( VkMemoryFdPropertiesKHR ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_WIN32_KHR struct Win32KeyedMutexAcquireReleaseInfoKHR { Win32KeyedMutexAcquireReleaseInfoKHR( uint32_t acquireCount_ = 0, const DeviceMemory* pAcquireSyncs_ = nullptr, const uint64_t* pAcquireKeys_ = nullptr, const uint32_t* pAcquireTimeouts_ = nullptr, uint32_t releaseCount_ = 0, const DeviceMemory* pReleaseSyncs_ = nullptr, const uint64_t* pReleaseKeys_ = nullptr ) : sType( StructureType::eWin32KeyedMutexAcquireReleaseInfoKHR ) , pNext( nullptr ) , acquireCount( acquireCount_ ) , pAcquireSyncs( pAcquireSyncs_ ) , pAcquireKeys( pAcquireKeys_ ) , pAcquireTimeouts( pAcquireTimeouts_ ) , releaseCount( releaseCount_ ) , pReleaseSyncs( pReleaseSyncs_ ) , pReleaseKeys( pReleaseKeys_ ) { } Win32KeyedMutexAcquireReleaseInfoKHR( VkWin32KeyedMutexAcquireReleaseInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( Win32KeyedMutexAcquireReleaseInfoKHR ) ); } Win32KeyedMutexAcquireReleaseInfoKHR& operator=( VkWin32KeyedMutexAcquireReleaseInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( Win32KeyedMutexAcquireReleaseInfoKHR ) ); return *this; } Win32KeyedMutexAcquireReleaseInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } Win32KeyedMutexAcquireReleaseInfoKHR& setAcquireCount( uint32_t acquireCount_ ) { acquireCount = acquireCount_; return *this; } Win32KeyedMutexAcquireReleaseInfoKHR& setPAcquireSyncs( const DeviceMemory* pAcquireSyncs_ ) { pAcquireSyncs = pAcquireSyncs_; return *this; } Win32KeyedMutexAcquireReleaseInfoKHR& setPAcquireKeys( const uint64_t* pAcquireKeys_ ) { pAcquireKeys = pAcquireKeys_; return *this; } Win32KeyedMutexAcquireReleaseInfoKHR& setPAcquireTimeouts( const uint32_t* pAcquireTimeouts_ ) { pAcquireTimeouts = pAcquireTimeouts_; return *this; } Win32KeyedMutexAcquireReleaseInfoKHR& setReleaseCount( uint32_t releaseCount_ ) { releaseCount = releaseCount_; return *this; } Win32KeyedMutexAcquireReleaseInfoKHR& setPReleaseSyncs( const DeviceMemory* pReleaseSyncs_ ) { pReleaseSyncs = pReleaseSyncs_; return *this; } Win32KeyedMutexAcquireReleaseInfoKHR& setPReleaseKeys( const uint64_t* pReleaseKeys_ ) { pReleaseKeys = pReleaseKeys_; return *this; } operator const VkWin32KeyedMutexAcquireReleaseInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( Win32KeyedMutexAcquireReleaseInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( acquireCount == rhs.acquireCount ) && ( pAcquireSyncs == rhs.pAcquireSyncs ) && ( pAcquireKeys == rhs.pAcquireKeys ) && ( pAcquireTimeouts == rhs.pAcquireTimeouts ) && ( releaseCount == rhs.releaseCount ) && ( pReleaseSyncs == rhs.pReleaseSyncs ) && ( pReleaseKeys == rhs.pReleaseKeys ); } bool operator!=( Win32KeyedMutexAcquireReleaseInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t acquireCount; const DeviceMemory* pAcquireSyncs; const uint64_t* pAcquireKeys; const uint32_t* pAcquireTimeouts; uint32_t releaseCount; const DeviceMemory* pReleaseSyncs; const uint64_t* pReleaseKeys; }; static_assert( sizeof( Win32KeyedMutexAcquireReleaseInfoKHR ) == sizeof( VkWin32KeyedMutexAcquireReleaseInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR struct ExportSemaphoreWin32HandleInfoKHR { ExportSemaphoreWin32HandleInfoKHR( const SECURITY_ATTRIBUTES* pAttributes_ = nullptr, DWORD dwAccess_ = 0, LPCWSTR name_ = 0 ) : sType( StructureType::eExportSemaphoreWin32HandleInfoKHR ) , pNext( nullptr ) , pAttributes( pAttributes_ ) , dwAccess( dwAccess_ ) , name( name_ ) { } ExportSemaphoreWin32HandleInfoKHR( VkExportSemaphoreWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportSemaphoreWin32HandleInfoKHR ) ); } ExportSemaphoreWin32HandleInfoKHR& operator=( VkExportSemaphoreWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportSemaphoreWin32HandleInfoKHR ) ); return *this; } ExportSemaphoreWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExportSemaphoreWin32HandleInfoKHR& setPAttributes( const SECURITY_ATTRIBUTES* pAttributes_ ) { pAttributes = pAttributes_; return *this; } ExportSemaphoreWin32HandleInfoKHR& setDwAccess( DWORD dwAccess_ ) { dwAccess = dwAccess_; return *this; } ExportSemaphoreWin32HandleInfoKHR& setName( LPCWSTR name_ ) { name = name_; return *this; } operator const VkExportSemaphoreWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ExportSemaphoreWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( pAttributes == rhs.pAttributes ) && ( dwAccess == rhs.dwAccess ) && ( name == rhs.name ); } bool operator!=( ExportSemaphoreWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; const SECURITY_ATTRIBUTES* pAttributes; DWORD dwAccess; LPCWSTR name; }; static_assert( sizeof( ExportSemaphoreWin32HandleInfoKHR ) == sizeof( VkExportSemaphoreWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR struct D3D12FenceSubmitInfoKHR { D3D12FenceSubmitInfoKHR( uint32_t waitSemaphoreValuesCount_ = 0, const uint64_t* pWaitSemaphoreValues_ = nullptr, uint32_t signalSemaphoreValuesCount_ = 0, const uint64_t* pSignalSemaphoreValues_ = nullptr ) : sType( StructureType::eD3D12FenceSubmitInfoKHR ) , pNext( nullptr ) , waitSemaphoreValuesCount( waitSemaphoreValuesCount_ ) , pWaitSemaphoreValues( pWaitSemaphoreValues_ ) , signalSemaphoreValuesCount( signalSemaphoreValuesCount_ ) , pSignalSemaphoreValues( pSignalSemaphoreValues_ ) { } D3D12FenceSubmitInfoKHR( VkD3D12FenceSubmitInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( D3D12FenceSubmitInfoKHR ) ); } D3D12FenceSubmitInfoKHR& operator=( VkD3D12FenceSubmitInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( D3D12FenceSubmitInfoKHR ) ); return *this; } D3D12FenceSubmitInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } D3D12FenceSubmitInfoKHR& setWaitSemaphoreValuesCount( uint32_t waitSemaphoreValuesCount_ ) { waitSemaphoreValuesCount = waitSemaphoreValuesCount_; return *this; } D3D12FenceSubmitInfoKHR& setPWaitSemaphoreValues( const uint64_t* pWaitSemaphoreValues_ ) { pWaitSemaphoreValues = pWaitSemaphoreValues_; return *this; } D3D12FenceSubmitInfoKHR& setSignalSemaphoreValuesCount( uint32_t signalSemaphoreValuesCount_ ) { signalSemaphoreValuesCount = signalSemaphoreValuesCount_; return *this; } D3D12FenceSubmitInfoKHR& setPSignalSemaphoreValues( const uint64_t* pSignalSemaphoreValues_ ) { pSignalSemaphoreValues = pSignalSemaphoreValues_; return *this; } operator const VkD3D12FenceSubmitInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( D3D12FenceSubmitInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( waitSemaphoreValuesCount == rhs.waitSemaphoreValuesCount ) && ( pWaitSemaphoreValues == rhs.pWaitSemaphoreValues ) && ( signalSemaphoreValuesCount == rhs.signalSemaphoreValuesCount ) && ( pSignalSemaphoreValues == rhs.pSignalSemaphoreValues ); } bool operator!=( D3D12FenceSubmitInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t waitSemaphoreValuesCount; const uint64_t* pWaitSemaphoreValues; uint32_t signalSemaphoreValuesCount; const uint64_t* pSignalSemaphoreValues; }; static_assert( sizeof( D3D12FenceSubmitInfoKHR ) == sizeof( VkD3D12FenceSubmitInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR struct ExportFenceWin32HandleInfoKHR { ExportFenceWin32HandleInfoKHR( const SECURITY_ATTRIBUTES* pAttributes_ = nullptr, DWORD dwAccess_ = 0, LPCWSTR name_ = 0 ) : sType( StructureType::eExportFenceWin32HandleInfoKHR ) , pNext( nullptr ) , pAttributes( pAttributes_ ) , dwAccess( dwAccess_ ) , name( name_ ) { } ExportFenceWin32HandleInfoKHR( VkExportFenceWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportFenceWin32HandleInfoKHR ) ); } ExportFenceWin32HandleInfoKHR& operator=( VkExportFenceWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportFenceWin32HandleInfoKHR ) ); return *this; } ExportFenceWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExportFenceWin32HandleInfoKHR& setPAttributes( const SECURITY_ATTRIBUTES* pAttributes_ ) { pAttributes = pAttributes_; return *this; } ExportFenceWin32HandleInfoKHR& setDwAccess( DWORD dwAccess_ ) { dwAccess = dwAccess_; return *this; } ExportFenceWin32HandleInfoKHR& setName( LPCWSTR name_ ) { name = name_; return *this; } operator const VkExportFenceWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ExportFenceWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( pAttributes == rhs.pAttributes ) && ( dwAccess == rhs.dwAccess ) && ( name == rhs.name ); } bool operator!=( ExportFenceWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; const SECURITY_ATTRIBUTES* pAttributes; DWORD dwAccess; LPCWSTR name; }; static_assert( sizeof( ExportFenceWin32HandleInfoKHR ) == sizeof( VkExportFenceWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ struct PhysicalDeviceMultiviewFeaturesKHX { PhysicalDeviceMultiviewFeaturesKHX( Bool32 multiview_ = 0, Bool32 multiviewGeometryShader_ = 0, Bool32 multiviewTessellationShader_ = 0 ) : sType( StructureType::ePhysicalDeviceMultiviewFeaturesKHX ) , pNext( nullptr ) , multiview( multiview_ ) , multiviewGeometryShader( multiviewGeometryShader_ ) , multiviewTessellationShader( multiviewTessellationShader_ ) { } PhysicalDeviceMultiviewFeaturesKHX( VkPhysicalDeviceMultiviewFeaturesKHX const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceMultiviewFeaturesKHX ) ); } PhysicalDeviceMultiviewFeaturesKHX& operator=( VkPhysicalDeviceMultiviewFeaturesKHX const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceMultiviewFeaturesKHX ) ); return *this; } PhysicalDeviceMultiviewFeaturesKHX& setPNext( void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceMultiviewFeaturesKHX& setMultiview( Bool32 multiview_ ) { multiview = multiview_; return *this; } PhysicalDeviceMultiviewFeaturesKHX& setMultiviewGeometryShader( Bool32 multiviewGeometryShader_ ) { multiviewGeometryShader = multiviewGeometryShader_; return *this; } PhysicalDeviceMultiviewFeaturesKHX& setMultiviewTessellationShader( Bool32 multiviewTessellationShader_ ) { multiviewTessellationShader = multiviewTessellationShader_; return *this; } operator const VkPhysicalDeviceMultiviewFeaturesKHX&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceMultiviewFeaturesKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( multiview == rhs.multiview ) && ( multiviewGeometryShader == rhs.multiviewGeometryShader ) && ( multiviewTessellationShader == rhs.multiviewTessellationShader ); } bool operator!=( PhysicalDeviceMultiviewFeaturesKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; Bool32 multiview; Bool32 multiviewGeometryShader; Bool32 multiviewTessellationShader; }; static_assert( sizeof( PhysicalDeviceMultiviewFeaturesKHX ) == sizeof( VkPhysicalDeviceMultiviewFeaturesKHX ), "struct and wrapper have different size!" ); struct PhysicalDeviceMultiviewPropertiesKHX { operator const VkPhysicalDeviceMultiviewPropertiesKHX&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceMultiviewPropertiesKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( maxMultiviewViewCount == rhs.maxMultiviewViewCount ) && ( maxMultiviewInstanceIndex == rhs.maxMultiviewInstanceIndex ); } bool operator!=( PhysicalDeviceMultiviewPropertiesKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint32_t maxMultiviewViewCount; uint32_t maxMultiviewInstanceIndex; }; static_assert( sizeof( PhysicalDeviceMultiviewPropertiesKHX ) == sizeof( VkPhysicalDeviceMultiviewPropertiesKHX ), "struct and wrapper have different size!" ); struct RenderPassMultiviewCreateInfoKHX { RenderPassMultiviewCreateInfoKHX( uint32_t subpassCount_ = 0, const uint32_t* pViewMasks_ = nullptr, uint32_t dependencyCount_ = 0, const int32_t* pViewOffsets_ = nullptr, uint32_t correlationMaskCount_ = 0, const uint32_t* pCorrelationMasks_ = nullptr ) : sType( StructureType::eRenderPassMultiviewCreateInfoKHX ) , pNext( nullptr ) , subpassCount( subpassCount_ ) , pViewMasks( pViewMasks_ ) , dependencyCount( dependencyCount_ ) , pViewOffsets( pViewOffsets_ ) , correlationMaskCount( correlationMaskCount_ ) , pCorrelationMasks( pCorrelationMasks_ ) { } RenderPassMultiviewCreateInfoKHX( VkRenderPassMultiviewCreateInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( RenderPassMultiviewCreateInfoKHX ) ); } RenderPassMultiviewCreateInfoKHX& operator=( VkRenderPassMultiviewCreateInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( RenderPassMultiviewCreateInfoKHX ) ); return *this; } RenderPassMultiviewCreateInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } RenderPassMultiviewCreateInfoKHX& setSubpassCount( uint32_t subpassCount_ ) { subpassCount = subpassCount_; return *this; } RenderPassMultiviewCreateInfoKHX& setPViewMasks( const uint32_t* pViewMasks_ ) { pViewMasks = pViewMasks_; return *this; } RenderPassMultiviewCreateInfoKHX& setDependencyCount( uint32_t dependencyCount_ ) { dependencyCount = dependencyCount_; return *this; } RenderPassMultiviewCreateInfoKHX& setPViewOffsets( const int32_t* pViewOffsets_ ) { pViewOffsets = pViewOffsets_; return *this; } RenderPassMultiviewCreateInfoKHX& setCorrelationMaskCount( uint32_t correlationMaskCount_ ) { correlationMaskCount = correlationMaskCount_; return *this; } RenderPassMultiviewCreateInfoKHX& setPCorrelationMasks( const uint32_t* pCorrelationMasks_ ) { pCorrelationMasks = pCorrelationMasks_; return *this; } operator const VkRenderPassMultiviewCreateInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( RenderPassMultiviewCreateInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( subpassCount == rhs.subpassCount ) && ( pViewMasks == rhs.pViewMasks ) && ( dependencyCount == rhs.dependencyCount ) && ( pViewOffsets == rhs.pViewOffsets ) && ( correlationMaskCount == rhs.correlationMaskCount ) && ( pCorrelationMasks == rhs.pCorrelationMasks ); } bool operator!=( RenderPassMultiviewCreateInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t subpassCount; const uint32_t* pViewMasks; uint32_t dependencyCount; const int32_t* pViewOffsets; uint32_t correlationMaskCount; const uint32_t* pCorrelationMasks; }; static_assert( sizeof( RenderPassMultiviewCreateInfoKHX ) == sizeof( VkRenderPassMultiviewCreateInfoKHX ), "struct and wrapper have different size!" ); struct BindBufferMemoryInfoKHX { BindBufferMemoryInfoKHX( Buffer buffer_ = Buffer(), DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0, uint32_t deviceIndexCount_ = 0, const uint32_t* pDeviceIndices_ = nullptr ) : sType( StructureType::eBindBufferMemoryInfoKHX ) , pNext( nullptr ) , buffer( buffer_ ) , memory( memory_ ) , memoryOffset( memoryOffset_ ) , deviceIndexCount( deviceIndexCount_ ) , pDeviceIndices( pDeviceIndices_ ) { } BindBufferMemoryInfoKHX( VkBindBufferMemoryInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( BindBufferMemoryInfoKHX ) ); } BindBufferMemoryInfoKHX& operator=( VkBindBufferMemoryInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( BindBufferMemoryInfoKHX ) ); return *this; } BindBufferMemoryInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BindBufferMemoryInfoKHX& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } BindBufferMemoryInfoKHX& setMemory( DeviceMemory memory_ ) { memory = memory_; return *this; } BindBufferMemoryInfoKHX& setMemoryOffset( DeviceSize memoryOffset_ ) { memoryOffset = memoryOffset_; return *this; } BindBufferMemoryInfoKHX& setDeviceIndexCount( uint32_t deviceIndexCount_ ) { deviceIndexCount = deviceIndexCount_; return *this; } BindBufferMemoryInfoKHX& setPDeviceIndices( const uint32_t* pDeviceIndices_ ) { pDeviceIndices = pDeviceIndices_; return *this; } operator const VkBindBufferMemoryInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( BindBufferMemoryInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( buffer == rhs.buffer ) && ( memory == rhs.memory ) && ( memoryOffset == rhs.memoryOffset ) && ( deviceIndexCount == rhs.deviceIndexCount ) && ( pDeviceIndices == rhs.pDeviceIndices ); } bool operator!=( BindBufferMemoryInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Buffer buffer; DeviceMemory memory; DeviceSize memoryOffset; uint32_t deviceIndexCount; const uint32_t* pDeviceIndices; }; static_assert( sizeof( BindBufferMemoryInfoKHX ) == sizeof( VkBindBufferMemoryInfoKHX ), "struct and wrapper have different size!" ); struct BindImageMemoryInfoKHX { BindImageMemoryInfoKHX( Image image_ = Image(), DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0, uint32_t deviceIndexCount_ = 0, const uint32_t* pDeviceIndices_ = nullptr, uint32_t SFRRectCount_ = 0, const Rect2D* pSFRRects_ = nullptr ) : sType( StructureType::eBindImageMemoryInfoKHX ) , pNext( nullptr ) , image( image_ ) , memory( memory_ ) , memoryOffset( memoryOffset_ ) , deviceIndexCount( deviceIndexCount_ ) , pDeviceIndices( pDeviceIndices_ ) , SFRRectCount( SFRRectCount_ ) , pSFRRects( pSFRRects_ ) { } BindImageMemoryInfoKHX( VkBindImageMemoryInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( BindImageMemoryInfoKHX ) ); } BindImageMemoryInfoKHX& operator=( VkBindImageMemoryInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( BindImageMemoryInfoKHX ) ); return *this; } BindImageMemoryInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BindImageMemoryInfoKHX& setImage( Image image_ ) { image = image_; return *this; } BindImageMemoryInfoKHX& setMemory( DeviceMemory memory_ ) { memory = memory_; return *this; } BindImageMemoryInfoKHX& setMemoryOffset( DeviceSize memoryOffset_ ) { memoryOffset = memoryOffset_; return *this; } BindImageMemoryInfoKHX& setDeviceIndexCount( uint32_t deviceIndexCount_ ) { deviceIndexCount = deviceIndexCount_; return *this; } BindImageMemoryInfoKHX& setPDeviceIndices( const uint32_t* pDeviceIndices_ ) { pDeviceIndices = pDeviceIndices_; return *this; } BindImageMemoryInfoKHX& setSFRRectCount( uint32_t SFRRectCount_ ) { SFRRectCount = SFRRectCount_; return *this; } BindImageMemoryInfoKHX& setPSFRRects( const Rect2D* pSFRRects_ ) { pSFRRects = pSFRRects_; return *this; } operator const VkBindImageMemoryInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( BindImageMemoryInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( image == rhs.image ) && ( memory == rhs.memory ) && ( memoryOffset == rhs.memoryOffset ) && ( deviceIndexCount == rhs.deviceIndexCount ) && ( pDeviceIndices == rhs.pDeviceIndices ) && ( SFRRectCount == rhs.SFRRectCount ) && ( pSFRRects == rhs.pSFRRects ); } bool operator!=( BindImageMemoryInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Image image; DeviceMemory memory; DeviceSize memoryOffset; uint32_t deviceIndexCount; const uint32_t* pDeviceIndices; uint32_t SFRRectCount; const Rect2D* pSFRRects; }; static_assert( sizeof( BindImageMemoryInfoKHX ) == sizeof( VkBindImageMemoryInfoKHX ), "struct and wrapper have different size!" ); struct DeviceGroupRenderPassBeginInfoKHX { DeviceGroupRenderPassBeginInfoKHX( uint32_t deviceMask_ = 0, uint32_t deviceRenderAreaCount_ = 0, const Rect2D* pDeviceRenderAreas_ = nullptr ) : sType( StructureType::eDeviceGroupRenderPassBeginInfoKHX ) , pNext( nullptr ) , deviceMask( deviceMask_ ) , deviceRenderAreaCount( deviceRenderAreaCount_ ) , pDeviceRenderAreas( pDeviceRenderAreas_ ) { } DeviceGroupRenderPassBeginInfoKHX( VkDeviceGroupRenderPassBeginInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupRenderPassBeginInfoKHX ) ); } DeviceGroupRenderPassBeginInfoKHX& operator=( VkDeviceGroupRenderPassBeginInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupRenderPassBeginInfoKHX ) ); return *this; } DeviceGroupRenderPassBeginInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGroupRenderPassBeginInfoKHX& setDeviceMask( uint32_t deviceMask_ ) { deviceMask = deviceMask_; return *this; } DeviceGroupRenderPassBeginInfoKHX& setDeviceRenderAreaCount( uint32_t deviceRenderAreaCount_ ) { deviceRenderAreaCount = deviceRenderAreaCount_; return *this; } DeviceGroupRenderPassBeginInfoKHX& setPDeviceRenderAreas( const Rect2D* pDeviceRenderAreas_ ) { pDeviceRenderAreas = pDeviceRenderAreas_; return *this; } operator const VkDeviceGroupRenderPassBeginInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGroupRenderPassBeginInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( deviceMask == rhs.deviceMask ) && ( deviceRenderAreaCount == rhs.deviceRenderAreaCount ) && ( pDeviceRenderAreas == rhs.pDeviceRenderAreas ); } bool operator!=( DeviceGroupRenderPassBeginInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t deviceMask; uint32_t deviceRenderAreaCount; const Rect2D* pDeviceRenderAreas; }; static_assert( sizeof( DeviceGroupRenderPassBeginInfoKHX ) == sizeof( VkDeviceGroupRenderPassBeginInfoKHX ), "struct and wrapper have different size!" ); struct DeviceGroupCommandBufferBeginInfoKHX { DeviceGroupCommandBufferBeginInfoKHX( uint32_t deviceMask_ = 0 ) : sType( StructureType::eDeviceGroupCommandBufferBeginInfoKHX ) , pNext( nullptr ) , deviceMask( deviceMask_ ) { } DeviceGroupCommandBufferBeginInfoKHX( VkDeviceGroupCommandBufferBeginInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupCommandBufferBeginInfoKHX ) ); } DeviceGroupCommandBufferBeginInfoKHX& operator=( VkDeviceGroupCommandBufferBeginInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupCommandBufferBeginInfoKHX ) ); return *this; } DeviceGroupCommandBufferBeginInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGroupCommandBufferBeginInfoKHX& setDeviceMask( uint32_t deviceMask_ ) { deviceMask = deviceMask_; return *this; } operator const VkDeviceGroupCommandBufferBeginInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGroupCommandBufferBeginInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( deviceMask == rhs.deviceMask ); } bool operator!=( DeviceGroupCommandBufferBeginInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t deviceMask; }; static_assert( sizeof( DeviceGroupCommandBufferBeginInfoKHX ) == sizeof( VkDeviceGroupCommandBufferBeginInfoKHX ), "struct and wrapper have different size!" ); struct DeviceGroupSubmitInfoKHX { DeviceGroupSubmitInfoKHX( uint32_t waitSemaphoreCount_ = 0, const uint32_t* pWaitSemaphoreDeviceIndices_ = nullptr, uint32_t commandBufferCount_ = 0, const uint32_t* pCommandBufferDeviceMasks_ = nullptr, uint32_t signalSemaphoreCount_ = 0, const uint32_t* pSignalSemaphoreDeviceIndices_ = nullptr ) : sType( StructureType::eDeviceGroupSubmitInfoKHX ) , pNext( nullptr ) , waitSemaphoreCount( waitSemaphoreCount_ ) , pWaitSemaphoreDeviceIndices( pWaitSemaphoreDeviceIndices_ ) , commandBufferCount( commandBufferCount_ ) , pCommandBufferDeviceMasks( pCommandBufferDeviceMasks_ ) , signalSemaphoreCount( signalSemaphoreCount_ ) , pSignalSemaphoreDeviceIndices( pSignalSemaphoreDeviceIndices_ ) { } DeviceGroupSubmitInfoKHX( VkDeviceGroupSubmitInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupSubmitInfoKHX ) ); } DeviceGroupSubmitInfoKHX& operator=( VkDeviceGroupSubmitInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupSubmitInfoKHX ) ); return *this; } DeviceGroupSubmitInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGroupSubmitInfoKHX& setWaitSemaphoreCount( uint32_t waitSemaphoreCount_ ) { waitSemaphoreCount = waitSemaphoreCount_; return *this; } DeviceGroupSubmitInfoKHX& setPWaitSemaphoreDeviceIndices( const uint32_t* pWaitSemaphoreDeviceIndices_ ) { pWaitSemaphoreDeviceIndices = pWaitSemaphoreDeviceIndices_; return *this; } DeviceGroupSubmitInfoKHX& setCommandBufferCount( uint32_t commandBufferCount_ ) { commandBufferCount = commandBufferCount_; return *this; } DeviceGroupSubmitInfoKHX& setPCommandBufferDeviceMasks( const uint32_t* pCommandBufferDeviceMasks_ ) { pCommandBufferDeviceMasks = pCommandBufferDeviceMasks_; return *this; } DeviceGroupSubmitInfoKHX& setSignalSemaphoreCount( uint32_t signalSemaphoreCount_ ) { signalSemaphoreCount = signalSemaphoreCount_; return *this; } DeviceGroupSubmitInfoKHX& setPSignalSemaphoreDeviceIndices( const uint32_t* pSignalSemaphoreDeviceIndices_ ) { pSignalSemaphoreDeviceIndices = pSignalSemaphoreDeviceIndices_; return *this; } operator const VkDeviceGroupSubmitInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGroupSubmitInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( waitSemaphoreCount == rhs.waitSemaphoreCount ) && ( pWaitSemaphoreDeviceIndices == rhs.pWaitSemaphoreDeviceIndices ) && ( commandBufferCount == rhs.commandBufferCount ) && ( pCommandBufferDeviceMasks == rhs.pCommandBufferDeviceMasks ) && ( signalSemaphoreCount == rhs.signalSemaphoreCount ) && ( pSignalSemaphoreDeviceIndices == rhs.pSignalSemaphoreDeviceIndices ); } bool operator!=( DeviceGroupSubmitInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t waitSemaphoreCount; const uint32_t* pWaitSemaphoreDeviceIndices; uint32_t commandBufferCount; const uint32_t* pCommandBufferDeviceMasks; uint32_t signalSemaphoreCount; const uint32_t* pSignalSemaphoreDeviceIndices; }; static_assert( sizeof( DeviceGroupSubmitInfoKHX ) == sizeof( VkDeviceGroupSubmitInfoKHX ), "struct and wrapper have different size!" ); struct DeviceGroupBindSparseInfoKHX { DeviceGroupBindSparseInfoKHX( uint32_t resourceDeviceIndex_ = 0, uint32_t memoryDeviceIndex_ = 0 ) : sType( StructureType::eDeviceGroupBindSparseInfoKHX ) , pNext( nullptr ) , resourceDeviceIndex( resourceDeviceIndex_ ) , memoryDeviceIndex( memoryDeviceIndex_ ) { } DeviceGroupBindSparseInfoKHX( VkDeviceGroupBindSparseInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupBindSparseInfoKHX ) ); } DeviceGroupBindSparseInfoKHX& operator=( VkDeviceGroupBindSparseInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupBindSparseInfoKHX ) ); return *this; } DeviceGroupBindSparseInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGroupBindSparseInfoKHX& setResourceDeviceIndex( uint32_t resourceDeviceIndex_ ) { resourceDeviceIndex = resourceDeviceIndex_; return *this; } DeviceGroupBindSparseInfoKHX& setMemoryDeviceIndex( uint32_t memoryDeviceIndex_ ) { memoryDeviceIndex = memoryDeviceIndex_; return *this; } operator const VkDeviceGroupBindSparseInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGroupBindSparseInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( resourceDeviceIndex == rhs.resourceDeviceIndex ) && ( memoryDeviceIndex == rhs.memoryDeviceIndex ); } bool operator!=( DeviceGroupBindSparseInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t resourceDeviceIndex; uint32_t memoryDeviceIndex; }; static_assert( sizeof( DeviceGroupBindSparseInfoKHX ) == sizeof( VkDeviceGroupBindSparseInfoKHX ), "struct and wrapper have different size!" ); struct ImageSwapchainCreateInfoKHX { ImageSwapchainCreateInfoKHX( SwapchainKHR swapchain_ = SwapchainKHR() ) : sType( StructureType::eImageSwapchainCreateInfoKHX ) , pNext( nullptr ) , swapchain( swapchain_ ) { } ImageSwapchainCreateInfoKHX( VkImageSwapchainCreateInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( ImageSwapchainCreateInfoKHX ) ); } ImageSwapchainCreateInfoKHX& operator=( VkImageSwapchainCreateInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( ImageSwapchainCreateInfoKHX ) ); return *this; } ImageSwapchainCreateInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImageSwapchainCreateInfoKHX& setSwapchain( SwapchainKHR swapchain_ ) { swapchain = swapchain_; return *this; } operator const VkImageSwapchainCreateInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( ImageSwapchainCreateInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( swapchain == rhs.swapchain ); } bool operator!=( ImageSwapchainCreateInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SwapchainKHR swapchain; }; static_assert( sizeof( ImageSwapchainCreateInfoKHX ) == sizeof( VkImageSwapchainCreateInfoKHX ), "struct and wrapper have different size!" ); struct BindImageMemorySwapchainInfoKHX { BindImageMemorySwapchainInfoKHX( SwapchainKHR swapchain_ = SwapchainKHR(), uint32_t imageIndex_ = 0 ) : sType( StructureType::eBindImageMemorySwapchainInfoKHX ) , pNext( nullptr ) , swapchain( swapchain_ ) , imageIndex( imageIndex_ ) { } BindImageMemorySwapchainInfoKHX( VkBindImageMemorySwapchainInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( BindImageMemorySwapchainInfoKHX ) ); } BindImageMemorySwapchainInfoKHX& operator=( VkBindImageMemorySwapchainInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( BindImageMemorySwapchainInfoKHX ) ); return *this; } BindImageMemorySwapchainInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BindImageMemorySwapchainInfoKHX& setSwapchain( SwapchainKHR swapchain_ ) { swapchain = swapchain_; return *this; } BindImageMemorySwapchainInfoKHX& setImageIndex( uint32_t imageIndex_ ) { imageIndex = imageIndex_; return *this; } operator const VkBindImageMemorySwapchainInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( BindImageMemorySwapchainInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( swapchain == rhs.swapchain ) && ( imageIndex == rhs.imageIndex ); } bool operator!=( BindImageMemorySwapchainInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SwapchainKHR swapchain; uint32_t imageIndex; }; static_assert( sizeof( BindImageMemorySwapchainInfoKHX ) == sizeof( VkBindImageMemorySwapchainInfoKHX ), "struct and wrapper have different size!" ); struct AcquireNextImageInfoKHX { AcquireNextImageInfoKHX( SwapchainKHR swapchain_ = SwapchainKHR(), uint64_t timeout_ = 0, Semaphore semaphore_ = Semaphore(), Fence fence_ = Fence(), uint32_t deviceMask_ = 0 ) : sType( StructureType::eAcquireNextImageInfoKHX ) , pNext( nullptr ) , swapchain( swapchain_ ) , timeout( timeout_ ) , semaphore( semaphore_ ) , fence( fence_ ) , deviceMask( deviceMask_ ) { } AcquireNextImageInfoKHX( VkAcquireNextImageInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( AcquireNextImageInfoKHX ) ); } AcquireNextImageInfoKHX& operator=( VkAcquireNextImageInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( AcquireNextImageInfoKHX ) ); return *this; } AcquireNextImageInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } AcquireNextImageInfoKHX& setSwapchain( SwapchainKHR swapchain_ ) { swapchain = swapchain_; return *this; } AcquireNextImageInfoKHX& setTimeout( uint64_t timeout_ ) { timeout = timeout_; return *this; } AcquireNextImageInfoKHX& setSemaphore( Semaphore semaphore_ ) { semaphore = semaphore_; return *this; } AcquireNextImageInfoKHX& setFence( Fence fence_ ) { fence = fence_; return *this; } AcquireNextImageInfoKHX& setDeviceMask( uint32_t deviceMask_ ) { deviceMask = deviceMask_; return *this; } operator const VkAcquireNextImageInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( AcquireNextImageInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( swapchain == rhs.swapchain ) && ( timeout == rhs.timeout ) && ( semaphore == rhs.semaphore ) && ( fence == rhs.fence ) && ( deviceMask == rhs.deviceMask ); } bool operator!=( AcquireNextImageInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SwapchainKHR swapchain; uint64_t timeout; Semaphore semaphore; Fence fence; uint32_t deviceMask; }; static_assert( sizeof( AcquireNextImageInfoKHX ) == sizeof( VkAcquireNextImageInfoKHX ), "struct and wrapper have different size!" ); struct HdrMetadataEXT { HdrMetadataEXT( XYColorEXT displayPrimaryRed_ = XYColorEXT(), XYColorEXT displayPrimaryGreen_ = XYColorEXT(), XYColorEXT displayPrimaryBlue_ = XYColorEXT(), XYColorEXT whitePoint_ = XYColorEXT(), float maxLuminance_ = 0, float minLuminance_ = 0, float maxContentLightLevel_ = 0, float maxFrameAverageLightLevel_ = 0 ) : sType( StructureType::eHdrMetadataEXT ) , pNext( nullptr ) , displayPrimaryRed( displayPrimaryRed_ ) , displayPrimaryGreen( displayPrimaryGreen_ ) , displayPrimaryBlue( displayPrimaryBlue_ ) , whitePoint( whitePoint_ ) , maxLuminance( maxLuminance_ ) , minLuminance( minLuminance_ ) , maxContentLightLevel( maxContentLightLevel_ ) , maxFrameAverageLightLevel( maxFrameAverageLightLevel_ ) { } HdrMetadataEXT( VkHdrMetadataEXT const & rhs ) { memcpy( this, &rhs, sizeof( HdrMetadataEXT ) ); } HdrMetadataEXT& operator=( VkHdrMetadataEXT const & rhs ) { memcpy( this, &rhs, sizeof( HdrMetadataEXT ) ); return *this; } HdrMetadataEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } HdrMetadataEXT& setDisplayPrimaryRed( XYColorEXT displayPrimaryRed_ ) { displayPrimaryRed = displayPrimaryRed_; return *this; } HdrMetadataEXT& setDisplayPrimaryGreen( XYColorEXT displayPrimaryGreen_ ) { displayPrimaryGreen = displayPrimaryGreen_; return *this; } HdrMetadataEXT& setDisplayPrimaryBlue( XYColorEXT displayPrimaryBlue_ ) { displayPrimaryBlue = displayPrimaryBlue_; return *this; } HdrMetadataEXT& setWhitePoint( XYColorEXT whitePoint_ ) { whitePoint = whitePoint_; return *this; } HdrMetadataEXT& setMaxLuminance( float maxLuminance_ ) { maxLuminance = maxLuminance_; return *this; } HdrMetadataEXT& setMinLuminance( float minLuminance_ ) { minLuminance = minLuminance_; return *this; } HdrMetadataEXT& setMaxContentLightLevel( float maxContentLightLevel_ ) { maxContentLightLevel = maxContentLightLevel_; return *this; } HdrMetadataEXT& setMaxFrameAverageLightLevel( float maxFrameAverageLightLevel_ ) { maxFrameAverageLightLevel = maxFrameAverageLightLevel_; return *this; } operator const VkHdrMetadataEXT&() const { return *reinterpret_cast(this); } bool operator==( HdrMetadataEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( displayPrimaryRed == rhs.displayPrimaryRed ) && ( displayPrimaryGreen == rhs.displayPrimaryGreen ) && ( displayPrimaryBlue == rhs.displayPrimaryBlue ) && ( whitePoint == rhs.whitePoint ) && ( maxLuminance == rhs.maxLuminance ) && ( minLuminance == rhs.minLuminance ) && ( maxContentLightLevel == rhs.maxContentLightLevel ) && ( maxFrameAverageLightLevel == rhs.maxFrameAverageLightLevel ); } bool operator!=( HdrMetadataEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; XYColorEXT displayPrimaryRed; XYColorEXT displayPrimaryGreen; XYColorEXT displayPrimaryBlue; XYColorEXT whitePoint; float maxLuminance; float minLuminance; float maxContentLightLevel; float maxFrameAverageLightLevel; }; static_assert( sizeof( HdrMetadataEXT ) == sizeof( VkHdrMetadataEXT ), "struct and wrapper have different size!" ); struct PresentTimesInfoGOOGLE { PresentTimesInfoGOOGLE( uint32_t swapchainCount_ = 0, const PresentTimeGOOGLE* pTimes_ = nullptr ) : sType( StructureType::ePresentTimesInfoGOOGLE ) , pNext( nullptr ) , swapchainCount( swapchainCount_ ) , pTimes( pTimes_ ) { } PresentTimesInfoGOOGLE( VkPresentTimesInfoGOOGLE const & rhs ) { memcpy( this, &rhs, sizeof( PresentTimesInfoGOOGLE ) ); } PresentTimesInfoGOOGLE& operator=( VkPresentTimesInfoGOOGLE const & rhs ) { memcpy( this, &rhs, sizeof( PresentTimesInfoGOOGLE ) ); return *this; } PresentTimesInfoGOOGLE& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PresentTimesInfoGOOGLE& setSwapchainCount( uint32_t swapchainCount_ ) { swapchainCount = swapchainCount_; return *this; } PresentTimesInfoGOOGLE& setPTimes( const PresentTimeGOOGLE* pTimes_ ) { pTimes = pTimes_; return *this; } operator const VkPresentTimesInfoGOOGLE&() const { return *reinterpret_cast(this); } bool operator==( PresentTimesInfoGOOGLE const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( swapchainCount == rhs.swapchainCount ) && ( pTimes == rhs.pTimes ); } bool operator!=( PresentTimesInfoGOOGLE const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t swapchainCount; const PresentTimeGOOGLE* pTimes; }; static_assert( sizeof( PresentTimesInfoGOOGLE ) == sizeof( VkPresentTimesInfoGOOGLE ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_IOS_MVK struct IOSSurfaceCreateInfoMVK { IOSSurfaceCreateInfoMVK( IOSSurfaceCreateFlagsMVK flags_ = IOSSurfaceCreateFlagsMVK(), const void* pView_ = nullptr ) : sType( StructureType::eIOSSurfaceCreateInfoMVK ) , pNext( nullptr ) , flags( flags_ ) , pView( pView_ ) { } IOSSurfaceCreateInfoMVK( VkIOSSurfaceCreateInfoMVK const & rhs ) { memcpy( this, &rhs, sizeof( IOSSurfaceCreateInfoMVK ) ); } IOSSurfaceCreateInfoMVK& operator=( VkIOSSurfaceCreateInfoMVK const & rhs ) { memcpy( this, &rhs, sizeof( IOSSurfaceCreateInfoMVK ) ); return *this; } IOSSurfaceCreateInfoMVK& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } IOSSurfaceCreateInfoMVK& setFlags( IOSSurfaceCreateFlagsMVK flags_ ) { flags = flags_; return *this; } IOSSurfaceCreateInfoMVK& setPView( const void* pView_ ) { pView = pView_; return *this; } operator const VkIOSSurfaceCreateInfoMVK&() const { return *reinterpret_cast(this); } bool operator==( IOSSurfaceCreateInfoMVK const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( pView == rhs.pView ); } bool operator!=( IOSSurfaceCreateInfoMVK const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; IOSSurfaceCreateFlagsMVK flags; const void* pView; }; static_assert( sizeof( IOSSurfaceCreateInfoMVK ) == sizeof( VkIOSSurfaceCreateInfoMVK ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_IOS_MVK*/ #ifdef VK_USE_PLATFORM_MACOS_MVK struct MacOSSurfaceCreateInfoMVK { MacOSSurfaceCreateInfoMVK( MacOSSurfaceCreateFlagsMVK flags_ = MacOSSurfaceCreateFlagsMVK(), const void* pView_ = nullptr ) : sType( StructureType::eMacOSSurfaceCreateInfoMVK ) , pNext( nullptr ) , flags( flags_ ) , pView( pView_ ) { } MacOSSurfaceCreateInfoMVK( VkMacOSSurfaceCreateInfoMVK const & rhs ) { memcpy( this, &rhs, sizeof( MacOSSurfaceCreateInfoMVK ) ); } MacOSSurfaceCreateInfoMVK& operator=( VkMacOSSurfaceCreateInfoMVK const & rhs ) { memcpy( this, &rhs, sizeof( MacOSSurfaceCreateInfoMVK ) ); return *this; } MacOSSurfaceCreateInfoMVK& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MacOSSurfaceCreateInfoMVK& setFlags( MacOSSurfaceCreateFlagsMVK flags_ ) { flags = flags_; return *this; } MacOSSurfaceCreateInfoMVK& setPView( const void* pView_ ) { pView = pView_; return *this; } operator const VkMacOSSurfaceCreateInfoMVK&() const { return *reinterpret_cast(this); } bool operator==( MacOSSurfaceCreateInfoMVK const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( pView == rhs.pView ); } bool operator!=( MacOSSurfaceCreateInfoMVK const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; MacOSSurfaceCreateFlagsMVK flags; const void* pView; }; static_assert( sizeof( MacOSSurfaceCreateInfoMVK ) == sizeof( VkMacOSSurfaceCreateInfoMVK ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_MACOS_MVK*/ struct PipelineViewportWScalingStateCreateInfoNV { PipelineViewportWScalingStateCreateInfoNV( Bool32 viewportWScalingEnable_ = 0, uint32_t viewportCount_ = 0, const ViewportWScalingNV* pViewportWScalings_ = nullptr ) : sType( StructureType::ePipelineViewportWScalingStateCreateInfoNV ) , pNext( nullptr ) , viewportWScalingEnable( viewportWScalingEnable_ ) , viewportCount( viewportCount_ ) , pViewportWScalings( pViewportWScalings_ ) { } PipelineViewportWScalingStateCreateInfoNV( VkPipelineViewportWScalingStateCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( PipelineViewportWScalingStateCreateInfoNV ) ); } PipelineViewportWScalingStateCreateInfoNV& operator=( VkPipelineViewportWScalingStateCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( PipelineViewportWScalingStateCreateInfoNV ) ); return *this; } PipelineViewportWScalingStateCreateInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineViewportWScalingStateCreateInfoNV& setViewportWScalingEnable( Bool32 viewportWScalingEnable_ ) { viewportWScalingEnable = viewportWScalingEnable_; return *this; } PipelineViewportWScalingStateCreateInfoNV& setViewportCount( uint32_t viewportCount_ ) { viewportCount = viewportCount_; return *this; } PipelineViewportWScalingStateCreateInfoNV& setPViewportWScalings( const ViewportWScalingNV* pViewportWScalings_ ) { pViewportWScalings = pViewportWScalings_; return *this; } operator const VkPipelineViewportWScalingStateCreateInfoNV&() const { return *reinterpret_cast(this); } bool operator==( PipelineViewportWScalingStateCreateInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( viewportWScalingEnable == rhs.viewportWScalingEnable ) && ( viewportCount == rhs.viewportCount ) && ( pViewportWScalings == rhs.pViewportWScalings ); } bool operator!=( PipelineViewportWScalingStateCreateInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Bool32 viewportWScalingEnable; uint32_t viewportCount; const ViewportWScalingNV* pViewportWScalings; }; static_assert( sizeof( PipelineViewportWScalingStateCreateInfoNV ) == sizeof( VkPipelineViewportWScalingStateCreateInfoNV ), "struct and wrapper have different size!" ); struct PhysicalDeviceDiscardRectanglePropertiesEXT { PhysicalDeviceDiscardRectanglePropertiesEXT( uint32_t maxDiscardRectangles_ = 0 ) : sType( StructureType::ePhysicalDeviceDiscardRectanglePropertiesEXT ) , pNext( nullptr ) , maxDiscardRectangles( maxDiscardRectangles_ ) { } PhysicalDeviceDiscardRectanglePropertiesEXT( VkPhysicalDeviceDiscardRectanglePropertiesEXT const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceDiscardRectanglePropertiesEXT ) ); } PhysicalDeviceDiscardRectanglePropertiesEXT& operator=( VkPhysicalDeviceDiscardRectanglePropertiesEXT const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceDiscardRectanglePropertiesEXT ) ); return *this; } PhysicalDeviceDiscardRectanglePropertiesEXT& setPNext( void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceDiscardRectanglePropertiesEXT& setMaxDiscardRectangles( uint32_t maxDiscardRectangles_ ) { maxDiscardRectangles = maxDiscardRectangles_; return *this; } operator const VkPhysicalDeviceDiscardRectanglePropertiesEXT&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceDiscardRectanglePropertiesEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( maxDiscardRectangles == rhs.maxDiscardRectangles ); } bool operator!=( PhysicalDeviceDiscardRectanglePropertiesEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint32_t maxDiscardRectangles; }; static_assert( sizeof( PhysicalDeviceDiscardRectanglePropertiesEXT ) == sizeof( VkPhysicalDeviceDiscardRectanglePropertiesEXT ), "struct and wrapper have different size!" ); struct PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX { operator const VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( perViewPositionAllComponents == rhs.perViewPositionAllComponents ); } bool operator!=( PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; Bool32 perViewPositionAllComponents; }; static_assert( sizeof( PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX ) == sizeof( VkPhysicalDeviceMultiviewPerViewAttributesPropertiesNVX ), "struct and wrapper have different size!" ); struct PhysicalDeviceSurfaceInfo2KHR { PhysicalDeviceSurfaceInfo2KHR( SurfaceKHR surface_ = SurfaceKHR() ) : sType( StructureType::ePhysicalDeviceSurfaceInfo2KHR ) , pNext( nullptr ) , surface( surface_ ) { } PhysicalDeviceSurfaceInfo2KHR( VkPhysicalDeviceSurfaceInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceSurfaceInfo2KHR ) ); } PhysicalDeviceSurfaceInfo2KHR& operator=( VkPhysicalDeviceSurfaceInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceSurfaceInfo2KHR ) ); return *this; } PhysicalDeviceSurfaceInfo2KHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceSurfaceInfo2KHR& setSurface( SurfaceKHR surface_ ) { surface = surface_; return *this; } operator const VkPhysicalDeviceSurfaceInfo2KHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceSurfaceInfo2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( surface == rhs.surface ); } bool operator!=( PhysicalDeviceSurfaceInfo2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SurfaceKHR surface; }; static_assert( sizeof( PhysicalDeviceSurfaceInfo2KHR ) == sizeof( VkPhysicalDeviceSurfaceInfo2KHR ), "struct and wrapper have different size!" ); struct DisplayPlaneProperties2KHR { operator const VkDisplayPlaneProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayPlaneProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( displayPlaneProperties == rhs.displayPlaneProperties ); } bool operator!=( DisplayPlaneProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; DisplayPlanePropertiesKHR displayPlaneProperties; }; static_assert( sizeof( DisplayPlaneProperties2KHR ) == sizeof( VkDisplayPlaneProperties2KHR ), "struct and wrapper have different size!" ); struct DisplayModeProperties2KHR { operator const VkDisplayModeProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayModeProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( displayModeProperties == rhs.displayModeProperties ); } bool operator!=( DisplayModeProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; DisplayModePropertiesKHR displayModeProperties; }; static_assert( sizeof( DisplayModeProperties2KHR ) == sizeof( VkDisplayModeProperties2KHR ), "struct and wrapper have different size!" ); struct DisplayPlaneInfo2KHR { DisplayPlaneInfo2KHR( DisplayModeKHR mode_ = DisplayModeKHR(), uint32_t planeIndex_ = 0 ) : sType( StructureType::eDisplayPlaneInfo2KHR ) , pNext( nullptr ) , mode( mode_ ) , planeIndex( planeIndex_ ) { } DisplayPlaneInfo2KHR( VkDisplayPlaneInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplayPlaneInfo2KHR ) ); } DisplayPlaneInfo2KHR& operator=( VkDisplayPlaneInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplayPlaneInfo2KHR ) ); return *this; } DisplayPlaneInfo2KHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DisplayPlaneInfo2KHR& setMode( DisplayModeKHR mode_ ) { mode = mode_; return *this; } DisplayPlaneInfo2KHR& setPlaneIndex( uint32_t planeIndex_ ) { planeIndex = planeIndex_; return *this; } operator const VkDisplayPlaneInfo2KHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayPlaneInfo2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( mode == rhs.mode ) && ( planeIndex == rhs.planeIndex ); } bool operator!=( DisplayPlaneInfo2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DisplayModeKHR mode; uint32_t planeIndex; }; static_assert( sizeof( DisplayPlaneInfo2KHR ) == sizeof( VkDisplayPlaneInfo2KHR ), "struct and wrapper have different size!" ); struct PhysicalDevice16BitStorageFeaturesKHR { PhysicalDevice16BitStorageFeaturesKHR( Bool32 storageBuffer16BitAccess_ = 0, Bool32 uniformAndStorageBuffer16BitAccess_ = 0, Bool32 storagePushConstant16_ = 0, Bool32 storageInputOutput16_ = 0 ) : sType( StructureType::ePhysicalDevice16BitStorageFeaturesKHR ) , pNext( nullptr ) , storageBuffer16BitAccess( storageBuffer16BitAccess_ ) , uniformAndStorageBuffer16BitAccess( uniformAndStorageBuffer16BitAccess_ ) , storagePushConstant16( storagePushConstant16_ ) , storageInputOutput16( storageInputOutput16_ ) { } PhysicalDevice16BitStorageFeaturesKHR( VkPhysicalDevice16BitStorageFeaturesKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDevice16BitStorageFeaturesKHR ) ); } PhysicalDevice16BitStorageFeaturesKHR& operator=( VkPhysicalDevice16BitStorageFeaturesKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDevice16BitStorageFeaturesKHR ) ); return *this; } PhysicalDevice16BitStorageFeaturesKHR& setPNext( void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDevice16BitStorageFeaturesKHR& setStorageBuffer16BitAccess( Bool32 storageBuffer16BitAccess_ ) { storageBuffer16BitAccess = storageBuffer16BitAccess_; return *this; } PhysicalDevice16BitStorageFeaturesKHR& setUniformAndStorageBuffer16BitAccess( Bool32 uniformAndStorageBuffer16BitAccess_ ) { uniformAndStorageBuffer16BitAccess = uniformAndStorageBuffer16BitAccess_; return *this; } PhysicalDevice16BitStorageFeaturesKHR& setStoragePushConstant16( Bool32 storagePushConstant16_ ) { storagePushConstant16 = storagePushConstant16_; return *this; } PhysicalDevice16BitStorageFeaturesKHR& setStorageInputOutput16( Bool32 storageInputOutput16_ ) { storageInputOutput16 = storageInputOutput16_; return *this; } operator const VkPhysicalDevice16BitStorageFeaturesKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDevice16BitStorageFeaturesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( storageBuffer16BitAccess == rhs.storageBuffer16BitAccess ) && ( uniformAndStorageBuffer16BitAccess == rhs.uniformAndStorageBuffer16BitAccess ) && ( storagePushConstant16 == rhs.storagePushConstant16 ) && ( storageInputOutput16 == rhs.storageInputOutput16 ); } bool operator!=( PhysicalDevice16BitStorageFeaturesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; Bool32 storageBuffer16BitAccess; Bool32 uniformAndStorageBuffer16BitAccess; Bool32 storagePushConstant16; Bool32 storageInputOutput16; }; static_assert( sizeof( PhysicalDevice16BitStorageFeaturesKHR ) == sizeof( VkPhysicalDevice16BitStorageFeaturesKHR ), "struct and wrapper have different size!" ); struct BufferMemoryRequirementsInfo2KHR { BufferMemoryRequirementsInfo2KHR( Buffer buffer_ = Buffer() ) : sType( StructureType::eBufferMemoryRequirementsInfo2KHR ) , pNext( nullptr ) , buffer( buffer_ ) { } BufferMemoryRequirementsInfo2KHR( VkBufferMemoryRequirementsInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( BufferMemoryRequirementsInfo2KHR ) ); } BufferMemoryRequirementsInfo2KHR& operator=( VkBufferMemoryRequirementsInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( BufferMemoryRequirementsInfo2KHR ) ); return *this; } BufferMemoryRequirementsInfo2KHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BufferMemoryRequirementsInfo2KHR& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } operator const VkBufferMemoryRequirementsInfo2KHR&() const { return *reinterpret_cast(this); } bool operator==( BufferMemoryRequirementsInfo2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( buffer == rhs.buffer ); } bool operator!=( BufferMemoryRequirementsInfo2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Buffer buffer; }; static_assert( sizeof( BufferMemoryRequirementsInfo2KHR ) == sizeof( VkBufferMemoryRequirementsInfo2KHR ), "struct and wrapper have different size!" ); struct ImageMemoryRequirementsInfo2KHR { ImageMemoryRequirementsInfo2KHR( Image image_ = Image() ) : sType( StructureType::eImageMemoryRequirementsInfo2KHR ) , pNext( nullptr ) , image( image_ ) { } ImageMemoryRequirementsInfo2KHR( VkImageMemoryRequirementsInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( ImageMemoryRequirementsInfo2KHR ) ); } ImageMemoryRequirementsInfo2KHR& operator=( VkImageMemoryRequirementsInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( ImageMemoryRequirementsInfo2KHR ) ); return *this; } ImageMemoryRequirementsInfo2KHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImageMemoryRequirementsInfo2KHR& setImage( Image image_ ) { image = image_; return *this; } operator const VkImageMemoryRequirementsInfo2KHR&() const { return *reinterpret_cast(this); } bool operator==( ImageMemoryRequirementsInfo2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( image == rhs.image ); } bool operator!=( ImageMemoryRequirementsInfo2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Image image; }; static_assert( sizeof( ImageMemoryRequirementsInfo2KHR ) == sizeof( VkImageMemoryRequirementsInfo2KHR ), "struct and wrapper have different size!" ); struct ImageSparseMemoryRequirementsInfo2KHR { ImageSparseMemoryRequirementsInfo2KHR( Image image_ = Image() ) : sType( StructureType::eImageSparseMemoryRequirementsInfo2KHR ) , pNext( nullptr ) , image( image_ ) { } ImageSparseMemoryRequirementsInfo2KHR( VkImageSparseMemoryRequirementsInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( ImageSparseMemoryRequirementsInfo2KHR ) ); } ImageSparseMemoryRequirementsInfo2KHR& operator=( VkImageSparseMemoryRequirementsInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( ImageSparseMemoryRequirementsInfo2KHR ) ); return *this; } ImageSparseMemoryRequirementsInfo2KHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImageSparseMemoryRequirementsInfo2KHR& setImage( Image image_ ) { image = image_; return *this; } operator const VkImageSparseMemoryRequirementsInfo2KHR&() const { return *reinterpret_cast(this); } bool operator==( ImageSparseMemoryRequirementsInfo2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( image == rhs.image ); } bool operator!=( ImageSparseMemoryRequirementsInfo2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Image image; }; static_assert( sizeof( ImageSparseMemoryRequirementsInfo2KHR ) == sizeof( VkImageSparseMemoryRequirementsInfo2KHR ), "struct and wrapper have different size!" ); struct MemoryRequirements2KHR { operator const VkMemoryRequirements2KHR&() const { return *reinterpret_cast(this); } bool operator==( MemoryRequirements2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memoryRequirements == rhs.memoryRequirements ); } bool operator!=( MemoryRequirements2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; MemoryRequirements memoryRequirements; }; static_assert( sizeof( MemoryRequirements2KHR ) == sizeof( VkMemoryRequirements2KHR ), "struct and wrapper have different size!" ); struct PhysicalDeviceSamplerFilterMinmaxPropertiesKHR { operator const VkPhysicalDeviceSamplerFilterMinmaxPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceSamplerFilterMinmaxPropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( filterMinmaxSingleComponentFormats == rhs.filterMinmaxSingleComponentFormats ); } bool operator!=( PhysicalDeviceSamplerFilterMinmaxPropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; Bool32 filterMinmaxSingleComponentFormats; }; static_assert( sizeof( PhysicalDeviceSamplerFilterMinmaxPropertiesKHR ) == sizeof( VkPhysicalDeviceSamplerFilterMinmaxPropertiesKHR ), "struct and wrapper have different size!" ); struct MemoryDedicatedRequirementsKHR { operator const VkMemoryDedicatedRequirementsKHR&() const { return *reinterpret_cast(this); } bool operator==( MemoryDedicatedRequirementsKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( prefersDedicatedAllocation == rhs.prefersDedicatedAllocation ) && ( requiresDedicatedAllocation == rhs.requiresDedicatedAllocation ); } bool operator!=( MemoryDedicatedRequirementsKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; Bool32 prefersDedicatedAllocation; Bool32 requiresDedicatedAllocation; }; static_assert( sizeof( MemoryDedicatedRequirementsKHR ) == sizeof( VkMemoryDedicatedRequirementsKHR ), "struct and wrapper have different size!" ); struct MemoryDedicatedAllocateInfoKHR { MemoryDedicatedAllocateInfoKHR( Image image_ = Image(), Buffer buffer_ = Buffer() ) : sType( StructureType::eMemoryDedicatedAllocateInfoKHR ) , pNext( nullptr ) , image( image_ ) , buffer( buffer_ ) { } MemoryDedicatedAllocateInfoKHR( VkMemoryDedicatedAllocateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( MemoryDedicatedAllocateInfoKHR ) ); } MemoryDedicatedAllocateInfoKHR& operator=( VkMemoryDedicatedAllocateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( MemoryDedicatedAllocateInfoKHR ) ); return *this; } MemoryDedicatedAllocateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MemoryDedicatedAllocateInfoKHR& setImage( Image image_ ) { image = image_; return *this; } MemoryDedicatedAllocateInfoKHR& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } operator const VkMemoryDedicatedAllocateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( MemoryDedicatedAllocateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( image == rhs.image ) && ( buffer == rhs.buffer ); } bool operator!=( MemoryDedicatedAllocateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Image image; Buffer buffer; }; static_assert( sizeof( MemoryDedicatedAllocateInfoKHR ) == sizeof( VkMemoryDedicatedAllocateInfoKHR ), "struct and wrapper have different size!" ); struct SamplerSamplerYCbCrConversionCreateInfoKHR { SamplerSamplerYCbCrConversionCreateInfoKHR( SamplerYCbCrConversionKHR conversion_ = SamplerYCbCrConversionKHR() ) : sType( StructureType::eSamplerSamplerYCbCrConversionCreateInfoKHR ) , pNext( nullptr ) , conversion( conversion_ ) { } SamplerSamplerYCbCrConversionCreateInfoKHR( VkSamplerSamplerYCbCrConversionCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SamplerSamplerYCbCrConversionCreateInfoKHR ) ); } SamplerSamplerYCbCrConversionCreateInfoKHR& operator=( VkSamplerSamplerYCbCrConversionCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SamplerSamplerYCbCrConversionCreateInfoKHR ) ); return *this; } SamplerSamplerYCbCrConversionCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SamplerSamplerYCbCrConversionCreateInfoKHR& setConversion( SamplerYCbCrConversionKHR conversion_ ) { conversion = conversion_; return *this; } operator const VkSamplerSamplerYCbCrConversionCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( SamplerSamplerYCbCrConversionCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( conversion == rhs.conversion ); } bool operator!=( SamplerSamplerYCbCrConversionCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SamplerYCbCrConversionKHR conversion; }; static_assert( sizeof( SamplerSamplerYCbCrConversionCreateInfoKHR ) == sizeof( VkSamplerSamplerYCbCrConversionCreateInfoKHR ), "struct and wrapper have different size!" ); struct PhysicalDeviceSamplerYCbCrConversionFeaturesKHR { PhysicalDeviceSamplerYCbCrConversionFeaturesKHR( Bool32 samplerYCbCrConversion_ = 0 ) : sType( StructureType::ePhysicalDeviceSamplerYCbCrConversionFeaturesKHR ) , pNext( nullptr ) , samplerYCbCrConversion( samplerYCbCrConversion_ ) { } PhysicalDeviceSamplerYCbCrConversionFeaturesKHR( VkPhysicalDeviceSamplerYCbCrConversionFeaturesKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceSamplerYCbCrConversionFeaturesKHR ) ); } PhysicalDeviceSamplerYCbCrConversionFeaturesKHR& operator=( VkPhysicalDeviceSamplerYCbCrConversionFeaturesKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceSamplerYCbCrConversionFeaturesKHR ) ); return *this; } PhysicalDeviceSamplerYCbCrConversionFeaturesKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceSamplerYCbCrConversionFeaturesKHR& setSamplerYCbCrConversion( Bool32 samplerYCbCrConversion_ ) { samplerYCbCrConversion = samplerYCbCrConversion_; return *this; } operator const VkPhysicalDeviceSamplerYCbCrConversionFeaturesKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceSamplerYCbCrConversionFeaturesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( samplerYCbCrConversion == rhs.samplerYCbCrConversion ); } bool operator!=( PhysicalDeviceSamplerYCbCrConversionFeaturesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Bool32 samplerYCbCrConversion; }; static_assert( sizeof( PhysicalDeviceSamplerYCbCrConversionFeaturesKHR ) == sizeof( VkPhysicalDeviceSamplerYCbCrConversionFeaturesKHR ), "struct and wrapper have different size!" ); struct SamplerYCbCrConversionImageFormatPropertiesKHR { operator const VkSamplerYCbCrConversionImageFormatPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( SamplerYCbCrConversionImageFormatPropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( combinedImageSamplerDescriptorCount == rhs.combinedImageSamplerDescriptorCount ); } bool operator!=( SamplerYCbCrConversionImageFormatPropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t combinedImageSamplerDescriptorCount; }; static_assert( sizeof( SamplerYCbCrConversionImageFormatPropertiesKHR ) == sizeof( VkSamplerYCbCrConversionImageFormatPropertiesKHR ), "struct and wrapper have different size!" ); struct TextureLODGatherFormatPropertiesAMD { operator const VkTextureLODGatherFormatPropertiesAMD&() const { return *reinterpret_cast(this); } bool operator==( TextureLODGatherFormatPropertiesAMD const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( supportsTextureGatherLODBiasAMD == rhs.supportsTextureGatherLODBiasAMD ); } bool operator!=( TextureLODGatherFormatPropertiesAMD const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; Bool32 supportsTextureGatherLODBiasAMD; }; static_assert( sizeof( TextureLODGatherFormatPropertiesAMD ) == sizeof( VkTextureLODGatherFormatPropertiesAMD ), "struct and wrapper have different size!" ); enum class SubpassContents { eInline = VK_SUBPASS_CONTENTS_INLINE, eSecondaryCommandBuffers = VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS }; struct PresentInfoKHR { PresentInfoKHR( uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, uint32_t swapchainCount_ = 0, const SwapchainKHR* pSwapchains_ = nullptr, const uint32_t* pImageIndices_ = nullptr, Result* pResults_ = nullptr ) : sType( StructureType::ePresentInfoKHR ) , pNext( nullptr ) , waitSemaphoreCount( waitSemaphoreCount_ ) , pWaitSemaphores( pWaitSemaphores_ ) , swapchainCount( swapchainCount_ ) , pSwapchains( pSwapchains_ ) , pImageIndices( pImageIndices_ ) , pResults( pResults_ ) { } PresentInfoKHR( VkPresentInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PresentInfoKHR ) ); } PresentInfoKHR& operator=( VkPresentInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PresentInfoKHR ) ); return *this; } PresentInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PresentInfoKHR& setWaitSemaphoreCount( uint32_t waitSemaphoreCount_ ) { waitSemaphoreCount = waitSemaphoreCount_; return *this; } PresentInfoKHR& setPWaitSemaphores( const Semaphore* pWaitSemaphores_ ) { pWaitSemaphores = pWaitSemaphores_; return *this; } PresentInfoKHR& setSwapchainCount( uint32_t swapchainCount_ ) { swapchainCount = swapchainCount_; return *this; } PresentInfoKHR& setPSwapchains( const SwapchainKHR* pSwapchains_ ) { pSwapchains = pSwapchains_; return *this; } PresentInfoKHR& setPImageIndices( const uint32_t* pImageIndices_ ) { pImageIndices = pImageIndices_; return *this; } PresentInfoKHR& setPResults( Result* pResults_ ) { pResults = pResults_; return *this; } operator const VkPresentInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( PresentInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( waitSemaphoreCount == rhs.waitSemaphoreCount ) && ( pWaitSemaphores == rhs.pWaitSemaphores ) && ( swapchainCount == rhs.swapchainCount ) && ( pSwapchains == rhs.pSwapchains ) && ( pImageIndices == rhs.pImageIndices ) && ( pResults == rhs.pResults ); } bool operator!=( PresentInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t waitSemaphoreCount; const Semaphore* pWaitSemaphores; uint32_t swapchainCount; const SwapchainKHR* pSwapchains; const uint32_t* pImageIndices; Result* pResults; }; static_assert( sizeof( PresentInfoKHR ) == sizeof( VkPresentInfoKHR ), "struct and wrapper have different size!" ); enum class DynamicState { eViewport = VK_DYNAMIC_STATE_VIEWPORT, eScissor = VK_DYNAMIC_STATE_SCISSOR, eLineWidth = VK_DYNAMIC_STATE_LINE_WIDTH, eDepthBias = VK_DYNAMIC_STATE_DEPTH_BIAS, eBlendConstants = VK_DYNAMIC_STATE_BLEND_CONSTANTS, eDepthBounds = VK_DYNAMIC_STATE_DEPTH_BOUNDS, eStencilCompareMask = VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, eStencilWriteMask = VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, eStencilReference = VK_DYNAMIC_STATE_STENCIL_REFERENCE, eViewportWScalingNV = VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV, eDiscardRectangleEXT = VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT }; struct PipelineDynamicStateCreateInfo { PipelineDynamicStateCreateInfo( PipelineDynamicStateCreateFlags flags_ = PipelineDynamicStateCreateFlags(), uint32_t dynamicStateCount_ = 0, const DynamicState* pDynamicStates_ = nullptr ) : sType( StructureType::ePipelineDynamicStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , dynamicStateCount( dynamicStateCount_ ) , pDynamicStates( pDynamicStates_ ) { } PipelineDynamicStateCreateInfo( VkPipelineDynamicStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineDynamicStateCreateInfo ) ); } PipelineDynamicStateCreateInfo& operator=( VkPipelineDynamicStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineDynamicStateCreateInfo ) ); return *this; } PipelineDynamicStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineDynamicStateCreateInfo& setFlags( PipelineDynamicStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineDynamicStateCreateInfo& setDynamicStateCount( uint32_t dynamicStateCount_ ) { dynamicStateCount = dynamicStateCount_; return *this; } PipelineDynamicStateCreateInfo& setPDynamicStates( const DynamicState* pDynamicStates_ ) { pDynamicStates = pDynamicStates_; return *this; } operator const VkPipelineDynamicStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineDynamicStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( dynamicStateCount == rhs.dynamicStateCount ) && ( pDynamicStates == rhs.pDynamicStates ); } bool operator!=( PipelineDynamicStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineDynamicStateCreateFlags flags; uint32_t dynamicStateCount; const DynamicState* pDynamicStates; }; static_assert( sizeof( PipelineDynamicStateCreateInfo ) == sizeof( VkPipelineDynamicStateCreateInfo ), "struct and wrapper have different size!" ); enum class DescriptorUpdateTemplateTypeKHR { eDescriptorSet = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR, ePushDescriptors = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR }; struct DescriptorUpdateTemplateCreateInfoKHR { DescriptorUpdateTemplateCreateInfoKHR( DescriptorUpdateTemplateCreateFlagsKHR flags_ = DescriptorUpdateTemplateCreateFlagsKHR(), uint32_t descriptorUpdateEntryCount_ = 0, const DescriptorUpdateTemplateEntryKHR* pDescriptorUpdateEntries_ = nullptr, DescriptorUpdateTemplateTypeKHR templateType_ = DescriptorUpdateTemplateTypeKHR::eDescriptorSet, DescriptorSetLayout descriptorSetLayout_ = DescriptorSetLayout(), PipelineBindPoint pipelineBindPoint_ = PipelineBindPoint::eGraphics, PipelineLayout pipelineLayout_ = PipelineLayout(), uint32_t set_ = 0 ) : sType( StructureType::eDescriptorUpdateTemplateCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , descriptorUpdateEntryCount( descriptorUpdateEntryCount_ ) , pDescriptorUpdateEntries( pDescriptorUpdateEntries_ ) , templateType( templateType_ ) , descriptorSetLayout( descriptorSetLayout_ ) , pipelineBindPoint( pipelineBindPoint_ ) , pipelineLayout( pipelineLayout_ ) , set( set_ ) { } DescriptorUpdateTemplateCreateInfoKHR( VkDescriptorUpdateTemplateCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorUpdateTemplateCreateInfoKHR ) ); } DescriptorUpdateTemplateCreateInfoKHR& operator=( VkDescriptorUpdateTemplateCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorUpdateTemplateCreateInfoKHR ) ); return *this; } DescriptorUpdateTemplateCreateInfoKHR& setPNext( void* pNext_ ) { pNext = pNext_; return *this; } DescriptorUpdateTemplateCreateInfoKHR& setFlags( DescriptorUpdateTemplateCreateFlagsKHR flags_ ) { flags = flags_; return *this; } DescriptorUpdateTemplateCreateInfoKHR& setDescriptorUpdateEntryCount( uint32_t descriptorUpdateEntryCount_ ) { descriptorUpdateEntryCount = descriptorUpdateEntryCount_; return *this; } DescriptorUpdateTemplateCreateInfoKHR& setPDescriptorUpdateEntries( const DescriptorUpdateTemplateEntryKHR* pDescriptorUpdateEntries_ ) { pDescriptorUpdateEntries = pDescriptorUpdateEntries_; return *this; } DescriptorUpdateTemplateCreateInfoKHR& setTemplateType( DescriptorUpdateTemplateTypeKHR templateType_ ) { templateType = templateType_; return *this; } DescriptorUpdateTemplateCreateInfoKHR& setDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout_ ) { descriptorSetLayout = descriptorSetLayout_; return *this; } DescriptorUpdateTemplateCreateInfoKHR& setPipelineBindPoint( PipelineBindPoint pipelineBindPoint_ ) { pipelineBindPoint = pipelineBindPoint_; return *this; } DescriptorUpdateTemplateCreateInfoKHR& setPipelineLayout( PipelineLayout pipelineLayout_ ) { pipelineLayout = pipelineLayout_; return *this; } DescriptorUpdateTemplateCreateInfoKHR& setSet( uint32_t set_ ) { set = set_; return *this; } operator const VkDescriptorUpdateTemplateCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( DescriptorUpdateTemplateCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( descriptorUpdateEntryCount == rhs.descriptorUpdateEntryCount ) && ( pDescriptorUpdateEntries == rhs.pDescriptorUpdateEntries ) && ( templateType == rhs.templateType ) && ( descriptorSetLayout == rhs.descriptorSetLayout ) && ( pipelineBindPoint == rhs.pipelineBindPoint ) && ( pipelineLayout == rhs.pipelineLayout ) && ( set == rhs.set ); } bool operator!=( DescriptorUpdateTemplateCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; DescriptorUpdateTemplateCreateFlagsKHR flags; uint32_t descriptorUpdateEntryCount; const DescriptorUpdateTemplateEntryKHR* pDescriptorUpdateEntries; DescriptorUpdateTemplateTypeKHR templateType; DescriptorSetLayout descriptorSetLayout; PipelineBindPoint pipelineBindPoint; PipelineLayout pipelineLayout; uint32_t set; }; static_assert( sizeof( DescriptorUpdateTemplateCreateInfoKHR ) == sizeof( VkDescriptorUpdateTemplateCreateInfoKHR ), "struct and wrapper have different size!" ); enum class ObjectType { eUnknown = VK_OBJECT_TYPE_UNKNOWN, eInstance = VK_OBJECT_TYPE_INSTANCE, ePhysicalDevice = VK_OBJECT_TYPE_PHYSICAL_DEVICE, eDevice = VK_OBJECT_TYPE_DEVICE, eQueue = VK_OBJECT_TYPE_QUEUE, eSemaphore = VK_OBJECT_TYPE_SEMAPHORE, eCommandBuffer = VK_OBJECT_TYPE_COMMAND_BUFFER, eFence = VK_OBJECT_TYPE_FENCE, eDeviceMemory = VK_OBJECT_TYPE_DEVICE_MEMORY, eBuffer = VK_OBJECT_TYPE_BUFFER, eImage = VK_OBJECT_TYPE_IMAGE, eEvent = VK_OBJECT_TYPE_EVENT, eQueryPool = VK_OBJECT_TYPE_QUERY_POOL, eBufferView = VK_OBJECT_TYPE_BUFFER_VIEW, eImageView = VK_OBJECT_TYPE_IMAGE_VIEW, eShaderModule = VK_OBJECT_TYPE_SHADER_MODULE, ePipelineCache = VK_OBJECT_TYPE_PIPELINE_CACHE, ePipelineLayout = VK_OBJECT_TYPE_PIPELINE_LAYOUT, eRenderPass = VK_OBJECT_TYPE_RENDER_PASS, ePipeline = VK_OBJECT_TYPE_PIPELINE, eDescriptorSetLayout = VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, eSampler = VK_OBJECT_TYPE_SAMPLER, eDescriptorPool = VK_OBJECT_TYPE_DESCRIPTOR_POOL, eDescriptorSet = VK_OBJECT_TYPE_DESCRIPTOR_SET, eFramebuffer = VK_OBJECT_TYPE_FRAMEBUFFER, eCommandPool = VK_OBJECT_TYPE_COMMAND_POOL, eSurfaceKHR = VK_OBJECT_TYPE_SURFACE_KHR, eSwapchainKHR = VK_OBJECT_TYPE_SWAPCHAIN_KHR, eDisplayKHR = VK_OBJECT_TYPE_DISPLAY_KHR, eDisplayModeKHR = VK_OBJECT_TYPE_DISPLAY_MODE_KHR, eDebugReportCallbackEXT = VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT, eDescriptorUpdateTemplateKHR = VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR, eObjectTableNVX = VK_OBJECT_TYPE_OBJECT_TABLE_NVX, eIndirectCommandsLayoutNVX = VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX, eSamplerYCbCrConversionKHR = VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR }; enum class QueueFlagBits { eGraphics = VK_QUEUE_GRAPHICS_BIT, eCompute = VK_QUEUE_COMPUTE_BIT, eTransfer = VK_QUEUE_TRANSFER_BIT, eSparseBinding = VK_QUEUE_SPARSE_BINDING_BIT }; using QueueFlags = Flags; VULKAN_HPP_INLINE QueueFlags operator|( QueueFlagBits bit0, QueueFlagBits bit1 ) { return QueueFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE QueueFlags operator~( QueueFlagBits bits ) { return ~( QueueFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(QueueFlagBits::eGraphics) | VkFlags(QueueFlagBits::eCompute) | VkFlags(QueueFlagBits::eTransfer) | VkFlags(QueueFlagBits::eSparseBinding) }; }; struct QueueFamilyProperties { operator const VkQueueFamilyProperties&() const { return *reinterpret_cast(this); } bool operator==( QueueFamilyProperties const& rhs ) const { return ( queueFlags == rhs.queueFlags ) && ( queueCount == rhs.queueCount ) && ( timestampValidBits == rhs.timestampValidBits ) && ( minImageTransferGranularity == rhs.minImageTransferGranularity ); } bool operator!=( QueueFamilyProperties const& rhs ) const { return !operator==( rhs ); } QueueFlags queueFlags; uint32_t queueCount; uint32_t timestampValidBits; Extent3D minImageTransferGranularity; }; static_assert( sizeof( QueueFamilyProperties ) == sizeof( VkQueueFamilyProperties ), "struct and wrapper have different size!" ); struct QueueFamilyProperties2KHR { operator const VkQueueFamilyProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( QueueFamilyProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( queueFamilyProperties == rhs.queueFamilyProperties ); } bool operator!=( QueueFamilyProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; QueueFamilyProperties queueFamilyProperties; }; static_assert( sizeof( QueueFamilyProperties2KHR ) == sizeof( VkQueueFamilyProperties2KHR ), "struct and wrapper have different size!" ); enum class MemoryPropertyFlagBits { eDeviceLocal = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, eHostVisible = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, eHostCoherent = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, eHostCached = VK_MEMORY_PROPERTY_HOST_CACHED_BIT, eLazilyAllocated = VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT }; using MemoryPropertyFlags = Flags; VULKAN_HPP_INLINE MemoryPropertyFlags operator|( MemoryPropertyFlagBits bit0, MemoryPropertyFlagBits bit1 ) { return MemoryPropertyFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE MemoryPropertyFlags operator~( MemoryPropertyFlagBits bits ) { return ~( MemoryPropertyFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(MemoryPropertyFlagBits::eDeviceLocal) | VkFlags(MemoryPropertyFlagBits::eHostVisible) | VkFlags(MemoryPropertyFlagBits::eHostCoherent) | VkFlags(MemoryPropertyFlagBits::eHostCached) | VkFlags(MemoryPropertyFlagBits::eLazilyAllocated) }; }; struct MemoryType { operator const VkMemoryType&() const { return *reinterpret_cast(this); } bool operator==( MemoryType const& rhs ) const { return ( propertyFlags == rhs.propertyFlags ) && ( heapIndex == rhs.heapIndex ); } bool operator!=( MemoryType const& rhs ) const { return !operator==( rhs ); } MemoryPropertyFlags propertyFlags; uint32_t heapIndex; }; static_assert( sizeof( MemoryType ) == sizeof( VkMemoryType ), "struct and wrapper have different size!" ); enum class MemoryHeapFlagBits { eDeviceLocal = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT, eMultiInstanceKHX = VK_MEMORY_HEAP_MULTI_INSTANCE_BIT_KHX }; using MemoryHeapFlags = Flags; VULKAN_HPP_INLINE MemoryHeapFlags operator|( MemoryHeapFlagBits bit0, MemoryHeapFlagBits bit1 ) { return MemoryHeapFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE MemoryHeapFlags operator~( MemoryHeapFlagBits bits ) { return ~( MemoryHeapFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(MemoryHeapFlagBits::eDeviceLocal) | VkFlags(MemoryHeapFlagBits::eMultiInstanceKHX) }; }; struct MemoryHeap { operator const VkMemoryHeap&() const { return *reinterpret_cast(this); } bool operator==( MemoryHeap const& rhs ) const { return ( size == rhs.size ) && ( flags == rhs.flags ); } bool operator!=( MemoryHeap const& rhs ) const { return !operator==( rhs ); } DeviceSize size; MemoryHeapFlags flags; }; static_assert( sizeof( MemoryHeap ) == sizeof( VkMemoryHeap ), "struct and wrapper have different size!" ); struct PhysicalDeviceMemoryProperties { operator const VkPhysicalDeviceMemoryProperties&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceMemoryProperties const& rhs ) const { return ( memoryTypeCount == rhs.memoryTypeCount ) && ( memcmp( memoryTypes, rhs.memoryTypes, VK_MAX_MEMORY_TYPES * sizeof( MemoryType ) ) == 0 ) && ( memoryHeapCount == rhs.memoryHeapCount ) && ( memcmp( memoryHeaps, rhs.memoryHeaps, VK_MAX_MEMORY_HEAPS * sizeof( MemoryHeap ) ) == 0 ); } bool operator!=( PhysicalDeviceMemoryProperties const& rhs ) const { return !operator==( rhs ); } uint32_t memoryTypeCount; MemoryType memoryTypes[VK_MAX_MEMORY_TYPES]; uint32_t memoryHeapCount; MemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS]; }; static_assert( sizeof( PhysicalDeviceMemoryProperties ) == sizeof( VkPhysicalDeviceMemoryProperties ), "struct and wrapper have different size!" ); struct PhysicalDeviceMemoryProperties2KHR { operator const VkPhysicalDeviceMemoryProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceMemoryProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memoryProperties == rhs.memoryProperties ); } bool operator!=( PhysicalDeviceMemoryProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; PhysicalDeviceMemoryProperties memoryProperties; }; static_assert( sizeof( PhysicalDeviceMemoryProperties2KHR ) == sizeof( VkPhysicalDeviceMemoryProperties2KHR ), "struct and wrapper have different size!" ); enum class AccessFlagBits { eIndirectCommandRead = VK_ACCESS_INDIRECT_COMMAND_READ_BIT, eIndexRead = VK_ACCESS_INDEX_READ_BIT, eVertexAttributeRead = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, eUniformRead = VK_ACCESS_UNIFORM_READ_BIT, eInputAttachmentRead = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT, eShaderRead = VK_ACCESS_SHADER_READ_BIT, eShaderWrite = VK_ACCESS_SHADER_WRITE_BIT, eColorAttachmentRead = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT, eColorAttachmentWrite = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, eDepthStencilAttachmentRead = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT, eDepthStencilAttachmentWrite = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, eTransferRead = VK_ACCESS_TRANSFER_READ_BIT, eTransferWrite = VK_ACCESS_TRANSFER_WRITE_BIT, eHostRead = VK_ACCESS_HOST_READ_BIT, eHostWrite = VK_ACCESS_HOST_WRITE_BIT, eMemoryRead = VK_ACCESS_MEMORY_READ_BIT, eMemoryWrite = VK_ACCESS_MEMORY_WRITE_BIT, eCommandProcessReadNVX = VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX, eCommandProcessWriteNVX = VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX }; using AccessFlags = Flags; VULKAN_HPP_INLINE AccessFlags operator|( AccessFlagBits bit0, AccessFlagBits bit1 ) { return AccessFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE AccessFlags operator~( AccessFlagBits bits ) { return ~( AccessFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(AccessFlagBits::eIndirectCommandRead) | VkFlags(AccessFlagBits::eIndexRead) | VkFlags(AccessFlagBits::eVertexAttributeRead) | VkFlags(AccessFlagBits::eUniformRead) | VkFlags(AccessFlagBits::eInputAttachmentRead) | VkFlags(AccessFlagBits::eShaderRead) | VkFlags(AccessFlagBits::eShaderWrite) | VkFlags(AccessFlagBits::eColorAttachmentRead) | VkFlags(AccessFlagBits::eColorAttachmentWrite) | VkFlags(AccessFlagBits::eDepthStencilAttachmentRead) | VkFlags(AccessFlagBits::eDepthStencilAttachmentWrite) | VkFlags(AccessFlagBits::eTransferRead) | VkFlags(AccessFlagBits::eTransferWrite) | VkFlags(AccessFlagBits::eHostRead) | VkFlags(AccessFlagBits::eHostWrite) | VkFlags(AccessFlagBits::eMemoryRead) | VkFlags(AccessFlagBits::eMemoryWrite) | VkFlags(AccessFlagBits::eCommandProcessReadNVX) | VkFlags(AccessFlagBits::eCommandProcessWriteNVX) }; }; struct MemoryBarrier { MemoryBarrier( AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags() ) : sType( StructureType::eMemoryBarrier ) , pNext( nullptr ) , srcAccessMask( srcAccessMask_ ) , dstAccessMask( dstAccessMask_ ) { } MemoryBarrier( VkMemoryBarrier const & rhs ) { memcpy( this, &rhs, sizeof( MemoryBarrier ) ); } MemoryBarrier& operator=( VkMemoryBarrier const & rhs ) { memcpy( this, &rhs, sizeof( MemoryBarrier ) ); return *this; } MemoryBarrier& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MemoryBarrier& setSrcAccessMask( AccessFlags srcAccessMask_ ) { srcAccessMask = srcAccessMask_; return *this; } MemoryBarrier& setDstAccessMask( AccessFlags dstAccessMask_ ) { dstAccessMask = dstAccessMask_; return *this; } operator const VkMemoryBarrier&() const { return *reinterpret_cast(this); } bool operator==( MemoryBarrier const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( srcAccessMask == rhs.srcAccessMask ) && ( dstAccessMask == rhs.dstAccessMask ); } bool operator!=( MemoryBarrier const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; AccessFlags srcAccessMask; AccessFlags dstAccessMask; }; static_assert( sizeof( MemoryBarrier ) == sizeof( VkMemoryBarrier ), "struct and wrapper have different size!" ); struct BufferMemoryBarrier { BufferMemoryBarrier( AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), uint32_t srcQueueFamilyIndex_ = 0, uint32_t dstQueueFamilyIndex_ = 0, Buffer buffer_ = Buffer(), DeviceSize offset_ = 0, DeviceSize size_ = 0 ) : sType( StructureType::eBufferMemoryBarrier ) , pNext( nullptr ) , srcAccessMask( srcAccessMask_ ) , dstAccessMask( dstAccessMask_ ) , srcQueueFamilyIndex( srcQueueFamilyIndex_ ) , dstQueueFamilyIndex( dstQueueFamilyIndex_ ) , buffer( buffer_ ) , offset( offset_ ) , size( size_ ) { } BufferMemoryBarrier( VkBufferMemoryBarrier const & rhs ) { memcpy( this, &rhs, sizeof( BufferMemoryBarrier ) ); } BufferMemoryBarrier& operator=( VkBufferMemoryBarrier const & rhs ) { memcpy( this, &rhs, sizeof( BufferMemoryBarrier ) ); return *this; } BufferMemoryBarrier& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BufferMemoryBarrier& setSrcAccessMask( AccessFlags srcAccessMask_ ) { srcAccessMask = srcAccessMask_; return *this; } BufferMemoryBarrier& setDstAccessMask( AccessFlags dstAccessMask_ ) { dstAccessMask = dstAccessMask_; return *this; } BufferMemoryBarrier& setSrcQueueFamilyIndex( uint32_t srcQueueFamilyIndex_ ) { srcQueueFamilyIndex = srcQueueFamilyIndex_; return *this; } BufferMemoryBarrier& setDstQueueFamilyIndex( uint32_t dstQueueFamilyIndex_ ) { dstQueueFamilyIndex = dstQueueFamilyIndex_; return *this; } BufferMemoryBarrier& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } BufferMemoryBarrier& setOffset( DeviceSize offset_ ) { offset = offset_; return *this; } BufferMemoryBarrier& setSize( DeviceSize size_ ) { size = size_; return *this; } operator const VkBufferMemoryBarrier&() const { return *reinterpret_cast(this); } bool operator==( BufferMemoryBarrier const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( srcAccessMask == rhs.srcAccessMask ) && ( dstAccessMask == rhs.dstAccessMask ) && ( srcQueueFamilyIndex == rhs.srcQueueFamilyIndex ) && ( dstQueueFamilyIndex == rhs.dstQueueFamilyIndex ) && ( buffer == rhs.buffer ) && ( offset == rhs.offset ) && ( size == rhs.size ); } bool operator!=( BufferMemoryBarrier const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; AccessFlags srcAccessMask; AccessFlags dstAccessMask; uint32_t srcQueueFamilyIndex; uint32_t dstQueueFamilyIndex; Buffer buffer; DeviceSize offset; DeviceSize size; }; static_assert( sizeof( BufferMemoryBarrier ) == sizeof( VkBufferMemoryBarrier ), "struct and wrapper have different size!" ); enum class BufferUsageFlagBits { eTransferSrc = VK_BUFFER_USAGE_TRANSFER_SRC_BIT, eTransferDst = VK_BUFFER_USAGE_TRANSFER_DST_BIT, eUniformTexelBuffer = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT, eStorageTexelBuffer = VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT, eUniformBuffer = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, eStorageBuffer = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, eIndexBuffer = VK_BUFFER_USAGE_INDEX_BUFFER_BIT, eVertexBuffer = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, eIndirectBuffer = VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT }; using BufferUsageFlags = Flags; VULKAN_HPP_INLINE BufferUsageFlags operator|( BufferUsageFlagBits bit0, BufferUsageFlagBits bit1 ) { return BufferUsageFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE BufferUsageFlags operator~( BufferUsageFlagBits bits ) { return ~( BufferUsageFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(BufferUsageFlagBits::eTransferSrc) | VkFlags(BufferUsageFlagBits::eTransferDst) | VkFlags(BufferUsageFlagBits::eUniformTexelBuffer) | VkFlags(BufferUsageFlagBits::eStorageTexelBuffer) | VkFlags(BufferUsageFlagBits::eUniformBuffer) | VkFlags(BufferUsageFlagBits::eStorageBuffer) | VkFlags(BufferUsageFlagBits::eIndexBuffer) | VkFlags(BufferUsageFlagBits::eVertexBuffer) | VkFlags(BufferUsageFlagBits::eIndirectBuffer) }; }; enum class BufferCreateFlagBits { eSparseBinding = VK_BUFFER_CREATE_SPARSE_BINDING_BIT, eSparseResidency = VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT, eSparseAliased = VK_BUFFER_CREATE_SPARSE_ALIASED_BIT }; using BufferCreateFlags = Flags; VULKAN_HPP_INLINE BufferCreateFlags operator|( BufferCreateFlagBits bit0, BufferCreateFlagBits bit1 ) { return BufferCreateFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE BufferCreateFlags operator~( BufferCreateFlagBits bits ) { return ~( BufferCreateFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(BufferCreateFlagBits::eSparseBinding) | VkFlags(BufferCreateFlagBits::eSparseResidency) | VkFlags(BufferCreateFlagBits::eSparseAliased) }; }; struct BufferCreateInfo { BufferCreateInfo( BufferCreateFlags flags_ = BufferCreateFlags(), DeviceSize size_ = 0, BufferUsageFlags usage_ = BufferUsageFlags(), SharingMode sharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr ) : sType( StructureType::eBufferCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , size( size_ ) , usage( usage_ ) , sharingMode( sharingMode_ ) , queueFamilyIndexCount( queueFamilyIndexCount_ ) , pQueueFamilyIndices( pQueueFamilyIndices_ ) { } BufferCreateInfo( VkBufferCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( BufferCreateInfo ) ); } BufferCreateInfo& operator=( VkBufferCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( BufferCreateInfo ) ); return *this; } BufferCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BufferCreateInfo& setFlags( BufferCreateFlags flags_ ) { flags = flags_; return *this; } BufferCreateInfo& setSize( DeviceSize size_ ) { size = size_; return *this; } BufferCreateInfo& setUsage( BufferUsageFlags usage_ ) { usage = usage_; return *this; } BufferCreateInfo& setSharingMode( SharingMode sharingMode_ ) { sharingMode = sharingMode_; return *this; } BufferCreateInfo& setQueueFamilyIndexCount( uint32_t queueFamilyIndexCount_ ) { queueFamilyIndexCount = queueFamilyIndexCount_; return *this; } BufferCreateInfo& setPQueueFamilyIndices( const uint32_t* pQueueFamilyIndices_ ) { pQueueFamilyIndices = pQueueFamilyIndices_; return *this; } operator const VkBufferCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( BufferCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( size == rhs.size ) && ( usage == rhs.usage ) && ( sharingMode == rhs.sharingMode ) && ( queueFamilyIndexCount == rhs.queueFamilyIndexCount ) && ( pQueueFamilyIndices == rhs.pQueueFamilyIndices ); } bool operator!=( BufferCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; BufferCreateFlags flags; DeviceSize size; BufferUsageFlags usage; SharingMode sharingMode; uint32_t queueFamilyIndexCount; const uint32_t* pQueueFamilyIndices; }; static_assert( sizeof( BufferCreateInfo ) == sizeof( VkBufferCreateInfo ), "struct and wrapper have different size!" ); enum class ShaderStageFlagBits { eVertex = VK_SHADER_STAGE_VERTEX_BIT, eTessellationControl = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, eTessellationEvaluation = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, eGeometry = VK_SHADER_STAGE_GEOMETRY_BIT, eFragment = VK_SHADER_STAGE_FRAGMENT_BIT, eCompute = VK_SHADER_STAGE_COMPUTE_BIT, eAllGraphics = VK_SHADER_STAGE_ALL_GRAPHICS, eAll = VK_SHADER_STAGE_ALL }; using ShaderStageFlags = Flags; VULKAN_HPP_INLINE ShaderStageFlags operator|( ShaderStageFlagBits bit0, ShaderStageFlagBits bit1 ) { return ShaderStageFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE ShaderStageFlags operator~( ShaderStageFlagBits bits ) { return ~( ShaderStageFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ShaderStageFlagBits::eVertex) | VkFlags(ShaderStageFlagBits::eTessellationControl) | VkFlags(ShaderStageFlagBits::eTessellationEvaluation) | VkFlags(ShaderStageFlagBits::eGeometry) | VkFlags(ShaderStageFlagBits::eFragment) | VkFlags(ShaderStageFlagBits::eCompute) | VkFlags(ShaderStageFlagBits::eAllGraphics) | VkFlags(ShaderStageFlagBits::eAll) }; }; struct DescriptorSetLayoutBinding { DescriptorSetLayoutBinding( uint32_t binding_ = 0, DescriptorType descriptorType_ = DescriptorType::eSampler, uint32_t descriptorCount_ = 0, ShaderStageFlags stageFlags_ = ShaderStageFlags(), const Sampler* pImmutableSamplers_ = nullptr ) : binding( binding_ ) , descriptorType( descriptorType_ ) , descriptorCount( descriptorCount_ ) , stageFlags( stageFlags_ ) , pImmutableSamplers( pImmutableSamplers_ ) { } DescriptorSetLayoutBinding( VkDescriptorSetLayoutBinding const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorSetLayoutBinding ) ); } DescriptorSetLayoutBinding& operator=( VkDescriptorSetLayoutBinding const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorSetLayoutBinding ) ); return *this; } DescriptorSetLayoutBinding& setBinding( uint32_t binding_ ) { binding = binding_; return *this; } DescriptorSetLayoutBinding& setDescriptorType( DescriptorType descriptorType_ ) { descriptorType = descriptorType_; return *this; } DescriptorSetLayoutBinding& setDescriptorCount( uint32_t descriptorCount_ ) { descriptorCount = descriptorCount_; return *this; } DescriptorSetLayoutBinding& setStageFlags( ShaderStageFlags stageFlags_ ) { stageFlags = stageFlags_; return *this; } DescriptorSetLayoutBinding& setPImmutableSamplers( const Sampler* pImmutableSamplers_ ) { pImmutableSamplers = pImmutableSamplers_; return *this; } operator const VkDescriptorSetLayoutBinding&() const { return *reinterpret_cast(this); } bool operator==( DescriptorSetLayoutBinding const& rhs ) const { return ( binding == rhs.binding ) && ( descriptorType == rhs.descriptorType ) && ( descriptorCount == rhs.descriptorCount ) && ( stageFlags == rhs.stageFlags ) && ( pImmutableSamplers == rhs.pImmutableSamplers ); } bool operator!=( DescriptorSetLayoutBinding const& rhs ) const { return !operator==( rhs ); } uint32_t binding; DescriptorType descriptorType; uint32_t descriptorCount; ShaderStageFlags stageFlags; const Sampler* pImmutableSamplers; }; static_assert( sizeof( DescriptorSetLayoutBinding ) == sizeof( VkDescriptorSetLayoutBinding ), "struct and wrapper have different size!" ); struct PipelineShaderStageCreateInfo { PipelineShaderStageCreateInfo( PipelineShaderStageCreateFlags flags_ = PipelineShaderStageCreateFlags(), ShaderStageFlagBits stage_ = ShaderStageFlagBits::eVertex, ShaderModule module_ = ShaderModule(), const char* pName_ = nullptr, const SpecializationInfo* pSpecializationInfo_ = nullptr ) : sType( StructureType::ePipelineShaderStageCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , stage( stage_ ) , module( module_ ) , pName( pName_ ) , pSpecializationInfo( pSpecializationInfo_ ) { } PipelineShaderStageCreateInfo( VkPipelineShaderStageCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineShaderStageCreateInfo ) ); } PipelineShaderStageCreateInfo& operator=( VkPipelineShaderStageCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineShaderStageCreateInfo ) ); return *this; } PipelineShaderStageCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineShaderStageCreateInfo& setFlags( PipelineShaderStageCreateFlags flags_ ) { flags = flags_; return *this; } PipelineShaderStageCreateInfo& setStage( ShaderStageFlagBits stage_ ) { stage = stage_; return *this; } PipelineShaderStageCreateInfo& setModule( ShaderModule module_ ) { module = module_; return *this; } PipelineShaderStageCreateInfo& setPName( const char* pName_ ) { pName = pName_; return *this; } PipelineShaderStageCreateInfo& setPSpecializationInfo( const SpecializationInfo* pSpecializationInfo_ ) { pSpecializationInfo = pSpecializationInfo_; return *this; } operator const VkPipelineShaderStageCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineShaderStageCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( stage == rhs.stage ) && ( module == rhs.module ) && ( pName == rhs.pName ) && ( pSpecializationInfo == rhs.pSpecializationInfo ); } bool operator!=( PipelineShaderStageCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineShaderStageCreateFlags flags; ShaderStageFlagBits stage; ShaderModule module; const char* pName; const SpecializationInfo* pSpecializationInfo; }; static_assert( sizeof( PipelineShaderStageCreateInfo ) == sizeof( VkPipelineShaderStageCreateInfo ), "struct and wrapper have different size!" ); struct PushConstantRange { PushConstantRange( ShaderStageFlags stageFlags_ = ShaderStageFlags(), uint32_t offset_ = 0, uint32_t size_ = 0 ) : stageFlags( stageFlags_ ) , offset( offset_ ) , size( size_ ) { } PushConstantRange( VkPushConstantRange const & rhs ) { memcpy( this, &rhs, sizeof( PushConstantRange ) ); } PushConstantRange& operator=( VkPushConstantRange const & rhs ) { memcpy( this, &rhs, sizeof( PushConstantRange ) ); return *this; } PushConstantRange& setStageFlags( ShaderStageFlags stageFlags_ ) { stageFlags = stageFlags_; return *this; } PushConstantRange& setOffset( uint32_t offset_ ) { offset = offset_; return *this; } PushConstantRange& setSize( uint32_t size_ ) { size = size_; return *this; } operator const VkPushConstantRange&() const { return *reinterpret_cast(this); } bool operator==( PushConstantRange const& rhs ) const { return ( stageFlags == rhs.stageFlags ) && ( offset == rhs.offset ) && ( size == rhs.size ); } bool operator!=( PushConstantRange const& rhs ) const { return !operator==( rhs ); } ShaderStageFlags stageFlags; uint32_t offset; uint32_t size; }; static_assert( sizeof( PushConstantRange ) == sizeof( VkPushConstantRange ), "struct and wrapper have different size!" ); struct PipelineLayoutCreateInfo { PipelineLayoutCreateInfo( PipelineLayoutCreateFlags flags_ = PipelineLayoutCreateFlags(), uint32_t setLayoutCount_ = 0, const DescriptorSetLayout* pSetLayouts_ = nullptr, uint32_t pushConstantRangeCount_ = 0, const PushConstantRange* pPushConstantRanges_ = nullptr ) : sType( StructureType::ePipelineLayoutCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , setLayoutCount( setLayoutCount_ ) , pSetLayouts( pSetLayouts_ ) , pushConstantRangeCount( pushConstantRangeCount_ ) , pPushConstantRanges( pPushConstantRanges_ ) { } PipelineLayoutCreateInfo( VkPipelineLayoutCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineLayoutCreateInfo ) ); } PipelineLayoutCreateInfo& operator=( VkPipelineLayoutCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineLayoutCreateInfo ) ); return *this; } PipelineLayoutCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineLayoutCreateInfo& setFlags( PipelineLayoutCreateFlags flags_ ) { flags = flags_; return *this; } PipelineLayoutCreateInfo& setSetLayoutCount( uint32_t setLayoutCount_ ) { setLayoutCount = setLayoutCount_; return *this; } PipelineLayoutCreateInfo& setPSetLayouts( const DescriptorSetLayout* pSetLayouts_ ) { pSetLayouts = pSetLayouts_; return *this; } PipelineLayoutCreateInfo& setPushConstantRangeCount( uint32_t pushConstantRangeCount_ ) { pushConstantRangeCount = pushConstantRangeCount_; return *this; } PipelineLayoutCreateInfo& setPPushConstantRanges( const PushConstantRange* pPushConstantRanges_ ) { pPushConstantRanges = pPushConstantRanges_; return *this; } operator const VkPipelineLayoutCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineLayoutCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( setLayoutCount == rhs.setLayoutCount ) && ( pSetLayouts == rhs.pSetLayouts ) && ( pushConstantRangeCount == rhs.pushConstantRangeCount ) && ( pPushConstantRanges == rhs.pPushConstantRanges ); } bool operator!=( PipelineLayoutCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineLayoutCreateFlags flags; uint32_t setLayoutCount; const DescriptorSetLayout* pSetLayouts; uint32_t pushConstantRangeCount; const PushConstantRange* pPushConstantRanges; }; static_assert( sizeof( PipelineLayoutCreateInfo ) == sizeof( VkPipelineLayoutCreateInfo ), "struct and wrapper have different size!" ); enum class ImageUsageFlagBits { eTransferSrc = VK_IMAGE_USAGE_TRANSFER_SRC_BIT, eTransferDst = VK_IMAGE_USAGE_TRANSFER_DST_BIT, eSampled = VK_IMAGE_USAGE_SAMPLED_BIT, eStorage = VK_IMAGE_USAGE_STORAGE_BIT, eColorAttachment = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, eDepthStencilAttachment = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, eTransientAttachment = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, eInputAttachment = VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT }; using ImageUsageFlags = Flags; VULKAN_HPP_INLINE ImageUsageFlags operator|( ImageUsageFlagBits bit0, ImageUsageFlagBits bit1 ) { return ImageUsageFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE ImageUsageFlags operator~( ImageUsageFlagBits bits ) { return ~( ImageUsageFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ImageUsageFlagBits::eTransferSrc) | VkFlags(ImageUsageFlagBits::eTransferDst) | VkFlags(ImageUsageFlagBits::eSampled) | VkFlags(ImageUsageFlagBits::eStorage) | VkFlags(ImageUsageFlagBits::eColorAttachment) | VkFlags(ImageUsageFlagBits::eDepthStencilAttachment) | VkFlags(ImageUsageFlagBits::eTransientAttachment) | VkFlags(ImageUsageFlagBits::eInputAttachment) }; }; struct SharedPresentSurfaceCapabilitiesKHR { operator const VkSharedPresentSurfaceCapabilitiesKHR&() const { return *reinterpret_cast(this); } bool operator==( SharedPresentSurfaceCapabilitiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( sharedPresentSupportedUsageFlags == rhs.sharedPresentSupportedUsageFlags ); } bool operator!=( SharedPresentSurfaceCapabilitiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; ImageUsageFlags sharedPresentSupportedUsageFlags; }; static_assert( sizeof( SharedPresentSurfaceCapabilitiesKHR ) == sizeof( VkSharedPresentSurfaceCapabilitiesKHR ), "struct and wrapper have different size!" ); struct ImageViewUsageCreateInfoKHR { ImageViewUsageCreateInfoKHR( ImageUsageFlags usage_ = ImageUsageFlags() ) : sType( StructureType::eImageViewUsageCreateInfoKHR ) , pNext( nullptr ) , usage( usage_ ) { } ImageViewUsageCreateInfoKHR( VkImageViewUsageCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImageViewUsageCreateInfoKHR ) ); } ImageViewUsageCreateInfoKHR& operator=( VkImageViewUsageCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImageViewUsageCreateInfoKHR ) ); return *this; } ImageViewUsageCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImageViewUsageCreateInfoKHR& setUsage( ImageUsageFlags usage_ ) { usage = usage_; return *this; } operator const VkImageViewUsageCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ImageViewUsageCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( usage == rhs.usage ); } bool operator!=( ImageViewUsageCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ImageUsageFlags usage; }; static_assert( sizeof( ImageViewUsageCreateInfoKHR ) == sizeof( VkImageViewUsageCreateInfoKHR ), "struct and wrapper have different size!" ); enum class ImageCreateFlagBits { eSparseBinding = VK_IMAGE_CREATE_SPARSE_BINDING_BIT, eSparseResidency = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT, eSparseAliased = VK_IMAGE_CREATE_SPARSE_ALIASED_BIT, eMutableFormat = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT, eCubeCompatible = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, eBindSfrKHX = VK_IMAGE_CREATE_BIND_SFR_BIT_KHX, e2DArrayCompatibleKHR = VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR, eBlockTexelViewCompatibleKHR = VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR, eExtendedUsageKHR = VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR, eDisjointKHR = VK_IMAGE_CREATE_DISJOINT_BIT_KHR, ePlanarAliasKHR = VK_IMAGE_CREATE_PLANAR_ALIAS_BIT_KHR }; using ImageCreateFlags = Flags; VULKAN_HPP_INLINE ImageCreateFlags operator|( ImageCreateFlagBits bit0, ImageCreateFlagBits bit1 ) { return ImageCreateFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE ImageCreateFlags operator~( ImageCreateFlagBits bits ) { return ~( ImageCreateFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ImageCreateFlagBits::eSparseBinding) | VkFlags(ImageCreateFlagBits::eSparseResidency) | VkFlags(ImageCreateFlagBits::eSparseAliased) | VkFlags(ImageCreateFlagBits::eMutableFormat) | VkFlags(ImageCreateFlagBits::eCubeCompatible) | VkFlags(ImageCreateFlagBits::eBindSfrKHX) | VkFlags(ImageCreateFlagBits::e2DArrayCompatibleKHR) | VkFlags(ImageCreateFlagBits::eBlockTexelViewCompatibleKHR) | VkFlags(ImageCreateFlagBits::eExtendedUsageKHR) | VkFlags(ImageCreateFlagBits::eDisjointKHR) | VkFlags(ImageCreateFlagBits::ePlanarAliasKHR) }; }; struct PhysicalDeviceImageFormatInfo2KHR { PhysicalDeviceImageFormatInfo2KHR( Format format_ = Format::eUndefined, ImageType type_ = ImageType::e1D, ImageTiling tiling_ = ImageTiling::eOptimal, ImageUsageFlags usage_ = ImageUsageFlags(), ImageCreateFlags flags_ = ImageCreateFlags() ) : sType( StructureType::ePhysicalDeviceImageFormatInfo2KHR ) , pNext( nullptr ) , format( format_ ) , type( type_ ) , tiling( tiling_ ) , usage( usage_ ) , flags( flags_ ) { } PhysicalDeviceImageFormatInfo2KHR( VkPhysicalDeviceImageFormatInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceImageFormatInfo2KHR ) ); } PhysicalDeviceImageFormatInfo2KHR& operator=( VkPhysicalDeviceImageFormatInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceImageFormatInfo2KHR ) ); return *this; } PhysicalDeviceImageFormatInfo2KHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceImageFormatInfo2KHR& setFormat( Format format_ ) { format = format_; return *this; } PhysicalDeviceImageFormatInfo2KHR& setType( ImageType type_ ) { type = type_; return *this; } PhysicalDeviceImageFormatInfo2KHR& setTiling( ImageTiling tiling_ ) { tiling = tiling_; return *this; } PhysicalDeviceImageFormatInfo2KHR& setUsage( ImageUsageFlags usage_ ) { usage = usage_; return *this; } PhysicalDeviceImageFormatInfo2KHR& setFlags( ImageCreateFlags flags_ ) { flags = flags_; return *this; } operator const VkPhysicalDeviceImageFormatInfo2KHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceImageFormatInfo2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( format == rhs.format ) && ( type == rhs.type ) && ( tiling == rhs.tiling ) && ( usage == rhs.usage ) && ( flags == rhs.flags ); } bool operator!=( PhysicalDeviceImageFormatInfo2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Format format; ImageType type; ImageTiling tiling; ImageUsageFlags usage; ImageCreateFlags flags; }; static_assert( sizeof( PhysicalDeviceImageFormatInfo2KHR ) == sizeof( VkPhysicalDeviceImageFormatInfo2KHR ), "struct and wrapper have different size!" ); enum class PipelineCreateFlagBits { eDisableOptimization = VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, eAllowDerivatives = VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT, eDerivative = VK_PIPELINE_CREATE_DERIVATIVE_BIT, eViewIndexFromDeviceIndexKHX = VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT_KHX, eDispatchBaseKHX = VK_PIPELINE_CREATE_DISPATCH_BASE_KHX }; using PipelineCreateFlags = Flags; VULKAN_HPP_INLINE PipelineCreateFlags operator|( PipelineCreateFlagBits bit0, PipelineCreateFlagBits bit1 ) { return PipelineCreateFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE PipelineCreateFlags operator~( PipelineCreateFlagBits bits ) { return ~( PipelineCreateFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(PipelineCreateFlagBits::eDisableOptimization) | VkFlags(PipelineCreateFlagBits::eAllowDerivatives) | VkFlags(PipelineCreateFlagBits::eDerivative) | VkFlags(PipelineCreateFlagBits::eViewIndexFromDeviceIndexKHX) | VkFlags(PipelineCreateFlagBits::eDispatchBaseKHX) }; }; struct ComputePipelineCreateInfo { ComputePipelineCreateInfo( PipelineCreateFlags flags_ = PipelineCreateFlags(), PipelineShaderStageCreateInfo stage_ = PipelineShaderStageCreateInfo(), PipelineLayout layout_ = PipelineLayout(), Pipeline basePipelineHandle_ = Pipeline(), int32_t basePipelineIndex_ = 0 ) : sType( StructureType::eComputePipelineCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , stage( stage_ ) , layout( layout_ ) , basePipelineHandle( basePipelineHandle_ ) , basePipelineIndex( basePipelineIndex_ ) { } ComputePipelineCreateInfo( VkComputePipelineCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( ComputePipelineCreateInfo ) ); } ComputePipelineCreateInfo& operator=( VkComputePipelineCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( ComputePipelineCreateInfo ) ); return *this; } ComputePipelineCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ComputePipelineCreateInfo& setFlags( PipelineCreateFlags flags_ ) { flags = flags_; return *this; } ComputePipelineCreateInfo& setStage( PipelineShaderStageCreateInfo stage_ ) { stage = stage_; return *this; } ComputePipelineCreateInfo& setLayout( PipelineLayout layout_ ) { layout = layout_; return *this; } ComputePipelineCreateInfo& setBasePipelineHandle( Pipeline basePipelineHandle_ ) { basePipelineHandle = basePipelineHandle_; return *this; } ComputePipelineCreateInfo& setBasePipelineIndex( int32_t basePipelineIndex_ ) { basePipelineIndex = basePipelineIndex_; return *this; } operator const VkComputePipelineCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( ComputePipelineCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( stage == rhs.stage ) && ( layout == rhs.layout ) && ( basePipelineHandle == rhs.basePipelineHandle ) && ( basePipelineIndex == rhs.basePipelineIndex ); } bool operator!=( ComputePipelineCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineCreateFlags flags; PipelineShaderStageCreateInfo stage; PipelineLayout layout; Pipeline basePipelineHandle; int32_t basePipelineIndex; }; static_assert( sizeof( ComputePipelineCreateInfo ) == sizeof( VkComputePipelineCreateInfo ), "struct and wrapper have different size!" ); enum class ColorComponentFlagBits { eR = VK_COLOR_COMPONENT_R_BIT, eG = VK_COLOR_COMPONENT_G_BIT, eB = VK_COLOR_COMPONENT_B_BIT, eA = VK_COLOR_COMPONENT_A_BIT }; using ColorComponentFlags = Flags; VULKAN_HPP_INLINE ColorComponentFlags operator|( ColorComponentFlagBits bit0, ColorComponentFlagBits bit1 ) { return ColorComponentFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE ColorComponentFlags operator~( ColorComponentFlagBits bits ) { return ~( ColorComponentFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ColorComponentFlagBits::eR) | VkFlags(ColorComponentFlagBits::eG) | VkFlags(ColorComponentFlagBits::eB) | VkFlags(ColorComponentFlagBits::eA) }; }; struct PipelineColorBlendAttachmentState { PipelineColorBlendAttachmentState( Bool32 blendEnable_ = 0, BlendFactor srcColorBlendFactor_ = BlendFactor::eZero, BlendFactor dstColorBlendFactor_ = BlendFactor::eZero, BlendOp colorBlendOp_ = BlendOp::eAdd, BlendFactor srcAlphaBlendFactor_ = BlendFactor::eZero, BlendFactor dstAlphaBlendFactor_ = BlendFactor::eZero, BlendOp alphaBlendOp_ = BlendOp::eAdd, ColorComponentFlags colorWriteMask_ = ColorComponentFlags() ) : blendEnable( blendEnable_ ) , srcColorBlendFactor( srcColorBlendFactor_ ) , dstColorBlendFactor( dstColorBlendFactor_ ) , colorBlendOp( colorBlendOp_ ) , srcAlphaBlendFactor( srcAlphaBlendFactor_ ) , dstAlphaBlendFactor( dstAlphaBlendFactor_ ) , alphaBlendOp( alphaBlendOp_ ) , colorWriteMask( colorWriteMask_ ) { } PipelineColorBlendAttachmentState( VkPipelineColorBlendAttachmentState const & rhs ) { memcpy( this, &rhs, sizeof( PipelineColorBlendAttachmentState ) ); } PipelineColorBlendAttachmentState& operator=( VkPipelineColorBlendAttachmentState const & rhs ) { memcpy( this, &rhs, sizeof( PipelineColorBlendAttachmentState ) ); return *this; } PipelineColorBlendAttachmentState& setBlendEnable( Bool32 blendEnable_ ) { blendEnable = blendEnable_; return *this; } PipelineColorBlendAttachmentState& setSrcColorBlendFactor( BlendFactor srcColorBlendFactor_ ) { srcColorBlendFactor = srcColorBlendFactor_; return *this; } PipelineColorBlendAttachmentState& setDstColorBlendFactor( BlendFactor dstColorBlendFactor_ ) { dstColorBlendFactor = dstColorBlendFactor_; return *this; } PipelineColorBlendAttachmentState& setColorBlendOp( BlendOp colorBlendOp_ ) { colorBlendOp = colorBlendOp_; return *this; } PipelineColorBlendAttachmentState& setSrcAlphaBlendFactor( BlendFactor srcAlphaBlendFactor_ ) { srcAlphaBlendFactor = srcAlphaBlendFactor_; return *this; } PipelineColorBlendAttachmentState& setDstAlphaBlendFactor( BlendFactor dstAlphaBlendFactor_ ) { dstAlphaBlendFactor = dstAlphaBlendFactor_; return *this; } PipelineColorBlendAttachmentState& setAlphaBlendOp( BlendOp alphaBlendOp_ ) { alphaBlendOp = alphaBlendOp_; return *this; } PipelineColorBlendAttachmentState& setColorWriteMask( ColorComponentFlags colorWriteMask_ ) { colorWriteMask = colorWriteMask_; return *this; } operator const VkPipelineColorBlendAttachmentState&() const { return *reinterpret_cast(this); } bool operator==( PipelineColorBlendAttachmentState const& rhs ) const { return ( blendEnable == rhs.blendEnable ) && ( srcColorBlendFactor == rhs.srcColorBlendFactor ) && ( dstColorBlendFactor == rhs.dstColorBlendFactor ) && ( colorBlendOp == rhs.colorBlendOp ) && ( srcAlphaBlendFactor == rhs.srcAlphaBlendFactor ) && ( dstAlphaBlendFactor == rhs.dstAlphaBlendFactor ) && ( alphaBlendOp == rhs.alphaBlendOp ) && ( colorWriteMask == rhs.colorWriteMask ); } bool operator!=( PipelineColorBlendAttachmentState const& rhs ) const { return !operator==( rhs ); } Bool32 blendEnable; BlendFactor srcColorBlendFactor; BlendFactor dstColorBlendFactor; BlendOp colorBlendOp; BlendFactor srcAlphaBlendFactor; BlendFactor dstAlphaBlendFactor; BlendOp alphaBlendOp; ColorComponentFlags colorWriteMask; }; static_assert( sizeof( PipelineColorBlendAttachmentState ) == sizeof( VkPipelineColorBlendAttachmentState ), "struct and wrapper have different size!" ); struct PipelineColorBlendStateCreateInfo { PipelineColorBlendStateCreateInfo( PipelineColorBlendStateCreateFlags flags_ = PipelineColorBlendStateCreateFlags(), Bool32 logicOpEnable_ = 0, LogicOp logicOp_ = LogicOp::eClear, uint32_t attachmentCount_ = 0, const PipelineColorBlendAttachmentState* pAttachments_ = nullptr, std::array const& blendConstants_ = { { 0, 0, 0, 0 } } ) : sType( StructureType::ePipelineColorBlendStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , logicOpEnable( logicOpEnable_ ) , logicOp( logicOp_ ) , attachmentCount( attachmentCount_ ) , pAttachments( pAttachments_ ) { memcpy( &blendConstants, blendConstants_.data(), 4 * sizeof( float ) ); } PipelineColorBlendStateCreateInfo( VkPipelineColorBlendStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineColorBlendStateCreateInfo ) ); } PipelineColorBlendStateCreateInfo& operator=( VkPipelineColorBlendStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineColorBlendStateCreateInfo ) ); return *this; } PipelineColorBlendStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineColorBlendStateCreateInfo& setFlags( PipelineColorBlendStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineColorBlendStateCreateInfo& setLogicOpEnable( Bool32 logicOpEnable_ ) { logicOpEnable = logicOpEnable_; return *this; } PipelineColorBlendStateCreateInfo& setLogicOp( LogicOp logicOp_ ) { logicOp = logicOp_; return *this; } PipelineColorBlendStateCreateInfo& setAttachmentCount( uint32_t attachmentCount_ ) { attachmentCount = attachmentCount_; return *this; } PipelineColorBlendStateCreateInfo& setPAttachments( const PipelineColorBlendAttachmentState* pAttachments_ ) { pAttachments = pAttachments_; return *this; } PipelineColorBlendStateCreateInfo& setBlendConstants( std::array blendConstants_ ) { memcpy( &blendConstants, blendConstants_.data(), 4 * sizeof( float ) ); return *this; } operator const VkPipelineColorBlendStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineColorBlendStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( logicOpEnable == rhs.logicOpEnable ) && ( logicOp == rhs.logicOp ) && ( attachmentCount == rhs.attachmentCount ) && ( pAttachments == rhs.pAttachments ) && ( memcmp( blendConstants, rhs.blendConstants, 4 * sizeof( float ) ) == 0 ); } bool operator!=( PipelineColorBlendStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineColorBlendStateCreateFlags flags; Bool32 logicOpEnable; LogicOp logicOp; uint32_t attachmentCount; const PipelineColorBlendAttachmentState* pAttachments; float blendConstants[4]; }; static_assert( sizeof( PipelineColorBlendStateCreateInfo ) == sizeof( VkPipelineColorBlendStateCreateInfo ), "struct and wrapper have different size!" ); enum class FenceCreateFlagBits { eSignaled = VK_FENCE_CREATE_SIGNALED_BIT }; using FenceCreateFlags = Flags; VULKAN_HPP_INLINE FenceCreateFlags operator|( FenceCreateFlagBits bit0, FenceCreateFlagBits bit1 ) { return FenceCreateFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE FenceCreateFlags operator~( FenceCreateFlagBits bits ) { return ~( FenceCreateFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(FenceCreateFlagBits::eSignaled) }; }; struct FenceCreateInfo { FenceCreateInfo( FenceCreateFlags flags_ = FenceCreateFlags() ) : sType( StructureType::eFenceCreateInfo ) , pNext( nullptr ) , flags( flags_ ) { } FenceCreateInfo( VkFenceCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( FenceCreateInfo ) ); } FenceCreateInfo& operator=( VkFenceCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( FenceCreateInfo ) ); return *this; } FenceCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } FenceCreateInfo& setFlags( FenceCreateFlags flags_ ) { flags = flags_; return *this; } operator const VkFenceCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( FenceCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ); } bool operator!=( FenceCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; FenceCreateFlags flags; }; static_assert( sizeof( FenceCreateInfo ) == sizeof( VkFenceCreateInfo ), "struct and wrapper have different size!" ); enum class FormatFeatureFlagBits { eSampledImage = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT, eStorageImage = VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT, eStorageImageAtomic = VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT, eUniformTexelBuffer = VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT, eStorageTexelBuffer = VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT, eStorageTexelBufferAtomic = VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT, eVertexBuffer = VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT, eColorAttachment = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT, eColorAttachmentBlend = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT, eDepthStencilAttachment = VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT, eBlitSrc = VK_FORMAT_FEATURE_BLIT_SRC_BIT, eBlitDst = VK_FORMAT_FEATURE_BLIT_DST_BIT, eSampledImageFilterLinear = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT, eSampledImageFilterCubicIMG = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG, eTransferSrcKHR = VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR, eTransferDstKHR = VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR, eSampledImageFilterMinmaxKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_KHR, eSampledImageYCbCrConversionSupportedKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SUPPORTED_BIT_KHR, eSampledImageYCbCrConversionLinearFilterKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR, eSampledImageYCbCrConversionSeparateReconstructionFilterKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KHR, eSampledImageYCbCrConversionChromaReconstructionExplicitKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR, eSampledImageYCbCrConversionChromaReconstructionExplicitForceableKHR = VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT_KHR, eDisjointKHR = VK_FORMAT_FEATURE_DISJOINT_BIT_KHR, eCositedChromaSamplesKHR = VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR }; using FormatFeatureFlags = Flags; VULKAN_HPP_INLINE FormatFeatureFlags operator|( FormatFeatureFlagBits bit0, FormatFeatureFlagBits bit1 ) { return FormatFeatureFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE FormatFeatureFlags operator~( FormatFeatureFlagBits bits ) { return ~( FormatFeatureFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(FormatFeatureFlagBits::eSampledImage) | VkFlags(FormatFeatureFlagBits::eStorageImage) | VkFlags(FormatFeatureFlagBits::eStorageImageAtomic) | VkFlags(FormatFeatureFlagBits::eUniformTexelBuffer) | VkFlags(FormatFeatureFlagBits::eStorageTexelBuffer) | VkFlags(FormatFeatureFlagBits::eStorageTexelBufferAtomic) | VkFlags(FormatFeatureFlagBits::eVertexBuffer) | VkFlags(FormatFeatureFlagBits::eColorAttachment) | VkFlags(FormatFeatureFlagBits::eColorAttachmentBlend) | VkFlags(FormatFeatureFlagBits::eDepthStencilAttachment) | VkFlags(FormatFeatureFlagBits::eBlitSrc) | VkFlags(FormatFeatureFlagBits::eBlitDst) | VkFlags(FormatFeatureFlagBits::eSampledImageFilterLinear) | VkFlags(FormatFeatureFlagBits::eSampledImageFilterCubicIMG) | VkFlags(FormatFeatureFlagBits::eTransferSrcKHR) | VkFlags(FormatFeatureFlagBits::eTransferDstKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageFilterMinmaxKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYCbCrConversionSupportedKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYCbCrConversionLinearFilterKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYCbCrConversionSeparateReconstructionFilterKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYCbCrConversionChromaReconstructionExplicitKHR) | VkFlags(FormatFeatureFlagBits::eSampledImageYCbCrConversionChromaReconstructionExplicitForceableKHR) | VkFlags(FormatFeatureFlagBits::eDisjointKHR) | VkFlags(FormatFeatureFlagBits::eCositedChromaSamplesKHR) }; }; struct FormatProperties { operator const VkFormatProperties&() const { return *reinterpret_cast(this); } bool operator==( FormatProperties const& rhs ) const { return ( linearTilingFeatures == rhs.linearTilingFeatures ) && ( optimalTilingFeatures == rhs.optimalTilingFeatures ) && ( bufferFeatures == rhs.bufferFeatures ); } bool operator!=( FormatProperties const& rhs ) const { return !operator==( rhs ); } FormatFeatureFlags linearTilingFeatures; FormatFeatureFlags optimalTilingFeatures; FormatFeatureFlags bufferFeatures; }; static_assert( sizeof( FormatProperties ) == sizeof( VkFormatProperties ), "struct and wrapper have different size!" ); struct FormatProperties2KHR { operator const VkFormatProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( FormatProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( formatProperties == rhs.formatProperties ); } bool operator!=( FormatProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; FormatProperties formatProperties; }; static_assert( sizeof( FormatProperties2KHR ) == sizeof( VkFormatProperties2KHR ), "struct and wrapper have different size!" ); enum class QueryControlFlagBits { ePrecise = VK_QUERY_CONTROL_PRECISE_BIT }; using QueryControlFlags = Flags; VULKAN_HPP_INLINE QueryControlFlags operator|( QueryControlFlagBits bit0, QueryControlFlagBits bit1 ) { return QueryControlFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE QueryControlFlags operator~( QueryControlFlagBits bits ) { return ~( QueryControlFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(QueryControlFlagBits::ePrecise) }; }; enum class QueryResultFlagBits { e64 = VK_QUERY_RESULT_64_BIT, eWait = VK_QUERY_RESULT_WAIT_BIT, eWithAvailability = VK_QUERY_RESULT_WITH_AVAILABILITY_BIT, ePartial = VK_QUERY_RESULT_PARTIAL_BIT }; using QueryResultFlags = Flags; VULKAN_HPP_INLINE QueryResultFlags operator|( QueryResultFlagBits bit0, QueryResultFlagBits bit1 ) { return QueryResultFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE QueryResultFlags operator~( QueryResultFlagBits bits ) { return ~( QueryResultFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(QueryResultFlagBits::e64) | VkFlags(QueryResultFlagBits::eWait) | VkFlags(QueryResultFlagBits::eWithAvailability) | VkFlags(QueryResultFlagBits::ePartial) }; }; enum class CommandBufferUsageFlagBits { eOneTimeSubmit = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, eRenderPassContinue = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, eSimultaneousUse = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT }; using CommandBufferUsageFlags = Flags; VULKAN_HPP_INLINE CommandBufferUsageFlags operator|( CommandBufferUsageFlagBits bit0, CommandBufferUsageFlagBits bit1 ) { return CommandBufferUsageFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE CommandBufferUsageFlags operator~( CommandBufferUsageFlagBits bits ) { return ~( CommandBufferUsageFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(CommandBufferUsageFlagBits::eOneTimeSubmit) | VkFlags(CommandBufferUsageFlagBits::eRenderPassContinue) | VkFlags(CommandBufferUsageFlagBits::eSimultaneousUse) }; }; enum class QueryPipelineStatisticFlagBits { eInputAssemblyVertices = VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT, eInputAssemblyPrimitives = VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT, eVertexShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT, eGeometryShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT, eGeometryShaderPrimitives = VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT, eClippingInvocations = VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT, eClippingPrimitives = VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT, eFragmentShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT, eTessellationControlShaderPatches = VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT, eTessellationEvaluationShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT, eComputeShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT }; using QueryPipelineStatisticFlags = Flags; VULKAN_HPP_INLINE QueryPipelineStatisticFlags operator|( QueryPipelineStatisticFlagBits bit0, QueryPipelineStatisticFlagBits bit1 ) { return QueryPipelineStatisticFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE QueryPipelineStatisticFlags operator~( QueryPipelineStatisticFlagBits bits ) { return ~( QueryPipelineStatisticFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(QueryPipelineStatisticFlagBits::eInputAssemblyVertices) | VkFlags(QueryPipelineStatisticFlagBits::eInputAssemblyPrimitives) | VkFlags(QueryPipelineStatisticFlagBits::eVertexShaderInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eGeometryShaderInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eGeometryShaderPrimitives) | VkFlags(QueryPipelineStatisticFlagBits::eClippingInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eClippingPrimitives) | VkFlags(QueryPipelineStatisticFlagBits::eFragmentShaderInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eTessellationControlShaderPatches) | VkFlags(QueryPipelineStatisticFlagBits::eTessellationEvaluationShaderInvocations) | VkFlags(QueryPipelineStatisticFlagBits::eComputeShaderInvocations) }; }; struct CommandBufferInheritanceInfo { CommandBufferInheritanceInfo( RenderPass renderPass_ = RenderPass(), uint32_t subpass_ = 0, Framebuffer framebuffer_ = Framebuffer(), Bool32 occlusionQueryEnable_ = 0, QueryControlFlags queryFlags_ = QueryControlFlags(), QueryPipelineStatisticFlags pipelineStatistics_ = QueryPipelineStatisticFlags() ) : sType( StructureType::eCommandBufferInheritanceInfo ) , pNext( nullptr ) , renderPass( renderPass_ ) , subpass( subpass_ ) , framebuffer( framebuffer_ ) , occlusionQueryEnable( occlusionQueryEnable_ ) , queryFlags( queryFlags_ ) , pipelineStatistics( pipelineStatistics_ ) { } CommandBufferInheritanceInfo( VkCommandBufferInheritanceInfo const & rhs ) { memcpy( this, &rhs, sizeof( CommandBufferInheritanceInfo ) ); } CommandBufferInheritanceInfo& operator=( VkCommandBufferInheritanceInfo const & rhs ) { memcpy( this, &rhs, sizeof( CommandBufferInheritanceInfo ) ); return *this; } CommandBufferInheritanceInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } CommandBufferInheritanceInfo& setRenderPass( RenderPass renderPass_ ) { renderPass = renderPass_; return *this; } CommandBufferInheritanceInfo& setSubpass( uint32_t subpass_ ) { subpass = subpass_; return *this; } CommandBufferInheritanceInfo& setFramebuffer( Framebuffer framebuffer_ ) { framebuffer = framebuffer_; return *this; } CommandBufferInheritanceInfo& setOcclusionQueryEnable( Bool32 occlusionQueryEnable_ ) { occlusionQueryEnable = occlusionQueryEnable_; return *this; } CommandBufferInheritanceInfo& setQueryFlags( QueryControlFlags queryFlags_ ) { queryFlags = queryFlags_; return *this; } CommandBufferInheritanceInfo& setPipelineStatistics( QueryPipelineStatisticFlags pipelineStatistics_ ) { pipelineStatistics = pipelineStatistics_; return *this; } operator const VkCommandBufferInheritanceInfo&() const { return *reinterpret_cast(this); } bool operator==( CommandBufferInheritanceInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( renderPass == rhs.renderPass ) && ( subpass == rhs.subpass ) && ( framebuffer == rhs.framebuffer ) && ( occlusionQueryEnable == rhs.occlusionQueryEnable ) && ( queryFlags == rhs.queryFlags ) && ( pipelineStatistics == rhs.pipelineStatistics ); } bool operator!=( CommandBufferInheritanceInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; RenderPass renderPass; uint32_t subpass; Framebuffer framebuffer; Bool32 occlusionQueryEnable; QueryControlFlags queryFlags; QueryPipelineStatisticFlags pipelineStatistics; }; static_assert( sizeof( CommandBufferInheritanceInfo ) == sizeof( VkCommandBufferInheritanceInfo ), "struct and wrapper have different size!" ); struct CommandBufferBeginInfo { CommandBufferBeginInfo( CommandBufferUsageFlags flags_ = CommandBufferUsageFlags(), const CommandBufferInheritanceInfo* pInheritanceInfo_ = nullptr ) : sType( StructureType::eCommandBufferBeginInfo ) , pNext( nullptr ) , flags( flags_ ) , pInheritanceInfo( pInheritanceInfo_ ) { } CommandBufferBeginInfo( VkCommandBufferBeginInfo const & rhs ) { memcpy( this, &rhs, sizeof( CommandBufferBeginInfo ) ); } CommandBufferBeginInfo& operator=( VkCommandBufferBeginInfo const & rhs ) { memcpy( this, &rhs, sizeof( CommandBufferBeginInfo ) ); return *this; } CommandBufferBeginInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } CommandBufferBeginInfo& setFlags( CommandBufferUsageFlags flags_ ) { flags = flags_; return *this; } CommandBufferBeginInfo& setPInheritanceInfo( const CommandBufferInheritanceInfo* pInheritanceInfo_ ) { pInheritanceInfo = pInheritanceInfo_; return *this; } operator const VkCommandBufferBeginInfo&() const { return *reinterpret_cast(this); } bool operator==( CommandBufferBeginInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( pInheritanceInfo == rhs.pInheritanceInfo ); } bool operator!=( CommandBufferBeginInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; CommandBufferUsageFlags flags; const CommandBufferInheritanceInfo* pInheritanceInfo; }; static_assert( sizeof( CommandBufferBeginInfo ) == sizeof( VkCommandBufferBeginInfo ), "struct and wrapper have different size!" ); struct QueryPoolCreateInfo { QueryPoolCreateInfo( QueryPoolCreateFlags flags_ = QueryPoolCreateFlags(), QueryType queryType_ = QueryType::eOcclusion, uint32_t queryCount_ = 0, QueryPipelineStatisticFlags pipelineStatistics_ = QueryPipelineStatisticFlags() ) : sType( StructureType::eQueryPoolCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , queryType( queryType_ ) , queryCount( queryCount_ ) , pipelineStatistics( pipelineStatistics_ ) { } QueryPoolCreateInfo( VkQueryPoolCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( QueryPoolCreateInfo ) ); } QueryPoolCreateInfo& operator=( VkQueryPoolCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( QueryPoolCreateInfo ) ); return *this; } QueryPoolCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } QueryPoolCreateInfo& setFlags( QueryPoolCreateFlags flags_ ) { flags = flags_; return *this; } QueryPoolCreateInfo& setQueryType( QueryType queryType_ ) { queryType = queryType_; return *this; } QueryPoolCreateInfo& setQueryCount( uint32_t queryCount_ ) { queryCount = queryCount_; return *this; } QueryPoolCreateInfo& setPipelineStatistics( QueryPipelineStatisticFlags pipelineStatistics_ ) { pipelineStatistics = pipelineStatistics_; return *this; } operator const VkQueryPoolCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( QueryPoolCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( queryType == rhs.queryType ) && ( queryCount == rhs.queryCount ) && ( pipelineStatistics == rhs.pipelineStatistics ); } bool operator!=( QueryPoolCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; QueryPoolCreateFlags flags; QueryType queryType; uint32_t queryCount; QueryPipelineStatisticFlags pipelineStatistics; }; static_assert( sizeof( QueryPoolCreateInfo ) == sizeof( VkQueryPoolCreateInfo ), "struct and wrapper have different size!" ); enum class ImageAspectFlagBits { eColor = VK_IMAGE_ASPECT_COLOR_BIT, eDepth = VK_IMAGE_ASPECT_DEPTH_BIT, eStencil = VK_IMAGE_ASPECT_STENCIL_BIT, eMetadata = VK_IMAGE_ASPECT_METADATA_BIT, ePlane0KHR = VK_IMAGE_ASPECT_PLANE_0_BIT_KHR, ePlane1KHR = VK_IMAGE_ASPECT_PLANE_1_BIT_KHR, ePlane2KHR = VK_IMAGE_ASPECT_PLANE_2_BIT_KHR }; using ImageAspectFlags = Flags; VULKAN_HPP_INLINE ImageAspectFlags operator|( ImageAspectFlagBits bit0, ImageAspectFlagBits bit1 ) { return ImageAspectFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE ImageAspectFlags operator~( ImageAspectFlagBits bits ) { return ~( ImageAspectFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ImageAspectFlagBits::eColor) | VkFlags(ImageAspectFlagBits::eDepth) | VkFlags(ImageAspectFlagBits::eStencil) | VkFlags(ImageAspectFlagBits::eMetadata) | VkFlags(ImageAspectFlagBits::ePlane0KHR) | VkFlags(ImageAspectFlagBits::ePlane1KHR) | VkFlags(ImageAspectFlagBits::ePlane2KHR) }; }; struct ImageSubresource { ImageSubresource( ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t mipLevel_ = 0, uint32_t arrayLayer_ = 0 ) : aspectMask( aspectMask_ ) , mipLevel( mipLevel_ ) , arrayLayer( arrayLayer_ ) { } ImageSubresource( VkImageSubresource const & rhs ) { memcpy( this, &rhs, sizeof( ImageSubresource ) ); } ImageSubresource& operator=( VkImageSubresource const & rhs ) { memcpy( this, &rhs, sizeof( ImageSubresource ) ); return *this; } ImageSubresource& setAspectMask( ImageAspectFlags aspectMask_ ) { aspectMask = aspectMask_; return *this; } ImageSubresource& setMipLevel( uint32_t mipLevel_ ) { mipLevel = mipLevel_; return *this; } ImageSubresource& setArrayLayer( uint32_t arrayLayer_ ) { arrayLayer = arrayLayer_; return *this; } operator const VkImageSubresource&() const { return *reinterpret_cast(this); } bool operator==( ImageSubresource const& rhs ) const { return ( aspectMask == rhs.aspectMask ) && ( mipLevel == rhs.mipLevel ) && ( arrayLayer == rhs.arrayLayer ); } bool operator!=( ImageSubresource const& rhs ) const { return !operator==( rhs ); } ImageAspectFlags aspectMask; uint32_t mipLevel; uint32_t arrayLayer; }; static_assert( sizeof( ImageSubresource ) == sizeof( VkImageSubresource ), "struct and wrapper have different size!" ); struct ImageSubresourceLayers { ImageSubresourceLayers( ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t mipLevel_ = 0, uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0 ) : aspectMask( aspectMask_ ) , mipLevel( mipLevel_ ) , baseArrayLayer( baseArrayLayer_ ) , layerCount( layerCount_ ) { } ImageSubresourceLayers( VkImageSubresourceLayers const & rhs ) { memcpy( this, &rhs, sizeof( ImageSubresourceLayers ) ); } ImageSubresourceLayers& operator=( VkImageSubresourceLayers const & rhs ) { memcpy( this, &rhs, sizeof( ImageSubresourceLayers ) ); return *this; } ImageSubresourceLayers& setAspectMask( ImageAspectFlags aspectMask_ ) { aspectMask = aspectMask_; return *this; } ImageSubresourceLayers& setMipLevel( uint32_t mipLevel_ ) { mipLevel = mipLevel_; return *this; } ImageSubresourceLayers& setBaseArrayLayer( uint32_t baseArrayLayer_ ) { baseArrayLayer = baseArrayLayer_; return *this; } ImageSubresourceLayers& setLayerCount( uint32_t layerCount_ ) { layerCount = layerCount_; return *this; } operator const VkImageSubresourceLayers&() const { return *reinterpret_cast(this); } bool operator==( ImageSubresourceLayers const& rhs ) const { return ( aspectMask == rhs.aspectMask ) && ( mipLevel == rhs.mipLevel ) && ( baseArrayLayer == rhs.baseArrayLayer ) && ( layerCount == rhs.layerCount ); } bool operator!=( ImageSubresourceLayers const& rhs ) const { return !operator==( rhs ); } ImageAspectFlags aspectMask; uint32_t mipLevel; uint32_t baseArrayLayer; uint32_t layerCount; }; static_assert( sizeof( ImageSubresourceLayers ) == sizeof( VkImageSubresourceLayers ), "struct and wrapper have different size!" ); struct ImageSubresourceRange { ImageSubresourceRange( ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t baseMipLevel_ = 0, uint32_t levelCount_ = 0, uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0 ) : aspectMask( aspectMask_ ) , baseMipLevel( baseMipLevel_ ) , levelCount( levelCount_ ) , baseArrayLayer( baseArrayLayer_ ) , layerCount( layerCount_ ) { } ImageSubresourceRange( VkImageSubresourceRange const & rhs ) { memcpy( this, &rhs, sizeof( ImageSubresourceRange ) ); } ImageSubresourceRange& operator=( VkImageSubresourceRange const & rhs ) { memcpy( this, &rhs, sizeof( ImageSubresourceRange ) ); return *this; } ImageSubresourceRange& setAspectMask( ImageAspectFlags aspectMask_ ) { aspectMask = aspectMask_; return *this; } ImageSubresourceRange& setBaseMipLevel( uint32_t baseMipLevel_ ) { baseMipLevel = baseMipLevel_; return *this; } ImageSubresourceRange& setLevelCount( uint32_t levelCount_ ) { levelCount = levelCount_; return *this; } ImageSubresourceRange& setBaseArrayLayer( uint32_t baseArrayLayer_ ) { baseArrayLayer = baseArrayLayer_; return *this; } ImageSubresourceRange& setLayerCount( uint32_t layerCount_ ) { layerCount = layerCount_; return *this; } operator const VkImageSubresourceRange&() const { return *reinterpret_cast(this); } bool operator==( ImageSubresourceRange const& rhs ) const { return ( aspectMask == rhs.aspectMask ) && ( baseMipLevel == rhs.baseMipLevel ) && ( levelCount == rhs.levelCount ) && ( baseArrayLayer == rhs.baseArrayLayer ) && ( layerCount == rhs.layerCount ); } bool operator!=( ImageSubresourceRange const& rhs ) const { return !operator==( rhs ); } ImageAspectFlags aspectMask; uint32_t baseMipLevel; uint32_t levelCount; uint32_t baseArrayLayer; uint32_t layerCount; }; static_assert( sizeof( ImageSubresourceRange ) == sizeof( VkImageSubresourceRange ), "struct and wrapper have different size!" ); struct ImageMemoryBarrier { ImageMemoryBarrier( AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), ImageLayout oldLayout_ = ImageLayout::eUndefined, ImageLayout newLayout_ = ImageLayout::eUndefined, uint32_t srcQueueFamilyIndex_ = 0, uint32_t dstQueueFamilyIndex_ = 0, Image image_ = Image(), ImageSubresourceRange subresourceRange_ = ImageSubresourceRange() ) : sType( StructureType::eImageMemoryBarrier ) , pNext( nullptr ) , srcAccessMask( srcAccessMask_ ) , dstAccessMask( dstAccessMask_ ) , oldLayout( oldLayout_ ) , newLayout( newLayout_ ) , srcQueueFamilyIndex( srcQueueFamilyIndex_ ) , dstQueueFamilyIndex( dstQueueFamilyIndex_ ) , image( image_ ) , subresourceRange( subresourceRange_ ) { } ImageMemoryBarrier( VkImageMemoryBarrier const & rhs ) { memcpy( this, &rhs, sizeof( ImageMemoryBarrier ) ); } ImageMemoryBarrier& operator=( VkImageMemoryBarrier const & rhs ) { memcpy( this, &rhs, sizeof( ImageMemoryBarrier ) ); return *this; } ImageMemoryBarrier& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImageMemoryBarrier& setSrcAccessMask( AccessFlags srcAccessMask_ ) { srcAccessMask = srcAccessMask_; return *this; } ImageMemoryBarrier& setDstAccessMask( AccessFlags dstAccessMask_ ) { dstAccessMask = dstAccessMask_; return *this; } ImageMemoryBarrier& setOldLayout( ImageLayout oldLayout_ ) { oldLayout = oldLayout_; return *this; } ImageMemoryBarrier& setNewLayout( ImageLayout newLayout_ ) { newLayout = newLayout_; return *this; } ImageMemoryBarrier& setSrcQueueFamilyIndex( uint32_t srcQueueFamilyIndex_ ) { srcQueueFamilyIndex = srcQueueFamilyIndex_; return *this; } ImageMemoryBarrier& setDstQueueFamilyIndex( uint32_t dstQueueFamilyIndex_ ) { dstQueueFamilyIndex = dstQueueFamilyIndex_; return *this; } ImageMemoryBarrier& setImage( Image image_ ) { image = image_; return *this; } ImageMemoryBarrier& setSubresourceRange( ImageSubresourceRange subresourceRange_ ) { subresourceRange = subresourceRange_; return *this; } operator const VkImageMemoryBarrier&() const { return *reinterpret_cast(this); } bool operator==( ImageMemoryBarrier const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( srcAccessMask == rhs.srcAccessMask ) && ( dstAccessMask == rhs.dstAccessMask ) && ( oldLayout == rhs.oldLayout ) && ( newLayout == rhs.newLayout ) && ( srcQueueFamilyIndex == rhs.srcQueueFamilyIndex ) && ( dstQueueFamilyIndex == rhs.dstQueueFamilyIndex ) && ( image == rhs.image ) && ( subresourceRange == rhs.subresourceRange ); } bool operator!=( ImageMemoryBarrier const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; AccessFlags srcAccessMask; AccessFlags dstAccessMask; ImageLayout oldLayout; ImageLayout newLayout; uint32_t srcQueueFamilyIndex; uint32_t dstQueueFamilyIndex; Image image; ImageSubresourceRange subresourceRange; }; static_assert( sizeof( ImageMemoryBarrier ) == sizeof( VkImageMemoryBarrier ), "struct and wrapper have different size!" ); struct ImageViewCreateInfo { ImageViewCreateInfo( ImageViewCreateFlags flags_ = ImageViewCreateFlags(), Image image_ = Image(), ImageViewType viewType_ = ImageViewType::e1D, Format format_ = Format::eUndefined, ComponentMapping components_ = ComponentMapping(), ImageSubresourceRange subresourceRange_ = ImageSubresourceRange() ) : sType( StructureType::eImageViewCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , image( image_ ) , viewType( viewType_ ) , format( format_ ) , components( components_ ) , subresourceRange( subresourceRange_ ) { } ImageViewCreateInfo( VkImageViewCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( ImageViewCreateInfo ) ); } ImageViewCreateInfo& operator=( VkImageViewCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( ImageViewCreateInfo ) ); return *this; } ImageViewCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImageViewCreateInfo& setFlags( ImageViewCreateFlags flags_ ) { flags = flags_; return *this; } ImageViewCreateInfo& setImage( Image image_ ) { image = image_; return *this; } ImageViewCreateInfo& setViewType( ImageViewType viewType_ ) { viewType = viewType_; return *this; } ImageViewCreateInfo& setFormat( Format format_ ) { format = format_; return *this; } ImageViewCreateInfo& setComponents( ComponentMapping components_ ) { components = components_; return *this; } ImageViewCreateInfo& setSubresourceRange( ImageSubresourceRange subresourceRange_ ) { subresourceRange = subresourceRange_; return *this; } operator const VkImageViewCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( ImageViewCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( image == rhs.image ) && ( viewType == rhs.viewType ) && ( format == rhs.format ) && ( components == rhs.components ) && ( subresourceRange == rhs.subresourceRange ); } bool operator!=( ImageViewCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ImageViewCreateFlags flags; Image image; ImageViewType viewType; Format format; ComponentMapping components; ImageSubresourceRange subresourceRange; }; static_assert( sizeof( ImageViewCreateInfo ) == sizeof( VkImageViewCreateInfo ), "struct and wrapper have different size!" ); struct ImageCopy { ImageCopy( ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), Offset3D srcOffset_ = Offset3D(), ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), Offset3D dstOffset_ = Offset3D(), Extent3D extent_ = Extent3D() ) : srcSubresource( srcSubresource_ ) , srcOffset( srcOffset_ ) , dstSubresource( dstSubresource_ ) , dstOffset( dstOffset_ ) , extent( extent_ ) { } ImageCopy( VkImageCopy const & rhs ) { memcpy( this, &rhs, sizeof( ImageCopy ) ); } ImageCopy& operator=( VkImageCopy const & rhs ) { memcpy( this, &rhs, sizeof( ImageCopy ) ); return *this; } ImageCopy& setSrcSubresource( ImageSubresourceLayers srcSubresource_ ) { srcSubresource = srcSubresource_; return *this; } ImageCopy& setSrcOffset( Offset3D srcOffset_ ) { srcOffset = srcOffset_; return *this; } ImageCopy& setDstSubresource( ImageSubresourceLayers dstSubresource_ ) { dstSubresource = dstSubresource_; return *this; } ImageCopy& setDstOffset( Offset3D dstOffset_ ) { dstOffset = dstOffset_; return *this; } ImageCopy& setExtent( Extent3D extent_ ) { extent = extent_; return *this; } operator const VkImageCopy&() const { return *reinterpret_cast(this); } bool operator==( ImageCopy const& rhs ) const { return ( srcSubresource == rhs.srcSubresource ) && ( srcOffset == rhs.srcOffset ) && ( dstSubresource == rhs.dstSubresource ) && ( dstOffset == rhs.dstOffset ) && ( extent == rhs.extent ); } bool operator!=( ImageCopy const& rhs ) const { return !operator==( rhs ); } ImageSubresourceLayers srcSubresource; Offset3D srcOffset; ImageSubresourceLayers dstSubresource; Offset3D dstOffset; Extent3D extent; }; static_assert( sizeof( ImageCopy ) == sizeof( VkImageCopy ), "struct and wrapper have different size!" ); struct ImageBlit { ImageBlit( ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), std::array const& srcOffsets_ = { { Offset3D(), Offset3D() } }, ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), std::array const& dstOffsets_ = { { Offset3D(), Offset3D() } } ) : srcSubresource( srcSubresource_ ) , dstSubresource( dstSubresource_ ) { memcpy( &srcOffsets, srcOffsets_.data(), 2 * sizeof( Offset3D ) ); memcpy( &dstOffsets, dstOffsets_.data(), 2 * sizeof( Offset3D ) ); } ImageBlit( VkImageBlit const & rhs ) { memcpy( this, &rhs, sizeof( ImageBlit ) ); } ImageBlit& operator=( VkImageBlit const & rhs ) { memcpy( this, &rhs, sizeof( ImageBlit ) ); return *this; } ImageBlit& setSrcSubresource( ImageSubresourceLayers srcSubresource_ ) { srcSubresource = srcSubresource_; return *this; } ImageBlit& setSrcOffsets( std::array srcOffsets_ ) { memcpy( &srcOffsets, srcOffsets_.data(), 2 * sizeof( Offset3D ) ); return *this; } ImageBlit& setDstSubresource( ImageSubresourceLayers dstSubresource_ ) { dstSubresource = dstSubresource_; return *this; } ImageBlit& setDstOffsets( std::array dstOffsets_ ) { memcpy( &dstOffsets, dstOffsets_.data(), 2 * sizeof( Offset3D ) ); return *this; } operator const VkImageBlit&() const { return *reinterpret_cast(this); } bool operator==( ImageBlit const& rhs ) const { return ( srcSubresource == rhs.srcSubresource ) && ( memcmp( srcOffsets, rhs.srcOffsets, 2 * sizeof( Offset3D ) ) == 0 ) && ( dstSubresource == rhs.dstSubresource ) && ( memcmp( dstOffsets, rhs.dstOffsets, 2 * sizeof( Offset3D ) ) == 0 ); } bool operator!=( ImageBlit const& rhs ) const { return !operator==( rhs ); } ImageSubresourceLayers srcSubresource; Offset3D srcOffsets[2]; ImageSubresourceLayers dstSubresource; Offset3D dstOffsets[2]; }; static_assert( sizeof( ImageBlit ) == sizeof( VkImageBlit ), "struct and wrapper have different size!" ); struct BufferImageCopy { BufferImageCopy( DeviceSize bufferOffset_ = 0, uint32_t bufferRowLength_ = 0, uint32_t bufferImageHeight_ = 0, ImageSubresourceLayers imageSubresource_ = ImageSubresourceLayers(), Offset3D imageOffset_ = Offset3D(), Extent3D imageExtent_ = Extent3D() ) : bufferOffset( bufferOffset_ ) , bufferRowLength( bufferRowLength_ ) , bufferImageHeight( bufferImageHeight_ ) , imageSubresource( imageSubresource_ ) , imageOffset( imageOffset_ ) , imageExtent( imageExtent_ ) { } BufferImageCopy( VkBufferImageCopy const & rhs ) { memcpy( this, &rhs, sizeof( BufferImageCopy ) ); } BufferImageCopy& operator=( VkBufferImageCopy const & rhs ) { memcpy( this, &rhs, sizeof( BufferImageCopy ) ); return *this; } BufferImageCopy& setBufferOffset( DeviceSize bufferOffset_ ) { bufferOffset = bufferOffset_; return *this; } BufferImageCopy& setBufferRowLength( uint32_t bufferRowLength_ ) { bufferRowLength = bufferRowLength_; return *this; } BufferImageCopy& setBufferImageHeight( uint32_t bufferImageHeight_ ) { bufferImageHeight = bufferImageHeight_; return *this; } BufferImageCopy& setImageSubresource( ImageSubresourceLayers imageSubresource_ ) { imageSubresource = imageSubresource_; return *this; } BufferImageCopy& setImageOffset( Offset3D imageOffset_ ) { imageOffset = imageOffset_; return *this; } BufferImageCopy& setImageExtent( Extent3D imageExtent_ ) { imageExtent = imageExtent_; return *this; } operator const VkBufferImageCopy&() const { return *reinterpret_cast(this); } bool operator==( BufferImageCopy const& rhs ) const { return ( bufferOffset == rhs.bufferOffset ) && ( bufferRowLength == rhs.bufferRowLength ) && ( bufferImageHeight == rhs.bufferImageHeight ) && ( imageSubresource == rhs.imageSubresource ) && ( imageOffset == rhs.imageOffset ) && ( imageExtent == rhs.imageExtent ); } bool operator!=( BufferImageCopy const& rhs ) const { return !operator==( rhs ); } DeviceSize bufferOffset; uint32_t bufferRowLength; uint32_t bufferImageHeight; ImageSubresourceLayers imageSubresource; Offset3D imageOffset; Extent3D imageExtent; }; static_assert( sizeof( BufferImageCopy ) == sizeof( VkBufferImageCopy ), "struct and wrapper have different size!" ); struct ImageResolve { ImageResolve( ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), Offset3D srcOffset_ = Offset3D(), ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), Offset3D dstOffset_ = Offset3D(), Extent3D extent_ = Extent3D() ) : srcSubresource( srcSubresource_ ) , srcOffset( srcOffset_ ) , dstSubresource( dstSubresource_ ) , dstOffset( dstOffset_ ) , extent( extent_ ) { } ImageResolve( VkImageResolve const & rhs ) { memcpy( this, &rhs, sizeof( ImageResolve ) ); } ImageResolve& operator=( VkImageResolve const & rhs ) { memcpy( this, &rhs, sizeof( ImageResolve ) ); return *this; } ImageResolve& setSrcSubresource( ImageSubresourceLayers srcSubresource_ ) { srcSubresource = srcSubresource_; return *this; } ImageResolve& setSrcOffset( Offset3D srcOffset_ ) { srcOffset = srcOffset_; return *this; } ImageResolve& setDstSubresource( ImageSubresourceLayers dstSubresource_ ) { dstSubresource = dstSubresource_; return *this; } ImageResolve& setDstOffset( Offset3D dstOffset_ ) { dstOffset = dstOffset_; return *this; } ImageResolve& setExtent( Extent3D extent_ ) { extent = extent_; return *this; } operator const VkImageResolve&() const { return *reinterpret_cast(this); } bool operator==( ImageResolve const& rhs ) const { return ( srcSubresource == rhs.srcSubresource ) && ( srcOffset == rhs.srcOffset ) && ( dstSubresource == rhs.dstSubresource ) && ( dstOffset == rhs.dstOffset ) && ( extent == rhs.extent ); } bool operator!=( ImageResolve const& rhs ) const { return !operator==( rhs ); } ImageSubresourceLayers srcSubresource; Offset3D srcOffset; ImageSubresourceLayers dstSubresource; Offset3D dstOffset; Extent3D extent; }; static_assert( sizeof( ImageResolve ) == sizeof( VkImageResolve ), "struct and wrapper have different size!" ); struct ClearAttachment { ClearAttachment( ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t colorAttachment_ = 0, ClearValue clearValue_ = ClearValue() ) : aspectMask( aspectMask_ ) , colorAttachment( colorAttachment_ ) , clearValue( clearValue_ ) { } ClearAttachment( VkClearAttachment const & rhs ) { memcpy( this, &rhs, sizeof( ClearAttachment ) ); } ClearAttachment& operator=( VkClearAttachment const & rhs ) { memcpy( this, &rhs, sizeof( ClearAttachment ) ); return *this; } ClearAttachment& setAspectMask( ImageAspectFlags aspectMask_ ) { aspectMask = aspectMask_; return *this; } ClearAttachment& setColorAttachment( uint32_t colorAttachment_ ) { colorAttachment = colorAttachment_; return *this; } ClearAttachment& setClearValue( ClearValue clearValue_ ) { clearValue = clearValue_; return *this; } operator const VkClearAttachment&() const { return *reinterpret_cast(this); } ImageAspectFlags aspectMask; uint32_t colorAttachment; ClearValue clearValue; }; static_assert( sizeof( ClearAttachment ) == sizeof( VkClearAttachment ), "struct and wrapper have different size!" ); struct InputAttachmentAspectReferenceKHR { InputAttachmentAspectReferenceKHR( uint32_t subpass_ = 0, uint32_t inputAttachmentIndex_ = 0, ImageAspectFlags aspectMask_ = ImageAspectFlags() ) : subpass( subpass_ ) , inputAttachmentIndex( inputAttachmentIndex_ ) , aspectMask( aspectMask_ ) { } InputAttachmentAspectReferenceKHR( VkInputAttachmentAspectReferenceKHR const & rhs ) { memcpy( this, &rhs, sizeof( InputAttachmentAspectReferenceKHR ) ); } InputAttachmentAspectReferenceKHR& operator=( VkInputAttachmentAspectReferenceKHR const & rhs ) { memcpy( this, &rhs, sizeof( InputAttachmentAspectReferenceKHR ) ); return *this; } InputAttachmentAspectReferenceKHR& setSubpass( uint32_t subpass_ ) { subpass = subpass_; return *this; } InputAttachmentAspectReferenceKHR& setInputAttachmentIndex( uint32_t inputAttachmentIndex_ ) { inputAttachmentIndex = inputAttachmentIndex_; return *this; } InputAttachmentAspectReferenceKHR& setAspectMask( ImageAspectFlags aspectMask_ ) { aspectMask = aspectMask_; return *this; } operator const VkInputAttachmentAspectReferenceKHR&() const { return *reinterpret_cast(this); } bool operator==( InputAttachmentAspectReferenceKHR const& rhs ) const { return ( subpass == rhs.subpass ) && ( inputAttachmentIndex == rhs.inputAttachmentIndex ) && ( aspectMask == rhs.aspectMask ); } bool operator!=( InputAttachmentAspectReferenceKHR const& rhs ) const { return !operator==( rhs ); } uint32_t subpass; uint32_t inputAttachmentIndex; ImageAspectFlags aspectMask; }; static_assert( sizeof( InputAttachmentAspectReferenceKHR ) == sizeof( VkInputAttachmentAspectReferenceKHR ), "struct and wrapper have different size!" ); struct RenderPassInputAttachmentAspectCreateInfoKHR { RenderPassInputAttachmentAspectCreateInfoKHR( uint32_t aspectReferenceCount_ = 0, const InputAttachmentAspectReferenceKHR* pAspectReferences_ = nullptr ) : sType( StructureType::eRenderPassInputAttachmentAspectCreateInfoKHR ) , pNext( nullptr ) , aspectReferenceCount( aspectReferenceCount_ ) , pAspectReferences( pAspectReferences_ ) { } RenderPassInputAttachmentAspectCreateInfoKHR( VkRenderPassInputAttachmentAspectCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( RenderPassInputAttachmentAspectCreateInfoKHR ) ); } RenderPassInputAttachmentAspectCreateInfoKHR& operator=( VkRenderPassInputAttachmentAspectCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( RenderPassInputAttachmentAspectCreateInfoKHR ) ); return *this; } RenderPassInputAttachmentAspectCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } RenderPassInputAttachmentAspectCreateInfoKHR& setAspectReferenceCount( uint32_t aspectReferenceCount_ ) { aspectReferenceCount = aspectReferenceCount_; return *this; } RenderPassInputAttachmentAspectCreateInfoKHR& setPAspectReferences( const InputAttachmentAspectReferenceKHR* pAspectReferences_ ) { pAspectReferences = pAspectReferences_; return *this; } operator const VkRenderPassInputAttachmentAspectCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( RenderPassInputAttachmentAspectCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( aspectReferenceCount == rhs.aspectReferenceCount ) && ( pAspectReferences == rhs.pAspectReferences ); } bool operator!=( RenderPassInputAttachmentAspectCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t aspectReferenceCount; const InputAttachmentAspectReferenceKHR* pAspectReferences; }; static_assert( sizeof( RenderPassInputAttachmentAspectCreateInfoKHR ) == sizeof( VkRenderPassInputAttachmentAspectCreateInfoKHR ), "struct and wrapper have different size!" ); struct BindImagePlaneMemoryInfoKHR { BindImagePlaneMemoryInfoKHR( ImageAspectFlagBits planeAspect_ = ImageAspectFlagBits::eColor ) : sType( StructureType::eBindImagePlaneMemoryInfoKHR ) , pNext( nullptr ) , planeAspect( planeAspect_ ) { } BindImagePlaneMemoryInfoKHR( VkBindImagePlaneMemoryInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( BindImagePlaneMemoryInfoKHR ) ); } BindImagePlaneMemoryInfoKHR& operator=( VkBindImagePlaneMemoryInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( BindImagePlaneMemoryInfoKHR ) ); return *this; } BindImagePlaneMemoryInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BindImagePlaneMemoryInfoKHR& setPlaneAspect( ImageAspectFlagBits planeAspect_ ) { planeAspect = planeAspect_; return *this; } operator const VkBindImagePlaneMemoryInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( BindImagePlaneMemoryInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( planeAspect == rhs.planeAspect ); } bool operator!=( BindImagePlaneMemoryInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ImageAspectFlagBits planeAspect; }; static_assert( sizeof( BindImagePlaneMemoryInfoKHR ) == sizeof( VkBindImagePlaneMemoryInfoKHR ), "struct and wrapper have different size!" ); struct ImagePlaneMemoryRequirementsInfoKHR { ImagePlaneMemoryRequirementsInfoKHR( ImageAspectFlagBits planeAspect_ = ImageAspectFlagBits::eColor ) : sType( StructureType::eImagePlaneMemoryRequirementsInfoKHR ) , pNext( nullptr ) , planeAspect( planeAspect_ ) { } ImagePlaneMemoryRequirementsInfoKHR( VkImagePlaneMemoryRequirementsInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImagePlaneMemoryRequirementsInfoKHR ) ); } ImagePlaneMemoryRequirementsInfoKHR& operator=( VkImagePlaneMemoryRequirementsInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImagePlaneMemoryRequirementsInfoKHR ) ); return *this; } ImagePlaneMemoryRequirementsInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImagePlaneMemoryRequirementsInfoKHR& setPlaneAspect( ImageAspectFlagBits planeAspect_ ) { planeAspect = planeAspect_; return *this; } operator const VkImagePlaneMemoryRequirementsInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ImagePlaneMemoryRequirementsInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( planeAspect == rhs.planeAspect ); } bool operator!=( ImagePlaneMemoryRequirementsInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ImageAspectFlagBits planeAspect; }; static_assert( sizeof( ImagePlaneMemoryRequirementsInfoKHR ) == sizeof( VkImagePlaneMemoryRequirementsInfoKHR ), "struct and wrapper have different size!" ); enum class SparseImageFormatFlagBits { eSingleMiptail = VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT, eAlignedMipSize = VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT, eNonstandardBlockSize = VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT }; using SparseImageFormatFlags = Flags; VULKAN_HPP_INLINE SparseImageFormatFlags operator|( SparseImageFormatFlagBits bit0, SparseImageFormatFlagBits bit1 ) { return SparseImageFormatFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE SparseImageFormatFlags operator~( SparseImageFormatFlagBits bits ) { return ~( SparseImageFormatFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SparseImageFormatFlagBits::eSingleMiptail) | VkFlags(SparseImageFormatFlagBits::eAlignedMipSize) | VkFlags(SparseImageFormatFlagBits::eNonstandardBlockSize) }; }; struct SparseImageFormatProperties { operator const VkSparseImageFormatProperties&() const { return *reinterpret_cast(this); } bool operator==( SparseImageFormatProperties const& rhs ) const { return ( aspectMask == rhs.aspectMask ) && ( imageGranularity == rhs.imageGranularity ) && ( flags == rhs.flags ); } bool operator!=( SparseImageFormatProperties const& rhs ) const { return !operator==( rhs ); } ImageAspectFlags aspectMask; Extent3D imageGranularity; SparseImageFormatFlags flags; }; static_assert( sizeof( SparseImageFormatProperties ) == sizeof( VkSparseImageFormatProperties ), "struct and wrapper have different size!" ); struct SparseImageMemoryRequirements { operator const VkSparseImageMemoryRequirements&() const { return *reinterpret_cast(this); } bool operator==( SparseImageMemoryRequirements const& rhs ) const { return ( formatProperties == rhs.formatProperties ) && ( imageMipTailFirstLod == rhs.imageMipTailFirstLod ) && ( imageMipTailSize == rhs.imageMipTailSize ) && ( imageMipTailOffset == rhs.imageMipTailOffset ) && ( imageMipTailStride == rhs.imageMipTailStride ); } bool operator!=( SparseImageMemoryRequirements const& rhs ) const { return !operator==( rhs ); } SparseImageFormatProperties formatProperties; uint32_t imageMipTailFirstLod; DeviceSize imageMipTailSize; DeviceSize imageMipTailOffset; DeviceSize imageMipTailStride; }; static_assert( sizeof( SparseImageMemoryRequirements ) == sizeof( VkSparseImageMemoryRequirements ), "struct and wrapper have different size!" ); struct SparseImageFormatProperties2KHR { operator const VkSparseImageFormatProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( SparseImageFormatProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( properties == rhs.properties ); } bool operator!=( SparseImageFormatProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; SparseImageFormatProperties properties; }; static_assert( sizeof( SparseImageFormatProperties2KHR ) == sizeof( VkSparseImageFormatProperties2KHR ), "struct and wrapper have different size!" ); struct SparseImageMemoryRequirements2KHR { operator const VkSparseImageMemoryRequirements2KHR&() const { return *reinterpret_cast(this); } bool operator==( SparseImageMemoryRequirements2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memoryRequirements == rhs.memoryRequirements ); } bool operator!=( SparseImageMemoryRequirements2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; SparseImageMemoryRequirements memoryRequirements; }; static_assert( sizeof( SparseImageMemoryRequirements2KHR ) == sizeof( VkSparseImageMemoryRequirements2KHR ), "struct and wrapper have different size!" ); enum class SparseMemoryBindFlagBits { eMetadata = VK_SPARSE_MEMORY_BIND_METADATA_BIT }; using SparseMemoryBindFlags = Flags; VULKAN_HPP_INLINE SparseMemoryBindFlags operator|( SparseMemoryBindFlagBits bit0, SparseMemoryBindFlagBits bit1 ) { return SparseMemoryBindFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE SparseMemoryBindFlags operator~( SparseMemoryBindFlagBits bits ) { return ~( SparseMemoryBindFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SparseMemoryBindFlagBits::eMetadata) }; }; struct SparseMemoryBind { SparseMemoryBind( DeviceSize resourceOffset_ = 0, DeviceSize size_ = 0, DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0, SparseMemoryBindFlags flags_ = SparseMemoryBindFlags() ) : resourceOffset( resourceOffset_ ) , size( size_ ) , memory( memory_ ) , memoryOffset( memoryOffset_ ) , flags( flags_ ) { } SparseMemoryBind( VkSparseMemoryBind const & rhs ) { memcpy( this, &rhs, sizeof( SparseMemoryBind ) ); } SparseMemoryBind& operator=( VkSparseMemoryBind const & rhs ) { memcpy( this, &rhs, sizeof( SparseMemoryBind ) ); return *this; } SparseMemoryBind& setResourceOffset( DeviceSize resourceOffset_ ) { resourceOffset = resourceOffset_; return *this; } SparseMemoryBind& setSize( DeviceSize size_ ) { size = size_; return *this; } SparseMemoryBind& setMemory( DeviceMemory memory_ ) { memory = memory_; return *this; } SparseMemoryBind& setMemoryOffset( DeviceSize memoryOffset_ ) { memoryOffset = memoryOffset_; return *this; } SparseMemoryBind& setFlags( SparseMemoryBindFlags flags_ ) { flags = flags_; return *this; } operator const VkSparseMemoryBind&() const { return *reinterpret_cast(this); } bool operator==( SparseMemoryBind const& rhs ) const { return ( resourceOffset == rhs.resourceOffset ) && ( size == rhs.size ) && ( memory == rhs.memory ) && ( memoryOffset == rhs.memoryOffset ) && ( flags == rhs.flags ); } bool operator!=( SparseMemoryBind const& rhs ) const { return !operator==( rhs ); } DeviceSize resourceOffset; DeviceSize size; DeviceMemory memory; DeviceSize memoryOffset; SparseMemoryBindFlags flags; }; static_assert( sizeof( SparseMemoryBind ) == sizeof( VkSparseMemoryBind ), "struct and wrapper have different size!" ); struct SparseImageMemoryBind { SparseImageMemoryBind( ImageSubresource subresource_ = ImageSubresource(), Offset3D offset_ = Offset3D(), Extent3D extent_ = Extent3D(), DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0, SparseMemoryBindFlags flags_ = SparseMemoryBindFlags() ) : subresource( subresource_ ) , offset( offset_ ) , extent( extent_ ) , memory( memory_ ) , memoryOffset( memoryOffset_ ) , flags( flags_ ) { } SparseImageMemoryBind( VkSparseImageMemoryBind const & rhs ) { memcpy( this, &rhs, sizeof( SparseImageMemoryBind ) ); } SparseImageMemoryBind& operator=( VkSparseImageMemoryBind const & rhs ) { memcpy( this, &rhs, sizeof( SparseImageMemoryBind ) ); return *this; } SparseImageMemoryBind& setSubresource( ImageSubresource subresource_ ) { subresource = subresource_; return *this; } SparseImageMemoryBind& setOffset( Offset3D offset_ ) { offset = offset_; return *this; } SparseImageMemoryBind& setExtent( Extent3D extent_ ) { extent = extent_; return *this; } SparseImageMemoryBind& setMemory( DeviceMemory memory_ ) { memory = memory_; return *this; } SparseImageMemoryBind& setMemoryOffset( DeviceSize memoryOffset_ ) { memoryOffset = memoryOffset_; return *this; } SparseImageMemoryBind& setFlags( SparseMemoryBindFlags flags_ ) { flags = flags_; return *this; } operator const VkSparseImageMemoryBind&() const { return *reinterpret_cast(this); } bool operator==( SparseImageMemoryBind const& rhs ) const { return ( subresource == rhs.subresource ) && ( offset == rhs.offset ) && ( extent == rhs.extent ) && ( memory == rhs.memory ) && ( memoryOffset == rhs.memoryOffset ) && ( flags == rhs.flags ); } bool operator!=( SparseImageMemoryBind const& rhs ) const { return !operator==( rhs ); } ImageSubresource subresource; Offset3D offset; Extent3D extent; DeviceMemory memory; DeviceSize memoryOffset; SparseMemoryBindFlags flags; }; static_assert( sizeof( SparseImageMemoryBind ) == sizeof( VkSparseImageMemoryBind ), "struct and wrapper have different size!" ); struct SparseBufferMemoryBindInfo { SparseBufferMemoryBindInfo( Buffer buffer_ = Buffer(), uint32_t bindCount_ = 0, const SparseMemoryBind* pBinds_ = nullptr ) : buffer( buffer_ ) , bindCount( bindCount_ ) , pBinds( pBinds_ ) { } SparseBufferMemoryBindInfo( VkSparseBufferMemoryBindInfo const & rhs ) { memcpy( this, &rhs, sizeof( SparseBufferMemoryBindInfo ) ); } SparseBufferMemoryBindInfo& operator=( VkSparseBufferMemoryBindInfo const & rhs ) { memcpy( this, &rhs, sizeof( SparseBufferMemoryBindInfo ) ); return *this; } SparseBufferMemoryBindInfo& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } SparseBufferMemoryBindInfo& setBindCount( uint32_t bindCount_ ) { bindCount = bindCount_; return *this; } SparseBufferMemoryBindInfo& setPBinds( const SparseMemoryBind* pBinds_ ) { pBinds = pBinds_; return *this; } operator const VkSparseBufferMemoryBindInfo&() const { return *reinterpret_cast(this); } bool operator==( SparseBufferMemoryBindInfo const& rhs ) const { return ( buffer == rhs.buffer ) && ( bindCount == rhs.bindCount ) && ( pBinds == rhs.pBinds ); } bool operator!=( SparseBufferMemoryBindInfo const& rhs ) const { return !operator==( rhs ); } Buffer buffer; uint32_t bindCount; const SparseMemoryBind* pBinds; }; static_assert( sizeof( SparseBufferMemoryBindInfo ) == sizeof( VkSparseBufferMemoryBindInfo ), "struct and wrapper have different size!" ); struct SparseImageOpaqueMemoryBindInfo { SparseImageOpaqueMemoryBindInfo( Image image_ = Image(), uint32_t bindCount_ = 0, const SparseMemoryBind* pBinds_ = nullptr ) : image( image_ ) , bindCount( bindCount_ ) , pBinds( pBinds_ ) { } SparseImageOpaqueMemoryBindInfo( VkSparseImageOpaqueMemoryBindInfo const & rhs ) { memcpy( this, &rhs, sizeof( SparseImageOpaqueMemoryBindInfo ) ); } SparseImageOpaqueMemoryBindInfo& operator=( VkSparseImageOpaqueMemoryBindInfo const & rhs ) { memcpy( this, &rhs, sizeof( SparseImageOpaqueMemoryBindInfo ) ); return *this; } SparseImageOpaqueMemoryBindInfo& setImage( Image image_ ) { image = image_; return *this; } SparseImageOpaqueMemoryBindInfo& setBindCount( uint32_t bindCount_ ) { bindCount = bindCount_; return *this; } SparseImageOpaqueMemoryBindInfo& setPBinds( const SparseMemoryBind* pBinds_ ) { pBinds = pBinds_; return *this; } operator const VkSparseImageOpaqueMemoryBindInfo&() const { return *reinterpret_cast(this); } bool operator==( SparseImageOpaqueMemoryBindInfo const& rhs ) const { return ( image == rhs.image ) && ( bindCount == rhs.bindCount ) && ( pBinds == rhs.pBinds ); } bool operator!=( SparseImageOpaqueMemoryBindInfo const& rhs ) const { return !operator==( rhs ); } Image image; uint32_t bindCount; const SparseMemoryBind* pBinds; }; static_assert( sizeof( SparseImageOpaqueMemoryBindInfo ) == sizeof( VkSparseImageOpaqueMemoryBindInfo ), "struct and wrapper have different size!" ); struct SparseImageMemoryBindInfo { SparseImageMemoryBindInfo( Image image_ = Image(), uint32_t bindCount_ = 0, const SparseImageMemoryBind* pBinds_ = nullptr ) : image( image_ ) , bindCount( bindCount_ ) , pBinds( pBinds_ ) { } SparseImageMemoryBindInfo( VkSparseImageMemoryBindInfo const & rhs ) { memcpy( this, &rhs, sizeof( SparseImageMemoryBindInfo ) ); } SparseImageMemoryBindInfo& operator=( VkSparseImageMemoryBindInfo const & rhs ) { memcpy( this, &rhs, sizeof( SparseImageMemoryBindInfo ) ); return *this; } SparseImageMemoryBindInfo& setImage( Image image_ ) { image = image_; return *this; } SparseImageMemoryBindInfo& setBindCount( uint32_t bindCount_ ) { bindCount = bindCount_; return *this; } SparseImageMemoryBindInfo& setPBinds( const SparseImageMemoryBind* pBinds_ ) { pBinds = pBinds_; return *this; } operator const VkSparseImageMemoryBindInfo&() const { return *reinterpret_cast(this); } bool operator==( SparseImageMemoryBindInfo const& rhs ) const { return ( image == rhs.image ) && ( bindCount == rhs.bindCount ) && ( pBinds == rhs.pBinds ); } bool operator!=( SparseImageMemoryBindInfo const& rhs ) const { return !operator==( rhs ); } Image image; uint32_t bindCount; const SparseImageMemoryBind* pBinds; }; static_assert( sizeof( SparseImageMemoryBindInfo ) == sizeof( VkSparseImageMemoryBindInfo ), "struct and wrapper have different size!" ); struct BindSparseInfo { BindSparseInfo( uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, uint32_t bufferBindCount_ = 0, const SparseBufferMemoryBindInfo* pBufferBinds_ = nullptr, uint32_t imageOpaqueBindCount_ = 0, const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds_ = nullptr, uint32_t imageBindCount_ = 0, const SparseImageMemoryBindInfo* pImageBinds_ = nullptr, uint32_t signalSemaphoreCount_ = 0, const Semaphore* pSignalSemaphores_ = nullptr ) : sType( StructureType::eBindSparseInfo ) , pNext( nullptr ) , waitSemaphoreCount( waitSemaphoreCount_ ) , pWaitSemaphores( pWaitSemaphores_ ) , bufferBindCount( bufferBindCount_ ) , pBufferBinds( pBufferBinds_ ) , imageOpaqueBindCount( imageOpaqueBindCount_ ) , pImageOpaqueBinds( pImageOpaqueBinds_ ) , imageBindCount( imageBindCount_ ) , pImageBinds( pImageBinds_ ) , signalSemaphoreCount( signalSemaphoreCount_ ) , pSignalSemaphores( pSignalSemaphores_ ) { } BindSparseInfo( VkBindSparseInfo const & rhs ) { memcpy( this, &rhs, sizeof( BindSparseInfo ) ); } BindSparseInfo& operator=( VkBindSparseInfo const & rhs ) { memcpy( this, &rhs, sizeof( BindSparseInfo ) ); return *this; } BindSparseInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } BindSparseInfo& setWaitSemaphoreCount( uint32_t waitSemaphoreCount_ ) { waitSemaphoreCount = waitSemaphoreCount_; return *this; } BindSparseInfo& setPWaitSemaphores( const Semaphore* pWaitSemaphores_ ) { pWaitSemaphores = pWaitSemaphores_; return *this; } BindSparseInfo& setBufferBindCount( uint32_t bufferBindCount_ ) { bufferBindCount = bufferBindCount_; return *this; } BindSparseInfo& setPBufferBinds( const SparseBufferMemoryBindInfo* pBufferBinds_ ) { pBufferBinds = pBufferBinds_; return *this; } BindSparseInfo& setImageOpaqueBindCount( uint32_t imageOpaqueBindCount_ ) { imageOpaqueBindCount = imageOpaqueBindCount_; return *this; } BindSparseInfo& setPImageOpaqueBinds( const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds_ ) { pImageOpaqueBinds = pImageOpaqueBinds_; return *this; } BindSparseInfo& setImageBindCount( uint32_t imageBindCount_ ) { imageBindCount = imageBindCount_; return *this; } BindSparseInfo& setPImageBinds( const SparseImageMemoryBindInfo* pImageBinds_ ) { pImageBinds = pImageBinds_; return *this; } BindSparseInfo& setSignalSemaphoreCount( uint32_t signalSemaphoreCount_ ) { signalSemaphoreCount = signalSemaphoreCount_; return *this; } BindSparseInfo& setPSignalSemaphores( const Semaphore* pSignalSemaphores_ ) { pSignalSemaphores = pSignalSemaphores_; return *this; } operator const VkBindSparseInfo&() const { return *reinterpret_cast(this); } bool operator==( BindSparseInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( waitSemaphoreCount == rhs.waitSemaphoreCount ) && ( pWaitSemaphores == rhs.pWaitSemaphores ) && ( bufferBindCount == rhs.bufferBindCount ) && ( pBufferBinds == rhs.pBufferBinds ) && ( imageOpaqueBindCount == rhs.imageOpaqueBindCount ) && ( pImageOpaqueBinds == rhs.pImageOpaqueBinds ) && ( imageBindCount == rhs.imageBindCount ) && ( pImageBinds == rhs.pImageBinds ) && ( signalSemaphoreCount == rhs.signalSemaphoreCount ) && ( pSignalSemaphores == rhs.pSignalSemaphores ); } bool operator!=( BindSparseInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t waitSemaphoreCount; const Semaphore* pWaitSemaphores; uint32_t bufferBindCount; const SparseBufferMemoryBindInfo* pBufferBinds; uint32_t imageOpaqueBindCount; const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds; uint32_t imageBindCount; const SparseImageMemoryBindInfo* pImageBinds; uint32_t signalSemaphoreCount; const Semaphore* pSignalSemaphores; }; static_assert( sizeof( BindSparseInfo ) == sizeof( VkBindSparseInfo ), "struct and wrapper have different size!" ); enum class PipelineStageFlagBits { eTopOfPipe = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, eDrawIndirect = VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT, eVertexInput = VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, eVertexShader = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, eTessellationControlShader = VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT, eTessellationEvaluationShader = VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT, eGeometryShader = VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT, eFragmentShader = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, eEarlyFragmentTests = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, eLateFragmentTests = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, eColorAttachmentOutput = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, eComputeShader = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, eTransfer = VK_PIPELINE_STAGE_TRANSFER_BIT, eBottomOfPipe = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, eHost = VK_PIPELINE_STAGE_HOST_BIT, eAllGraphics = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, eAllCommands = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, eCommandProcessNVX = VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX }; using PipelineStageFlags = Flags; VULKAN_HPP_INLINE PipelineStageFlags operator|( PipelineStageFlagBits bit0, PipelineStageFlagBits bit1 ) { return PipelineStageFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE PipelineStageFlags operator~( PipelineStageFlagBits bits ) { return ~( PipelineStageFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(PipelineStageFlagBits::eTopOfPipe) | VkFlags(PipelineStageFlagBits::eDrawIndirect) | VkFlags(PipelineStageFlagBits::eVertexInput) | VkFlags(PipelineStageFlagBits::eVertexShader) | VkFlags(PipelineStageFlagBits::eTessellationControlShader) | VkFlags(PipelineStageFlagBits::eTessellationEvaluationShader) | VkFlags(PipelineStageFlagBits::eGeometryShader) | VkFlags(PipelineStageFlagBits::eFragmentShader) | VkFlags(PipelineStageFlagBits::eEarlyFragmentTests) | VkFlags(PipelineStageFlagBits::eLateFragmentTests) | VkFlags(PipelineStageFlagBits::eColorAttachmentOutput) | VkFlags(PipelineStageFlagBits::eComputeShader) | VkFlags(PipelineStageFlagBits::eTransfer) | VkFlags(PipelineStageFlagBits::eBottomOfPipe) | VkFlags(PipelineStageFlagBits::eHost) | VkFlags(PipelineStageFlagBits::eAllGraphics) | VkFlags(PipelineStageFlagBits::eAllCommands) | VkFlags(PipelineStageFlagBits::eCommandProcessNVX) }; }; enum class CommandPoolCreateFlagBits { eTransient = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, eResetCommandBuffer = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT }; using CommandPoolCreateFlags = Flags; VULKAN_HPP_INLINE CommandPoolCreateFlags operator|( CommandPoolCreateFlagBits bit0, CommandPoolCreateFlagBits bit1 ) { return CommandPoolCreateFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE CommandPoolCreateFlags operator~( CommandPoolCreateFlagBits bits ) { return ~( CommandPoolCreateFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(CommandPoolCreateFlagBits::eTransient) | VkFlags(CommandPoolCreateFlagBits::eResetCommandBuffer) }; }; struct CommandPoolCreateInfo { CommandPoolCreateInfo( CommandPoolCreateFlags flags_ = CommandPoolCreateFlags(), uint32_t queueFamilyIndex_ = 0 ) : sType( StructureType::eCommandPoolCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , queueFamilyIndex( queueFamilyIndex_ ) { } CommandPoolCreateInfo( VkCommandPoolCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( CommandPoolCreateInfo ) ); } CommandPoolCreateInfo& operator=( VkCommandPoolCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( CommandPoolCreateInfo ) ); return *this; } CommandPoolCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } CommandPoolCreateInfo& setFlags( CommandPoolCreateFlags flags_ ) { flags = flags_; return *this; } CommandPoolCreateInfo& setQueueFamilyIndex( uint32_t queueFamilyIndex_ ) { queueFamilyIndex = queueFamilyIndex_; return *this; } operator const VkCommandPoolCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( CommandPoolCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( queueFamilyIndex == rhs.queueFamilyIndex ); } bool operator!=( CommandPoolCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; CommandPoolCreateFlags flags; uint32_t queueFamilyIndex; }; static_assert( sizeof( CommandPoolCreateInfo ) == sizeof( VkCommandPoolCreateInfo ), "struct and wrapper have different size!" ); enum class CommandPoolResetFlagBits { eReleaseResources = VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT }; using CommandPoolResetFlags = Flags; VULKAN_HPP_INLINE CommandPoolResetFlags operator|( CommandPoolResetFlagBits bit0, CommandPoolResetFlagBits bit1 ) { return CommandPoolResetFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE CommandPoolResetFlags operator~( CommandPoolResetFlagBits bits ) { return ~( CommandPoolResetFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(CommandPoolResetFlagBits::eReleaseResources) }; }; enum class CommandBufferResetFlagBits { eReleaseResources = VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT }; using CommandBufferResetFlags = Flags; VULKAN_HPP_INLINE CommandBufferResetFlags operator|( CommandBufferResetFlagBits bit0, CommandBufferResetFlagBits bit1 ) { return CommandBufferResetFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE CommandBufferResetFlags operator~( CommandBufferResetFlagBits bits ) { return ~( CommandBufferResetFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(CommandBufferResetFlagBits::eReleaseResources) }; }; enum class SampleCountFlagBits { e1 = VK_SAMPLE_COUNT_1_BIT, e2 = VK_SAMPLE_COUNT_2_BIT, e4 = VK_SAMPLE_COUNT_4_BIT, e8 = VK_SAMPLE_COUNT_8_BIT, e16 = VK_SAMPLE_COUNT_16_BIT, e32 = VK_SAMPLE_COUNT_32_BIT, e64 = VK_SAMPLE_COUNT_64_BIT }; using SampleCountFlags = Flags; VULKAN_HPP_INLINE SampleCountFlags operator|( SampleCountFlagBits bit0, SampleCountFlagBits bit1 ) { return SampleCountFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE SampleCountFlags operator~( SampleCountFlagBits bits ) { return ~( SampleCountFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SampleCountFlagBits::e1) | VkFlags(SampleCountFlagBits::e2) | VkFlags(SampleCountFlagBits::e4) | VkFlags(SampleCountFlagBits::e8) | VkFlags(SampleCountFlagBits::e16) | VkFlags(SampleCountFlagBits::e32) | VkFlags(SampleCountFlagBits::e64) }; }; struct ImageFormatProperties { operator const VkImageFormatProperties&() const { return *reinterpret_cast(this); } bool operator==( ImageFormatProperties const& rhs ) const { return ( maxExtent == rhs.maxExtent ) && ( maxMipLevels == rhs.maxMipLevels ) && ( maxArrayLayers == rhs.maxArrayLayers ) && ( sampleCounts == rhs.sampleCounts ) && ( maxResourceSize == rhs.maxResourceSize ); } bool operator!=( ImageFormatProperties const& rhs ) const { return !operator==( rhs ); } Extent3D maxExtent; uint32_t maxMipLevels; uint32_t maxArrayLayers; SampleCountFlags sampleCounts; DeviceSize maxResourceSize; }; static_assert( sizeof( ImageFormatProperties ) == sizeof( VkImageFormatProperties ), "struct and wrapper have different size!" ); struct ImageCreateInfo { ImageCreateInfo( ImageCreateFlags flags_ = ImageCreateFlags(), ImageType imageType_ = ImageType::e1D, Format format_ = Format::eUndefined, Extent3D extent_ = Extent3D(), uint32_t mipLevels_ = 0, uint32_t arrayLayers_ = 0, SampleCountFlagBits samples_ = SampleCountFlagBits::e1, ImageTiling tiling_ = ImageTiling::eOptimal, ImageUsageFlags usage_ = ImageUsageFlags(), SharingMode sharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr, ImageLayout initialLayout_ = ImageLayout::eUndefined ) : sType( StructureType::eImageCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , imageType( imageType_ ) , format( format_ ) , extent( extent_ ) , mipLevels( mipLevels_ ) , arrayLayers( arrayLayers_ ) , samples( samples_ ) , tiling( tiling_ ) , usage( usage_ ) , sharingMode( sharingMode_ ) , queueFamilyIndexCount( queueFamilyIndexCount_ ) , pQueueFamilyIndices( pQueueFamilyIndices_ ) , initialLayout( initialLayout_ ) { } ImageCreateInfo( VkImageCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( ImageCreateInfo ) ); } ImageCreateInfo& operator=( VkImageCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( ImageCreateInfo ) ); return *this; } ImageCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImageCreateInfo& setFlags( ImageCreateFlags flags_ ) { flags = flags_; return *this; } ImageCreateInfo& setImageType( ImageType imageType_ ) { imageType = imageType_; return *this; } ImageCreateInfo& setFormat( Format format_ ) { format = format_; return *this; } ImageCreateInfo& setExtent( Extent3D extent_ ) { extent = extent_; return *this; } ImageCreateInfo& setMipLevels( uint32_t mipLevels_ ) { mipLevels = mipLevels_; return *this; } ImageCreateInfo& setArrayLayers( uint32_t arrayLayers_ ) { arrayLayers = arrayLayers_; return *this; } ImageCreateInfo& setSamples( SampleCountFlagBits samples_ ) { samples = samples_; return *this; } ImageCreateInfo& setTiling( ImageTiling tiling_ ) { tiling = tiling_; return *this; } ImageCreateInfo& setUsage( ImageUsageFlags usage_ ) { usage = usage_; return *this; } ImageCreateInfo& setSharingMode( SharingMode sharingMode_ ) { sharingMode = sharingMode_; return *this; } ImageCreateInfo& setQueueFamilyIndexCount( uint32_t queueFamilyIndexCount_ ) { queueFamilyIndexCount = queueFamilyIndexCount_; return *this; } ImageCreateInfo& setPQueueFamilyIndices( const uint32_t* pQueueFamilyIndices_ ) { pQueueFamilyIndices = pQueueFamilyIndices_; return *this; } ImageCreateInfo& setInitialLayout( ImageLayout initialLayout_ ) { initialLayout = initialLayout_; return *this; } operator const VkImageCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( ImageCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( imageType == rhs.imageType ) && ( format == rhs.format ) && ( extent == rhs.extent ) && ( mipLevels == rhs.mipLevels ) && ( arrayLayers == rhs.arrayLayers ) && ( samples == rhs.samples ) && ( tiling == rhs.tiling ) && ( usage == rhs.usage ) && ( sharingMode == rhs.sharingMode ) && ( queueFamilyIndexCount == rhs.queueFamilyIndexCount ) && ( pQueueFamilyIndices == rhs.pQueueFamilyIndices ) && ( initialLayout == rhs.initialLayout ); } bool operator!=( ImageCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ImageCreateFlags flags; ImageType imageType; Format format; Extent3D extent; uint32_t mipLevels; uint32_t arrayLayers; SampleCountFlagBits samples; ImageTiling tiling; ImageUsageFlags usage; SharingMode sharingMode; uint32_t queueFamilyIndexCount; const uint32_t* pQueueFamilyIndices; ImageLayout initialLayout; }; static_assert( sizeof( ImageCreateInfo ) == sizeof( VkImageCreateInfo ), "struct and wrapper have different size!" ); struct PipelineMultisampleStateCreateInfo { PipelineMultisampleStateCreateInfo( PipelineMultisampleStateCreateFlags flags_ = PipelineMultisampleStateCreateFlags(), SampleCountFlagBits rasterizationSamples_ = SampleCountFlagBits::e1, Bool32 sampleShadingEnable_ = 0, float minSampleShading_ = 0, const SampleMask* pSampleMask_ = nullptr, Bool32 alphaToCoverageEnable_ = 0, Bool32 alphaToOneEnable_ = 0 ) : sType( StructureType::ePipelineMultisampleStateCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , rasterizationSamples( rasterizationSamples_ ) , sampleShadingEnable( sampleShadingEnable_ ) , minSampleShading( minSampleShading_ ) , pSampleMask( pSampleMask_ ) , alphaToCoverageEnable( alphaToCoverageEnable_ ) , alphaToOneEnable( alphaToOneEnable_ ) { } PipelineMultisampleStateCreateInfo( VkPipelineMultisampleStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineMultisampleStateCreateInfo ) ); } PipelineMultisampleStateCreateInfo& operator=( VkPipelineMultisampleStateCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( PipelineMultisampleStateCreateInfo ) ); return *this; } PipelineMultisampleStateCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineMultisampleStateCreateInfo& setFlags( PipelineMultisampleStateCreateFlags flags_ ) { flags = flags_; return *this; } PipelineMultisampleStateCreateInfo& setRasterizationSamples( SampleCountFlagBits rasterizationSamples_ ) { rasterizationSamples = rasterizationSamples_; return *this; } PipelineMultisampleStateCreateInfo& setSampleShadingEnable( Bool32 sampleShadingEnable_ ) { sampleShadingEnable = sampleShadingEnable_; return *this; } PipelineMultisampleStateCreateInfo& setMinSampleShading( float minSampleShading_ ) { minSampleShading = minSampleShading_; return *this; } PipelineMultisampleStateCreateInfo& setPSampleMask( const SampleMask* pSampleMask_ ) { pSampleMask = pSampleMask_; return *this; } PipelineMultisampleStateCreateInfo& setAlphaToCoverageEnable( Bool32 alphaToCoverageEnable_ ) { alphaToCoverageEnable = alphaToCoverageEnable_; return *this; } PipelineMultisampleStateCreateInfo& setAlphaToOneEnable( Bool32 alphaToOneEnable_ ) { alphaToOneEnable = alphaToOneEnable_; return *this; } operator const VkPipelineMultisampleStateCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( PipelineMultisampleStateCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( rasterizationSamples == rhs.rasterizationSamples ) && ( sampleShadingEnable == rhs.sampleShadingEnable ) && ( minSampleShading == rhs.minSampleShading ) && ( pSampleMask == rhs.pSampleMask ) && ( alphaToCoverageEnable == rhs.alphaToCoverageEnable ) && ( alphaToOneEnable == rhs.alphaToOneEnable ); } bool operator!=( PipelineMultisampleStateCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineMultisampleStateCreateFlags flags; SampleCountFlagBits rasterizationSamples; Bool32 sampleShadingEnable; float minSampleShading; const SampleMask* pSampleMask; Bool32 alphaToCoverageEnable; Bool32 alphaToOneEnable; }; static_assert( sizeof( PipelineMultisampleStateCreateInfo ) == sizeof( VkPipelineMultisampleStateCreateInfo ), "struct and wrapper have different size!" ); struct GraphicsPipelineCreateInfo { GraphicsPipelineCreateInfo( PipelineCreateFlags flags_ = PipelineCreateFlags(), uint32_t stageCount_ = 0, const PipelineShaderStageCreateInfo* pStages_ = nullptr, const PipelineVertexInputStateCreateInfo* pVertexInputState_ = nullptr, const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState_ = nullptr, const PipelineTessellationStateCreateInfo* pTessellationState_ = nullptr, const PipelineViewportStateCreateInfo* pViewportState_ = nullptr, const PipelineRasterizationStateCreateInfo* pRasterizationState_ = nullptr, const PipelineMultisampleStateCreateInfo* pMultisampleState_ = nullptr, const PipelineDepthStencilStateCreateInfo* pDepthStencilState_ = nullptr, const PipelineColorBlendStateCreateInfo* pColorBlendState_ = nullptr, const PipelineDynamicStateCreateInfo* pDynamicState_ = nullptr, PipelineLayout layout_ = PipelineLayout(), RenderPass renderPass_ = RenderPass(), uint32_t subpass_ = 0, Pipeline basePipelineHandle_ = Pipeline(), int32_t basePipelineIndex_ = 0 ) : sType( StructureType::eGraphicsPipelineCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , stageCount( stageCount_ ) , pStages( pStages_ ) , pVertexInputState( pVertexInputState_ ) , pInputAssemblyState( pInputAssemblyState_ ) , pTessellationState( pTessellationState_ ) , pViewportState( pViewportState_ ) , pRasterizationState( pRasterizationState_ ) , pMultisampleState( pMultisampleState_ ) , pDepthStencilState( pDepthStencilState_ ) , pColorBlendState( pColorBlendState_ ) , pDynamicState( pDynamicState_ ) , layout( layout_ ) , renderPass( renderPass_ ) , subpass( subpass_ ) , basePipelineHandle( basePipelineHandle_ ) , basePipelineIndex( basePipelineIndex_ ) { } GraphicsPipelineCreateInfo( VkGraphicsPipelineCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( GraphicsPipelineCreateInfo ) ); } GraphicsPipelineCreateInfo& operator=( VkGraphicsPipelineCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( GraphicsPipelineCreateInfo ) ); return *this; } GraphicsPipelineCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } GraphicsPipelineCreateInfo& setFlags( PipelineCreateFlags flags_ ) { flags = flags_; return *this; } GraphicsPipelineCreateInfo& setStageCount( uint32_t stageCount_ ) { stageCount = stageCount_; return *this; } GraphicsPipelineCreateInfo& setPStages( const PipelineShaderStageCreateInfo* pStages_ ) { pStages = pStages_; return *this; } GraphicsPipelineCreateInfo& setPVertexInputState( const PipelineVertexInputStateCreateInfo* pVertexInputState_ ) { pVertexInputState = pVertexInputState_; return *this; } GraphicsPipelineCreateInfo& setPInputAssemblyState( const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState_ ) { pInputAssemblyState = pInputAssemblyState_; return *this; } GraphicsPipelineCreateInfo& setPTessellationState( const PipelineTessellationStateCreateInfo* pTessellationState_ ) { pTessellationState = pTessellationState_; return *this; } GraphicsPipelineCreateInfo& setPViewportState( const PipelineViewportStateCreateInfo* pViewportState_ ) { pViewportState = pViewportState_; return *this; } GraphicsPipelineCreateInfo& setPRasterizationState( const PipelineRasterizationStateCreateInfo* pRasterizationState_ ) { pRasterizationState = pRasterizationState_; return *this; } GraphicsPipelineCreateInfo& setPMultisampleState( const PipelineMultisampleStateCreateInfo* pMultisampleState_ ) { pMultisampleState = pMultisampleState_; return *this; } GraphicsPipelineCreateInfo& setPDepthStencilState( const PipelineDepthStencilStateCreateInfo* pDepthStencilState_ ) { pDepthStencilState = pDepthStencilState_; return *this; } GraphicsPipelineCreateInfo& setPColorBlendState( const PipelineColorBlendStateCreateInfo* pColorBlendState_ ) { pColorBlendState = pColorBlendState_; return *this; } GraphicsPipelineCreateInfo& setPDynamicState( const PipelineDynamicStateCreateInfo* pDynamicState_ ) { pDynamicState = pDynamicState_; return *this; } GraphicsPipelineCreateInfo& setLayout( PipelineLayout layout_ ) { layout = layout_; return *this; } GraphicsPipelineCreateInfo& setRenderPass( RenderPass renderPass_ ) { renderPass = renderPass_; return *this; } GraphicsPipelineCreateInfo& setSubpass( uint32_t subpass_ ) { subpass = subpass_; return *this; } GraphicsPipelineCreateInfo& setBasePipelineHandle( Pipeline basePipelineHandle_ ) { basePipelineHandle = basePipelineHandle_; return *this; } GraphicsPipelineCreateInfo& setBasePipelineIndex( int32_t basePipelineIndex_ ) { basePipelineIndex = basePipelineIndex_; return *this; } operator const VkGraphicsPipelineCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( GraphicsPipelineCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( stageCount == rhs.stageCount ) && ( pStages == rhs.pStages ) && ( pVertexInputState == rhs.pVertexInputState ) && ( pInputAssemblyState == rhs.pInputAssemblyState ) && ( pTessellationState == rhs.pTessellationState ) && ( pViewportState == rhs.pViewportState ) && ( pRasterizationState == rhs.pRasterizationState ) && ( pMultisampleState == rhs.pMultisampleState ) && ( pDepthStencilState == rhs.pDepthStencilState ) && ( pColorBlendState == rhs.pColorBlendState ) && ( pDynamicState == rhs.pDynamicState ) && ( layout == rhs.layout ) && ( renderPass == rhs.renderPass ) && ( subpass == rhs.subpass ) && ( basePipelineHandle == rhs.basePipelineHandle ) && ( basePipelineIndex == rhs.basePipelineIndex ); } bool operator!=( GraphicsPipelineCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineCreateFlags flags; uint32_t stageCount; const PipelineShaderStageCreateInfo* pStages; const PipelineVertexInputStateCreateInfo* pVertexInputState; const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState; const PipelineTessellationStateCreateInfo* pTessellationState; const PipelineViewportStateCreateInfo* pViewportState; const PipelineRasterizationStateCreateInfo* pRasterizationState; const PipelineMultisampleStateCreateInfo* pMultisampleState; const PipelineDepthStencilStateCreateInfo* pDepthStencilState; const PipelineColorBlendStateCreateInfo* pColorBlendState; const PipelineDynamicStateCreateInfo* pDynamicState; PipelineLayout layout; RenderPass renderPass; uint32_t subpass; Pipeline basePipelineHandle; int32_t basePipelineIndex; }; static_assert( sizeof( GraphicsPipelineCreateInfo ) == sizeof( VkGraphicsPipelineCreateInfo ), "struct and wrapper have different size!" ); struct PhysicalDeviceLimits { operator const VkPhysicalDeviceLimits&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceLimits const& rhs ) const { return ( maxImageDimension1D == rhs.maxImageDimension1D ) && ( maxImageDimension2D == rhs.maxImageDimension2D ) && ( maxImageDimension3D == rhs.maxImageDimension3D ) && ( maxImageDimensionCube == rhs.maxImageDimensionCube ) && ( maxImageArrayLayers == rhs.maxImageArrayLayers ) && ( maxTexelBufferElements == rhs.maxTexelBufferElements ) && ( maxUniformBufferRange == rhs.maxUniformBufferRange ) && ( maxStorageBufferRange == rhs.maxStorageBufferRange ) && ( maxPushConstantsSize == rhs.maxPushConstantsSize ) && ( maxMemoryAllocationCount == rhs.maxMemoryAllocationCount ) && ( maxSamplerAllocationCount == rhs.maxSamplerAllocationCount ) && ( bufferImageGranularity == rhs.bufferImageGranularity ) && ( sparseAddressSpaceSize == rhs.sparseAddressSpaceSize ) && ( maxBoundDescriptorSets == rhs.maxBoundDescriptorSets ) && ( maxPerStageDescriptorSamplers == rhs.maxPerStageDescriptorSamplers ) && ( maxPerStageDescriptorUniformBuffers == rhs.maxPerStageDescriptorUniformBuffers ) && ( maxPerStageDescriptorStorageBuffers == rhs.maxPerStageDescriptorStorageBuffers ) && ( maxPerStageDescriptorSampledImages == rhs.maxPerStageDescriptorSampledImages ) && ( maxPerStageDescriptorStorageImages == rhs.maxPerStageDescriptorStorageImages ) && ( maxPerStageDescriptorInputAttachments == rhs.maxPerStageDescriptorInputAttachments ) && ( maxPerStageResources == rhs.maxPerStageResources ) && ( maxDescriptorSetSamplers == rhs.maxDescriptorSetSamplers ) && ( maxDescriptorSetUniformBuffers == rhs.maxDescriptorSetUniformBuffers ) && ( maxDescriptorSetUniformBuffersDynamic == rhs.maxDescriptorSetUniformBuffersDynamic ) && ( maxDescriptorSetStorageBuffers == rhs.maxDescriptorSetStorageBuffers ) && ( maxDescriptorSetStorageBuffersDynamic == rhs.maxDescriptorSetStorageBuffersDynamic ) && ( maxDescriptorSetSampledImages == rhs.maxDescriptorSetSampledImages ) && ( maxDescriptorSetStorageImages == rhs.maxDescriptorSetStorageImages ) && ( maxDescriptorSetInputAttachments == rhs.maxDescriptorSetInputAttachments ) && ( maxVertexInputAttributes == rhs.maxVertexInputAttributes ) && ( maxVertexInputBindings == rhs.maxVertexInputBindings ) && ( maxVertexInputAttributeOffset == rhs.maxVertexInputAttributeOffset ) && ( maxVertexInputBindingStride == rhs.maxVertexInputBindingStride ) && ( maxVertexOutputComponents == rhs.maxVertexOutputComponents ) && ( maxTessellationGenerationLevel == rhs.maxTessellationGenerationLevel ) && ( maxTessellationPatchSize == rhs.maxTessellationPatchSize ) && ( maxTessellationControlPerVertexInputComponents == rhs.maxTessellationControlPerVertexInputComponents ) && ( maxTessellationControlPerVertexOutputComponents == rhs.maxTessellationControlPerVertexOutputComponents ) && ( maxTessellationControlPerPatchOutputComponents == rhs.maxTessellationControlPerPatchOutputComponents ) && ( maxTessellationControlTotalOutputComponents == rhs.maxTessellationControlTotalOutputComponents ) && ( maxTessellationEvaluationInputComponents == rhs.maxTessellationEvaluationInputComponents ) && ( maxTessellationEvaluationOutputComponents == rhs.maxTessellationEvaluationOutputComponents ) && ( maxGeometryShaderInvocations == rhs.maxGeometryShaderInvocations ) && ( maxGeometryInputComponents == rhs.maxGeometryInputComponents ) && ( maxGeometryOutputComponents == rhs.maxGeometryOutputComponents ) && ( maxGeometryOutputVertices == rhs.maxGeometryOutputVertices ) && ( maxGeometryTotalOutputComponents == rhs.maxGeometryTotalOutputComponents ) && ( maxFragmentInputComponents == rhs.maxFragmentInputComponents ) && ( maxFragmentOutputAttachments == rhs.maxFragmentOutputAttachments ) && ( maxFragmentDualSrcAttachments == rhs.maxFragmentDualSrcAttachments ) && ( maxFragmentCombinedOutputResources == rhs.maxFragmentCombinedOutputResources ) && ( maxComputeSharedMemorySize == rhs.maxComputeSharedMemorySize ) && ( memcmp( maxComputeWorkGroupCount, rhs.maxComputeWorkGroupCount, 3 * sizeof( uint32_t ) ) == 0 ) && ( maxComputeWorkGroupInvocations == rhs.maxComputeWorkGroupInvocations ) && ( memcmp( maxComputeWorkGroupSize, rhs.maxComputeWorkGroupSize, 3 * sizeof( uint32_t ) ) == 0 ) && ( subPixelPrecisionBits == rhs.subPixelPrecisionBits ) && ( subTexelPrecisionBits == rhs.subTexelPrecisionBits ) && ( mipmapPrecisionBits == rhs.mipmapPrecisionBits ) && ( maxDrawIndexedIndexValue == rhs.maxDrawIndexedIndexValue ) && ( maxDrawIndirectCount == rhs.maxDrawIndirectCount ) && ( maxSamplerLodBias == rhs.maxSamplerLodBias ) && ( maxSamplerAnisotropy == rhs.maxSamplerAnisotropy ) && ( maxViewports == rhs.maxViewports ) && ( memcmp( maxViewportDimensions, rhs.maxViewportDimensions, 2 * sizeof( uint32_t ) ) == 0 ) && ( memcmp( viewportBoundsRange, rhs.viewportBoundsRange, 2 * sizeof( float ) ) == 0 ) && ( viewportSubPixelBits == rhs.viewportSubPixelBits ) && ( minMemoryMapAlignment == rhs.minMemoryMapAlignment ) && ( minTexelBufferOffsetAlignment == rhs.minTexelBufferOffsetAlignment ) && ( minUniformBufferOffsetAlignment == rhs.minUniformBufferOffsetAlignment ) && ( minStorageBufferOffsetAlignment == rhs.minStorageBufferOffsetAlignment ) && ( minTexelOffset == rhs.minTexelOffset ) && ( maxTexelOffset == rhs.maxTexelOffset ) && ( minTexelGatherOffset == rhs.minTexelGatherOffset ) && ( maxTexelGatherOffset == rhs.maxTexelGatherOffset ) && ( minInterpolationOffset == rhs.minInterpolationOffset ) && ( maxInterpolationOffset == rhs.maxInterpolationOffset ) && ( subPixelInterpolationOffsetBits == rhs.subPixelInterpolationOffsetBits ) && ( maxFramebufferWidth == rhs.maxFramebufferWidth ) && ( maxFramebufferHeight == rhs.maxFramebufferHeight ) && ( maxFramebufferLayers == rhs.maxFramebufferLayers ) && ( framebufferColorSampleCounts == rhs.framebufferColorSampleCounts ) && ( framebufferDepthSampleCounts == rhs.framebufferDepthSampleCounts ) && ( framebufferStencilSampleCounts == rhs.framebufferStencilSampleCounts ) && ( framebufferNoAttachmentsSampleCounts == rhs.framebufferNoAttachmentsSampleCounts ) && ( maxColorAttachments == rhs.maxColorAttachments ) && ( sampledImageColorSampleCounts == rhs.sampledImageColorSampleCounts ) && ( sampledImageIntegerSampleCounts == rhs.sampledImageIntegerSampleCounts ) && ( sampledImageDepthSampleCounts == rhs.sampledImageDepthSampleCounts ) && ( sampledImageStencilSampleCounts == rhs.sampledImageStencilSampleCounts ) && ( storageImageSampleCounts == rhs.storageImageSampleCounts ) && ( maxSampleMaskWords == rhs.maxSampleMaskWords ) && ( timestampComputeAndGraphics == rhs.timestampComputeAndGraphics ) && ( timestampPeriod == rhs.timestampPeriod ) && ( maxClipDistances == rhs.maxClipDistances ) && ( maxCullDistances == rhs.maxCullDistances ) && ( maxCombinedClipAndCullDistances == rhs.maxCombinedClipAndCullDistances ) && ( discreteQueuePriorities == rhs.discreteQueuePriorities ) && ( memcmp( pointSizeRange, rhs.pointSizeRange, 2 * sizeof( float ) ) == 0 ) && ( memcmp( lineWidthRange, rhs.lineWidthRange, 2 * sizeof( float ) ) == 0 ) && ( pointSizeGranularity == rhs.pointSizeGranularity ) && ( lineWidthGranularity == rhs.lineWidthGranularity ) && ( strictLines == rhs.strictLines ) && ( standardSampleLocations == rhs.standardSampleLocations ) && ( optimalBufferCopyOffsetAlignment == rhs.optimalBufferCopyOffsetAlignment ) && ( optimalBufferCopyRowPitchAlignment == rhs.optimalBufferCopyRowPitchAlignment ) && ( nonCoherentAtomSize == rhs.nonCoherentAtomSize ); } bool operator!=( PhysicalDeviceLimits const& rhs ) const { return !operator==( rhs ); } uint32_t maxImageDimension1D; uint32_t maxImageDimension2D; uint32_t maxImageDimension3D; uint32_t maxImageDimensionCube; uint32_t maxImageArrayLayers; uint32_t maxTexelBufferElements; uint32_t maxUniformBufferRange; uint32_t maxStorageBufferRange; uint32_t maxPushConstantsSize; uint32_t maxMemoryAllocationCount; uint32_t maxSamplerAllocationCount; DeviceSize bufferImageGranularity; DeviceSize sparseAddressSpaceSize; uint32_t maxBoundDescriptorSets; uint32_t maxPerStageDescriptorSamplers; uint32_t maxPerStageDescriptorUniformBuffers; uint32_t maxPerStageDescriptorStorageBuffers; uint32_t maxPerStageDescriptorSampledImages; uint32_t maxPerStageDescriptorStorageImages; uint32_t maxPerStageDescriptorInputAttachments; uint32_t maxPerStageResources; uint32_t maxDescriptorSetSamplers; uint32_t maxDescriptorSetUniformBuffers; uint32_t maxDescriptorSetUniformBuffersDynamic; uint32_t maxDescriptorSetStorageBuffers; uint32_t maxDescriptorSetStorageBuffersDynamic; uint32_t maxDescriptorSetSampledImages; uint32_t maxDescriptorSetStorageImages; uint32_t maxDescriptorSetInputAttachments; uint32_t maxVertexInputAttributes; uint32_t maxVertexInputBindings; uint32_t maxVertexInputAttributeOffset; uint32_t maxVertexInputBindingStride; uint32_t maxVertexOutputComponents; uint32_t maxTessellationGenerationLevel; uint32_t maxTessellationPatchSize; uint32_t maxTessellationControlPerVertexInputComponents; uint32_t maxTessellationControlPerVertexOutputComponents; uint32_t maxTessellationControlPerPatchOutputComponents; uint32_t maxTessellationControlTotalOutputComponents; uint32_t maxTessellationEvaluationInputComponents; uint32_t maxTessellationEvaluationOutputComponents; uint32_t maxGeometryShaderInvocations; uint32_t maxGeometryInputComponents; uint32_t maxGeometryOutputComponents; uint32_t maxGeometryOutputVertices; uint32_t maxGeometryTotalOutputComponents; uint32_t maxFragmentInputComponents; uint32_t maxFragmentOutputAttachments; uint32_t maxFragmentDualSrcAttachments; uint32_t maxFragmentCombinedOutputResources; uint32_t maxComputeSharedMemorySize; uint32_t maxComputeWorkGroupCount[3]; uint32_t maxComputeWorkGroupInvocations; uint32_t maxComputeWorkGroupSize[3]; uint32_t subPixelPrecisionBits; uint32_t subTexelPrecisionBits; uint32_t mipmapPrecisionBits; uint32_t maxDrawIndexedIndexValue; uint32_t maxDrawIndirectCount; float maxSamplerLodBias; float maxSamplerAnisotropy; uint32_t maxViewports; uint32_t maxViewportDimensions[2]; float viewportBoundsRange[2]; uint32_t viewportSubPixelBits; size_t minMemoryMapAlignment; DeviceSize minTexelBufferOffsetAlignment; DeviceSize minUniformBufferOffsetAlignment; DeviceSize minStorageBufferOffsetAlignment; int32_t minTexelOffset; uint32_t maxTexelOffset; int32_t minTexelGatherOffset; uint32_t maxTexelGatherOffset; float minInterpolationOffset; float maxInterpolationOffset; uint32_t subPixelInterpolationOffsetBits; uint32_t maxFramebufferWidth; uint32_t maxFramebufferHeight; uint32_t maxFramebufferLayers; SampleCountFlags framebufferColorSampleCounts; SampleCountFlags framebufferDepthSampleCounts; SampleCountFlags framebufferStencilSampleCounts; SampleCountFlags framebufferNoAttachmentsSampleCounts; uint32_t maxColorAttachments; SampleCountFlags sampledImageColorSampleCounts; SampleCountFlags sampledImageIntegerSampleCounts; SampleCountFlags sampledImageDepthSampleCounts; SampleCountFlags sampledImageStencilSampleCounts; SampleCountFlags storageImageSampleCounts; uint32_t maxSampleMaskWords; Bool32 timestampComputeAndGraphics; float timestampPeriod; uint32_t maxClipDistances; uint32_t maxCullDistances; uint32_t maxCombinedClipAndCullDistances; uint32_t discreteQueuePriorities; float pointSizeRange[2]; float lineWidthRange[2]; float pointSizeGranularity; float lineWidthGranularity; Bool32 strictLines; Bool32 standardSampleLocations; DeviceSize optimalBufferCopyOffsetAlignment; DeviceSize optimalBufferCopyRowPitchAlignment; DeviceSize nonCoherentAtomSize; }; static_assert( sizeof( PhysicalDeviceLimits ) == sizeof( VkPhysicalDeviceLimits ), "struct and wrapper have different size!" ); struct PhysicalDeviceProperties { operator const VkPhysicalDeviceProperties&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceProperties const& rhs ) const { return ( apiVersion == rhs.apiVersion ) && ( driverVersion == rhs.driverVersion ) && ( vendorID == rhs.vendorID ) && ( deviceID == rhs.deviceID ) && ( deviceType == rhs.deviceType ) && ( memcmp( deviceName, rhs.deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE * sizeof( char ) ) == 0 ) && ( memcmp( pipelineCacheUUID, rhs.pipelineCacheUUID, VK_UUID_SIZE * sizeof( uint8_t ) ) == 0 ) && ( limits == rhs.limits ) && ( sparseProperties == rhs.sparseProperties ); } bool operator!=( PhysicalDeviceProperties const& rhs ) const { return !operator==( rhs ); } uint32_t apiVersion; uint32_t driverVersion; uint32_t vendorID; uint32_t deviceID; PhysicalDeviceType deviceType; char deviceName[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE]; uint8_t pipelineCacheUUID[VK_UUID_SIZE]; PhysicalDeviceLimits limits; PhysicalDeviceSparseProperties sparseProperties; }; static_assert( sizeof( PhysicalDeviceProperties ) == sizeof( VkPhysicalDeviceProperties ), "struct and wrapper have different size!" ); struct PhysicalDeviceProperties2KHR { operator const VkPhysicalDeviceProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( properties == rhs.properties ); } bool operator!=( PhysicalDeviceProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; PhysicalDeviceProperties properties; }; static_assert( sizeof( PhysicalDeviceProperties2KHR ) == sizeof( VkPhysicalDeviceProperties2KHR ), "struct and wrapper have different size!" ); struct ImageFormatProperties2KHR { operator const VkImageFormatProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( ImageFormatProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( imageFormatProperties == rhs.imageFormatProperties ); } bool operator!=( ImageFormatProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; ImageFormatProperties imageFormatProperties; }; static_assert( sizeof( ImageFormatProperties2KHR ) == sizeof( VkImageFormatProperties2KHR ), "struct and wrapper have different size!" ); struct PhysicalDeviceSparseImageFormatInfo2KHR { PhysicalDeviceSparseImageFormatInfo2KHR( Format format_ = Format::eUndefined, ImageType type_ = ImageType::e1D, SampleCountFlagBits samples_ = SampleCountFlagBits::e1, ImageUsageFlags usage_ = ImageUsageFlags(), ImageTiling tiling_ = ImageTiling::eOptimal ) : sType( StructureType::ePhysicalDeviceSparseImageFormatInfo2KHR ) , pNext( nullptr ) , format( format_ ) , type( type_ ) , samples( samples_ ) , usage( usage_ ) , tiling( tiling_ ) { } PhysicalDeviceSparseImageFormatInfo2KHR( VkPhysicalDeviceSparseImageFormatInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceSparseImageFormatInfo2KHR ) ); } PhysicalDeviceSparseImageFormatInfo2KHR& operator=( VkPhysicalDeviceSparseImageFormatInfo2KHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceSparseImageFormatInfo2KHR ) ); return *this; } PhysicalDeviceSparseImageFormatInfo2KHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceSparseImageFormatInfo2KHR& setFormat( Format format_ ) { format = format_; return *this; } PhysicalDeviceSparseImageFormatInfo2KHR& setType( ImageType type_ ) { type = type_; return *this; } PhysicalDeviceSparseImageFormatInfo2KHR& setSamples( SampleCountFlagBits samples_ ) { samples = samples_; return *this; } PhysicalDeviceSparseImageFormatInfo2KHR& setUsage( ImageUsageFlags usage_ ) { usage = usage_; return *this; } PhysicalDeviceSparseImageFormatInfo2KHR& setTiling( ImageTiling tiling_ ) { tiling = tiling_; return *this; } operator const VkPhysicalDeviceSparseImageFormatInfo2KHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceSparseImageFormatInfo2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( format == rhs.format ) && ( type == rhs.type ) && ( samples == rhs.samples ) && ( usage == rhs.usage ) && ( tiling == rhs.tiling ); } bool operator!=( PhysicalDeviceSparseImageFormatInfo2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Format format; ImageType type; SampleCountFlagBits samples; ImageUsageFlags usage; ImageTiling tiling; }; static_assert( sizeof( PhysicalDeviceSparseImageFormatInfo2KHR ) == sizeof( VkPhysicalDeviceSparseImageFormatInfo2KHR ), "struct and wrapper have different size!" ); enum class AttachmentDescriptionFlagBits { eMayAlias = VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT }; using AttachmentDescriptionFlags = Flags; VULKAN_HPP_INLINE AttachmentDescriptionFlags operator|( AttachmentDescriptionFlagBits bit0, AttachmentDescriptionFlagBits bit1 ) { return AttachmentDescriptionFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE AttachmentDescriptionFlags operator~( AttachmentDescriptionFlagBits bits ) { return ~( AttachmentDescriptionFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(AttachmentDescriptionFlagBits::eMayAlias) }; }; struct AttachmentDescription { AttachmentDescription( AttachmentDescriptionFlags flags_ = AttachmentDescriptionFlags(), Format format_ = Format::eUndefined, SampleCountFlagBits samples_ = SampleCountFlagBits::e1, AttachmentLoadOp loadOp_ = AttachmentLoadOp::eLoad, AttachmentStoreOp storeOp_ = AttachmentStoreOp::eStore, AttachmentLoadOp stencilLoadOp_ = AttachmentLoadOp::eLoad, AttachmentStoreOp stencilStoreOp_ = AttachmentStoreOp::eStore, ImageLayout initialLayout_ = ImageLayout::eUndefined, ImageLayout finalLayout_ = ImageLayout::eUndefined ) : flags( flags_ ) , format( format_ ) , samples( samples_ ) , loadOp( loadOp_ ) , storeOp( storeOp_ ) , stencilLoadOp( stencilLoadOp_ ) , stencilStoreOp( stencilStoreOp_ ) , initialLayout( initialLayout_ ) , finalLayout( finalLayout_ ) { } AttachmentDescription( VkAttachmentDescription const & rhs ) { memcpy( this, &rhs, sizeof( AttachmentDescription ) ); } AttachmentDescription& operator=( VkAttachmentDescription const & rhs ) { memcpy( this, &rhs, sizeof( AttachmentDescription ) ); return *this; } AttachmentDescription& setFlags( AttachmentDescriptionFlags flags_ ) { flags = flags_; return *this; } AttachmentDescription& setFormat( Format format_ ) { format = format_; return *this; } AttachmentDescription& setSamples( SampleCountFlagBits samples_ ) { samples = samples_; return *this; } AttachmentDescription& setLoadOp( AttachmentLoadOp loadOp_ ) { loadOp = loadOp_; return *this; } AttachmentDescription& setStoreOp( AttachmentStoreOp storeOp_ ) { storeOp = storeOp_; return *this; } AttachmentDescription& setStencilLoadOp( AttachmentLoadOp stencilLoadOp_ ) { stencilLoadOp = stencilLoadOp_; return *this; } AttachmentDescription& setStencilStoreOp( AttachmentStoreOp stencilStoreOp_ ) { stencilStoreOp = stencilStoreOp_; return *this; } AttachmentDescription& setInitialLayout( ImageLayout initialLayout_ ) { initialLayout = initialLayout_; return *this; } AttachmentDescription& setFinalLayout( ImageLayout finalLayout_ ) { finalLayout = finalLayout_; return *this; } operator const VkAttachmentDescription&() const { return *reinterpret_cast(this); } bool operator==( AttachmentDescription const& rhs ) const { return ( flags == rhs.flags ) && ( format == rhs.format ) && ( samples == rhs.samples ) && ( loadOp == rhs.loadOp ) && ( storeOp == rhs.storeOp ) && ( stencilLoadOp == rhs.stencilLoadOp ) && ( stencilStoreOp == rhs.stencilStoreOp ) && ( initialLayout == rhs.initialLayout ) && ( finalLayout == rhs.finalLayout ); } bool operator!=( AttachmentDescription const& rhs ) const { return !operator==( rhs ); } AttachmentDescriptionFlags flags; Format format; SampleCountFlagBits samples; AttachmentLoadOp loadOp; AttachmentStoreOp storeOp; AttachmentLoadOp stencilLoadOp; AttachmentStoreOp stencilStoreOp; ImageLayout initialLayout; ImageLayout finalLayout; }; static_assert( sizeof( AttachmentDescription ) == sizeof( VkAttachmentDescription ), "struct and wrapper have different size!" ); enum class StencilFaceFlagBits { eFront = VK_STENCIL_FACE_FRONT_BIT, eBack = VK_STENCIL_FACE_BACK_BIT, eVkStencilFrontAndBack = VK_STENCIL_FRONT_AND_BACK }; using StencilFaceFlags = Flags; VULKAN_HPP_INLINE StencilFaceFlags operator|( StencilFaceFlagBits bit0, StencilFaceFlagBits bit1 ) { return StencilFaceFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE StencilFaceFlags operator~( StencilFaceFlagBits bits ) { return ~( StencilFaceFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(StencilFaceFlagBits::eFront) | VkFlags(StencilFaceFlagBits::eBack) | VkFlags(StencilFaceFlagBits::eVkStencilFrontAndBack) }; }; enum class DescriptorPoolCreateFlagBits { eFreeDescriptorSet = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT }; using DescriptorPoolCreateFlags = Flags; VULKAN_HPP_INLINE DescriptorPoolCreateFlags operator|( DescriptorPoolCreateFlagBits bit0, DescriptorPoolCreateFlagBits bit1 ) { return DescriptorPoolCreateFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE DescriptorPoolCreateFlags operator~( DescriptorPoolCreateFlagBits bits ) { return ~( DescriptorPoolCreateFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(DescriptorPoolCreateFlagBits::eFreeDescriptorSet) }; }; struct DescriptorPoolCreateInfo { DescriptorPoolCreateInfo( DescriptorPoolCreateFlags flags_ = DescriptorPoolCreateFlags(), uint32_t maxSets_ = 0, uint32_t poolSizeCount_ = 0, const DescriptorPoolSize* pPoolSizes_ = nullptr ) : sType( StructureType::eDescriptorPoolCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , maxSets( maxSets_ ) , poolSizeCount( poolSizeCount_ ) , pPoolSizes( pPoolSizes_ ) { } DescriptorPoolCreateInfo( VkDescriptorPoolCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorPoolCreateInfo ) ); } DescriptorPoolCreateInfo& operator=( VkDescriptorPoolCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorPoolCreateInfo ) ); return *this; } DescriptorPoolCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DescriptorPoolCreateInfo& setFlags( DescriptorPoolCreateFlags flags_ ) { flags = flags_; return *this; } DescriptorPoolCreateInfo& setMaxSets( uint32_t maxSets_ ) { maxSets = maxSets_; return *this; } DescriptorPoolCreateInfo& setPoolSizeCount( uint32_t poolSizeCount_ ) { poolSizeCount = poolSizeCount_; return *this; } DescriptorPoolCreateInfo& setPPoolSizes( const DescriptorPoolSize* pPoolSizes_ ) { pPoolSizes = pPoolSizes_; return *this; } operator const VkDescriptorPoolCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( DescriptorPoolCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( maxSets == rhs.maxSets ) && ( poolSizeCount == rhs.poolSizeCount ) && ( pPoolSizes == rhs.pPoolSizes ); } bool operator!=( DescriptorPoolCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DescriptorPoolCreateFlags flags; uint32_t maxSets; uint32_t poolSizeCount; const DescriptorPoolSize* pPoolSizes; }; static_assert( sizeof( DescriptorPoolCreateInfo ) == sizeof( VkDescriptorPoolCreateInfo ), "struct and wrapper have different size!" ); enum class DependencyFlagBits { eByRegion = VK_DEPENDENCY_BY_REGION_BIT, eViewLocalKHX = VK_DEPENDENCY_VIEW_LOCAL_BIT_KHX, eDeviceGroupKHX = VK_DEPENDENCY_DEVICE_GROUP_BIT_KHX }; using DependencyFlags = Flags; VULKAN_HPP_INLINE DependencyFlags operator|( DependencyFlagBits bit0, DependencyFlagBits bit1 ) { return DependencyFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE DependencyFlags operator~( DependencyFlagBits bits ) { return ~( DependencyFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(DependencyFlagBits::eByRegion) | VkFlags(DependencyFlagBits::eViewLocalKHX) | VkFlags(DependencyFlagBits::eDeviceGroupKHX) }; }; struct SubpassDependency { SubpassDependency( uint32_t srcSubpass_ = 0, uint32_t dstSubpass_ = 0, PipelineStageFlags srcStageMask_ = PipelineStageFlags(), PipelineStageFlags dstStageMask_ = PipelineStageFlags(), AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), DependencyFlags dependencyFlags_ = DependencyFlags() ) : srcSubpass( srcSubpass_ ) , dstSubpass( dstSubpass_ ) , srcStageMask( srcStageMask_ ) , dstStageMask( dstStageMask_ ) , srcAccessMask( srcAccessMask_ ) , dstAccessMask( dstAccessMask_ ) , dependencyFlags( dependencyFlags_ ) { } SubpassDependency( VkSubpassDependency const & rhs ) { memcpy( this, &rhs, sizeof( SubpassDependency ) ); } SubpassDependency& operator=( VkSubpassDependency const & rhs ) { memcpy( this, &rhs, sizeof( SubpassDependency ) ); return *this; } SubpassDependency& setSrcSubpass( uint32_t srcSubpass_ ) { srcSubpass = srcSubpass_; return *this; } SubpassDependency& setDstSubpass( uint32_t dstSubpass_ ) { dstSubpass = dstSubpass_; return *this; } SubpassDependency& setSrcStageMask( PipelineStageFlags srcStageMask_ ) { srcStageMask = srcStageMask_; return *this; } SubpassDependency& setDstStageMask( PipelineStageFlags dstStageMask_ ) { dstStageMask = dstStageMask_; return *this; } SubpassDependency& setSrcAccessMask( AccessFlags srcAccessMask_ ) { srcAccessMask = srcAccessMask_; return *this; } SubpassDependency& setDstAccessMask( AccessFlags dstAccessMask_ ) { dstAccessMask = dstAccessMask_; return *this; } SubpassDependency& setDependencyFlags( DependencyFlags dependencyFlags_ ) { dependencyFlags = dependencyFlags_; return *this; } operator const VkSubpassDependency&() const { return *reinterpret_cast(this); } bool operator==( SubpassDependency const& rhs ) const { return ( srcSubpass == rhs.srcSubpass ) && ( dstSubpass == rhs.dstSubpass ) && ( srcStageMask == rhs.srcStageMask ) && ( dstStageMask == rhs.dstStageMask ) && ( srcAccessMask == rhs.srcAccessMask ) && ( dstAccessMask == rhs.dstAccessMask ) && ( dependencyFlags == rhs.dependencyFlags ); } bool operator!=( SubpassDependency const& rhs ) const { return !operator==( rhs ); } uint32_t srcSubpass; uint32_t dstSubpass; PipelineStageFlags srcStageMask; PipelineStageFlags dstStageMask; AccessFlags srcAccessMask; AccessFlags dstAccessMask; DependencyFlags dependencyFlags; }; static_assert( sizeof( SubpassDependency ) == sizeof( VkSubpassDependency ), "struct and wrapper have different size!" ); enum class PresentModeKHR { eImmediate = VK_PRESENT_MODE_IMMEDIATE_KHR, eMailbox = VK_PRESENT_MODE_MAILBOX_KHR, eFifo = VK_PRESENT_MODE_FIFO_KHR, eFifoRelaxed = VK_PRESENT_MODE_FIFO_RELAXED_KHR, eSharedDemandRefresh = VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR, eSharedContinuousRefresh = VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR }; enum class ColorSpaceKHR { eSrgbNonlinear = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR, eDisplayP3NonlinearEXT = VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT, eExtendedSrgbLinearEXT = VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT, eDciP3LinearEXT = VK_COLOR_SPACE_DCI_P3_LINEAR_EXT, eDciP3NonlinearEXT = VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT, eBt709LinearEXT = VK_COLOR_SPACE_BT709_LINEAR_EXT, eBt709NonlinearEXT = VK_COLOR_SPACE_BT709_NONLINEAR_EXT, eBt2020LinearEXT = VK_COLOR_SPACE_BT2020_LINEAR_EXT, eHdr10St2084EXT = VK_COLOR_SPACE_HDR10_ST2084_EXT, eDolbyvisionEXT = VK_COLOR_SPACE_DOLBYVISION_EXT, eHdr10HlgEXT = VK_COLOR_SPACE_HDR10_HLG_EXT, eAdobergbLinearEXT = VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT, eAdobergbNonlinearEXT = VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT, ePassThroughEXT = VK_COLOR_SPACE_PASS_THROUGH_EXT }; struct SurfaceFormatKHR { operator const VkSurfaceFormatKHR&() const { return *reinterpret_cast(this); } bool operator==( SurfaceFormatKHR const& rhs ) const { return ( format == rhs.format ) && ( colorSpace == rhs.colorSpace ); } bool operator!=( SurfaceFormatKHR const& rhs ) const { return !operator==( rhs ); } Format format; ColorSpaceKHR colorSpace; }; static_assert( sizeof( SurfaceFormatKHR ) == sizeof( VkSurfaceFormatKHR ), "struct and wrapper have different size!" ); struct SurfaceFormat2KHR { operator const VkSurfaceFormat2KHR&() const { return *reinterpret_cast(this); } bool operator==( SurfaceFormat2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( surfaceFormat == rhs.surfaceFormat ); } bool operator!=( SurfaceFormat2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; SurfaceFormatKHR surfaceFormat; }; static_assert( sizeof( SurfaceFormat2KHR ) == sizeof( VkSurfaceFormat2KHR ), "struct and wrapper have different size!" ); enum class DisplayPlaneAlphaFlagBitsKHR { eOpaque = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR, eGlobal = VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR, ePerPixel = VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR, ePerPixelPremultiplied = VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR }; using DisplayPlaneAlphaFlagsKHR = Flags; VULKAN_HPP_INLINE DisplayPlaneAlphaFlagsKHR operator|( DisplayPlaneAlphaFlagBitsKHR bit0, DisplayPlaneAlphaFlagBitsKHR bit1 ) { return DisplayPlaneAlphaFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE DisplayPlaneAlphaFlagsKHR operator~( DisplayPlaneAlphaFlagBitsKHR bits ) { return ~( DisplayPlaneAlphaFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(DisplayPlaneAlphaFlagBitsKHR::eOpaque) | VkFlags(DisplayPlaneAlphaFlagBitsKHR::eGlobal) | VkFlags(DisplayPlaneAlphaFlagBitsKHR::ePerPixel) | VkFlags(DisplayPlaneAlphaFlagBitsKHR::ePerPixelPremultiplied) }; }; struct DisplayPlaneCapabilitiesKHR { operator const VkDisplayPlaneCapabilitiesKHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayPlaneCapabilitiesKHR const& rhs ) const { return ( supportedAlpha == rhs.supportedAlpha ) && ( minSrcPosition == rhs.minSrcPosition ) && ( maxSrcPosition == rhs.maxSrcPosition ) && ( minSrcExtent == rhs.minSrcExtent ) && ( maxSrcExtent == rhs.maxSrcExtent ) && ( minDstPosition == rhs.minDstPosition ) && ( maxDstPosition == rhs.maxDstPosition ) && ( minDstExtent == rhs.minDstExtent ) && ( maxDstExtent == rhs.maxDstExtent ); } bool operator!=( DisplayPlaneCapabilitiesKHR const& rhs ) const { return !operator==( rhs ); } DisplayPlaneAlphaFlagsKHR supportedAlpha; Offset2D minSrcPosition; Offset2D maxSrcPosition; Extent2D minSrcExtent; Extent2D maxSrcExtent; Offset2D minDstPosition; Offset2D maxDstPosition; Extent2D minDstExtent; Extent2D maxDstExtent; }; static_assert( sizeof( DisplayPlaneCapabilitiesKHR ) == sizeof( VkDisplayPlaneCapabilitiesKHR ), "struct and wrapper have different size!" ); struct DisplayPlaneCapabilities2KHR { operator const VkDisplayPlaneCapabilities2KHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayPlaneCapabilities2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( capabilities == rhs.capabilities ); } bool operator!=( DisplayPlaneCapabilities2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; DisplayPlaneCapabilitiesKHR capabilities; }; static_assert( sizeof( DisplayPlaneCapabilities2KHR ) == sizeof( VkDisplayPlaneCapabilities2KHR ), "struct and wrapper have different size!" ); enum class CompositeAlphaFlagBitsKHR { eOpaque = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, ePreMultiplied = VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR, ePostMultiplied = VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR, eInherit = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR }; using CompositeAlphaFlagsKHR = Flags; VULKAN_HPP_INLINE CompositeAlphaFlagsKHR operator|( CompositeAlphaFlagBitsKHR bit0, CompositeAlphaFlagBitsKHR bit1 ) { return CompositeAlphaFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE CompositeAlphaFlagsKHR operator~( CompositeAlphaFlagBitsKHR bits ) { return ~( CompositeAlphaFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(CompositeAlphaFlagBitsKHR::eOpaque) | VkFlags(CompositeAlphaFlagBitsKHR::ePreMultiplied) | VkFlags(CompositeAlphaFlagBitsKHR::ePostMultiplied) | VkFlags(CompositeAlphaFlagBitsKHR::eInherit) }; }; enum class SurfaceTransformFlagBitsKHR { eIdentity = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR, eRotate90 = VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR, eRotate180 = VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR, eRotate270 = VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR, eHorizontalMirror = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR, eHorizontalMirrorRotate90 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR, eHorizontalMirrorRotate180 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR, eHorizontalMirrorRotate270 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR, eInherit = VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR }; using SurfaceTransformFlagsKHR = Flags; VULKAN_HPP_INLINE SurfaceTransformFlagsKHR operator|( SurfaceTransformFlagBitsKHR bit0, SurfaceTransformFlagBitsKHR bit1 ) { return SurfaceTransformFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE SurfaceTransformFlagsKHR operator~( SurfaceTransformFlagBitsKHR bits ) { return ~( SurfaceTransformFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SurfaceTransformFlagBitsKHR::eIdentity) | VkFlags(SurfaceTransformFlagBitsKHR::eRotate90) | VkFlags(SurfaceTransformFlagBitsKHR::eRotate180) | VkFlags(SurfaceTransformFlagBitsKHR::eRotate270) | VkFlags(SurfaceTransformFlagBitsKHR::eHorizontalMirror) | VkFlags(SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate90) | VkFlags(SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate180) | VkFlags(SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate270) | VkFlags(SurfaceTransformFlagBitsKHR::eInherit) }; }; struct DisplayPropertiesKHR { operator const VkDisplayPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayPropertiesKHR const& rhs ) const { return ( display == rhs.display ) && ( displayName == rhs.displayName ) && ( physicalDimensions == rhs.physicalDimensions ) && ( physicalResolution == rhs.physicalResolution ) && ( supportedTransforms == rhs.supportedTransforms ) && ( planeReorderPossible == rhs.planeReorderPossible ) && ( persistentContent == rhs.persistentContent ); } bool operator!=( DisplayPropertiesKHR const& rhs ) const { return !operator==( rhs ); } DisplayKHR display; const char* displayName; Extent2D physicalDimensions; Extent2D physicalResolution; SurfaceTransformFlagsKHR supportedTransforms; Bool32 planeReorderPossible; Bool32 persistentContent; }; static_assert( sizeof( DisplayPropertiesKHR ) == sizeof( VkDisplayPropertiesKHR ), "struct and wrapper have different size!" ); struct DisplaySurfaceCreateInfoKHR { DisplaySurfaceCreateInfoKHR( DisplaySurfaceCreateFlagsKHR flags_ = DisplaySurfaceCreateFlagsKHR(), DisplayModeKHR displayMode_ = DisplayModeKHR(), uint32_t planeIndex_ = 0, uint32_t planeStackIndex_ = 0, SurfaceTransformFlagBitsKHR transform_ = SurfaceTransformFlagBitsKHR::eIdentity, float globalAlpha_ = 0, DisplayPlaneAlphaFlagBitsKHR alphaMode_ = DisplayPlaneAlphaFlagBitsKHR::eOpaque, Extent2D imageExtent_ = Extent2D() ) : sType( StructureType::eDisplaySurfaceCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , displayMode( displayMode_ ) , planeIndex( planeIndex_ ) , planeStackIndex( planeStackIndex_ ) , transform( transform_ ) , globalAlpha( globalAlpha_ ) , alphaMode( alphaMode_ ) , imageExtent( imageExtent_ ) { } DisplaySurfaceCreateInfoKHR( VkDisplaySurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplaySurfaceCreateInfoKHR ) ); } DisplaySurfaceCreateInfoKHR& operator=( VkDisplaySurfaceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( DisplaySurfaceCreateInfoKHR ) ); return *this; } DisplaySurfaceCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DisplaySurfaceCreateInfoKHR& setFlags( DisplaySurfaceCreateFlagsKHR flags_ ) { flags = flags_; return *this; } DisplaySurfaceCreateInfoKHR& setDisplayMode( DisplayModeKHR displayMode_ ) { displayMode = displayMode_; return *this; } DisplaySurfaceCreateInfoKHR& setPlaneIndex( uint32_t planeIndex_ ) { planeIndex = planeIndex_; return *this; } DisplaySurfaceCreateInfoKHR& setPlaneStackIndex( uint32_t planeStackIndex_ ) { planeStackIndex = planeStackIndex_; return *this; } DisplaySurfaceCreateInfoKHR& setTransform( SurfaceTransformFlagBitsKHR transform_ ) { transform = transform_; return *this; } DisplaySurfaceCreateInfoKHR& setGlobalAlpha( float globalAlpha_ ) { globalAlpha = globalAlpha_; return *this; } DisplaySurfaceCreateInfoKHR& setAlphaMode( DisplayPlaneAlphaFlagBitsKHR alphaMode_ ) { alphaMode = alphaMode_; return *this; } DisplaySurfaceCreateInfoKHR& setImageExtent( Extent2D imageExtent_ ) { imageExtent = imageExtent_; return *this; } operator const VkDisplaySurfaceCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( DisplaySurfaceCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( displayMode == rhs.displayMode ) && ( planeIndex == rhs.planeIndex ) && ( planeStackIndex == rhs.planeStackIndex ) && ( transform == rhs.transform ) && ( globalAlpha == rhs.globalAlpha ) && ( alphaMode == rhs.alphaMode ) && ( imageExtent == rhs.imageExtent ); } bool operator!=( DisplaySurfaceCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DisplaySurfaceCreateFlagsKHR flags; DisplayModeKHR displayMode; uint32_t planeIndex; uint32_t planeStackIndex; SurfaceTransformFlagBitsKHR transform; float globalAlpha; DisplayPlaneAlphaFlagBitsKHR alphaMode; Extent2D imageExtent; }; static_assert( sizeof( DisplaySurfaceCreateInfoKHR ) == sizeof( VkDisplaySurfaceCreateInfoKHR ), "struct and wrapper have different size!" ); struct SurfaceCapabilitiesKHR { operator const VkSurfaceCapabilitiesKHR&() const { return *reinterpret_cast(this); } bool operator==( SurfaceCapabilitiesKHR const& rhs ) const { return ( minImageCount == rhs.minImageCount ) && ( maxImageCount == rhs.maxImageCount ) && ( currentExtent == rhs.currentExtent ) && ( minImageExtent == rhs.minImageExtent ) && ( maxImageExtent == rhs.maxImageExtent ) && ( maxImageArrayLayers == rhs.maxImageArrayLayers ) && ( supportedTransforms == rhs.supportedTransforms ) && ( currentTransform == rhs.currentTransform ) && ( supportedCompositeAlpha == rhs.supportedCompositeAlpha ) && ( supportedUsageFlags == rhs.supportedUsageFlags ); } bool operator!=( SurfaceCapabilitiesKHR const& rhs ) const { return !operator==( rhs ); } uint32_t minImageCount; uint32_t maxImageCount; Extent2D currentExtent; Extent2D minImageExtent; Extent2D maxImageExtent; uint32_t maxImageArrayLayers; SurfaceTransformFlagsKHR supportedTransforms; SurfaceTransformFlagBitsKHR currentTransform; CompositeAlphaFlagsKHR supportedCompositeAlpha; ImageUsageFlags supportedUsageFlags; }; static_assert( sizeof( SurfaceCapabilitiesKHR ) == sizeof( VkSurfaceCapabilitiesKHR ), "struct and wrapper have different size!" ); struct SurfaceCapabilities2KHR { operator const VkSurfaceCapabilities2KHR&() const { return *reinterpret_cast(this); } bool operator==( SurfaceCapabilities2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( surfaceCapabilities == rhs.surfaceCapabilities ); } bool operator!=( SurfaceCapabilities2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; SurfaceCapabilitiesKHR surfaceCapabilities; }; static_assert( sizeof( SurfaceCapabilities2KHR ) == sizeof( VkSurfaceCapabilities2KHR ), "struct and wrapper have different size!" ); struct DisplayProperties2KHR { operator const VkDisplayProperties2KHR&() const { return *reinterpret_cast(this); } bool operator==( DisplayProperties2KHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( displayProperties == rhs.displayProperties ); } bool operator!=( DisplayProperties2KHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; DisplayPropertiesKHR displayProperties; }; static_assert( sizeof( DisplayProperties2KHR ) == sizeof( VkDisplayProperties2KHR ), "struct and wrapper have different size!" ); enum class DebugReportFlagBitsEXT { eInformation = VK_DEBUG_REPORT_INFORMATION_BIT_EXT, eWarning = VK_DEBUG_REPORT_WARNING_BIT_EXT, ePerformanceWarning = VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, eError = VK_DEBUG_REPORT_ERROR_BIT_EXT, eDebug = VK_DEBUG_REPORT_DEBUG_BIT_EXT }; using DebugReportFlagsEXT = Flags; VULKAN_HPP_INLINE DebugReportFlagsEXT operator|( DebugReportFlagBitsEXT bit0, DebugReportFlagBitsEXT bit1 ) { return DebugReportFlagsEXT( bit0 ) | bit1; } VULKAN_HPP_INLINE DebugReportFlagsEXT operator~( DebugReportFlagBitsEXT bits ) { return ~( DebugReportFlagsEXT( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(DebugReportFlagBitsEXT::eInformation) | VkFlags(DebugReportFlagBitsEXT::eWarning) | VkFlags(DebugReportFlagBitsEXT::ePerformanceWarning) | VkFlags(DebugReportFlagBitsEXT::eError) | VkFlags(DebugReportFlagBitsEXT::eDebug) }; }; struct DebugReportCallbackCreateInfoEXT { DebugReportCallbackCreateInfoEXT( DebugReportFlagsEXT flags_ = DebugReportFlagsEXT(), PFN_vkDebugReportCallbackEXT pfnCallback_ = nullptr, void* pUserData_ = nullptr ) : sType( StructureType::eDebugReportCallbackCreateInfoEXT ) , pNext( nullptr ) , flags( flags_ ) , pfnCallback( pfnCallback_ ) , pUserData( pUserData_ ) { } DebugReportCallbackCreateInfoEXT( VkDebugReportCallbackCreateInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DebugReportCallbackCreateInfoEXT ) ); } DebugReportCallbackCreateInfoEXT& operator=( VkDebugReportCallbackCreateInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DebugReportCallbackCreateInfoEXT ) ); return *this; } DebugReportCallbackCreateInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DebugReportCallbackCreateInfoEXT& setFlags( DebugReportFlagsEXT flags_ ) { flags = flags_; return *this; } DebugReportCallbackCreateInfoEXT& setPfnCallback( PFN_vkDebugReportCallbackEXT pfnCallback_ ) { pfnCallback = pfnCallback_; return *this; } DebugReportCallbackCreateInfoEXT& setPUserData( void* pUserData_ ) { pUserData = pUserData_; return *this; } operator const VkDebugReportCallbackCreateInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( DebugReportCallbackCreateInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( pfnCallback == rhs.pfnCallback ) && ( pUserData == rhs.pUserData ); } bool operator!=( DebugReportCallbackCreateInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DebugReportFlagsEXT flags; PFN_vkDebugReportCallbackEXT pfnCallback; void* pUserData; }; static_assert( sizeof( DebugReportCallbackCreateInfoEXT ) == sizeof( VkDebugReportCallbackCreateInfoEXT ), "struct and wrapper have different size!" ); enum class DebugReportObjectTypeEXT { eUnknown = VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, eInstance = VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, ePhysicalDevice = VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, eDevice = VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, eQueue = VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, eSemaphore = VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, eCommandBuffer = VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, eFence = VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, eDeviceMemory = VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, eBuffer = VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, eImage = VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, eEvent = VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, eQueryPool = VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, eBufferView = VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, eImageView = VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, eShaderModule = VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, ePipelineCache = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, ePipelineLayout = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, eRenderPass = VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, ePipeline = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, eDescriptorSetLayout = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, eSampler = VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, eDescriptorPool = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, eDescriptorSet = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, eFramebuffer = VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, eCommandPool = VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, eSurfaceKhr = VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, eSwapchainKhr = VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, eDebugReportCallbackExt = VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, eDisplayKhr = VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_KHR_EXT, eDisplayModeKhr = VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_MODE_KHR_EXT, eObjectTableNvx = VK_DEBUG_REPORT_OBJECT_TYPE_OBJECT_TABLE_NVX_EXT, eIndirectCommandsLayoutNvx = VK_DEBUG_REPORT_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX_EXT, eDescriptorUpdateTemplateKHR = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_KHR_EXT, eSamplerYCbCrConversionKHR = VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_KHR_EXT }; struct DebugMarkerObjectNameInfoEXT { DebugMarkerObjectNameInfoEXT( DebugReportObjectTypeEXT objectType_ = DebugReportObjectTypeEXT::eUnknown, uint64_t object_ = 0, const char* pObjectName_ = nullptr ) : sType( StructureType::eDebugMarkerObjectNameInfoEXT ) , pNext( nullptr ) , objectType( objectType_ ) , object( object_ ) , pObjectName( pObjectName_ ) { } DebugMarkerObjectNameInfoEXT( VkDebugMarkerObjectNameInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DebugMarkerObjectNameInfoEXT ) ); } DebugMarkerObjectNameInfoEXT& operator=( VkDebugMarkerObjectNameInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DebugMarkerObjectNameInfoEXT ) ); return *this; } DebugMarkerObjectNameInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DebugMarkerObjectNameInfoEXT& setObjectType( DebugReportObjectTypeEXT objectType_ ) { objectType = objectType_; return *this; } DebugMarkerObjectNameInfoEXT& setObject( uint64_t object_ ) { object = object_; return *this; } DebugMarkerObjectNameInfoEXT& setPObjectName( const char* pObjectName_ ) { pObjectName = pObjectName_; return *this; } operator const VkDebugMarkerObjectNameInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( DebugMarkerObjectNameInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( objectType == rhs.objectType ) && ( object == rhs.object ) && ( pObjectName == rhs.pObjectName ); } bool operator!=( DebugMarkerObjectNameInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DebugReportObjectTypeEXT objectType; uint64_t object; const char* pObjectName; }; static_assert( sizeof( DebugMarkerObjectNameInfoEXT ) == sizeof( VkDebugMarkerObjectNameInfoEXT ), "struct and wrapper have different size!" ); struct DebugMarkerObjectTagInfoEXT { DebugMarkerObjectTagInfoEXT( DebugReportObjectTypeEXT objectType_ = DebugReportObjectTypeEXT::eUnknown, uint64_t object_ = 0, uint64_t tagName_ = 0, size_t tagSize_ = 0, const void* pTag_ = nullptr ) : sType( StructureType::eDebugMarkerObjectTagInfoEXT ) , pNext( nullptr ) , objectType( objectType_ ) , object( object_ ) , tagName( tagName_ ) , tagSize( tagSize_ ) , pTag( pTag_ ) { } DebugMarkerObjectTagInfoEXT( VkDebugMarkerObjectTagInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DebugMarkerObjectTagInfoEXT ) ); } DebugMarkerObjectTagInfoEXT& operator=( VkDebugMarkerObjectTagInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DebugMarkerObjectTagInfoEXT ) ); return *this; } DebugMarkerObjectTagInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DebugMarkerObjectTagInfoEXT& setObjectType( DebugReportObjectTypeEXT objectType_ ) { objectType = objectType_; return *this; } DebugMarkerObjectTagInfoEXT& setObject( uint64_t object_ ) { object = object_; return *this; } DebugMarkerObjectTagInfoEXT& setTagName( uint64_t tagName_ ) { tagName = tagName_; return *this; } DebugMarkerObjectTagInfoEXT& setTagSize( size_t tagSize_ ) { tagSize = tagSize_; return *this; } DebugMarkerObjectTagInfoEXT& setPTag( const void* pTag_ ) { pTag = pTag_; return *this; } operator const VkDebugMarkerObjectTagInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( DebugMarkerObjectTagInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( objectType == rhs.objectType ) && ( object == rhs.object ) && ( tagName == rhs.tagName ) && ( tagSize == rhs.tagSize ) && ( pTag == rhs.pTag ); } bool operator!=( DebugMarkerObjectTagInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DebugReportObjectTypeEXT objectType; uint64_t object; uint64_t tagName; size_t tagSize; const void* pTag; }; static_assert( sizeof( DebugMarkerObjectTagInfoEXT ) == sizeof( VkDebugMarkerObjectTagInfoEXT ), "struct and wrapper have different size!" ); enum class RasterizationOrderAMD { eStrict = VK_RASTERIZATION_ORDER_STRICT_AMD, eRelaxed = VK_RASTERIZATION_ORDER_RELAXED_AMD }; struct PipelineRasterizationStateRasterizationOrderAMD { PipelineRasterizationStateRasterizationOrderAMD( RasterizationOrderAMD rasterizationOrder_ = RasterizationOrderAMD::eStrict ) : sType( StructureType::ePipelineRasterizationStateRasterizationOrderAMD ) , pNext( nullptr ) , rasterizationOrder( rasterizationOrder_ ) { } PipelineRasterizationStateRasterizationOrderAMD( VkPipelineRasterizationStateRasterizationOrderAMD const & rhs ) { memcpy( this, &rhs, sizeof( PipelineRasterizationStateRasterizationOrderAMD ) ); } PipelineRasterizationStateRasterizationOrderAMD& operator=( VkPipelineRasterizationStateRasterizationOrderAMD const & rhs ) { memcpy( this, &rhs, sizeof( PipelineRasterizationStateRasterizationOrderAMD ) ); return *this; } PipelineRasterizationStateRasterizationOrderAMD& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineRasterizationStateRasterizationOrderAMD& setRasterizationOrder( RasterizationOrderAMD rasterizationOrder_ ) { rasterizationOrder = rasterizationOrder_; return *this; } operator const VkPipelineRasterizationStateRasterizationOrderAMD&() const { return *reinterpret_cast(this); } bool operator==( PipelineRasterizationStateRasterizationOrderAMD const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( rasterizationOrder == rhs.rasterizationOrder ); } bool operator!=( PipelineRasterizationStateRasterizationOrderAMD const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; RasterizationOrderAMD rasterizationOrder; }; static_assert( sizeof( PipelineRasterizationStateRasterizationOrderAMD ) == sizeof( VkPipelineRasterizationStateRasterizationOrderAMD ), "struct and wrapper have different size!" ); enum class ExternalMemoryHandleTypeFlagBitsNV { eOpaqueWin32 = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV, eOpaqueWin32Kmt = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV, eD3D11Image = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV, eD3D11ImageKmt = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_KMT_BIT_NV }; using ExternalMemoryHandleTypeFlagsNV = Flags; VULKAN_HPP_INLINE ExternalMemoryHandleTypeFlagsNV operator|( ExternalMemoryHandleTypeFlagBitsNV bit0, ExternalMemoryHandleTypeFlagBitsNV bit1 ) { return ExternalMemoryHandleTypeFlagsNV( bit0 ) | bit1; } VULKAN_HPP_INLINE ExternalMemoryHandleTypeFlagsNV operator~( ExternalMemoryHandleTypeFlagBitsNV bits ) { return ~( ExternalMemoryHandleTypeFlagsNV( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32) | VkFlags(ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32Kmt) | VkFlags(ExternalMemoryHandleTypeFlagBitsNV::eD3D11Image) | VkFlags(ExternalMemoryHandleTypeFlagBitsNV::eD3D11ImageKmt) }; }; struct ExternalMemoryImageCreateInfoNV { ExternalMemoryImageCreateInfoNV( ExternalMemoryHandleTypeFlagsNV handleTypes_ = ExternalMemoryHandleTypeFlagsNV() ) : sType( StructureType::eExternalMemoryImageCreateInfoNV ) , pNext( nullptr ) , handleTypes( handleTypes_ ) { } ExternalMemoryImageCreateInfoNV( VkExternalMemoryImageCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( ExternalMemoryImageCreateInfoNV ) ); } ExternalMemoryImageCreateInfoNV& operator=( VkExternalMemoryImageCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( ExternalMemoryImageCreateInfoNV ) ); return *this; } ExternalMemoryImageCreateInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExternalMemoryImageCreateInfoNV& setHandleTypes( ExternalMemoryHandleTypeFlagsNV handleTypes_ ) { handleTypes = handleTypes_; return *this; } operator const VkExternalMemoryImageCreateInfoNV&() const { return *reinterpret_cast(this); } bool operator==( ExternalMemoryImageCreateInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleTypes == rhs.handleTypes ); } bool operator!=( ExternalMemoryImageCreateInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagsNV handleTypes; }; static_assert( sizeof( ExternalMemoryImageCreateInfoNV ) == sizeof( VkExternalMemoryImageCreateInfoNV ), "struct and wrapper have different size!" ); struct ExportMemoryAllocateInfoNV { ExportMemoryAllocateInfoNV( ExternalMemoryHandleTypeFlagsNV handleTypes_ = ExternalMemoryHandleTypeFlagsNV() ) : sType( StructureType::eExportMemoryAllocateInfoNV ) , pNext( nullptr ) , handleTypes( handleTypes_ ) { } ExportMemoryAllocateInfoNV( VkExportMemoryAllocateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( ExportMemoryAllocateInfoNV ) ); } ExportMemoryAllocateInfoNV& operator=( VkExportMemoryAllocateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( ExportMemoryAllocateInfoNV ) ); return *this; } ExportMemoryAllocateInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExportMemoryAllocateInfoNV& setHandleTypes( ExternalMemoryHandleTypeFlagsNV handleTypes_ ) { handleTypes = handleTypes_; return *this; } operator const VkExportMemoryAllocateInfoNV&() const { return *reinterpret_cast(this); } bool operator==( ExportMemoryAllocateInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleTypes == rhs.handleTypes ); } bool operator!=( ExportMemoryAllocateInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagsNV handleTypes; }; static_assert( sizeof( ExportMemoryAllocateInfoNV ) == sizeof( VkExportMemoryAllocateInfoNV ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_WIN32_KHR struct ImportMemoryWin32HandleInfoNV { ImportMemoryWin32HandleInfoNV( ExternalMemoryHandleTypeFlagsNV handleType_ = ExternalMemoryHandleTypeFlagsNV(), HANDLE handle_ = 0 ) : sType( StructureType::eImportMemoryWin32HandleInfoNV ) , pNext( nullptr ) , handleType( handleType_ ) , handle( handle_ ) { } ImportMemoryWin32HandleInfoNV( VkImportMemoryWin32HandleInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( ImportMemoryWin32HandleInfoNV ) ); } ImportMemoryWin32HandleInfoNV& operator=( VkImportMemoryWin32HandleInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( ImportMemoryWin32HandleInfoNV ) ); return *this; } ImportMemoryWin32HandleInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImportMemoryWin32HandleInfoNV& setHandleType( ExternalMemoryHandleTypeFlagsNV handleType_ ) { handleType = handleType_; return *this; } ImportMemoryWin32HandleInfoNV& setHandle( HANDLE handle_ ) { handle = handle_; return *this; } operator const VkImportMemoryWin32HandleInfoNV&() const { return *reinterpret_cast(this); } bool operator==( ImportMemoryWin32HandleInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleType == rhs.handleType ) && ( handle == rhs.handle ); } bool operator!=( ImportMemoryWin32HandleInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagsNV handleType; HANDLE handle; }; static_assert( sizeof( ImportMemoryWin32HandleInfoNV ) == sizeof( VkImportMemoryWin32HandleInfoNV ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ enum class ExternalMemoryFeatureFlagBitsNV { eDedicatedOnly = VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV, eExportable = VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV, eImportable = VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV }; using ExternalMemoryFeatureFlagsNV = Flags; VULKAN_HPP_INLINE ExternalMemoryFeatureFlagsNV operator|( ExternalMemoryFeatureFlagBitsNV bit0, ExternalMemoryFeatureFlagBitsNV bit1 ) { return ExternalMemoryFeatureFlagsNV( bit0 ) | bit1; } VULKAN_HPP_INLINE ExternalMemoryFeatureFlagsNV operator~( ExternalMemoryFeatureFlagBitsNV bits ) { return ~( ExternalMemoryFeatureFlagsNV( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ExternalMemoryFeatureFlagBitsNV::eDedicatedOnly) | VkFlags(ExternalMemoryFeatureFlagBitsNV::eExportable) | VkFlags(ExternalMemoryFeatureFlagBitsNV::eImportable) }; }; struct ExternalImageFormatPropertiesNV { operator const VkExternalImageFormatPropertiesNV&() const { return *reinterpret_cast(this); } bool operator==( ExternalImageFormatPropertiesNV const& rhs ) const { return ( imageFormatProperties == rhs.imageFormatProperties ) && ( externalMemoryFeatures == rhs.externalMemoryFeatures ) && ( exportFromImportedHandleTypes == rhs.exportFromImportedHandleTypes ) && ( compatibleHandleTypes == rhs.compatibleHandleTypes ); } bool operator!=( ExternalImageFormatPropertiesNV const& rhs ) const { return !operator==( rhs ); } ImageFormatProperties imageFormatProperties; ExternalMemoryFeatureFlagsNV externalMemoryFeatures; ExternalMemoryHandleTypeFlagsNV exportFromImportedHandleTypes; ExternalMemoryHandleTypeFlagsNV compatibleHandleTypes; }; static_assert( sizeof( ExternalImageFormatPropertiesNV ) == sizeof( VkExternalImageFormatPropertiesNV ), "struct and wrapper have different size!" ); enum class ValidationCheckEXT { eAll = VK_VALIDATION_CHECK_ALL_EXT, eShaders = VK_VALIDATION_CHECK_SHADERS_EXT }; struct ValidationFlagsEXT { ValidationFlagsEXT( uint32_t disabledValidationCheckCount_ = 0, ValidationCheckEXT* pDisabledValidationChecks_ = nullptr ) : sType( StructureType::eValidationFlagsEXT ) , pNext( nullptr ) , disabledValidationCheckCount( disabledValidationCheckCount_ ) , pDisabledValidationChecks( pDisabledValidationChecks_ ) { } ValidationFlagsEXT( VkValidationFlagsEXT const & rhs ) { memcpy( this, &rhs, sizeof( ValidationFlagsEXT ) ); } ValidationFlagsEXT& operator=( VkValidationFlagsEXT const & rhs ) { memcpy( this, &rhs, sizeof( ValidationFlagsEXT ) ); return *this; } ValidationFlagsEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ValidationFlagsEXT& setDisabledValidationCheckCount( uint32_t disabledValidationCheckCount_ ) { disabledValidationCheckCount = disabledValidationCheckCount_; return *this; } ValidationFlagsEXT& setPDisabledValidationChecks( ValidationCheckEXT* pDisabledValidationChecks_ ) { pDisabledValidationChecks = pDisabledValidationChecks_; return *this; } operator const VkValidationFlagsEXT&() const { return *reinterpret_cast(this); } bool operator==( ValidationFlagsEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( disabledValidationCheckCount == rhs.disabledValidationCheckCount ) && ( pDisabledValidationChecks == rhs.pDisabledValidationChecks ); } bool operator!=( ValidationFlagsEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t disabledValidationCheckCount; ValidationCheckEXT* pDisabledValidationChecks; }; static_assert( sizeof( ValidationFlagsEXT ) == sizeof( VkValidationFlagsEXT ), "struct and wrapper have different size!" ); enum class SubgroupFeatureFlagBitsKHX { eBasic = VK_SUBGROUP_FEATURE_BIT_BASIC, eVote = VK_SUBGROUP_FEATURE_BIT_VOTE, eArithmetic = VK_SUBGROUP_FEATURE_BIT_ARITHMETIC, eBallot = VK_SUBGROUP_FEATURE_BIT_BALLOT, eShuffle = VK_SUBGROUP_FEATURE_BIT_SHUFFLE, eShuffleRelative = VK_SUBGROUP_FEATURE_BIT_SHUFFLE_RELATIVE, eClustered = VK_SUBGROUP_FEATURE_BIT_CLUSTERED, eQuad = VK_SUBGROUP_FEATURE_BIT_QUAD }; using SubgroupFeatureFlagsKHX = Flags; VULKAN_HPP_INLINE SubgroupFeatureFlagsKHX operator|( SubgroupFeatureFlagBitsKHX bit0, SubgroupFeatureFlagBitsKHX bit1 ) { return SubgroupFeatureFlagsKHX( bit0 ) | bit1; } VULKAN_HPP_INLINE SubgroupFeatureFlagsKHX operator~( SubgroupFeatureFlagBitsKHX bits ) { return ~( SubgroupFeatureFlagsKHX( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SubgroupFeatureFlagBitsKHX::eBasic) | VkFlags(SubgroupFeatureFlagBitsKHX::eVote) | VkFlags(SubgroupFeatureFlagBitsKHX::eArithmetic) | VkFlags(SubgroupFeatureFlagBitsKHX::eBallot) | VkFlags(SubgroupFeatureFlagBitsKHX::eShuffle) | VkFlags(SubgroupFeatureFlagBitsKHX::eShuffleRelative) | VkFlags(SubgroupFeatureFlagBitsKHX::eClustered) | VkFlags(SubgroupFeatureFlagBitsKHX::eQuad) }; }; struct PhysicalDeviceSubgroupPropertiesKHX { operator const VkPhysicalDeviceSubgroupPropertiesKHX&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceSubgroupPropertiesKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( subgroupSize == rhs.subgroupSize ) && ( supportedStages == rhs.supportedStages ) && ( supportedOperations == rhs.supportedOperations ) && ( quadOperationsInAllStages == rhs.quadOperationsInAllStages ); } bool operator!=( PhysicalDeviceSubgroupPropertiesKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint32_t subgroupSize; ShaderStageFlags supportedStages; SubgroupFeatureFlagsKHX supportedOperations; Bool32 quadOperationsInAllStages; }; static_assert( sizeof( PhysicalDeviceSubgroupPropertiesKHX ) == sizeof( VkPhysicalDeviceSubgroupPropertiesKHX ), "struct and wrapper have different size!" ); enum class IndirectCommandsLayoutUsageFlagBitsNVX { eUnorderedSequences = VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NVX, eSparseSequences = VK_INDIRECT_COMMANDS_LAYOUT_USAGE_SPARSE_SEQUENCES_BIT_NVX, eEmptyExecutions = VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EMPTY_EXECUTIONS_BIT_NVX, eIndexedSequences = VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NVX }; using IndirectCommandsLayoutUsageFlagsNVX = Flags; VULKAN_HPP_INLINE IndirectCommandsLayoutUsageFlagsNVX operator|( IndirectCommandsLayoutUsageFlagBitsNVX bit0, IndirectCommandsLayoutUsageFlagBitsNVX bit1 ) { return IndirectCommandsLayoutUsageFlagsNVX( bit0 ) | bit1; } VULKAN_HPP_INLINE IndirectCommandsLayoutUsageFlagsNVX operator~( IndirectCommandsLayoutUsageFlagBitsNVX bits ) { return ~( IndirectCommandsLayoutUsageFlagsNVX( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(IndirectCommandsLayoutUsageFlagBitsNVX::eUnorderedSequences) | VkFlags(IndirectCommandsLayoutUsageFlagBitsNVX::eSparseSequences) | VkFlags(IndirectCommandsLayoutUsageFlagBitsNVX::eEmptyExecutions) | VkFlags(IndirectCommandsLayoutUsageFlagBitsNVX::eIndexedSequences) }; }; enum class ObjectEntryUsageFlagBitsNVX { eGraphics = VK_OBJECT_ENTRY_USAGE_GRAPHICS_BIT_NVX, eCompute = VK_OBJECT_ENTRY_USAGE_COMPUTE_BIT_NVX }; using ObjectEntryUsageFlagsNVX = Flags; VULKAN_HPP_INLINE ObjectEntryUsageFlagsNVX operator|( ObjectEntryUsageFlagBitsNVX bit0, ObjectEntryUsageFlagBitsNVX bit1 ) { return ObjectEntryUsageFlagsNVX( bit0 ) | bit1; } VULKAN_HPP_INLINE ObjectEntryUsageFlagsNVX operator~( ObjectEntryUsageFlagBitsNVX bits ) { return ~( ObjectEntryUsageFlagsNVX( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ObjectEntryUsageFlagBitsNVX::eGraphics) | VkFlags(ObjectEntryUsageFlagBitsNVX::eCompute) }; }; enum class IndirectCommandsTokenTypeNVX { eVkIndirectCommandsTokenPipeline = VK_INDIRECT_COMMANDS_TOKEN_PIPELINE_NVX, eVkIndirectCommandsTokenDescriptorSet = VK_INDIRECT_COMMANDS_TOKEN_DESCRIPTOR_SET_NVX, eVkIndirectCommandsTokenIndexBuffer = VK_INDIRECT_COMMANDS_TOKEN_INDEX_BUFFER_NVX, eVkIndirectCommandsTokenVertexBuffer = VK_INDIRECT_COMMANDS_TOKEN_VERTEX_BUFFER_NVX, eVkIndirectCommandsTokenPushConstant = VK_INDIRECT_COMMANDS_TOKEN_PUSH_CONSTANT_NVX, eVkIndirectCommandsTokenDrawIndexed = VK_INDIRECT_COMMANDS_TOKEN_DRAW_INDEXED_NVX, eVkIndirectCommandsTokenDraw = VK_INDIRECT_COMMANDS_TOKEN_DRAW_NVX, eVkIndirectCommandsTokenDispatch = VK_INDIRECT_COMMANDS_TOKEN_DISPATCH_NVX }; struct IndirectCommandsTokenNVX { IndirectCommandsTokenNVX( IndirectCommandsTokenTypeNVX tokenType_ = IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenPipeline, Buffer buffer_ = Buffer(), DeviceSize offset_ = 0 ) : tokenType( tokenType_ ) , buffer( buffer_ ) , offset( offset_ ) { } IndirectCommandsTokenNVX( VkIndirectCommandsTokenNVX const & rhs ) { memcpy( this, &rhs, sizeof( IndirectCommandsTokenNVX ) ); } IndirectCommandsTokenNVX& operator=( VkIndirectCommandsTokenNVX const & rhs ) { memcpy( this, &rhs, sizeof( IndirectCommandsTokenNVX ) ); return *this; } IndirectCommandsTokenNVX& setTokenType( IndirectCommandsTokenTypeNVX tokenType_ ) { tokenType = tokenType_; return *this; } IndirectCommandsTokenNVX& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } IndirectCommandsTokenNVX& setOffset( DeviceSize offset_ ) { offset = offset_; return *this; } operator const VkIndirectCommandsTokenNVX&() const { return *reinterpret_cast(this); } bool operator==( IndirectCommandsTokenNVX const& rhs ) const { return ( tokenType == rhs.tokenType ) && ( buffer == rhs.buffer ) && ( offset == rhs.offset ); } bool operator!=( IndirectCommandsTokenNVX const& rhs ) const { return !operator==( rhs ); } IndirectCommandsTokenTypeNVX tokenType; Buffer buffer; DeviceSize offset; }; static_assert( sizeof( IndirectCommandsTokenNVX ) == sizeof( VkIndirectCommandsTokenNVX ), "struct and wrapper have different size!" ); struct IndirectCommandsLayoutTokenNVX { IndirectCommandsLayoutTokenNVX( IndirectCommandsTokenTypeNVX tokenType_ = IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenPipeline, uint32_t bindingUnit_ = 0, uint32_t dynamicCount_ = 0, uint32_t divisor_ = 0 ) : tokenType( tokenType_ ) , bindingUnit( bindingUnit_ ) , dynamicCount( dynamicCount_ ) , divisor( divisor_ ) { } IndirectCommandsLayoutTokenNVX( VkIndirectCommandsLayoutTokenNVX const & rhs ) { memcpy( this, &rhs, sizeof( IndirectCommandsLayoutTokenNVX ) ); } IndirectCommandsLayoutTokenNVX& operator=( VkIndirectCommandsLayoutTokenNVX const & rhs ) { memcpy( this, &rhs, sizeof( IndirectCommandsLayoutTokenNVX ) ); return *this; } IndirectCommandsLayoutTokenNVX& setTokenType( IndirectCommandsTokenTypeNVX tokenType_ ) { tokenType = tokenType_; return *this; } IndirectCommandsLayoutTokenNVX& setBindingUnit( uint32_t bindingUnit_ ) { bindingUnit = bindingUnit_; return *this; } IndirectCommandsLayoutTokenNVX& setDynamicCount( uint32_t dynamicCount_ ) { dynamicCount = dynamicCount_; return *this; } IndirectCommandsLayoutTokenNVX& setDivisor( uint32_t divisor_ ) { divisor = divisor_; return *this; } operator const VkIndirectCommandsLayoutTokenNVX&() const { return *reinterpret_cast(this); } bool operator==( IndirectCommandsLayoutTokenNVX const& rhs ) const { return ( tokenType == rhs.tokenType ) && ( bindingUnit == rhs.bindingUnit ) && ( dynamicCount == rhs.dynamicCount ) && ( divisor == rhs.divisor ); } bool operator!=( IndirectCommandsLayoutTokenNVX const& rhs ) const { return !operator==( rhs ); } IndirectCommandsTokenTypeNVX tokenType; uint32_t bindingUnit; uint32_t dynamicCount; uint32_t divisor; }; static_assert( sizeof( IndirectCommandsLayoutTokenNVX ) == sizeof( VkIndirectCommandsLayoutTokenNVX ), "struct and wrapper have different size!" ); struct IndirectCommandsLayoutCreateInfoNVX { IndirectCommandsLayoutCreateInfoNVX( PipelineBindPoint pipelineBindPoint_ = PipelineBindPoint::eGraphics, IndirectCommandsLayoutUsageFlagsNVX flags_ = IndirectCommandsLayoutUsageFlagsNVX(), uint32_t tokenCount_ = 0, const IndirectCommandsLayoutTokenNVX* pTokens_ = nullptr ) : sType( StructureType::eIndirectCommandsLayoutCreateInfoNVX ) , pNext( nullptr ) , pipelineBindPoint( pipelineBindPoint_ ) , flags( flags_ ) , tokenCount( tokenCount_ ) , pTokens( pTokens_ ) { } IndirectCommandsLayoutCreateInfoNVX( VkIndirectCommandsLayoutCreateInfoNVX const & rhs ) { memcpy( this, &rhs, sizeof( IndirectCommandsLayoutCreateInfoNVX ) ); } IndirectCommandsLayoutCreateInfoNVX& operator=( VkIndirectCommandsLayoutCreateInfoNVX const & rhs ) { memcpy( this, &rhs, sizeof( IndirectCommandsLayoutCreateInfoNVX ) ); return *this; } IndirectCommandsLayoutCreateInfoNVX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } IndirectCommandsLayoutCreateInfoNVX& setPipelineBindPoint( PipelineBindPoint pipelineBindPoint_ ) { pipelineBindPoint = pipelineBindPoint_; return *this; } IndirectCommandsLayoutCreateInfoNVX& setFlags( IndirectCommandsLayoutUsageFlagsNVX flags_ ) { flags = flags_; return *this; } IndirectCommandsLayoutCreateInfoNVX& setTokenCount( uint32_t tokenCount_ ) { tokenCount = tokenCount_; return *this; } IndirectCommandsLayoutCreateInfoNVX& setPTokens( const IndirectCommandsLayoutTokenNVX* pTokens_ ) { pTokens = pTokens_; return *this; } operator const VkIndirectCommandsLayoutCreateInfoNVX&() const { return *reinterpret_cast(this); } bool operator==( IndirectCommandsLayoutCreateInfoNVX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( pipelineBindPoint == rhs.pipelineBindPoint ) && ( flags == rhs.flags ) && ( tokenCount == rhs.tokenCount ) && ( pTokens == rhs.pTokens ); } bool operator!=( IndirectCommandsLayoutCreateInfoNVX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineBindPoint pipelineBindPoint; IndirectCommandsLayoutUsageFlagsNVX flags; uint32_t tokenCount; const IndirectCommandsLayoutTokenNVX* pTokens; }; static_assert( sizeof( IndirectCommandsLayoutCreateInfoNVX ) == sizeof( VkIndirectCommandsLayoutCreateInfoNVX ), "struct and wrapper have different size!" ); enum class ObjectEntryTypeNVX { eVkObjectEntryDescriptorSet = VK_OBJECT_ENTRY_DESCRIPTOR_SET_NVX, eVkObjectEntryPipeline = VK_OBJECT_ENTRY_PIPELINE_NVX, eVkObjectEntryIndexBuffer = VK_OBJECT_ENTRY_INDEX_BUFFER_NVX, eVkObjectEntryVertexBuffer = VK_OBJECT_ENTRY_VERTEX_BUFFER_NVX, eVkObjectEntryPushConstant = VK_OBJECT_ENTRY_PUSH_CONSTANT_NVX }; struct ObjectTableCreateInfoNVX { ObjectTableCreateInfoNVX( uint32_t objectCount_ = 0, const ObjectEntryTypeNVX* pObjectEntryTypes_ = nullptr, const uint32_t* pObjectEntryCounts_ = nullptr, const ObjectEntryUsageFlagsNVX* pObjectEntryUsageFlags_ = nullptr, uint32_t maxUniformBuffersPerDescriptor_ = 0, uint32_t maxStorageBuffersPerDescriptor_ = 0, uint32_t maxStorageImagesPerDescriptor_ = 0, uint32_t maxSampledImagesPerDescriptor_ = 0, uint32_t maxPipelineLayouts_ = 0 ) : sType( StructureType::eObjectTableCreateInfoNVX ) , pNext( nullptr ) , objectCount( objectCount_ ) , pObjectEntryTypes( pObjectEntryTypes_ ) , pObjectEntryCounts( pObjectEntryCounts_ ) , pObjectEntryUsageFlags( pObjectEntryUsageFlags_ ) , maxUniformBuffersPerDescriptor( maxUniformBuffersPerDescriptor_ ) , maxStorageBuffersPerDescriptor( maxStorageBuffersPerDescriptor_ ) , maxStorageImagesPerDescriptor( maxStorageImagesPerDescriptor_ ) , maxSampledImagesPerDescriptor( maxSampledImagesPerDescriptor_ ) , maxPipelineLayouts( maxPipelineLayouts_ ) { } ObjectTableCreateInfoNVX( VkObjectTableCreateInfoNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableCreateInfoNVX ) ); } ObjectTableCreateInfoNVX& operator=( VkObjectTableCreateInfoNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableCreateInfoNVX ) ); return *this; } ObjectTableCreateInfoNVX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ObjectTableCreateInfoNVX& setObjectCount( uint32_t objectCount_ ) { objectCount = objectCount_; return *this; } ObjectTableCreateInfoNVX& setPObjectEntryTypes( const ObjectEntryTypeNVX* pObjectEntryTypes_ ) { pObjectEntryTypes = pObjectEntryTypes_; return *this; } ObjectTableCreateInfoNVX& setPObjectEntryCounts( const uint32_t* pObjectEntryCounts_ ) { pObjectEntryCounts = pObjectEntryCounts_; return *this; } ObjectTableCreateInfoNVX& setPObjectEntryUsageFlags( const ObjectEntryUsageFlagsNVX* pObjectEntryUsageFlags_ ) { pObjectEntryUsageFlags = pObjectEntryUsageFlags_; return *this; } ObjectTableCreateInfoNVX& setMaxUniformBuffersPerDescriptor( uint32_t maxUniformBuffersPerDescriptor_ ) { maxUniformBuffersPerDescriptor = maxUniformBuffersPerDescriptor_; return *this; } ObjectTableCreateInfoNVX& setMaxStorageBuffersPerDescriptor( uint32_t maxStorageBuffersPerDescriptor_ ) { maxStorageBuffersPerDescriptor = maxStorageBuffersPerDescriptor_; return *this; } ObjectTableCreateInfoNVX& setMaxStorageImagesPerDescriptor( uint32_t maxStorageImagesPerDescriptor_ ) { maxStorageImagesPerDescriptor = maxStorageImagesPerDescriptor_; return *this; } ObjectTableCreateInfoNVX& setMaxSampledImagesPerDescriptor( uint32_t maxSampledImagesPerDescriptor_ ) { maxSampledImagesPerDescriptor = maxSampledImagesPerDescriptor_; return *this; } ObjectTableCreateInfoNVX& setMaxPipelineLayouts( uint32_t maxPipelineLayouts_ ) { maxPipelineLayouts = maxPipelineLayouts_; return *this; } operator const VkObjectTableCreateInfoNVX&() const { return *reinterpret_cast(this); } bool operator==( ObjectTableCreateInfoNVX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( objectCount == rhs.objectCount ) && ( pObjectEntryTypes == rhs.pObjectEntryTypes ) && ( pObjectEntryCounts == rhs.pObjectEntryCounts ) && ( pObjectEntryUsageFlags == rhs.pObjectEntryUsageFlags ) && ( maxUniformBuffersPerDescriptor == rhs.maxUniformBuffersPerDescriptor ) && ( maxStorageBuffersPerDescriptor == rhs.maxStorageBuffersPerDescriptor ) && ( maxStorageImagesPerDescriptor == rhs.maxStorageImagesPerDescriptor ) && ( maxSampledImagesPerDescriptor == rhs.maxSampledImagesPerDescriptor ) && ( maxPipelineLayouts == rhs.maxPipelineLayouts ); } bool operator!=( ObjectTableCreateInfoNVX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t objectCount; const ObjectEntryTypeNVX* pObjectEntryTypes; const uint32_t* pObjectEntryCounts; const ObjectEntryUsageFlagsNVX* pObjectEntryUsageFlags; uint32_t maxUniformBuffersPerDescriptor; uint32_t maxStorageBuffersPerDescriptor; uint32_t maxStorageImagesPerDescriptor; uint32_t maxSampledImagesPerDescriptor; uint32_t maxPipelineLayouts; }; static_assert( sizeof( ObjectTableCreateInfoNVX ) == sizeof( VkObjectTableCreateInfoNVX ), "struct and wrapper have different size!" ); struct ObjectTableEntryNVX { ObjectTableEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eVkObjectEntryDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX() ) : type( type_ ) , flags( flags_ ) { } ObjectTableEntryNVX( VkObjectTableEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableEntryNVX ) ); } ObjectTableEntryNVX& operator=( VkObjectTableEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableEntryNVX ) ); return *this; } ObjectTableEntryNVX& setType( ObjectEntryTypeNVX type_ ) { type = type_; return *this; } ObjectTableEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ ) { flags = flags_; return *this; } operator const VkObjectTableEntryNVX&() const { return *reinterpret_cast(this); } bool operator==( ObjectTableEntryNVX const& rhs ) const { return ( type == rhs.type ) && ( flags == rhs.flags ); } bool operator!=( ObjectTableEntryNVX const& rhs ) const { return !operator==( rhs ); } ObjectEntryTypeNVX type; ObjectEntryUsageFlagsNVX flags; }; static_assert( sizeof( ObjectTableEntryNVX ) == sizeof( VkObjectTableEntryNVX ), "struct and wrapper have different size!" ); struct ObjectTablePipelineEntryNVX { ObjectTablePipelineEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eVkObjectEntryDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), Pipeline pipeline_ = Pipeline() ) : type( type_ ) , flags( flags_ ) , pipeline( pipeline_ ) { } ObjectTablePipelineEntryNVX( VkObjectTablePipelineEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTablePipelineEntryNVX ) ); } ObjectTablePipelineEntryNVX& operator=( VkObjectTablePipelineEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTablePipelineEntryNVX ) ); return *this; } ObjectTablePipelineEntryNVX& setType( ObjectEntryTypeNVX type_ ) { type = type_; return *this; } ObjectTablePipelineEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ ) { flags = flags_; return *this; } ObjectTablePipelineEntryNVX& setPipeline( Pipeline pipeline_ ) { pipeline = pipeline_; return *this; } operator const VkObjectTablePipelineEntryNVX&() const { return *reinterpret_cast(this); } bool operator==( ObjectTablePipelineEntryNVX const& rhs ) const { return ( type == rhs.type ) && ( flags == rhs.flags ) && ( pipeline == rhs.pipeline ); } bool operator!=( ObjectTablePipelineEntryNVX const& rhs ) const { return !operator==( rhs ); } ObjectEntryTypeNVX type; ObjectEntryUsageFlagsNVX flags; Pipeline pipeline; }; static_assert( sizeof( ObjectTablePipelineEntryNVX ) == sizeof( VkObjectTablePipelineEntryNVX ), "struct and wrapper have different size!" ); struct ObjectTableDescriptorSetEntryNVX { ObjectTableDescriptorSetEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eVkObjectEntryDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), PipelineLayout pipelineLayout_ = PipelineLayout(), DescriptorSet descriptorSet_ = DescriptorSet() ) : type( type_ ) , flags( flags_ ) , pipelineLayout( pipelineLayout_ ) , descriptorSet( descriptorSet_ ) { } ObjectTableDescriptorSetEntryNVX( VkObjectTableDescriptorSetEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableDescriptorSetEntryNVX ) ); } ObjectTableDescriptorSetEntryNVX& operator=( VkObjectTableDescriptorSetEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableDescriptorSetEntryNVX ) ); return *this; } ObjectTableDescriptorSetEntryNVX& setType( ObjectEntryTypeNVX type_ ) { type = type_; return *this; } ObjectTableDescriptorSetEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ ) { flags = flags_; return *this; } ObjectTableDescriptorSetEntryNVX& setPipelineLayout( PipelineLayout pipelineLayout_ ) { pipelineLayout = pipelineLayout_; return *this; } ObjectTableDescriptorSetEntryNVX& setDescriptorSet( DescriptorSet descriptorSet_ ) { descriptorSet = descriptorSet_; return *this; } operator const VkObjectTableDescriptorSetEntryNVX&() const { return *reinterpret_cast(this); } bool operator==( ObjectTableDescriptorSetEntryNVX const& rhs ) const { return ( type == rhs.type ) && ( flags == rhs.flags ) && ( pipelineLayout == rhs.pipelineLayout ) && ( descriptorSet == rhs.descriptorSet ); } bool operator!=( ObjectTableDescriptorSetEntryNVX const& rhs ) const { return !operator==( rhs ); } ObjectEntryTypeNVX type; ObjectEntryUsageFlagsNVX flags; PipelineLayout pipelineLayout; DescriptorSet descriptorSet; }; static_assert( sizeof( ObjectTableDescriptorSetEntryNVX ) == sizeof( VkObjectTableDescriptorSetEntryNVX ), "struct and wrapper have different size!" ); struct ObjectTableVertexBufferEntryNVX { ObjectTableVertexBufferEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eVkObjectEntryDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), Buffer buffer_ = Buffer() ) : type( type_ ) , flags( flags_ ) , buffer( buffer_ ) { } ObjectTableVertexBufferEntryNVX( VkObjectTableVertexBufferEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableVertexBufferEntryNVX ) ); } ObjectTableVertexBufferEntryNVX& operator=( VkObjectTableVertexBufferEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableVertexBufferEntryNVX ) ); return *this; } ObjectTableVertexBufferEntryNVX& setType( ObjectEntryTypeNVX type_ ) { type = type_; return *this; } ObjectTableVertexBufferEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ ) { flags = flags_; return *this; } ObjectTableVertexBufferEntryNVX& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } operator const VkObjectTableVertexBufferEntryNVX&() const { return *reinterpret_cast(this); } bool operator==( ObjectTableVertexBufferEntryNVX const& rhs ) const { return ( type == rhs.type ) && ( flags == rhs.flags ) && ( buffer == rhs.buffer ); } bool operator!=( ObjectTableVertexBufferEntryNVX const& rhs ) const { return !operator==( rhs ); } ObjectEntryTypeNVX type; ObjectEntryUsageFlagsNVX flags; Buffer buffer; }; static_assert( sizeof( ObjectTableVertexBufferEntryNVX ) == sizeof( VkObjectTableVertexBufferEntryNVX ), "struct and wrapper have different size!" ); struct ObjectTableIndexBufferEntryNVX { ObjectTableIndexBufferEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eVkObjectEntryDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), Buffer buffer_ = Buffer(), IndexType indexType_ = IndexType::eUint16 ) : type( type_ ) , flags( flags_ ) , buffer( buffer_ ) , indexType( indexType_ ) { } ObjectTableIndexBufferEntryNVX( VkObjectTableIndexBufferEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableIndexBufferEntryNVX ) ); } ObjectTableIndexBufferEntryNVX& operator=( VkObjectTableIndexBufferEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTableIndexBufferEntryNVX ) ); return *this; } ObjectTableIndexBufferEntryNVX& setType( ObjectEntryTypeNVX type_ ) { type = type_; return *this; } ObjectTableIndexBufferEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ ) { flags = flags_; return *this; } ObjectTableIndexBufferEntryNVX& setBuffer( Buffer buffer_ ) { buffer = buffer_; return *this; } ObjectTableIndexBufferEntryNVX& setIndexType( IndexType indexType_ ) { indexType = indexType_; return *this; } operator const VkObjectTableIndexBufferEntryNVX&() const { return *reinterpret_cast(this); } bool operator==( ObjectTableIndexBufferEntryNVX const& rhs ) const { return ( type == rhs.type ) && ( flags == rhs.flags ) && ( buffer == rhs.buffer ) && ( indexType == rhs.indexType ); } bool operator!=( ObjectTableIndexBufferEntryNVX const& rhs ) const { return !operator==( rhs ); } ObjectEntryTypeNVX type; ObjectEntryUsageFlagsNVX flags; Buffer buffer; IndexType indexType; }; static_assert( sizeof( ObjectTableIndexBufferEntryNVX ) == sizeof( VkObjectTableIndexBufferEntryNVX ), "struct and wrapper have different size!" ); struct ObjectTablePushConstantEntryNVX { ObjectTablePushConstantEntryNVX( ObjectEntryTypeNVX type_ = ObjectEntryTypeNVX::eVkObjectEntryDescriptorSet, ObjectEntryUsageFlagsNVX flags_ = ObjectEntryUsageFlagsNVX(), PipelineLayout pipelineLayout_ = PipelineLayout(), ShaderStageFlags stageFlags_ = ShaderStageFlags() ) : type( type_ ) , flags( flags_ ) , pipelineLayout( pipelineLayout_ ) , stageFlags( stageFlags_ ) { } ObjectTablePushConstantEntryNVX( VkObjectTablePushConstantEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTablePushConstantEntryNVX ) ); } ObjectTablePushConstantEntryNVX& operator=( VkObjectTablePushConstantEntryNVX const & rhs ) { memcpy( this, &rhs, sizeof( ObjectTablePushConstantEntryNVX ) ); return *this; } ObjectTablePushConstantEntryNVX& setType( ObjectEntryTypeNVX type_ ) { type = type_; return *this; } ObjectTablePushConstantEntryNVX& setFlags( ObjectEntryUsageFlagsNVX flags_ ) { flags = flags_; return *this; } ObjectTablePushConstantEntryNVX& setPipelineLayout( PipelineLayout pipelineLayout_ ) { pipelineLayout = pipelineLayout_; return *this; } ObjectTablePushConstantEntryNVX& setStageFlags( ShaderStageFlags stageFlags_ ) { stageFlags = stageFlags_; return *this; } operator const VkObjectTablePushConstantEntryNVX&() const { return *reinterpret_cast(this); } bool operator==( ObjectTablePushConstantEntryNVX const& rhs ) const { return ( type == rhs.type ) && ( flags == rhs.flags ) && ( pipelineLayout == rhs.pipelineLayout ) && ( stageFlags == rhs.stageFlags ); } bool operator!=( ObjectTablePushConstantEntryNVX const& rhs ) const { return !operator==( rhs ); } ObjectEntryTypeNVX type; ObjectEntryUsageFlagsNVX flags; PipelineLayout pipelineLayout; ShaderStageFlags stageFlags; }; static_assert( sizeof( ObjectTablePushConstantEntryNVX ) == sizeof( VkObjectTablePushConstantEntryNVX ), "struct and wrapper have different size!" ); enum class DescriptorSetLayoutCreateFlagBits { ePushDescriptorKHR = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR }; using DescriptorSetLayoutCreateFlags = Flags; VULKAN_HPP_INLINE DescriptorSetLayoutCreateFlags operator|( DescriptorSetLayoutCreateFlagBits bit0, DescriptorSetLayoutCreateFlagBits bit1 ) { return DescriptorSetLayoutCreateFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE DescriptorSetLayoutCreateFlags operator~( DescriptorSetLayoutCreateFlagBits bits ) { return ~( DescriptorSetLayoutCreateFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(DescriptorSetLayoutCreateFlagBits::ePushDescriptorKHR) }; }; struct DescriptorSetLayoutCreateInfo { DescriptorSetLayoutCreateInfo( DescriptorSetLayoutCreateFlags flags_ = DescriptorSetLayoutCreateFlags(), uint32_t bindingCount_ = 0, const DescriptorSetLayoutBinding* pBindings_ = nullptr ) : sType( StructureType::eDescriptorSetLayoutCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , bindingCount( bindingCount_ ) , pBindings( pBindings_ ) { } DescriptorSetLayoutCreateInfo( VkDescriptorSetLayoutCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorSetLayoutCreateInfo ) ); } DescriptorSetLayoutCreateInfo& operator=( VkDescriptorSetLayoutCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( DescriptorSetLayoutCreateInfo ) ); return *this; } DescriptorSetLayoutCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DescriptorSetLayoutCreateInfo& setFlags( DescriptorSetLayoutCreateFlags flags_ ) { flags = flags_; return *this; } DescriptorSetLayoutCreateInfo& setBindingCount( uint32_t bindingCount_ ) { bindingCount = bindingCount_; return *this; } DescriptorSetLayoutCreateInfo& setPBindings( const DescriptorSetLayoutBinding* pBindings_ ) { pBindings = pBindings_; return *this; } operator const VkDescriptorSetLayoutCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( DescriptorSetLayoutCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( bindingCount == rhs.bindingCount ) && ( pBindings == rhs.pBindings ); } bool operator!=( DescriptorSetLayoutCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DescriptorSetLayoutCreateFlags flags; uint32_t bindingCount; const DescriptorSetLayoutBinding* pBindings; }; static_assert( sizeof( DescriptorSetLayoutCreateInfo ) == sizeof( VkDescriptorSetLayoutCreateInfo ), "struct and wrapper have different size!" ); enum class ExternalMemoryHandleTypeFlagBitsKHR { eOpaqueFd = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR, eOpaqueWin32 = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR, eOpaqueWin32Kmt = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR, eD3D11Texture = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT_KHR, eD3D11TextureKmt = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT_KHR, eD3D12Heap = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT_KHR, eD3D12Resource = VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT_KHR }; using ExternalMemoryHandleTypeFlagsKHR = Flags; VULKAN_HPP_INLINE ExternalMemoryHandleTypeFlagsKHR operator|( ExternalMemoryHandleTypeFlagBitsKHR bit0, ExternalMemoryHandleTypeFlagBitsKHR bit1 ) { return ExternalMemoryHandleTypeFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE ExternalMemoryHandleTypeFlagsKHR operator~( ExternalMemoryHandleTypeFlagBitsKHR bits ) { return ~( ExternalMemoryHandleTypeFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eD3D11Texture) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eD3D11TextureKmt) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Heap) | VkFlags(ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Resource) }; }; struct PhysicalDeviceExternalImageFormatInfoKHR { PhysicalDeviceExternalImageFormatInfoKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::ePhysicalDeviceExternalImageFormatInfoKHR ) , pNext( nullptr ) , handleType( handleType_ ) { } PhysicalDeviceExternalImageFormatInfoKHR( VkPhysicalDeviceExternalImageFormatInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceExternalImageFormatInfoKHR ) ); } PhysicalDeviceExternalImageFormatInfoKHR& operator=( VkPhysicalDeviceExternalImageFormatInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceExternalImageFormatInfoKHR ) ); return *this; } PhysicalDeviceExternalImageFormatInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceExternalImageFormatInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkPhysicalDeviceExternalImageFormatInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceExternalImageFormatInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleType == rhs.handleType ); } bool operator!=( PhysicalDeviceExternalImageFormatInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( PhysicalDeviceExternalImageFormatInfoKHR ) == sizeof( VkPhysicalDeviceExternalImageFormatInfoKHR ), "struct and wrapper have different size!" ); struct PhysicalDeviceExternalBufferInfoKHR { PhysicalDeviceExternalBufferInfoKHR( BufferCreateFlags flags_ = BufferCreateFlags(), BufferUsageFlags usage_ = BufferUsageFlags(), ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::ePhysicalDeviceExternalBufferInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , usage( usage_ ) , handleType( handleType_ ) { } PhysicalDeviceExternalBufferInfoKHR( VkPhysicalDeviceExternalBufferInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceExternalBufferInfoKHR ) ); } PhysicalDeviceExternalBufferInfoKHR& operator=( VkPhysicalDeviceExternalBufferInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceExternalBufferInfoKHR ) ); return *this; } PhysicalDeviceExternalBufferInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceExternalBufferInfoKHR& setFlags( BufferCreateFlags flags_ ) { flags = flags_; return *this; } PhysicalDeviceExternalBufferInfoKHR& setUsage( BufferUsageFlags usage_ ) { usage = usage_; return *this; } PhysicalDeviceExternalBufferInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkPhysicalDeviceExternalBufferInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceExternalBufferInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( usage == rhs.usage ) && ( handleType == rhs.handleType ); } bool operator!=( PhysicalDeviceExternalBufferInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; BufferCreateFlags flags; BufferUsageFlags usage; ExternalMemoryHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( PhysicalDeviceExternalBufferInfoKHR ) == sizeof( VkPhysicalDeviceExternalBufferInfoKHR ), "struct and wrapper have different size!" ); struct ExternalMemoryImageCreateInfoKHR { ExternalMemoryImageCreateInfoKHR( ExternalMemoryHandleTypeFlagsKHR handleTypes_ = ExternalMemoryHandleTypeFlagsKHR() ) : sType( StructureType::eExternalMemoryImageCreateInfoKHR ) , pNext( nullptr ) , handleTypes( handleTypes_ ) { } ExternalMemoryImageCreateInfoKHR( VkExternalMemoryImageCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExternalMemoryImageCreateInfoKHR ) ); } ExternalMemoryImageCreateInfoKHR& operator=( VkExternalMemoryImageCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExternalMemoryImageCreateInfoKHR ) ); return *this; } ExternalMemoryImageCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExternalMemoryImageCreateInfoKHR& setHandleTypes( ExternalMemoryHandleTypeFlagsKHR handleTypes_ ) { handleTypes = handleTypes_; return *this; } operator const VkExternalMemoryImageCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ExternalMemoryImageCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleTypes == rhs.handleTypes ); } bool operator!=( ExternalMemoryImageCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagsKHR handleTypes; }; static_assert( sizeof( ExternalMemoryImageCreateInfoKHR ) == sizeof( VkExternalMemoryImageCreateInfoKHR ), "struct and wrapper have different size!" ); struct ExternalMemoryBufferCreateInfoKHR { ExternalMemoryBufferCreateInfoKHR( ExternalMemoryHandleTypeFlagsKHR handleTypes_ = ExternalMemoryHandleTypeFlagsKHR() ) : sType( StructureType::eExternalMemoryBufferCreateInfoKHR ) , pNext( nullptr ) , handleTypes( handleTypes_ ) { } ExternalMemoryBufferCreateInfoKHR( VkExternalMemoryBufferCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExternalMemoryBufferCreateInfoKHR ) ); } ExternalMemoryBufferCreateInfoKHR& operator=( VkExternalMemoryBufferCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExternalMemoryBufferCreateInfoKHR ) ); return *this; } ExternalMemoryBufferCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExternalMemoryBufferCreateInfoKHR& setHandleTypes( ExternalMemoryHandleTypeFlagsKHR handleTypes_ ) { handleTypes = handleTypes_; return *this; } operator const VkExternalMemoryBufferCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ExternalMemoryBufferCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleTypes == rhs.handleTypes ); } bool operator!=( ExternalMemoryBufferCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagsKHR handleTypes; }; static_assert( sizeof( ExternalMemoryBufferCreateInfoKHR ) == sizeof( VkExternalMemoryBufferCreateInfoKHR ), "struct and wrapper have different size!" ); struct ExportMemoryAllocateInfoKHR { ExportMemoryAllocateInfoKHR( ExternalMemoryHandleTypeFlagsKHR handleTypes_ = ExternalMemoryHandleTypeFlagsKHR() ) : sType( StructureType::eExportMemoryAllocateInfoKHR ) , pNext( nullptr ) , handleTypes( handleTypes_ ) { } ExportMemoryAllocateInfoKHR( VkExportMemoryAllocateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportMemoryAllocateInfoKHR ) ); } ExportMemoryAllocateInfoKHR& operator=( VkExportMemoryAllocateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportMemoryAllocateInfoKHR ) ); return *this; } ExportMemoryAllocateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExportMemoryAllocateInfoKHR& setHandleTypes( ExternalMemoryHandleTypeFlagsKHR handleTypes_ ) { handleTypes = handleTypes_; return *this; } operator const VkExportMemoryAllocateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ExportMemoryAllocateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleTypes == rhs.handleTypes ); } bool operator!=( ExportMemoryAllocateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagsKHR handleTypes; }; static_assert( sizeof( ExportMemoryAllocateInfoKHR ) == sizeof( VkExportMemoryAllocateInfoKHR ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_WIN32_KHR struct ImportMemoryWin32HandleInfoKHR { ImportMemoryWin32HandleInfoKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd, HANDLE handle_ = 0, LPCWSTR name_ = 0 ) : sType( StructureType::eImportMemoryWin32HandleInfoKHR ) , pNext( nullptr ) , handleType( handleType_ ) , handle( handle_ ) , name( name_ ) { } ImportMemoryWin32HandleInfoKHR( VkImportMemoryWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportMemoryWin32HandleInfoKHR ) ); } ImportMemoryWin32HandleInfoKHR& operator=( VkImportMemoryWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportMemoryWin32HandleInfoKHR ) ); return *this; } ImportMemoryWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImportMemoryWin32HandleInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } ImportMemoryWin32HandleInfoKHR& setHandle( HANDLE handle_ ) { handle = handle_; return *this; } ImportMemoryWin32HandleInfoKHR& setName( LPCWSTR name_ ) { name = name_; return *this; } operator const VkImportMemoryWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ImportMemoryWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleType == rhs.handleType ) && ( handle == rhs.handle ) && ( name == rhs.name ); } bool operator!=( ImportMemoryWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagBitsKHR handleType; HANDLE handle; LPCWSTR name; }; static_assert( sizeof( ImportMemoryWin32HandleInfoKHR ) == sizeof( VkImportMemoryWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR struct MemoryGetWin32HandleInfoKHR { MemoryGetWin32HandleInfoKHR( DeviceMemory memory_ = DeviceMemory(), ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::eMemoryGetWin32HandleInfoKHR ) , pNext( nullptr ) , memory( memory_ ) , handleType( handleType_ ) { } MemoryGetWin32HandleInfoKHR( VkMemoryGetWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( MemoryGetWin32HandleInfoKHR ) ); } MemoryGetWin32HandleInfoKHR& operator=( VkMemoryGetWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( MemoryGetWin32HandleInfoKHR ) ); return *this; } MemoryGetWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MemoryGetWin32HandleInfoKHR& setMemory( DeviceMemory memory_ ) { memory = memory_; return *this; } MemoryGetWin32HandleInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkMemoryGetWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( MemoryGetWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memory == rhs.memory ) && ( handleType == rhs.handleType ); } bool operator!=( MemoryGetWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DeviceMemory memory; ExternalMemoryHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( MemoryGetWin32HandleInfoKHR ) == sizeof( VkMemoryGetWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ struct ImportMemoryFdInfoKHR { ImportMemoryFdInfoKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd, int fd_ = 0 ) : sType( StructureType::eImportMemoryFdInfoKHR ) , pNext( nullptr ) , handleType( handleType_ ) , fd( fd_ ) { } ImportMemoryFdInfoKHR( VkImportMemoryFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportMemoryFdInfoKHR ) ); } ImportMemoryFdInfoKHR& operator=( VkImportMemoryFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportMemoryFdInfoKHR ) ); return *this; } ImportMemoryFdInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImportMemoryFdInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } ImportMemoryFdInfoKHR& setFd( int fd_ ) { fd = fd_; return *this; } operator const VkImportMemoryFdInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ImportMemoryFdInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleType == rhs.handleType ) && ( fd == rhs.fd ); } bool operator!=( ImportMemoryFdInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalMemoryHandleTypeFlagBitsKHR handleType; int fd; }; static_assert( sizeof( ImportMemoryFdInfoKHR ) == sizeof( VkImportMemoryFdInfoKHR ), "struct and wrapper have different size!" ); struct MemoryGetFdInfoKHR { MemoryGetFdInfoKHR( DeviceMemory memory_ = DeviceMemory(), ExternalMemoryHandleTypeFlagBitsKHR handleType_ = ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::eMemoryGetFdInfoKHR ) , pNext( nullptr ) , memory( memory_ ) , handleType( handleType_ ) { } MemoryGetFdInfoKHR( VkMemoryGetFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( MemoryGetFdInfoKHR ) ); } MemoryGetFdInfoKHR& operator=( VkMemoryGetFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( MemoryGetFdInfoKHR ) ); return *this; } MemoryGetFdInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MemoryGetFdInfoKHR& setMemory( DeviceMemory memory_ ) { memory = memory_; return *this; } MemoryGetFdInfoKHR& setHandleType( ExternalMemoryHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkMemoryGetFdInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( MemoryGetFdInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memory == rhs.memory ) && ( handleType == rhs.handleType ); } bool operator!=( MemoryGetFdInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DeviceMemory memory; ExternalMemoryHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( MemoryGetFdInfoKHR ) == sizeof( VkMemoryGetFdInfoKHR ), "struct and wrapper have different size!" ); enum class ExternalMemoryFeatureFlagBitsKHR { eDedicatedOnly = VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_KHR, eExportable = VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_KHR, eImportable = VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_KHR }; using ExternalMemoryFeatureFlagsKHR = Flags; VULKAN_HPP_INLINE ExternalMemoryFeatureFlagsKHR operator|( ExternalMemoryFeatureFlagBitsKHR bit0, ExternalMemoryFeatureFlagBitsKHR bit1 ) { return ExternalMemoryFeatureFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE ExternalMemoryFeatureFlagsKHR operator~( ExternalMemoryFeatureFlagBitsKHR bits ) { return ~( ExternalMemoryFeatureFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ExternalMemoryFeatureFlagBitsKHR::eDedicatedOnly) | VkFlags(ExternalMemoryFeatureFlagBitsKHR::eExportable) | VkFlags(ExternalMemoryFeatureFlagBitsKHR::eImportable) }; }; struct ExternalMemoryPropertiesKHR { operator const VkExternalMemoryPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( ExternalMemoryPropertiesKHR const& rhs ) const { return ( externalMemoryFeatures == rhs.externalMemoryFeatures ) && ( exportFromImportedHandleTypes == rhs.exportFromImportedHandleTypes ) && ( compatibleHandleTypes == rhs.compatibleHandleTypes ); } bool operator!=( ExternalMemoryPropertiesKHR const& rhs ) const { return !operator==( rhs ); } ExternalMemoryFeatureFlagsKHR externalMemoryFeatures; ExternalMemoryHandleTypeFlagsKHR exportFromImportedHandleTypes; ExternalMemoryHandleTypeFlagsKHR compatibleHandleTypes; }; static_assert( sizeof( ExternalMemoryPropertiesKHR ) == sizeof( VkExternalMemoryPropertiesKHR ), "struct and wrapper have different size!" ); struct ExternalImageFormatPropertiesKHR { operator const VkExternalImageFormatPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( ExternalImageFormatPropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( externalMemoryProperties == rhs.externalMemoryProperties ); } bool operator!=( ExternalImageFormatPropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; ExternalMemoryPropertiesKHR externalMemoryProperties; }; static_assert( sizeof( ExternalImageFormatPropertiesKHR ) == sizeof( VkExternalImageFormatPropertiesKHR ), "struct and wrapper have different size!" ); struct ExternalBufferPropertiesKHR { operator const VkExternalBufferPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( ExternalBufferPropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( externalMemoryProperties == rhs.externalMemoryProperties ); } bool operator!=( ExternalBufferPropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; ExternalMemoryPropertiesKHR externalMemoryProperties; }; static_assert( sizeof( ExternalBufferPropertiesKHR ) == sizeof( VkExternalBufferPropertiesKHR ), "struct and wrapper have different size!" ); enum class ExternalSemaphoreHandleTypeFlagBitsKHR { eOpaqueFd = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR, eOpaqueWin32 = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR, eOpaqueWin32Kmt = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR, eD3D12Fence = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT_KHR, eSyncFd = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR }; using ExternalSemaphoreHandleTypeFlagsKHR = Flags; VULKAN_HPP_INLINE ExternalSemaphoreHandleTypeFlagsKHR operator|( ExternalSemaphoreHandleTypeFlagBitsKHR bit0, ExternalSemaphoreHandleTypeFlagBitsKHR bit1 ) { return ExternalSemaphoreHandleTypeFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE ExternalSemaphoreHandleTypeFlagsKHR operator~( ExternalSemaphoreHandleTypeFlagBitsKHR bits ) { return ~( ExternalSemaphoreHandleTypeFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd) | VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32) | VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) | VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eD3D12Fence) | VkFlags(ExternalSemaphoreHandleTypeFlagBitsKHR::eSyncFd) }; }; struct PhysicalDeviceExternalSemaphoreInfoKHR { PhysicalDeviceExternalSemaphoreInfoKHR( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::ePhysicalDeviceExternalSemaphoreInfoKHR ) , pNext( nullptr ) , handleType( handleType_ ) { } PhysicalDeviceExternalSemaphoreInfoKHR( VkPhysicalDeviceExternalSemaphoreInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceExternalSemaphoreInfoKHR ) ); } PhysicalDeviceExternalSemaphoreInfoKHR& operator=( VkPhysicalDeviceExternalSemaphoreInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceExternalSemaphoreInfoKHR ) ); return *this; } PhysicalDeviceExternalSemaphoreInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceExternalSemaphoreInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkPhysicalDeviceExternalSemaphoreInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceExternalSemaphoreInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleType == rhs.handleType ); } bool operator!=( PhysicalDeviceExternalSemaphoreInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalSemaphoreHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( PhysicalDeviceExternalSemaphoreInfoKHR ) == sizeof( VkPhysicalDeviceExternalSemaphoreInfoKHR ), "struct and wrapper have different size!" ); struct ExportSemaphoreCreateInfoKHR { ExportSemaphoreCreateInfoKHR( ExternalSemaphoreHandleTypeFlagsKHR handleTypes_ = ExternalSemaphoreHandleTypeFlagsKHR() ) : sType( StructureType::eExportSemaphoreCreateInfoKHR ) , pNext( nullptr ) , handleTypes( handleTypes_ ) { } ExportSemaphoreCreateInfoKHR( VkExportSemaphoreCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportSemaphoreCreateInfoKHR ) ); } ExportSemaphoreCreateInfoKHR& operator=( VkExportSemaphoreCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportSemaphoreCreateInfoKHR ) ); return *this; } ExportSemaphoreCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExportSemaphoreCreateInfoKHR& setHandleTypes( ExternalSemaphoreHandleTypeFlagsKHR handleTypes_ ) { handleTypes = handleTypes_; return *this; } operator const VkExportSemaphoreCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ExportSemaphoreCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleTypes == rhs.handleTypes ); } bool operator!=( ExportSemaphoreCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalSemaphoreHandleTypeFlagsKHR handleTypes; }; static_assert( sizeof( ExportSemaphoreCreateInfoKHR ) == sizeof( VkExportSemaphoreCreateInfoKHR ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_WIN32_KHR struct SemaphoreGetWin32HandleInfoKHR { SemaphoreGetWin32HandleInfoKHR( Semaphore semaphore_ = Semaphore(), ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::eSemaphoreGetWin32HandleInfoKHR ) , pNext( nullptr ) , semaphore( semaphore_ ) , handleType( handleType_ ) { } SemaphoreGetWin32HandleInfoKHR( VkSemaphoreGetWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SemaphoreGetWin32HandleInfoKHR ) ); } SemaphoreGetWin32HandleInfoKHR& operator=( VkSemaphoreGetWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SemaphoreGetWin32HandleInfoKHR ) ); return *this; } SemaphoreGetWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SemaphoreGetWin32HandleInfoKHR& setSemaphore( Semaphore semaphore_ ) { semaphore = semaphore_; return *this; } SemaphoreGetWin32HandleInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkSemaphoreGetWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( SemaphoreGetWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( semaphore == rhs.semaphore ) && ( handleType == rhs.handleType ); } bool operator!=( SemaphoreGetWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Semaphore semaphore; ExternalSemaphoreHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( SemaphoreGetWin32HandleInfoKHR ) == sizeof( VkSemaphoreGetWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ struct SemaphoreGetFdInfoKHR { SemaphoreGetFdInfoKHR( Semaphore semaphore_ = Semaphore(), ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::eSemaphoreGetFdInfoKHR ) , pNext( nullptr ) , semaphore( semaphore_ ) , handleType( handleType_ ) { } SemaphoreGetFdInfoKHR( VkSemaphoreGetFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SemaphoreGetFdInfoKHR ) ); } SemaphoreGetFdInfoKHR& operator=( VkSemaphoreGetFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SemaphoreGetFdInfoKHR ) ); return *this; } SemaphoreGetFdInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SemaphoreGetFdInfoKHR& setSemaphore( Semaphore semaphore_ ) { semaphore = semaphore_; return *this; } SemaphoreGetFdInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkSemaphoreGetFdInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( SemaphoreGetFdInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( semaphore == rhs.semaphore ) && ( handleType == rhs.handleType ); } bool operator!=( SemaphoreGetFdInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Semaphore semaphore; ExternalSemaphoreHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( SemaphoreGetFdInfoKHR ) == sizeof( VkSemaphoreGetFdInfoKHR ), "struct and wrapper have different size!" ); enum class ExternalSemaphoreFeatureFlagBitsKHR { eExportable = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR, eImportable = VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR }; using ExternalSemaphoreFeatureFlagsKHR = Flags; VULKAN_HPP_INLINE ExternalSemaphoreFeatureFlagsKHR operator|( ExternalSemaphoreFeatureFlagBitsKHR bit0, ExternalSemaphoreFeatureFlagBitsKHR bit1 ) { return ExternalSemaphoreFeatureFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE ExternalSemaphoreFeatureFlagsKHR operator~( ExternalSemaphoreFeatureFlagBitsKHR bits ) { return ~( ExternalSemaphoreFeatureFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ExternalSemaphoreFeatureFlagBitsKHR::eExportable) | VkFlags(ExternalSemaphoreFeatureFlagBitsKHR::eImportable) }; }; struct ExternalSemaphorePropertiesKHR { operator const VkExternalSemaphorePropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( ExternalSemaphorePropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( exportFromImportedHandleTypes == rhs.exportFromImportedHandleTypes ) && ( compatibleHandleTypes == rhs.compatibleHandleTypes ) && ( externalSemaphoreFeatures == rhs.externalSemaphoreFeatures ); } bool operator!=( ExternalSemaphorePropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; ExternalSemaphoreHandleTypeFlagsKHR exportFromImportedHandleTypes; ExternalSemaphoreHandleTypeFlagsKHR compatibleHandleTypes; ExternalSemaphoreFeatureFlagsKHR externalSemaphoreFeatures; }; static_assert( sizeof( ExternalSemaphorePropertiesKHR ) == sizeof( VkExternalSemaphorePropertiesKHR ), "struct and wrapper have different size!" ); enum class SemaphoreImportFlagBitsKHR { eTemporary = VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR }; using SemaphoreImportFlagsKHR = Flags; VULKAN_HPP_INLINE SemaphoreImportFlagsKHR operator|( SemaphoreImportFlagBitsKHR bit0, SemaphoreImportFlagBitsKHR bit1 ) { return SemaphoreImportFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE SemaphoreImportFlagsKHR operator~( SemaphoreImportFlagBitsKHR bits ) { return ~( SemaphoreImportFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SemaphoreImportFlagBitsKHR::eTemporary) }; }; #ifdef VK_USE_PLATFORM_WIN32_KHR struct ImportSemaphoreWin32HandleInfoKHR { ImportSemaphoreWin32HandleInfoKHR( Semaphore semaphore_ = Semaphore(), SemaphoreImportFlagsKHR flags_ = SemaphoreImportFlagsKHR(), ExternalSemaphoreHandleTypeFlagsKHR handleType_ = ExternalSemaphoreHandleTypeFlagsKHR(), HANDLE handle_ = 0, LPCWSTR name_ = 0 ) : sType( StructureType::eImportSemaphoreWin32HandleInfoKHR ) , pNext( nullptr ) , semaphore( semaphore_ ) , flags( flags_ ) , handleType( handleType_ ) , handle( handle_ ) , name( name_ ) { } ImportSemaphoreWin32HandleInfoKHR( VkImportSemaphoreWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportSemaphoreWin32HandleInfoKHR ) ); } ImportSemaphoreWin32HandleInfoKHR& operator=( VkImportSemaphoreWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportSemaphoreWin32HandleInfoKHR ) ); return *this; } ImportSemaphoreWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImportSemaphoreWin32HandleInfoKHR& setSemaphore( Semaphore semaphore_ ) { semaphore = semaphore_; return *this; } ImportSemaphoreWin32HandleInfoKHR& setFlags( SemaphoreImportFlagsKHR flags_ ) { flags = flags_; return *this; } ImportSemaphoreWin32HandleInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagsKHR handleType_ ) { handleType = handleType_; return *this; } ImportSemaphoreWin32HandleInfoKHR& setHandle( HANDLE handle_ ) { handle = handle_; return *this; } ImportSemaphoreWin32HandleInfoKHR& setName( LPCWSTR name_ ) { name = name_; return *this; } operator const VkImportSemaphoreWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ImportSemaphoreWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( semaphore == rhs.semaphore ) && ( flags == rhs.flags ) && ( handleType == rhs.handleType ) && ( handle == rhs.handle ) && ( name == rhs.name ); } bool operator!=( ImportSemaphoreWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Semaphore semaphore; SemaphoreImportFlagsKHR flags; ExternalSemaphoreHandleTypeFlagsKHR handleType; HANDLE handle; LPCWSTR name; }; static_assert( sizeof( ImportSemaphoreWin32HandleInfoKHR ) == sizeof( VkImportSemaphoreWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ struct ImportSemaphoreFdInfoKHR { ImportSemaphoreFdInfoKHR( Semaphore semaphore_ = Semaphore(), SemaphoreImportFlagsKHR flags_ = SemaphoreImportFlagsKHR(), ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ = ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd, int fd_ = 0 ) : sType( StructureType::eImportSemaphoreFdInfoKHR ) , pNext( nullptr ) , semaphore( semaphore_ ) , flags( flags_ ) , handleType( handleType_ ) , fd( fd_ ) { } ImportSemaphoreFdInfoKHR( VkImportSemaphoreFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportSemaphoreFdInfoKHR ) ); } ImportSemaphoreFdInfoKHR& operator=( VkImportSemaphoreFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportSemaphoreFdInfoKHR ) ); return *this; } ImportSemaphoreFdInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImportSemaphoreFdInfoKHR& setSemaphore( Semaphore semaphore_ ) { semaphore = semaphore_; return *this; } ImportSemaphoreFdInfoKHR& setFlags( SemaphoreImportFlagsKHR flags_ ) { flags = flags_; return *this; } ImportSemaphoreFdInfoKHR& setHandleType( ExternalSemaphoreHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } ImportSemaphoreFdInfoKHR& setFd( int fd_ ) { fd = fd_; return *this; } operator const VkImportSemaphoreFdInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ImportSemaphoreFdInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( semaphore == rhs.semaphore ) && ( flags == rhs.flags ) && ( handleType == rhs.handleType ) && ( fd == rhs.fd ); } bool operator!=( ImportSemaphoreFdInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Semaphore semaphore; SemaphoreImportFlagsKHR flags; ExternalSemaphoreHandleTypeFlagBitsKHR handleType; int fd; }; static_assert( sizeof( ImportSemaphoreFdInfoKHR ) == sizeof( VkImportSemaphoreFdInfoKHR ), "struct and wrapper have different size!" ); enum class ExternalFenceHandleTypeFlagBitsKHR { eOpaqueFd = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR, eOpaqueWin32 = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR, eOpaqueWin32Kmt = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR, eSyncFd = VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR }; using ExternalFenceHandleTypeFlagsKHR = Flags; VULKAN_HPP_INLINE ExternalFenceHandleTypeFlagsKHR operator|( ExternalFenceHandleTypeFlagBitsKHR bit0, ExternalFenceHandleTypeFlagBitsKHR bit1 ) { return ExternalFenceHandleTypeFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE ExternalFenceHandleTypeFlagsKHR operator~( ExternalFenceHandleTypeFlagBitsKHR bits ) { return ~( ExternalFenceHandleTypeFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd) | VkFlags(ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32) | VkFlags(ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) | VkFlags(ExternalFenceHandleTypeFlagBitsKHR::eSyncFd) }; }; struct PhysicalDeviceExternalFenceInfoKHR { PhysicalDeviceExternalFenceInfoKHR( ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::ePhysicalDeviceExternalFenceInfoKHR ) , pNext( nullptr ) , handleType( handleType_ ) { } PhysicalDeviceExternalFenceInfoKHR( VkPhysicalDeviceExternalFenceInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceExternalFenceInfoKHR ) ); } PhysicalDeviceExternalFenceInfoKHR& operator=( VkPhysicalDeviceExternalFenceInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PhysicalDeviceExternalFenceInfoKHR ) ); return *this; } PhysicalDeviceExternalFenceInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PhysicalDeviceExternalFenceInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkPhysicalDeviceExternalFenceInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceExternalFenceInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleType == rhs.handleType ); } bool operator!=( PhysicalDeviceExternalFenceInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalFenceHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( PhysicalDeviceExternalFenceInfoKHR ) == sizeof( VkPhysicalDeviceExternalFenceInfoKHR ), "struct and wrapper have different size!" ); struct ExportFenceCreateInfoKHR { ExportFenceCreateInfoKHR( ExternalFenceHandleTypeFlagsKHR handleTypes_ = ExternalFenceHandleTypeFlagsKHR() ) : sType( StructureType::eExportFenceCreateInfoKHR ) , pNext( nullptr ) , handleTypes( handleTypes_ ) { } ExportFenceCreateInfoKHR( VkExportFenceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportFenceCreateInfoKHR ) ); } ExportFenceCreateInfoKHR& operator=( VkExportFenceCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ExportFenceCreateInfoKHR ) ); return *this; } ExportFenceCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ExportFenceCreateInfoKHR& setHandleTypes( ExternalFenceHandleTypeFlagsKHR handleTypes_ ) { handleTypes = handleTypes_; return *this; } operator const VkExportFenceCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ExportFenceCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleTypes == rhs.handleTypes ); } bool operator!=( ExportFenceCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ExternalFenceHandleTypeFlagsKHR handleTypes; }; static_assert( sizeof( ExportFenceCreateInfoKHR ) == sizeof( VkExportFenceCreateInfoKHR ), "struct and wrapper have different size!" ); #ifdef VK_USE_PLATFORM_WIN32_KHR struct FenceGetWin32HandleInfoKHR { FenceGetWin32HandleInfoKHR( Fence fence_ = Fence(), ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::eFenceGetWin32HandleInfoKHR ) , pNext( nullptr ) , fence( fence_ ) , handleType( handleType_ ) { } FenceGetWin32HandleInfoKHR( VkFenceGetWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( FenceGetWin32HandleInfoKHR ) ); } FenceGetWin32HandleInfoKHR& operator=( VkFenceGetWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( FenceGetWin32HandleInfoKHR ) ); return *this; } FenceGetWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } FenceGetWin32HandleInfoKHR& setFence( Fence fence_ ) { fence = fence_; return *this; } FenceGetWin32HandleInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkFenceGetWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( FenceGetWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( fence == rhs.fence ) && ( handleType == rhs.handleType ); } bool operator!=( FenceGetWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Fence fence; ExternalFenceHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( FenceGetWin32HandleInfoKHR ) == sizeof( VkFenceGetWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ struct FenceGetFdInfoKHR { FenceGetFdInfoKHR( Fence fence_ = Fence(), ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd ) : sType( StructureType::eFenceGetFdInfoKHR ) , pNext( nullptr ) , fence( fence_ ) , handleType( handleType_ ) { } FenceGetFdInfoKHR( VkFenceGetFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( FenceGetFdInfoKHR ) ); } FenceGetFdInfoKHR& operator=( VkFenceGetFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( FenceGetFdInfoKHR ) ); return *this; } FenceGetFdInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } FenceGetFdInfoKHR& setFence( Fence fence_ ) { fence = fence_; return *this; } FenceGetFdInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } operator const VkFenceGetFdInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( FenceGetFdInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( fence == rhs.fence ) && ( handleType == rhs.handleType ); } bool operator!=( FenceGetFdInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Fence fence; ExternalFenceHandleTypeFlagBitsKHR handleType; }; static_assert( sizeof( FenceGetFdInfoKHR ) == sizeof( VkFenceGetFdInfoKHR ), "struct and wrapper have different size!" ); enum class ExternalFenceFeatureFlagBitsKHR { eExportable = VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT_KHR, eImportable = VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT_KHR }; using ExternalFenceFeatureFlagsKHR = Flags; VULKAN_HPP_INLINE ExternalFenceFeatureFlagsKHR operator|( ExternalFenceFeatureFlagBitsKHR bit0, ExternalFenceFeatureFlagBitsKHR bit1 ) { return ExternalFenceFeatureFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE ExternalFenceFeatureFlagsKHR operator~( ExternalFenceFeatureFlagBitsKHR bits ) { return ~( ExternalFenceFeatureFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(ExternalFenceFeatureFlagBitsKHR::eExportable) | VkFlags(ExternalFenceFeatureFlagBitsKHR::eImportable) }; }; struct ExternalFencePropertiesKHR { operator const VkExternalFencePropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( ExternalFencePropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( exportFromImportedHandleTypes == rhs.exportFromImportedHandleTypes ) && ( compatibleHandleTypes == rhs.compatibleHandleTypes ) && ( externalFenceFeatures == rhs.externalFenceFeatures ); } bool operator!=( ExternalFencePropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; ExternalFenceHandleTypeFlagsKHR exportFromImportedHandleTypes; ExternalFenceHandleTypeFlagsKHR compatibleHandleTypes; ExternalFenceFeatureFlagsKHR externalFenceFeatures; }; static_assert( sizeof( ExternalFencePropertiesKHR ) == sizeof( VkExternalFencePropertiesKHR ), "struct and wrapper have different size!" ); enum class FenceImportFlagBitsKHR { eTemporary = VK_FENCE_IMPORT_TEMPORARY_BIT_KHR }; using FenceImportFlagsKHR = Flags; VULKAN_HPP_INLINE FenceImportFlagsKHR operator|( FenceImportFlagBitsKHR bit0, FenceImportFlagBitsKHR bit1 ) { return FenceImportFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE FenceImportFlagsKHR operator~( FenceImportFlagBitsKHR bits ) { return ~( FenceImportFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(FenceImportFlagBitsKHR::eTemporary) }; }; #ifdef VK_USE_PLATFORM_WIN32_KHR struct ImportFenceWin32HandleInfoKHR { ImportFenceWin32HandleInfoKHR( Fence fence_ = Fence(), FenceImportFlagsKHR flags_ = FenceImportFlagsKHR(), ExternalFenceHandleTypeFlagsKHR handleType_ = ExternalFenceHandleTypeFlagsKHR(), HANDLE handle_ = 0, LPCWSTR name_ = 0 ) : sType( StructureType::eImportFenceWin32HandleInfoKHR ) , pNext( nullptr ) , fence( fence_ ) , flags( flags_ ) , handleType( handleType_ ) , handle( handle_ ) , name( name_ ) { } ImportFenceWin32HandleInfoKHR( VkImportFenceWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportFenceWin32HandleInfoKHR ) ); } ImportFenceWin32HandleInfoKHR& operator=( VkImportFenceWin32HandleInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportFenceWin32HandleInfoKHR ) ); return *this; } ImportFenceWin32HandleInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImportFenceWin32HandleInfoKHR& setFence( Fence fence_ ) { fence = fence_; return *this; } ImportFenceWin32HandleInfoKHR& setFlags( FenceImportFlagsKHR flags_ ) { flags = flags_; return *this; } ImportFenceWin32HandleInfoKHR& setHandleType( ExternalFenceHandleTypeFlagsKHR handleType_ ) { handleType = handleType_; return *this; } ImportFenceWin32HandleInfoKHR& setHandle( HANDLE handle_ ) { handle = handle_; return *this; } ImportFenceWin32HandleInfoKHR& setName( LPCWSTR name_ ) { name = name_; return *this; } operator const VkImportFenceWin32HandleInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ImportFenceWin32HandleInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( fence == rhs.fence ) && ( flags == rhs.flags ) && ( handleType == rhs.handleType ) && ( handle == rhs.handle ) && ( name == rhs.name ); } bool operator!=( ImportFenceWin32HandleInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Fence fence; FenceImportFlagsKHR flags; ExternalFenceHandleTypeFlagsKHR handleType; HANDLE handle; LPCWSTR name; }; static_assert( sizeof( ImportFenceWin32HandleInfoKHR ) == sizeof( VkImportFenceWin32HandleInfoKHR ), "struct and wrapper have different size!" ); #endif /*VK_USE_PLATFORM_WIN32_KHR*/ struct ImportFenceFdInfoKHR { ImportFenceFdInfoKHR( Fence fence_ = Fence(), FenceImportFlagsKHR flags_ = FenceImportFlagsKHR(), ExternalFenceHandleTypeFlagBitsKHR handleType_ = ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd, int fd_ = 0 ) : sType( StructureType::eImportFenceFdInfoKHR ) , pNext( nullptr ) , fence( fence_ ) , flags( flags_ ) , handleType( handleType_ ) , fd( fd_ ) { } ImportFenceFdInfoKHR( VkImportFenceFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportFenceFdInfoKHR ) ); } ImportFenceFdInfoKHR& operator=( VkImportFenceFdInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( ImportFenceFdInfoKHR ) ); return *this; } ImportFenceFdInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } ImportFenceFdInfoKHR& setFence( Fence fence_ ) { fence = fence_; return *this; } ImportFenceFdInfoKHR& setFlags( FenceImportFlagsKHR flags_ ) { flags = flags_; return *this; } ImportFenceFdInfoKHR& setHandleType( ExternalFenceHandleTypeFlagBitsKHR handleType_ ) { handleType = handleType_; return *this; } ImportFenceFdInfoKHR& setFd( int fd_ ) { fd = fd_; return *this; } operator const VkImportFenceFdInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( ImportFenceFdInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( fence == rhs.fence ) && ( flags == rhs.flags ) && ( handleType == rhs.handleType ) && ( fd == rhs.fd ); } bool operator!=( ImportFenceFdInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Fence fence; FenceImportFlagsKHR flags; ExternalFenceHandleTypeFlagBitsKHR handleType; int fd; }; static_assert( sizeof( ImportFenceFdInfoKHR ) == sizeof( VkImportFenceFdInfoKHR ), "struct and wrapper have different size!" ); enum class SurfaceCounterFlagBitsEXT { eVblank = VK_SURFACE_COUNTER_VBLANK_EXT }; using SurfaceCounterFlagsEXT = Flags; VULKAN_HPP_INLINE SurfaceCounterFlagsEXT operator|( SurfaceCounterFlagBitsEXT bit0, SurfaceCounterFlagBitsEXT bit1 ) { return SurfaceCounterFlagsEXT( bit0 ) | bit1; } VULKAN_HPP_INLINE SurfaceCounterFlagsEXT operator~( SurfaceCounterFlagBitsEXT bits ) { return ~( SurfaceCounterFlagsEXT( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SurfaceCounterFlagBitsEXT::eVblank) }; }; struct SurfaceCapabilities2EXT { operator const VkSurfaceCapabilities2EXT&() const { return *reinterpret_cast(this); } bool operator==( SurfaceCapabilities2EXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( minImageCount == rhs.minImageCount ) && ( maxImageCount == rhs.maxImageCount ) && ( currentExtent == rhs.currentExtent ) && ( minImageExtent == rhs.minImageExtent ) && ( maxImageExtent == rhs.maxImageExtent ) && ( maxImageArrayLayers == rhs.maxImageArrayLayers ) && ( supportedTransforms == rhs.supportedTransforms ) && ( currentTransform == rhs.currentTransform ) && ( supportedCompositeAlpha == rhs.supportedCompositeAlpha ) && ( supportedUsageFlags == rhs.supportedUsageFlags ) && ( supportedSurfaceCounters == rhs.supportedSurfaceCounters ); } bool operator!=( SurfaceCapabilities2EXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint32_t minImageCount; uint32_t maxImageCount; Extent2D currentExtent; Extent2D minImageExtent; Extent2D maxImageExtent; uint32_t maxImageArrayLayers; SurfaceTransformFlagsKHR supportedTransforms; SurfaceTransformFlagBitsKHR currentTransform; CompositeAlphaFlagsKHR supportedCompositeAlpha; ImageUsageFlags supportedUsageFlags; SurfaceCounterFlagsEXT supportedSurfaceCounters; }; static_assert( sizeof( SurfaceCapabilities2EXT ) == sizeof( VkSurfaceCapabilities2EXT ), "struct and wrapper have different size!" ); struct SwapchainCounterCreateInfoEXT { SwapchainCounterCreateInfoEXT( SurfaceCounterFlagsEXT surfaceCounters_ = SurfaceCounterFlagsEXT() ) : sType( StructureType::eSwapchainCounterCreateInfoEXT ) , pNext( nullptr ) , surfaceCounters( surfaceCounters_ ) { } SwapchainCounterCreateInfoEXT( VkSwapchainCounterCreateInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( SwapchainCounterCreateInfoEXT ) ); } SwapchainCounterCreateInfoEXT& operator=( VkSwapchainCounterCreateInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( SwapchainCounterCreateInfoEXT ) ); return *this; } SwapchainCounterCreateInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SwapchainCounterCreateInfoEXT& setSurfaceCounters( SurfaceCounterFlagsEXT surfaceCounters_ ) { surfaceCounters = surfaceCounters_; return *this; } operator const VkSwapchainCounterCreateInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( SwapchainCounterCreateInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( surfaceCounters == rhs.surfaceCounters ); } bool operator!=( SwapchainCounterCreateInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SurfaceCounterFlagsEXT surfaceCounters; }; static_assert( sizeof( SwapchainCounterCreateInfoEXT ) == sizeof( VkSwapchainCounterCreateInfoEXT ), "struct and wrapper have different size!" ); enum class DisplayPowerStateEXT { eOff = VK_DISPLAY_POWER_STATE_OFF_EXT, eSuspend = VK_DISPLAY_POWER_STATE_SUSPEND_EXT, eOn = VK_DISPLAY_POWER_STATE_ON_EXT }; struct DisplayPowerInfoEXT { DisplayPowerInfoEXT( DisplayPowerStateEXT powerState_ = DisplayPowerStateEXT::eOff ) : sType( StructureType::eDisplayPowerInfoEXT ) , pNext( nullptr ) , powerState( powerState_ ) { } DisplayPowerInfoEXT( VkDisplayPowerInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DisplayPowerInfoEXT ) ); } DisplayPowerInfoEXT& operator=( VkDisplayPowerInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DisplayPowerInfoEXT ) ); return *this; } DisplayPowerInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DisplayPowerInfoEXT& setPowerState( DisplayPowerStateEXT powerState_ ) { powerState = powerState_; return *this; } operator const VkDisplayPowerInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( DisplayPowerInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( powerState == rhs.powerState ); } bool operator!=( DisplayPowerInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DisplayPowerStateEXT powerState; }; static_assert( sizeof( DisplayPowerInfoEXT ) == sizeof( VkDisplayPowerInfoEXT ), "struct and wrapper have different size!" ); enum class DeviceEventTypeEXT { eDisplayHotplug = VK_DEVICE_EVENT_TYPE_DISPLAY_HOTPLUG_EXT }; struct DeviceEventInfoEXT { DeviceEventInfoEXT( DeviceEventTypeEXT deviceEvent_ = DeviceEventTypeEXT::eDisplayHotplug ) : sType( StructureType::eDeviceEventInfoEXT ) , pNext( nullptr ) , deviceEvent( deviceEvent_ ) { } DeviceEventInfoEXT( VkDeviceEventInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DeviceEventInfoEXT ) ); } DeviceEventInfoEXT& operator=( VkDeviceEventInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DeviceEventInfoEXT ) ); return *this; } DeviceEventInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceEventInfoEXT& setDeviceEvent( DeviceEventTypeEXT deviceEvent_ ) { deviceEvent = deviceEvent_; return *this; } operator const VkDeviceEventInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( DeviceEventInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( deviceEvent == rhs.deviceEvent ); } bool operator!=( DeviceEventInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DeviceEventTypeEXT deviceEvent; }; static_assert( sizeof( DeviceEventInfoEXT ) == sizeof( VkDeviceEventInfoEXT ), "struct and wrapper have different size!" ); enum class DisplayEventTypeEXT { eFirstPixelOut = VK_DISPLAY_EVENT_TYPE_FIRST_PIXEL_OUT_EXT }; struct DisplayEventInfoEXT { DisplayEventInfoEXT( DisplayEventTypeEXT displayEvent_ = DisplayEventTypeEXT::eFirstPixelOut ) : sType( StructureType::eDisplayEventInfoEXT ) , pNext( nullptr ) , displayEvent( displayEvent_ ) { } DisplayEventInfoEXT( VkDisplayEventInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DisplayEventInfoEXT ) ); } DisplayEventInfoEXT& operator=( VkDisplayEventInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( DisplayEventInfoEXT ) ); return *this; } DisplayEventInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DisplayEventInfoEXT& setDisplayEvent( DisplayEventTypeEXT displayEvent_ ) { displayEvent = displayEvent_; return *this; } operator const VkDisplayEventInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( DisplayEventInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( displayEvent == rhs.displayEvent ); } bool operator!=( DisplayEventInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DisplayEventTypeEXT displayEvent; }; static_assert( sizeof( DisplayEventInfoEXT ) == sizeof( VkDisplayEventInfoEXT ), "struct and wrapper have different size!" ); enum class PeerMemoryFeatureFlagBitsKHX { eCopySrc = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT_KHX, eCopyDst = VK_PEER_MEMORY_FEATURE_COPY_DST_BIT_KHX, eGenericSrc = VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT_KHX, eGenericDst = VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT_KHX }; using PeerMemoryFeatureFlagsKHX = Flags; VULKAN_HPP_INLINE PeerMemoryFeatureFlagsKHX operator|( PeerMemoryFeatureFlagBitsKHX bit0, PeerMemoryFeatureFlagBitsKHX bit1 ) { return PeerMemoryFeatureFlagsKHX( bit0 ) | bit1; } VULKAN_HPP_INLINE PeerMemoryFeatureFlagsKHX operator~( PeerMemoryFeatureFlagBitsKHX bits ) { return ~( PeerMemoryFeatureFlagsKHX( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(PeerMemoryFeatureFlagBitsKHX::eCopySrc) | VkFlags(PeerMemoryFeatureFlagBitsKHX::eCopyDst) | VkFlags(PeerMemoryFeatureFlagBitsKHX::eGenericSrc) | VkFlags(PeerMemoryFeatureFlagBitsKHX::eGenericDst) }; }; enum class MemoryAllocateFlagBitsKHX { eDeviceMask = VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT_KHX }; using MemoryAllocateFlagsKHX = Flags; VULKAN_HPP_INLINE MemoryAllocateFlagsKHX operator|( MemoryAllocateFlagBitsKHX bit0, MemoryAllocateFlagBitsKHX bit1 ) { return MemoryAllocateFlagsKHX( bit0 ) | bit1; } VULKAN_HPP_INLINE MemoryAllocateFlagsKHX operator~( MemoryAllocateFlagBitsKHX bits ) { return ~( MemoryAllocateFlagsKHX( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(MemoryAllocateFlagBitsKHX::eDeviceMask) }; }; struct MemoryAllocateFlagsInfoKHX { MemoryAllocateFlagsInfoKHX( MemoryAllocateFlagsKHX flags_ = MemoryAllocateFlagsKHX(), uint32_t deviceMask_ = 0 ) : sType( StructureType::eMemoryAllocateFlagsInfoKHX ) , pNext( nullptr ) , flags( flags_ ) , deviceMask( deviceMask_ ) { } MemoryAllocateFlagsInfoKHX( VkMemoryAllocateFlagsInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( MemoryAllocateFlagsInfoKHX ) ); } MemoryAllocateFlagsInfoKHX& operator=( VkMemoryAllocateFlagsInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( MemoryAllocateFlagsInfoKHX ) ); return *this; } MemoryAllocateFlagsInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } MemoryAllocateFlagsInfoKHX& setFlags( MemoryAllocateFlagsKHX flags_ ) { flags = flags_; return *this; } MemoryAllocateFlagsInfoKHX& setDeviceMask( uint32_t deviceMask_ ) { deviceMask = deviceMask_; return *this; } operator const VkMemoryAllocateFlagsInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( MemoryAllocateFlagsInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( deviceMask == rhs.deviceMask ); } bool operator!=( MemoryAllocateFlagsInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; MemoryAllocateFlagsKHX flags; uint32_t deviceMask; }; static_assert( sizeof( MemoryAllocateFlagsInfoKHX ) == sizeof( VkMemoryAllocateFlagsInfoKHX ), "struct and wrapper have different size!" ); enum class DeviceGroupPresentModeFlagBitsKHX { eLocal = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHX, eRemote = VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHX, eSum = VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHX, eLocalMultiDevice = VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHX }; using DeviceGroupPresentModeFlagsKHX = Flags; VULKAN_HPP_INLINE DeviceGroupPresentModeFlagsKHX operator|( DeviceGroupPresentModeFlagBitsKHX bit0, DeviceGroupPresentModeFlagBitsKHX bit1 ) { return DeviceGroupPresentModeFlagsKHX( bit0 ) | bit1; } VULKAN_HPP_INLINE DeviceGroupPresentModeFlagsKHX operator~( DeviceGroupPresentModeFlagBitsKHX bits ) { return ~( DeviceGroupPresentModeFlagsKHX( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(DeviceGroupPresentModeFlagBitsKHX::eLocal) | VkFlags(DeviceGroupPresentModeFlagBitsKHX::eRemote) | VkFlags(DeviceGroupPresentModeFlagBitsKHX::eSum) | VkFlags(DeviceGroupPresentModeFlagBitsKHX::eLocalMultiDevice) }; }; struct DeviceGroupPresentCapabilitiesKHX { operator const VkDeviceGroupPresentCapabilitiesKHX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGroupPresentCapabilitiesKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( memcmp( presentMask, rhs.presentMask, VK_MAX_DEVICE_GROUP_SIZE_KHX * sizeof( uint32_t ) ) == 0 ) && ( modes == rhs.modes ); } bool operator!=( DeviceGroupPresentCapabilitiesKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t presentMask[VK_MAX_DEVICE_GROUP_SIZE_KHX]; DeviceGroupPresentModeFlagsKHX modes; }; static_assert( sizeof( DeviceGroupPresentCapabilitiesKHX ) == sizeof( VkDeviceGroupPresentCapabilitiesKHX ), "struct and wrapper have different size!" ); struct DeviceGroupPresentInfoKHX { DeviceGroupPresentInfoKHX( uint32_t swapchainCount_ = 0, const uint32_t* pDeviceMasks_ = nullptr, DeviceGroupPresentModeFlagBitsKHX mode_ = DeviceGroupPresentModeFlagBitsKHX::eLocal ) : sType( StructureType::eDeviceGroupPresentInfoKHX ) , pNext( nullptr ) , swapchainCount( swapchainCount_ ) , pDeviceMasks( pDeviceMasks_ ) , mode( mode_ ) { } DeviceGroupPresentInfoKHX( VkDeviceGroupPresentInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupPresentInfoKHX ) ); } DeviceGroupPresentInfoKHX& operator=( VkDeviceGroupPresentInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupPresentInfoKHX ) ); return *this; } DeviceGroupPresentInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGroupPresentInfoKHX& setSwapchainCount( uint32_t swapchainCount_ ) { swapchainCount = swapchainCount_; return *this; } DeviceGroupPresentInfoKHX& setPDeviceMasks( const uint32_t* pDeviceMasks_ ) { pDeviceMasks = pDeviceMasks_; return *this; } DeviceGroupPresentInfoKHX& setMode( DeviceGroupPresentModeFlagBitsKHX mode_ ) { mode = mode_; return *this; } operator const VkDeviceGroupPresentInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGroupPresentInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( swapchainCount == rhs.swapchainCount ) && ( pDeviceMasks == rhs.pDeviceMasks ) && ( mode == rhs.mode ); } bool operator!=( DeviceGroupPresentInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t swapchainCount; const uint32_t* pDeviceMasks; DeviceGroupPresentModeFlagBitsKHX mode; }; static_assert( sizeof( DeviceGroupPresentInfoKHX ) == sizeof( VkDeviceGroupPresentInfoKHX ), "struct and wrapper have different size!" ); struct DeviceGroupSwapchainCreateInfoKHX { DeviceGroupSwapchainCreateInfoKHX( DeviceGroupPresentModeFlagsKHX modes_ = DeviceGroupPresentModeFlagsKHX() ) : sType( StructureType::eDeviceGroupSwapchainCreateInfoKHX ) , pNext( nullptr ) , modes( modes_ ) { } DeviceGroupSwapchainCreateInfoKHX( VkDeviceGroupSwapchainCreateInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupSwapchainCreateInfoKHX ) ); } DeviceGroupSwapchainCreateInfoKHX& operator=( VkDeviceGroupSwapchainCreateInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupSwapchainCreateInfoKHX ) ); return *this; } DeviceGroupSwapchainCreateInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGroupSwapchainCreateInfoKHX& setModes( DeviceGroupPresentModeFlagsKHX modes_ ) { modes = modes_; return *this; } operator const VkDeviceGroupSwapchainCreateInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGroupSwapchainCreateInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( modes == rhs.modes ); } bool operator!=( DeviceGroupSwapchainCreateInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; DeviceGroupPresentModeFlagsKHX modes; }; static_assert( sizeof( DeviceGroupSwapchainCreateInfoKHX ) == sizeof( VkDeviceGroupSwapchainCreateInfoKHX ), "struct and wrapper have different size!" ); enum class SwapchainCreateFlagBitsKHR { eBindSfrKHX = VK_SWAPCHAIN_CREATE_BIND_SFR_BIT_KHX }; using SwapchainCreateFlagsKHR = Flags; VULKAN_HPP_INLINE SwapchainCreateFlagsKHR operator|( SwapchainCreateFlagBitsKHR bit0, SwapchainCreateFlagBitsKHR bit1 ) { return SwapchainCreateFlagsKHR( bit0 ) | bit1; } VULKAN_HPP_INLINE SwapchainCreateFlagsKHR operator~( SwapchainCreateFlagBitsKHR bits ) { return ~( SwapchainCreateFlagsKHR( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SwapchainCreateFlagBitsKHR::eBindSfrKHX) }; }; struct SwapchainCreateInfoKHR { SwapchainCreateInfoKHR( SwapchainCreateFlagsKHR flags_ = SwapchainCreateFlagsKHR(), SurfaceKHR surface_ = SurfaceKHR(), uint32_t minImageCount_ = 0, Format imageFormat_ = Format::eUndefined, ColorSpaceKHR imageColorSpace_ = ColorSpaceKHR::eSrgbNonlinear, Extent2D imageExtent_ = Extent2D(), uint32_t imageArrayLayers_ = 0, ImageUsageFlags imageUsage_ = ImageUsageFlags(), SharingMode imageSharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr, SurfaceTransformFlagBitsKHR preTransform_ = SurfaceTransformFlagBitsKHR::eIdentity, CompositeAlphaFlagBitsKHR compositeAlpha_ = CompositeAlphaFlagBitsKHR::eOpaque, PresentModeKHR presentMode_ = PresentModeKHR::eImmediate, Bool32 clipped_ = 0, SwapchainKHR oldSwapchain_ = SwapchainKHR() ) : sType( StructureType::eSwapchainCreateInfoKHR ) , pNext( nullptr ) , flags( flags_ ) , surface( surface_ ) , minImageCount( minImageCount_ ) , imageFormat( imageFormat_ ) , imageColorSpace( imageColorSpace_ ) , imageExtent( imageExtent_ ) , imageArrayLayers( imageArrayLayers_ ) , imageUsage( imageUsage_ ) , imageSharingMode( imageSharingMode_ ) , queueFamilyIndexCount( queueFamilyIndexCount_ ) , pQueueFamilyIndices( pQueueFamilyIndices_ ) , preTransform( preTransform_ ) , compositeAlpha( compositeAlpha_ ) , presentMode( presentMode_ ) , clipped( clipped_ ) , oldSwapchain( oldSwapchain_ ) { } SwapchainCreateInfoKHR( VkSwapchainCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SwapchainCreateInfoKHR ) ); } SwapchainCreateInfoKHR& operator=( VkSwapchainCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SwapchainCreateInfoKHR ) ); return *this; } SwapchainCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SwapchainCreateInfoKHR& setFlags( SwapchainCreateFlagsKHR flags_ ) { flags = flags_; return *this; } SwapchainCreateInfoKHR& setSurface( SurfaceKHR surface_ ) { surface = surface_; return *this; } SwapchainCreateInfoKHR& setMinImageCount( uint32_t minImageCount_ ) { minImageCount = minImageCount_; return *this; } SwapchainCreateInfoKHR& setImageFormat( Format imageFormat_ ) { imageFormat = imageFormat_; return *this; } SwapchainCreateInfoKHR& setImageColorSpace( ColorSpaceKHR imageColorSpace_ ) { imageColorSpace = imageColorSpace_; return *this; } SwapchainCreateInfoKHR& setImageExtent( Extent2D imageExtent_ ) { imageExtent = imageExtent_; return *this; } SwapchainCreateInfoKHR& setImageArrayLayers( uint32_t imageArrayLayers_ ) { imageArrayLayers = imageArrayLayers_; return *this; } SwapchainCreateInfoKHR& setImageUsage( ImageUsageFlags imageUsage_ ) { imageUsage = imageUsage_; return *this; } SwapchainCreateInfoKHR& setImageSharingMode( SharingMode imageSharingMode_ ) { imageSharingMode = imageSharingMode_; return *this; } SwapchainCreateInfoKHR& setQueueFamilyIndexCount( uint32_t queueFamilyIndexCount_ ) { queueFamilyIndexCount = queueFamilyIndexCount_; return *this; } SwapchainCreateInfoKHR& setPQueueFamilyIndices( const uint32_t* pQueueFamilyIndices_ ) { pQueueFamilyIndices = pQueueFamilyIndices_; return *this; } SwapchainCreateInfoKHR& setPreTransform( SurfaceTransformFlagBitsKHR preTransform_ ) { preTransform = preTransform_; return *this; } SwapchainCreateInfoKHR& setCompositeAlpha( CompositeAlphaFlagBitsKHR compositeAlpha_ ) { compositeAlpha = compositeAlpha_; return *this; } SwapchainCreateInfoKHR& setPresentMode( PresentModeKHR presentMode_ ) { presentMode = presentMode_; return *this; } SwapchainCreateInfoKHR& setClipped( Bool32 clipped_ ) { clipped = clipped_; return *this; } SwapchainCreateInfoKHR& setOldSwapchain( SwapchainKHR oldSwapchain_ ) { oldSwapchain = oldSwapchain_; return *this; } operator const VkSwapchainCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( SwapchainCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( surface == rhs.surface ) && ( minImageCount == rhs.minImageCount ) && ( imageFormat == rhs.imageFormat ) && ( imageColorSpace == rhs.imageColorSpace ) && ( imageExtent == rhs.imageExtent ) && ( imageArrayLayers == rhs.imageArrayLayers ) && ( imageUsage == rhs.imageUsage ) && ( imageSharingMode == rhs.imageSharingMode ) && ( queueFamilyIndexCount == rhs.queueFamilyIndexCount ) && ( pQueueFamilyIndices == rhs.pQueueFamilyIndices ) && ( preTransform == rhs.preTransform ) && ( compositeAlpha == rhs.compositeAlpha ) && ( presentMode == rhs.presentMode ) && ( clipped == rhs.clipped ) && ( oldSwapchain == rhs.oldSwapchain ); } bool operator!=( SwapchainCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SwapchainCreateFlagsKHR flags; SurfaceKHR surface; uint32_t minImageCount; Format imageFormat; ColorSpaceKHR imageColorSpace; Extent2D imageExtent; uint32_t imageArrayLayers; ImageUsageFlags imageUsage; SharingMode imageSharingMode; uint32_t queueFamilyIndexCount; const uint32_t* pQueueFamilyIndices; SurfaceTransformFlagBitsKHR preTransform; CompositeAlphaFlagBitsKHR compositeAlpha; PresentModeKHR presentMode; Bool32 clipped; SwapchainKHR oldSwapchain; }; static_assert( sizeof( SwapchainCreateInfoKHR ) == sizeof( VkSwapchainCreateInfoKHR ), "struct and wrapper have different size!" ); enum class ViewportCoordinateSwizzleNV { ePositiveX = VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV, eNegativeX = VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV, ePositiveY = VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV, eNegativeY = VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV, ePositiveZ = VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV, eNegativeZ = VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV, ePositiveW = VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV, eNegativeW = VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV }; struct ViewportSwizzleNV { ViewportSwizzleNV( ViewportCoordinateSwizzleNV x_ = ViewportCoordinateSwizzleNV::ePositiveX, ViewportCoordinateSwizzleNV y_ = ViewportCoordinateSwizzleNV::ePositiveX, ViewportCoordinateSwizzleNV z_ = ViewportCoordinateSwizzleNV::ePositiveX, ViewportCoordinateSwizzleNV w_ = ViewportCoordinateSwizzleNV::ePositiveX ) : x( x_ ) , y( y_ ) , z( z_ ) , w( w_ ) { } ViewportSwizzleNV( VkViewportSwizzleNV const & rhs ) { memcpy( this, &rhs, sizeof( ViewportSwizzleNV ) ); } ViewportSwizzleNV& operator=( VkViewportSwizzleNV const & rhs ) { memcpy( this, &rhs, sizeof( ViewportSwizzleNV ) ); return *this; } ViewportSwizzleNV& setX( ViewportCoordinateSwizzleNV x_ ) { x = x_; return *this; } ViewportSwizzleNV& setY( ViewportCoordinateSwizzleNV y_ ) { y = y_; return *this; } ViewportSwizzleNV& setZ( ViewportCoordinateSwizzleNV z_ ) { z = z_; return *this; } ViewportSwizzleNV& setW( ViewportCoordinateSwizzleNV w_ ) { w = w_; return *this; } operator const VkViewportSwizzleNV&() const { return *reinterpret_cast(this); } bool operator==( ViewportSwizzleNV const& rhs ) const { return ( x == rhs.x ) && ( y == rhs.y ) && ( z == rhs.z ) && ( w == rhs.w ); } bool operator!=( ViewportSwizzleNV const& rhs ) const { return !operator==( rhs ); } ViewportCoordinateSwizzleNV x; ViewportCoordinateSwizzleNV y; ViewportCoordinateSwizzleNV z; ViewportCoordinateSwizzleNV w; }; static_assert( sizeof( ViewportSwizzleNV ) == sizeof( VkViewportSwizzleNV ), "struct and wrapper have different size!" ); struct PipelineViewportSwizzleStateCreateInfoNV { PipelineViewportSwizzleStateCreateInfoNV( PipelineViewportSwizzleStateCreateFlagsNV flags_ = PipelineViewportSwizzleStateCreateFlagsNV(), uint32_t viewportCount_ = 0, const ViewportSwizzleNV* pViewportSwizzles_ = nullptr ) : sType( StructureType::ePipelineViewportSwizzleStateCreateInfoNV ) , pNext( nullptr ) , flags( flags_ ) , viewportCount( viewportCount_ ) , pViewportSwizzles( pViewportSwizzles_ ) { } PipelineViewportSwizzleStateCreateInfoNV( VkPipelineViewportSwizzleStateCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( PipelineViewportSwizzleStateCreateInfoNV ) ); } PipelineViewportSwizzleStateCreateInfoNV& operator=( VkPipelineViewportSwizzleStateCreateInfoNV const & rhs ) { memcpy( this, &rhs, sizeof( PipelineViewportSwizzleStateCreateInfoNV ) ); return *this; } PipelineViewportSwizzleStateCreateInfoNV& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineViewportSwizzleStateCreateInfoNV& setFlags( PipelineViewportSwizzleStateCreateFlagsNV flags_ ) { flags = flags_; return *this; } PipelineViewportSwizzleStateCreateInfoNV& setViewportCount( uint32_t viewportCount_ ) { viewportCount = viewportCount_; return *this; } PipelineViewportSwizzleStateCreateInfoNV& setPViewportSwizzles( const ViewportSwizzleNV* pViewportSwizzles_ ) { pViewportSwizzles = pViewportSwizzles_; return *this; } operator const VkPipelineViewportSwizzleStateCreateInfoNV&() const { return *reinterpret_cast(this); } bool operator==( PipelineViewportSwizzleStateCreateInfoNV const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( viewportCount == rhs.viewportCount ) && ( pViewportSwizzles == rhs.pViewportSwizzles ); } bool operator!=( PipelineViewportSwizzleStateCreateInfoNV const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineViewportSwizzleStateCreateFlagsNV flags; uint32_t viewportCount; const ViewportSwizzleNV* pViewportSwizzles; }; static_assert( sizeof( PipelineViewportSwizzleStateCreateInfoNV ) == sizeof( VkPipelineViewportSwizzleStateCreateInfoNV ), "struct and wrapper have different size!" ); enum class DiscardRectangleModeEXT { eInclusive = VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT, eExclusive = VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT }; struct PipelineDiscardRectangleStateCreateInfoEXT { PipelineDiscardRectangleStateCreateInfoEXT( PipelineDiscardRectangleStateCreateFlagsEXT flags_ = PipelineDiscardRectangleStateCreateFlagsEXT(), DiscardRectangleModeEXT discardRectangleMode_ = DiscardRectangleModeEXT::eInclusive, uint32_t discardRectangleCount_ = 0, const Rect2D* pDiscardRectangles_ = nullptr ) : sType( StructureType::ePipelineDiscardRectangleStateCreateInfoEXT ) , pNext( nullptr ) , flags( flags_ ) , discardRectangleMode( discardRectangleMode_ ) , discardRectangleCount( discardRectangleCount_ ) , pDiscardRectangles( pDiscardRectangles_ ) { } PipelineDiscardRectangleStateCreateInfoEXT( VkPipelineDiscardRectangleStateCreateInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( PipelineDiscardRectangleStateCreateInfoEXT ) ); } PipelineDiscardRectangleStateCreateInfoEXT& operator=( VkPipelineDiscardRectangleStateCreateInfoEXT const & rhs ) { memcpy( this, &rhs, sizeof( PipelineDiscardRectangleStateCreateInfoEXT ) ); return *this; } PipelineDiscardRectangleStateCreateInfoEXT& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineDiscardRectangleStateCreateInfoEXT& setFlags( PipelineDiscardRectangleStateCreateFlagsEXT flags_ ) { flags = flags_; return *this; } PipelineDiscardRectangleStateCreateInfoEXT& setDiscardRectangleMode( DiscardRectangleModeEXT discardRectangleMode_ ) { discardRectangleMode = discardRectangleMode_; return *this; } PipelineDiscardRectangleStateCreateInfoEXT& setDiscardRectangleCount( uint32_t discardRectangleCount_ ) { discardRectangleCount = discardRectangleCount_; return *this; } PipelineDiscardRectangleStateCreateInfoEXT& setPDiscardRectangles( const Rect2D* pDiscardRectangles_ ) { pDiscardRectangles = pDiscardRectangles_; return *this; } operator const VkPipelineDiscardRectangleStateCreateInfoEXT&() const { return *reinterpret_cast(this); } bool operator==( PipelineDiscardRectangleStateCreateInfoEXT const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( discardRectangleMode == rhs.discardRectangleMode ) && ( discardRectangleCount == rhs.discardRectangleCount ) && ( pDiscardRectangles == rhs.pDiscardRectangles ); } bool operator!=( PipelineDiscardRectangleStateCreateInfoEXT const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; PipelineDiscardRectangleStateCreateFlagsEXT flags; DiscardRectangleModeEXT discardRectangleMode; uint32_t discardRectangleCount; const Rect2D* pDiscardRectangles; }; static_assert( sizeof( PipelineDiscardRectangleStateCreateInfoEXT ) == sizeof( VkPipelineDiscardRectangleStateCreateInfoEXT ), "struct and wrapper have different size!" ); enum class SubpassDescriptionFlagBits { ePerViewAttributesNVX = VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX, ePerViewPositionXOnlyNVX = VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX }; using SubpassDescriptionFlags = Flags; VULKAN_HPP_INLINE SubpassDescriptionFlags operator|( SubpassDescriptionFlagBits bit0, SubpassDescriptionFlagBits bit1 ) { return SubpassDescriptionFlags( bit0 ) | bit1; } VULKAN_HPP_INLINE SubpassDescriptionFlags operator~( SubpassDescriptionFlagBits bits ) { return ~( SubpassDescriptionFlags( bits ) ); } template <> struct FlagTraits { enum { allFlags = VkFlags(SubpassDescriptionFlagBits::ePerViewAttributesNVX) | VkFlags(SubpassDescriptionFlagBits::ePerViewPositionXOnlyNVX) }; }; struct SubpassDescription { SubpassDescription( SubpassDescriptionFlags flags_ = SubpassDescriptionFlags(), PipelineBindPoint pipelineBindPoint_ = PipelineBindPoint::eGraphics, uint32_t inputAttachmentCount_ = 0, const AttachmentReference* pInputAttachments_ = nullptr, uint32_t colorAttachmentCount_ = 0, const AttachmentReference* pColorAttachments_ = nullptr, const AttachmentReference* pResolveAttachments_ = nullptr, const AttachmentReference* pDepthStencilAttachment_ = nullptr, uint32_t preserveAttachmentCount_ = 0, const uint32_t* pPreserveAttachments_ = nullptr ) : flags( flags_ ) , pipelineBindPoint( pipelineBindPoint_ ) , inputAttachmentCount( inputAttachmentCount_ ) , pInputAttachments( pInputAttachments_ ) , colorAttachmentCount( colorAttachmentCount_ ) , pColorAttachments( pColorAttachments_ ) , pResolveAttachments( pResolveAttachments_ ) , pDepthStencilAttachment( pDepthStencilAttachment_ ) , preserveAttachmentCount( preserveAttachmentCount_ ) , pPreserveAttachments( pPreserveAttachments_ ) { } SubpassDescription( VkSubpassDescription const & rhs ) { memcpy( this, &rhs, sizeof( SubpassDescription ) ); } SubpassDescription& operator=( VkSubpassDescription const & rhs ) { memcpy( this, &rhs, sizeof( SubpassDescription ) ); return *this; } SubpassDescription& setFlags( SubpassDescriptionFlags flags_ ) { flags = flags_; return *this; } SubpassDescription& setPipelineBindPoint( PipelineBindPoint pipelineBindPoint_ ) { pipelineBindPoint = pipelineBindPoint_; return *this; } SubpassDescription& setInputAttachmentCount( uint32_t inputAttachmentCount_ ) { inputAttachmentCount = inputAttachmentCount_; return *this; } SubpassDescription& setPInputAttachments( const AttachmentReference* pInputAttachments_ ) { pInputAttachments = pInputAttachments_; return *this; } SubpassDescription& setColorAttachmentCount( uint32_t colorAttachmentCount_ ) { colorAttachmentCount = colorAttachmentCount_; return *this; } SubpassDescription& setPColorAttachments( const AttachmentReference* pColorAttachments_ ) { pColorAttachments = pColorAttachments_; return *this; } SubpassDescription& setPResolveAttachments( const AttachmentReference* pResolveAttachments_ ) { pResolveAttachments = pResolveAttachments_; return *this; } SubpassDescription& setPDepthStencilAttachment( const AttachmentReference* pDepthStencilAttachment_ ) { pDepthStencilAttachment = pDepthStencilAttachment_; return *this; } SubpassDescription& setPreserveAttachmentCount( uint32_t preserveAttachmentCount_ ) { preserveAttachmentCount = preserveAttachmentCount_; return *this; } SubpassDescription& setPPreserveAttachments( const uint32_t* pPreserveAttachments_ ) { pPreserveAttachments = pPreserveAttachments_; return *this; } operator const VkSubpassDescription&() const { return *reinterpret_cast(this); } bool operator==( SubpassDescription const& rhs ) const { return ( flags == rhs.flags ) && ( pipelineBindPoint == rhs.pipelineBindPoint ) && ( inputAttachmentCount == rhs.inputAttachmentCount ) && ( pInputAttachments == rhs.pInputAttachments ) && ( colorAttachmentCount == rhs.colorAttachmentCount ) && ( pColorAttachments == rhs.pColorAttachments ) && ( pResolveAttachments == rhs.pResolveAttachments ) && ( pDepthStencilAttachment == rhs.pDepthStencilAttachment ) && ( preserveAttachmentCount == rhs.preserveAttachmentCount ) && ( pPreserveAttachments == rhs.pPreserveAttachments ); } bool operator!=( SubpassDescription const& rhs ) const { return !operator==( rhs ); } SubpassDescriptionFlags flags; PipelineBindPoint pipelineBindPoint; uint32_t inputAttachmentCount; const AttachmentReference* pInputAttachments; uint32_t colorAttachmentCount; const AttachmentReference* pColorAttachments; const AttachmentReference* pResolveAttachments; const AttachmentReference* pDepthStencilAttachment; uint32_t preserveAttachmentCount; const uint32_t* pPreserveAttachments; }; static_assert( sizeof( SubpassDescription ) == sizeof( VkSubpassDescription ), "struct and wrapper have different size!" ); struct RenderPassCreateInfo { RenderPassCreateInfo( RenderPassCreateFlags flags_ = RenderPassCreateFlags(), uint32_t attachmentCount_ = 0, const AttachmentDescription* pAttachments_ = nullptr, uint32_t subpassCount_ = 0, const SubpassDescription* pSubpasses_ = nullptr, uint32_t dependencyCount_ = 0, const SubpassDependency* pDependencies_ = nullptr ) : sType( StructureType::eRenderPassCreateInfo ) , pNext( nullptr ) , flags( flags_ ) , attachmentCount( attachmentCount_ ) , pAttachments( pAttachments_ ) , subpassCount( subpassCount_ ) , pSubpasses( pSubpasses_ ) , dependencyCount( dependencyCount_ ) , pDependencies( pDependencies_ ) { } RenderPassCreateInfo( VkRenderPassCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( RenderPassCreateInfo ) ); } RenderPassCreateInfo& operator=( VkRenderPassCreateInfo const & rhs ) { memcpy( this, &rhs, sizeof( RenderPassCreateInfo ) ); return *this; } RenderPassCreateInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } RenderPassCreateInfo& setFlags( RenderPassCreateFlags flags_ ) { flags = flags_; return *this; } RenderPassCreateInfo& setAttachmentCount( uint32_t attachmentCount_ ) { attachmentCount = attachmentCount_; return *this; } RenderPassCreateInfo& setPAttachments( const AttachmentDescription* pAttachments_ ) { pAttachments = pAttachments_; return *this; } RenderPassCreateInfo& setSubpassCount( uint32_t subpassCount_ ) { subpassCount = subpassCount_; return *this; } RenderPassCreateInfo& setPSubpasses( const SubpassDescription* pSubpasses_ ) { pSubpasses = pSubpasses_; return *this; } RenderPassCreateInfo& setDependencyCount( uint32_t dependencyCount_ ) { dependencyCount = dependencyCount_; return *this; } RenderPassCreateInfo& setPDependencies( const SubpassDependency* pDependencies_ ) { pDependencies = pDependencies_; return *this; } operator const VkRenderPassCreateInfo&() const { return *reinterpret_cast(this); } bool operator==( RenderPassCreateInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( attachmentCount == rhs.attachmentCount ) && ( pAttachments == rhs.pAttachments ) && ( subpassCount == rhs.subpassCount ) && ( pSubpasses == rhs.pSubpasses ) && ( dependencyCount == rhs.dependencyCount ) && ( pDependencies == rhs.pDependencies ); } bool operator!=( RenderPassCreateInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; RenderPassCreateFlags flags; uint32_t attachmentCount; const AttachmentDescription* pAttachments; uint32_t subpassCount; const SubpassDescription* pSubpasses; uint32_t dependencyCount; const SubpassDependency* pDependencies; }; static_assert( sizeof( RenderPassCreateInfo ) == sizeof( VkRenderPassCreateInfo ), "struct and wrapper have different size!" ); enum class PointClippingBehaviorKHR { eAllClipPlanes = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR, eUserClipPlanesOnly = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY_KHR }; struct PhysicalDevicePointClippingPropertiesKHR { operator const VkPhysicalDevicePointClippingPropertiesKHR&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDevicePointClippingPropertiesKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( pointClippingBehavior == rhs.pointClippingBehavior ); } bool operator!=( PhysicalDevicePointClippingPropertiesKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; PointClippingBehaviorKHR pointClippingBehavior; }; static_assert( sizeof( PhysicalDevicePointClippingPropertiesKHR ) == sizeof( VkPhysicalDevicePointClippingPropertiesKHR ), "struct and wrapper have different size!" ); enum class SamplerReductionModeKHR { eWeightedAverage = VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_KHR, eMin = VK_SAMPLER_REDUCTION_MODE_MIN_KHR, eMax = VK_SAMPLER_REDUCTION_MODE_MAX_KHR }; struct SamplerReductionModeCreateInfoKHR { SamplerReductionModeCreateInfoKHR( SamplerReductionModeKHR reductionMode_ = SamplerReductionModeKHR::eWeightedAverage ) : sType( StructureType::eSamplerReductionModeCreateInfoKHR ) , pNext( nullptr ) , reductionMode( reductionMode_ ) { } SamplerReductionModeCreateInfoKHR( VkSamplerReductionModeCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SamplerReductionModeCreateInfoKHR ) ); } SamplerReductionModeCreateInfoKHR& operator=( VkSamplerReductionModeCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SamplerReductionModeCreateInfoKHR ) ); return *this; } SamplerReductionModeCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SamplerReductionModeCreateInfoKHR& setReductionMode( SamplerReductionModeKHR reductionMode_ ) { reductionMode = reductionMode_; return *this; } operator const VkSamplerReductionModeCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( SamplerReductionModeCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( reductionMode == rhs.reductionMode ); } bool operator!=( SamplerReductionModeCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; SamplerReductionModeKHR reductionMode; }; static_assert( sizeof( SamplerReductionModeCreateInfoKHR ) == sizeof( VkSamplerReductionModeCreateInfoKHR ), "struct and wrapper have different size!" ); enum class TessellationDomainOriginKHR { eUpperLeft = VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR, eLowerLeft = VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR }; struct PipelineTessellationDomainOriginStateCreateInfoKHR { PipelineTessellationDomainOriginStateCreateInfoKHR( TessellationDomainOriginKHR domainOrigin_ = TessellationDomainOriginKHR::eUpperLeft ) : sType( StructureType::ePipelineTessellationDomainOriginStateCreateInfoKHR ) , pNext( nullptr ) , domainOrigin( domainOrigin_ ) { } PipelineTessellationDomainOriginStateCreateInfoKHR( VkPipelineTessellationDomainOriginStateCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PipelineTessellationDomainOriginStateCreateInfoKHR ) ); } PipelineTessellationDomainOriginStateCreateInfoKHR& operator=( VkPipelineTessellationDomainOriginStateCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( PipelineTessellationDomainOriginStateCreateInfoKHR ) ); return *this; } PipelineTessellationDomainOriginStateCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } PipelineTessellationDomainOriginStateCreateInfoKHR& setDomainOrigin( TessellationDomainOriginKHR domainOrigin_ ) { domainOrigin = domainOrigin_; return *this; } operator const VkPipelineTessellationDomainOriginStateCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( PipelineTessellationDomainOriginStateCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( domainOrigin == rhs.domainOrigin ); } bool operator!=( PipelineTessellationDomainOriginStateCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; TessellationDomainOriginKHR domainOrigin; }; static_assert( sizeof( PipelineTessellationDomainOriginStateCreateInfoKHR ) == sizeof( VkPipelineTessellationDomainOriginStateCreateInfoKHR ), "struct and wrapper have different size!" ); enum class SamplerYCbCrModelConversionKHR { eVkSamplerYCbCrModelConversionRgbIdentity = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY_KHR, eVkSamplerYCbCrModelConversionYCbCrIdentity = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY_KHR, eVkSamplerYCbCrModelConversionYCbCr709 = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709_KHR, eVkSamplerYCbCrModelConversionYCbCr601 = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601_KHR, eVkSamplerYCbCrModelConversionYCbCr2020 = VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020_KHR }; enum class SamplerYCbCrRangeKHR { eVkSamplerYCbCrRangeKhronos = VK_SAMPLER_YCBCR_RANGE_KHRONOS_KHR, eVkSamplerYCbCrRangeItuFull = VK_SAMPLER_YCBCR_RANGE_ITU_FULL_KHR, eVkSamplerYCbCrRangeItuNarrow = VK_SAMPLER_YCBCR_RANGE_ITU_NARROW_KHR }; enum class ChromaLocationKHR { eCositedEven = VK_CHROMA_LOCATION_COSITED_EVEN_KHR, eMidpoint = VK_CHROMA_LOCATION_MIDPOINT_KHR }; struct SamplerYCbCrConversionCreateInfoKHR { SamplerYCbCrConversionCreateInfoKHR( Format format_ = Format::eUndefined, SamplerYCbCrModelConversionKHR YCbCrModel_ = SamplerYCbCrModelConversionKHR::eVkSamplerYCbCrModelConversionRgbIdentity, SamplerYCbCrRangeKHR YCbCrRange_ = SamplerYCbCrRangeKHR::eVkSamplerYCbCrRangeKhronos, ComponentMapping components_ = ComponentMapping(), ChromaLocationKHR xChromaOffset_ = ChromaLocationKHR::eCositedEven, ChromaLocationKHR yChromaOffset_ = ChromaLocationKHR::eCositedEven, Filter chromaFilter_ = Filter::eNearest, Bool32 forceExplicitReconstruction_ = 0 ) : sType( StructureType::eSamplerYCbCrConversionCreateInfoKHR ) , pNext( nullptr ) , format( format_ ) , YCbCrModel( YCbCrModel_ ) , YCbCrRange( YCbCrRange_ ) , components( components_ ) , xChromaOffset( xChromaOffset_ ) , yChromaOffset( yChromaOffset_ ) , chromaFilter( chromaFilter_ ) , forceExplicitReconstruction( forceExplicitReconstruction_ ) { } SamplerYCbCrConversionCreateInfoKHR( VkSamplerYCbCrConversionCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SamplerYCbCrConversionCreateInfoKHR ) ); } SamplerYCbCrConversionCreateInfoKHR& operator=( VkSamplerYCbCrConversionCreateInfoKHR const & rhs ) { memcpy( this, &rhs, sizeof( SamplerYCbCrConversionCreateInfoKHR ) ); return *this; } SamplerYCbCrConversionCreateInfoKHR& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SamplerYCbCrConversionCreateInfoKHR& setFormat( Format format_ ) { format = format_; return *this; } SamplerYCbCrConversionCreateInfoKHR& setYCbCrModel( SamplerYCbCrModelConversionKHR YCbCrModel_ ) { YCbCrModel = YCbCrModel_; return *this; } SamplerYCbCrConversionCreateInfoKHR& setYCbCrRange( SamplerYCbCrRangeKHR YCbCrRange_ ) { YCbCrRange = YCbCrRange_; return *this; } SamplerYCbCrConversionCreateInfoKHR& setComponents( ComponentMapping components_ ) { components = components_; return *this; } SamplerYCbCrConversionCreateInfoKHR& setXChromaOffset( ChromaLocationKHR xChromaOffset_ ) { xChromaOffset = xChromaOffset_; return *this; } SamplerYCbCrConversionCreateInfoKHR& setYChromaOffset( ChromaLocationKHR yChromaOffset_ ) { yChromaOffset = yChromaOffset_; return *this; } SamplerYCbCrConversionCreateInfoKHR& setChromaFilter( Filter chromaFilter_ ) { chromaFilter = chromaFilter_; return *this; } SamplerYCbCrConversionCreateInfoKHR& setForceExplicitReconstruction( Bool32 forceExplicitReconstruction_ ) { forceExplicitReconstruction = forceExplicitReconstruction_; return *this; } operator const VkSamplerYCbCrConversionCreateInfoKHR&() const { return *reinterpret_cast(this); } bool operator==( SamplerYCbCrConversionCreateInfoKHR const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( format == rhs.format ) && ( YCbCrModel == rhs.YCbCrModel ) && ( YCbCrRange == rhs.YCbCrRange ) && ( components == rhs.components ) && ( xChromaOffset == rhs.xChromaOffset ) && ( yChromaOffset == rhs.yChromaOffset ) && ( chromaFilter == rhs.chromaFilter ) && ( forceExplicitReconstruction == rhs.forceExplicitReconstruction ); } bool operator!=( SamplerYCbCrConversionCreateInfoKHR const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; Format format; SamplerYCbCrModelConversionKHR YCbCrModel; SamplerYCbCrRangeKHR YCbCrRange; ComponentMapping components; ChromaLocationKHR xChromaOffset; ChromaLocationKHR yChromaOffset; Filter chromaFilter; Bool32 forceExplicitReconstruction; }; static_assert( sizeof( SamplerYCbCrConversionCreateInfoKHR ) == sizeof( VkSamplerYCbCrConversionCreateInfoKHR ), "struct and wrapper have different size!" ); Result enumerateInstanceLayerProperties( uint32_t* pPropertyCount, LayerProperties* pProperties ); #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type enumerateInstanceLayerProperties(); #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result enumerateInstanceLayerProperties( uint32_t* pPropertyCount, LayerProperties* pProperties ) { return static_cast( vkEnumerateInstanceLayerProperties( pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type enumerateInstanceLayerProperties() { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkEnumerateInstanceLayerProperties( &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkEnumerateInstanceLayerProperties( &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::enumerateInstanceLayerProperties" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result enumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties ); #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type enumerateInstanceExtensionProperties( Optional layerName = nullptr ); #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result enumerateInstanceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties ) { return static_cast( vkEnumerateInstanceExtensionProperties( pLayerName, pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type enumerateInstanceExtensionProperties( Optional layerName ) { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkEnumerateInstanceExtensionProperties( layerName ? layerName->c_str() : nullptr, &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkEnumerateInstanceExtensionProperties( layerName ? layerName->c_str() : nullptr, &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::enumerateInstanceExtensionProperties" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ // forward declarations struct CmdProcessCommandsInfoNVX; class CommandBuffer { public: CommandBuffer() : m_commandBuffer(VK_NULL_HANDLE) {} CommandBuffer( std::nullptr_t ) : m_commandBuffer(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT CommandBuffer( VkCommandBuffer commandBuffer ) : m_commandBuffer( commandBuffer ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) CommandBuffer & operator=(VkCommandBuffer commandBuffer) { m_commandBuffer = commandBuffer; return *this; } #endif CommandBuffer & operator=( std::nullptr_t ) { m_commandBuffer = VK_NULL_HANDLE; return *this; } bool operator==( CommandBuffer const & rhs ) const { return m_commandBuffer == rhs.m_commandBuffer; } bool operator!=(CommandBuffer const & rhs ) const { return m_commandBuffer != rhs.m_commandBuffer; } bool operator<(CommandBuffer const & rhs ) const { return m_commandBuffer < rhs.m_commandBuffer; } Result begin( const CommandBufferBeginInfo* pBeginInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type begin( const CommandBufferBeginInfo & beginInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result end() const; #else ResultValueType::type end() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result reset( CommandBufferResetFlags flags ) const; #else ResultValueType::type reset( CommandBufferResetFlags flags ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void bindPipeline( PipelineBindPoint pipelineBindPoint, Pipeline pipeline ) const; void setViewport( uint32_t firstViewport, uint32_t viewportCount, const Viewport* pViewports ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void setViewport( uint32_t firstViewport, ArrayProxy viewports ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void setScissor( uint32_t firstScissor, uint32_t scissorCount, const Rect2D* pScissors ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void setScissor( uint32_t firstScissor, ArrayProxy scissors ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void setLineWidth( float lineWidth ) const; void setDepthBias( float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor ) const; void setBlendConstants( const float blendConstants[4] ) const; void setDepthBounds( float minDepthBounds, float maxDepthBounds ) const; void setStencilCompareMask( StencilFaceFlags faceMask, uint32_t compareMask ) const; void setStencilWriteMask( StencilFaceFlags faceMask, uint32_t writeMask ) const; void setStencilReference( StencilFaceFlags faceMask, uint32_t reference ) const; void bindDescriptorSets( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void bindDescriptorSets( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, ArrayProxy descriptorSets, ArrayProxy dynamicOffsets ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void bindIndexBuffer( Buffer buffer, DeviceSize offset, IndexType indexType ) const; void bindVertexBuffers( uint32_t firstBinding, uint32_t bindingCount, const Buffer* pBuffers, const DeviceSize* pOffsets ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void bindVertexBuffers( uint32_t firstBinding, ArrayProxy buffers, ArrayProxy offsets ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void draw( uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance ) const; void drawIndexed( uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance ) const; void drawIndirect( Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride ) const; void drawIndexedIndirect( Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride ) const; void dispatch( uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ ) const; void dispatchIndirect( Buffer buffer, DeviceSize offset ) const; void copyBuffer( Buffer srcBuffer, Buffer dstBuffer, uint32_t regionCount, const BufferCopy* pRegions ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void copyBuffer( Buffer srcBuffer, Buffer dstBuffer, ArrayProxy regions ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void copyImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageCopy* pRegions ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void copyImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy regions ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void blitImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageBlit* pRegions, Filter filter ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void blitImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy regions, Filter filter ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void copyBufferToImage( Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const BufferImageCopy* pRegions ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void copyBufferToImage( Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, ArrayProxy regions ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void copyImageToBuffer( Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, uint32_t regionCount, const BufferImageCopy* pRegions ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void copyImageToBuffer( Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, ArrayProxy regions ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void updateBuffer( Buffer dstBuffer, DeviceSize dstOffset, DeviceSize dataSize, const void* pData ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template void updateBuffer( Buffer dstBuffer, DeviceSize dstOffset, ArrayProxy data ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void fillBuffer( Buffer dstBuffer, DeviceSize dstOffset, DeviceSize size, uint32_t data ) const; void clearColorImage( Image image, ImageLayout imageLayout, const ClearColorValue* pColor, uint32_t rangeCount, const ImageSubresourceRange* pRanges ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void clearColorImage( Image image, ImageLayout imageLayout, const ClearColorValue & color, ArrayProxy ranges ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void clearDepthStencilImage( Image image, ImageLayout imageLayout, const ClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const ImageSubresourceRange* pRanges ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void clearDepthStencilImage( Image image, ImageLayout imageLayout, const ClearDepthStencilValue & depthStencil, ArrayProxy ranges ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void clearAttachments( uint32_t attachmentCount, const ClearAttachment* pAttachments, uint32_t rectCount, const ClearRect* pRects ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void clearAttachments( ArrayProxy attachments, ArrayProxy rects ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void resolveImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageResolve* pRegions ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void resolveImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy regions ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void setEvent( Event event, PipelineStageFlags stageMask ) const; void resetEvent( Event event, PipelineStageFlags stageMask ) const; void waitEvents( uint32_t eventCount, const Event* pEvents, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void waitEvents( ArrayProxy events, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, ArrayProxy memoryBarriers, ArrayProxy bufferMemoryBarriers, ArrayProxy imageMemoryBarriers ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void pipelineBarrier( PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void pipelineBarrier( PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, ArrayProxy memoryBarriers, ArrayProxy bufferMemoryBarriers, ArrayProxy imageMemoryBarriers ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void beginQuery( QueryPool queryPool, uint32_t query, QueryControlFlags flags ) const; void endQuery( QueryPool queryPool, uint32_t query ) const; void resetQueryPool( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount ) const; void writeTimestamp( PipelineStageFlagBits pipelineStage, QueryPool queryPool, uint32_t query ) const; void copyQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, Buffer dstBuffer, DeviceSize dstOffset, DeviceSize stride, QueryResultFlags flags ) const; void pushConstants( PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template void pushConstants( PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, ArrayProxy values ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void beginRenderPass( const RenderPassBeginInfo* pRenderPassBegin, SubpassContents contents ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void beginRenderPass( const RenderPassBeginInfo & renderPassBegin, SubpassContents contents ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void nextSubpass( SubpassContents contents ) const; void endRenderPass() const; void executeCommands( uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void executeCommands( ArrayProxy commandBuffers ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void debugMarkerBeginEXT( DebugMarkerMarkerInfoEXT* pMarkerInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE DebugMarkerMarkerInfoEXT debugMarkerBeginEXT() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void debugMarkerEndEXT() const; void debugMarkerInsertEXT( DebugMarkerMarkerInfoEXT* pMarkerInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE DebugMarkerMarkerInfoEXT debugMarkerInsertEXT() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void drawIndirectCountAMD( Buffer buffer, DeviceSize offset, Buffer countBuffer, DeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride ) const; void drawIndexedIndirectCountAMD( Buffer buffer, DeviceSize offset, Buffer countBuffer, DeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride ) const; void processCommandsNVX( const CmdProcessCommandsInfoNVX* pProcessCommandsInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void processCommandsNVX( const CmdProcessCommandsInfoNVX & processCommandsInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void reserveSpaceForCommandsNVX( const CmdReserveSpaceForCommandsInfoNVX* pReserveSpaceInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void reserveSpaceForCommandsNVX( const CmdReserveSpaceForCommandsInfoNVX & reserveSpaceInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void pushDescriptorSetKHR( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t set, uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void pushDescriptorSetKHR( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t set, ArrayProxy descriptorWrites ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void setDeviceMaskKHX( uint32_t deviceMask ) const; void dispatchBaseKHX( uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ ) const; void pushDescriptorSetWithTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, PipelineLayout layout, uint32_t set, const void* pData ) const; void setViewportWScalingNV( uint32_t firstViewport, uint32_t viewportCount, const ViewportWScalingNV* pViewportWScalings ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void setViewportWScalingNV( uint32_t firstViewport, ArrayProxy viewportWScalings ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void setDiscardRectangleEXT( uint32_t firstDiscardRectangle, uint32_t discardRectangleCount, const Rect2D* pDiscardRectangles ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void setDiscardRectangleEXT( uint32_t firstDiscardRectangle, ArrayProxy discardRectangles ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_TYPESAFE_EXPLICIT operator VkCommandBuffer() const { return m_commandBuffer; } explicit operator bool() const { return m_commandBuffer != VK_NULL_HANDLE; } bool operator!() const { return m_commandBuffer == VK_NULL_HANDLE; } private: VkCommandBuffer m_commandBuffer; }; static_assert( sizeof( CommandBuffer ) == sizeof( VkCommandBuffer ), "handle and wrapper have different size!" ); VULKAN_HPP_INLINE Result CommandBuffer::begin( const CommandBufferBeginInfo* pBeginInfo ) const { return static_cast( vkBeginCommandBuffer( m_commandBuffer, reinterpret_cast( pBeginInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type CommandBuffer::begin( const CommandBufferBeginInfo & beginInfo ) const { Result result = static_cast( vkBeginCommandBuffer( m_commandBuffer, reinterpret_cast( &beginInfo ) ) ); return createResultValue( result, "vk::CommandBuffer::begin" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result CommandBuffer::end() const { return static_cast( vkEndCommandBuffer( m_commandBuffer ) ); } #else VULKAN_HPP_INLINE ResultValueType::type CommandBuffer::end() const { Result result = static_cast( vkEndCommandBuffer( m_commandBuffer ) ); return createResultValue( result, "vk::CommandBuffer::end" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result CommandBuffer::reset( CommandBufferResetFlags flags ) const { return static_cast( vkResetCommandBuffer( m_commandBuffer, static_cast( flags ) ) ); } #else VULKAN_HPP_INLINE ResultValueType::type CommandBuffer::reset( CommandBufferResetFlags flags ) const { Result result = static_cast( vkResetCommandBuffer( m_commandBuffer, static_cast( flags ) ) ); return createResultValue( result, "vk::CommandBuffer::reset" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::bindPipeline( PipelineBindPoint pipelineBindPoint, Pipeline pipeline ) const { vkCmdBindPipeline( m_commandBuffer, static_cast( pipelineBindPoint ), static_cast( pipeline ) ); } VULKAN_HPP_INLINE void CommandBuffer::setViewport( uint32_t firstViewport, uint32_t viewportCount, const Viewport* pViewports ) const { vkCmdSetViewport( m_commandBuffer, firstViewport, viewportCount, reinterpret_cast( pViewports ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::setViewport( uint32_t firstViewport, ArrayProxy viewports ) const { vkCmdSetViewport( m_commandBuffer, firstViewport, viewports.size() , reinterpret_cast( viewports.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::setScissor( uint32_t firstScissor, uint32_t scissorCount, const Rect2D* pScissors ) const { vkCmdSetScissor( m_commandBuffer, firstScissor, scissorCount, reinterpret_cast( pScissors ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::setScissor( uint32_t firstScissor, ArrayProxy scissors ) const { vkCmdSetScissor( m_commandBuffer, firstScissor, scissors.size() , reinterpret_cast( scissors.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::setLineWidth( float lineWidth ) const { vkCmdSetLineWidth( m_commandBuffer, lineWidth ); } VULKAN_HPP_INLINE void CommandBuffer::setDepthBias( float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor ) const { vkCmdSetDepthBias( m_commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor ); } VULKAN_HPP_INLINE void CommandBuffer::setBlendConstants( const float blendConstants[4] ) const { vkCmdSetBlendConstants( m_commandBuffer, blendConstants ); } VULKAN_HPP_INLINE void CommandBuffer::setDepthBounds( float minDepthBounds, float maxDepthBounds ) const { vkCmdSetDepthBounds( m_commandBuffer, minDepthBounds, maxDepthBounds ); } VULKAN_HPP_INLINE void CommandBuffer::setStencilCompareMask( StencilFaceFlags faceMask, uint32_t compareMask ) const { vkCmdSetStencilCompareMask( m_commandBuffer, static_cast( faceMask ), compareMask ); } VULKAN_HPP_INLINE void CommandBuffer::setStencilWriteMask( StencilFaceFlags faceMask, uint32_t writeMask ) const { vkCmdSetStencilWriteMask( m_commandBuffer, static_cast( faceMask ), writeMask ); } VULKAN_HPP_INLINE void CommandBuffer::setStencilReference( StencilFaceFlags faceMask, uint32_t reference ) const { vkCmdSetStencilReference( m_commandBuffer, static_cast( faceMask ), reference ); } VULKAN_HPP_INLINE void CommandBuffer::bindDescriptorSets( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets ) const { vkCmdBindDescriptorSets( m_commandBuffer, static_cast( pipelineBindPoint ), static_cast( layout ), firstSet, descriptorSetCount, reinterpret_cast( pDescriptorSets ), dynamicOffsetCount, pDynamicOffsets ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::bindDescriptorSets( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, ArrayProxy descriptorSets, ArrayProxy dynamicOffsets ) const { vkCmdBindDescriptorSets( m_commandBuffer, static_cast( pipelineBindPoint ), static_cast( layout ), firstSet, descriptorSets.size() , reinterpret_cast( descriptorSets.data() ), dynamicOffsets.size() , dynamicOffsets.data() ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::bindIndexBuffer( Buffer buffer, DeviceSize offset, IndexType indexType ) const { vkCmdBindIndexBuffer( m_commandBuffer, static_cast( buffer ), offset, static_cast( indexType ) ); } VULKAN_HPP_INLINE void CommandBuffer::bindVertexBuffers( uint32_t firstBinding, uint32_t bindingCount, const Buffer* pBuffers, const DeviceSize* pOffsets ) const { vkCmdBindVertexBuffers( m_commandBuffer, firstBinding, bindingCount, reinterpret_cast( pBuffers ), pOffsets ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::bindVertexBuffers( uint32_t firstBinding, ArrayProxy buffers, ArrayProxy offsets ) const { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( buffers.size() == offsets.size() ); #else if ( buffers.size() != offsets.size() ) { throw LogicError( "vk::CommandBuffer::bindVertexBuffers: buffers.size() != offsets.size()" ); } #endif // VULKAN_HPP_NO_EXCEPTIONS vkCmdBindVertexBuffers( m_commandBuffer, firstBinding, buffers.size() , reinterpret_cast( buffers.data() ), offsets.data() ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::draw( uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance ) const { vkCmdDraw( m_commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance ); } VULKAN_HPP_INLINE void CommandBuffer::drawIndexed( uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance ) const { vkCmdDrawIndexed( m_commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance ); } VULKAN_HPP_INLINE void CommandBuffer::drawIndirect( Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride ) const { vkCmdDrawIndirect( m_commandBuffer, static_cast( buffer ), offset, drawCount, stride ); } VULKAN_HPP_INLINE void CommandBuffer::drawIndexedIndirect( Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride ) const { vkCmdDrawIndexedIndirect( m_commandBuffer, static_cast( buffer ), offset, drawCount, stride ); } VULKAN_HPP_INLINE void CommandBuffer::dispatch( uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ ) const { vkCmdDispatch( m_commandBuffer, groupCountX, groupCountY, groupCountZ ); } VULKAN_HPP_INLINE void CommandBuffer::dispatchIndirect( Buffer buffer, DeviceSize offset ) const { vkCmdDispatchIndirect( m_commandBuffer, static_cast( buffer ), offset ); } VULKAN_HPP_INLINE void CommandBuffer::copyBuffer( Buffer srcBuffer, Buffer dstBuffer, uint32_t regionCount, const BufferCopy* pRegions ) const { vkCmdCopyBuffer( m_commandBuffer, static_cast( srcBuffer ), static_cast( dstBuffer ), regionCount, reinterpret_cast( pRegions ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::copyBuffer( Buffer srcBuffer, Buffer dstBuffer, ArrayProxy regions ) const { vkCmdCopyBuffer( m_commandBuffer, static_cast( srcBuffer ), static_cast( dstBuffer ), regions.size() , reinterpret_cast( regions.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::copyImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageCopy* pRegions ) const { vkCmdCopyImage( m_commandBuffer, static_cast( srcImage ), static_cast( srcImageLayout ), static_cast( dstImage ), static_cast( dstImageLayout ), regionCount, reinterpret_cast( pRegions ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::copyImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy regions ) const { vkCmdCopyImage( m_commandBuffer, static_cast( srcImage ), static_cast( srcImageLayout ), static_cast( dstImage ), static_cast( dstImageLayout ), regions.size() , reinterpret_cast( regions.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::blitImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageBlit* pRegions, Filter filter ) const { vkCmdBlitImage( m_commandBuffer, static_cast( srcImage ), static_cast( srcImageLayout ), static_cast( dstImage ), static_cast( dstImageLayout ), regionCount, reinterpret_cast( pRegions ), static_cast( filter ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::blitImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy regions, Filter filter ) const { vkCmdBlitImage( m_commandBuffer, static_cast( srcImage ), static_cast( srcImageLayout ), static_cast( dstImage ), static_cast( dstImageLayout ), regions.size() , reinterpret_cast( regions.data() ), static_cast( filter ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::copyBufferToImage( Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const BufferImageCopy* pRegions ) const { vkCmdCopyBufferToImage( m_commandBuffer, static_cast( srcBuffer ), static_cast( dstImage ), static_cast( dstImageLayout ), regionCount, reinterpret_cast( pRegions ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::copyBufferToImage( Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, ArrayProxy regions ) const { vkCmdCopyBufferToImage( m_commandBuffer, static_cast( srcBuffer ), static_cast( dstImage ), static_cast( dstImageLayout ), regions.size() , reinterpret_cast( regions.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::copyImageToBuffer( Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, uint32_t regionCount, const BufferImageCopy* pRegions ) const { vkCmdCopyImageToBuffer( m_commandBuffer, static_cast( srcImage ), static_cast( srcImageLayout ), static_cast( dstBuffer ), regionCount, reinterpret_cast( pRegions ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::copyImageToBuffer( Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, ArrayProxy regions ) const { vkCmdCopyImageToBuffer( m_commandBuffer, static_cast( srcImage ), static_cast( srcImageLayout ), static_cast( dstBuffer ), regions.size() , reinterpret_cast( regions.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::updateBuffer( Buffer dstBuffer, DeviceSize dstOffset, DeviceSize dataSize, const void* pData ) const { vkCmdUpdateBuffer( m_commandBuffer, static_cast( dstBuffer ), dstOffset, dataSize, pData ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE void CommandBuffer::updateBuffer( Buffer dstBuffer, DeviceSize dstOffset, ArrayProxy data ) const { vkCmdUpdateBuffer( m_commandBuffer, static_cast( dstBuffer ), dstOffset, data.size() * sizeof( T ) , reinterpret_cast( data.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::fillBuffer( Buffer dstBuffer, DeviceSize dstOffset, DeviceSize size, uint32_t data ) const { vkCmdFillBuffer( m_commandBuffer, static_cast( dstBuffer ), dstOffset, size, data ); } VULKAN_HPP_INLINE void CommandBuffer::clearColorImage( Image image, ImageLayout imageLayout, const ClearColorValue* pColor, uint32_t rangeCount, const ImageSubresourceRange* pRanges ) const { vkCmdClearColorImage( m_commandBuffer, static_cast( image ), static_cast( imageLayout ), reinterpret_cast( pColor ), rangeCount, reinterpret_cast( pRanges ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::clearColorImage( Image image, ImageLayout imageLayout, const ClearColorValue & color, ArrayProxy ranges ) const { vkCmdClearColorImage( m_commandBuffer, static_cast( image ), static_cast( imageLayout ), reinterpret_cast( &color ), ranges.size() , reinterpret_cast( ranges.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::clearDepthStencilImage( Image image, ImageLayout imageLayout, const ClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const ImageSubresourceRange* pRanges ) const { vkCmdClearDepthStencilImage( m_commandBuffer, static_cast( image ), static_cast( imageLayout ), reinterpret_cast( pDepthStencil ), rangeCount, reinterpret_cast( pRanges ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::clearDepthStencilImage( Image image, ImageLayout imageLayout, const ClearDepthStencilValue & depthStencil, ArrayProxy ranges ) const { vkCmdClearDepthStencilImage( m_commandBuffer, static_cast( image ), static_cast( imageLayout ), reinterpret_cast( &depthStencil ), ranges.size() , reinterpret_cast( ranges.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::clearAttachments( uint32_t attachmentCount, const ClearAttachment* pAttachments, uint32_t rectCount, const ClearRect* pRects ) const { vkCmdClearAttachments( m_commandBuffer, attachmentCount, reinterpret_cast( pAttachments ), rectCount, reinterpret_cast( pRects ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::clearAttachments( ArrayProxy attachments, ArrayProxy rects ) const { vkCmdClearAttachments( m_commandBuffer, attachments.size() , reinterpret_cast( attachments.data() ), rects.size() , reinterpret_cast( rects.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::resolveImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageResolve* pRegions ) const { vkCmdResolveImage( m_commandBuffer, static_cast( srcImage ), static_cast( srcImageLayout ), static_cast( dstImage ), static_cast( dstImageLayout ), regionCount, reinterpret_cast( pRegions ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::resolveImage( Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy regions ) const { vkCmdResolveImage( m_commandBuffer, static_cast( srcImage ), static_cast( srcImageLayout ), static_cast( dstImage ), static_cast( dstImageLayout ), regions.size() , reinterpret_cast( regions.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::setEvent( Event event, PipelineStageFlags stageMask ) const { vkCmdSetEvent( m_commandBuffer, static_cast( event ), static_cast( stageMask ) ); } VULKAN_HPP_INLINE void CommandBuffer::resetEvent( Event event, PipelineStageFlags stageMask ) const { vkCmdResetEvent( m_commandBuffer, static_cast( event ), static_cast( stageMask ) ); } VULKAN_HPP_INLINE void CommandBuffer::waitEvents( uint32_t eventCount, const Event* pEvents, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers ) const { vkCmdWaitEvents( m_commandBuffer, eventCount, reinterpret_cast( pEvents ), static_cast( srcStageMask ), static_cast( dstStageMask ), memoryBarrierCount, reinterpret_cast( pMemoryBarriers ), bufferMemoryBarrierCount, reinterpret_cast( pBufferMemoryBarriers ), imageMemoryBarrierCount, reinterpret_cast( pImageMemoryBarriers ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::waitEvents( ArrayProxy events, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, ArrayProxy memoryBarriers, ArrayProxy bufferMemoryBarriers, ArrayProxy imageMemoryBarriers ) const { vkCmdWaitEvents( m_commandBuffer, events.size() , reinterpret_cast( events.data() ), static_cast( srcStageMask ), static_cast( dstStageMask ), memoryBarriers.size() , reinterpret_cast( memoryBarriers.data() ), bufferMemoryBarriers.size() , reinterpret_cast( bufferMemoryBarriers.data() ), imageMemoryBarriers.size() , reinterpret_cast( imageMemoryBarriers.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::pipelineBarrier( PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers ) const { vkCmdPipelineBarrier( m_commandBuffer, static_cast( srcStageMask ), static_cast( dstStageMask ), static_cast( dependencyFlags ), memoryBarrierCount, reinterpret_cast( pMemoryBarriers ), bufferMemoryBarrierCount, reinterpret_cast( pBufferMemoryBarriers ), imageMemoryBarrierCount, reinterpret_cast( pImageMemoryBarriers ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::pipelineBarrier( PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, ArrayProxy memoryBarriers, ArrayProxy bufferMemoryBarriers, ArrayProxy imageMemoryBarriers ) const { vkCmdPipelineBarrier( m_commandBuffer, static_cast( srcStageMask ), static_cast( dstStageMask ), static_cast( dependencyFlags ), memoryBarriers.size() , reinterpret_cast( memoryBarriers.data() ), bufferMemoryBarriers.size() , reinterpret_cast( bufferMemoryBarriers.data() ), imageMemoryBarriers.size() , reinterpret_cast( imageMemoryBarriers.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::beginQuery( QueryPool queryPool, uint32_t query, QueryControlFlags flags ) const { vkCmdBeginQuery( m_commandBuffer, static_cast( queryPool ), query, static_cast( flags ) ); } VULKAN_HPP_INLINE void CommandBuffer::endQuery( QueryPool queryPool, uint32_t query ) const { vkCmdEndQuery( m_commandBuffer, static_cast( queryPool ), query ); } VULKAN_HPP_INLINE void CommandBuffer::resetQueryPool( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount ) const { vkCmdResetQueryPool( m_commandBuffer, static_cast( queryPool ), firstQuery, queryCount ); } VULKAN_HPP_INLINE void CommandBuffer::writeTimestamp( PipelineStageFlagBits pipelineStage, QueryPool queryPool, uint32_t query ) const { vkCmdWriteTimestamp( m_commandBuffer, static_cast( pipelineStage ), static_cast( queryPool ), query ); } VULKAN_HPP_INLINE void CommandBuffer::copyQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, Buffer dstBuffer, DeviceSize dstOffset, DeviceSize stride, QueryResultFlags flags ) const { vkCmdCopyQueryPoolResults( m_commandBuffer, static_cast( queryPool ), firstQuery, queryCount, static_cast( dstBuffer ), dstOffset, stride, static_cast( flags ) ); } VULKAN_HPP_INLINE void CommandBuffer::pushConstants( PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues ) const { vkCmdPushConstants( m_commandBuffer, static_cast( layout ), static_cast( stageFlags ), offset, size, pValues ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE void CommandBuffer::pushConstants( PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, ArrayProxy values ) const { vkCmdPushConstants( m_commandBuffer, static_cast( layout ), static_cast( stageFlags ), offset, values.size() * sizeof( T ) , reinterpret_cast( values.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::beginRenderPass( const RenderPassBeginInfo* pRenderPassBegin, SubpassContents contents ) const { vkCmdBeginRenderPass( m_commandBuffer, reinterpret_cast( pRenderPassBegin ), static_cast( contents ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::beginRenderPass( const RenderPassBeginInfo & renderPassBegin, SubpassContents contents ) const { vkCmdBeginRenderPass( m_commandBuffer, reinterpret_cast( &renderPassBegin ), static_cast( contents ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::nextSubpass( SubpassContents contents ) const { vkCmdNextSubpass( m_commandBuffer, static_cast( contents ) ); } VULKAN_HPP_INLINE void CommandBuffer::endRenderPass() const { vkCmdEndRenderPass( m_commandBuffer ); } VULKAN_HPP_INLINE void CommandBuffer::executeCommands( uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers ) const { vkCmdExecuteCommands( m_commandBuffer, commandBufferCount, reinterpret_cast( pCommandBuffers ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::executeCommands( ArrayProxy commandBuffers ) const { vkCmdExecuteCommands( m_commandBuffer, commandBuffers.size() , reinterpret_cast( commandBuffers.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::debugMarkerBeginEXT( DebugMarkerMarkerInfoEXT* pMarkerInfo ) const { vkCmdDebugMarkerBeginEXT( m_commandBuffer, reinterpret_cast( pMarkerInfo ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE DebugMarkerMarkerInfoEXT CommandBuffer::debugMarkerBeginEXT() const { DebugMarkerMarkerInfoEXT markerInfo; vkCmdDebugMarkerBeginEXT( m_commandBuffer, reinterpret_cast( &markerInfo ) ); return markerInfo; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::debugMarkerEndEXT() const { vkCmdDebugMarkerEndEXT( m_commandBuffer ); } VULKAN_HPP_INLINE void CommandBuffer::debugMarkerInsertEXT( DebugMarkerMarkerInfoEXT* pMarkerInfo ) const { vkCmdDebugMarkerInsertEXT( m_commandBuffer, reinterpret_cast( pMarkerInfo ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE DebugMarkerMarkerInfoEXT CommandBuffer::debugMarkerInsertEXT() const { DebugMarkerMarkerInfoEXT markerInfo; vkCmdDebugMarkerInsertEXT( m_commandBuffer, reinterpret_cast( &markerInfo ) ); return markerInfo; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::drawIndirectCountAMD( Buffer buffer, DeviceSize offset, Buffer countBuffer, DeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride ) const { vkCmdDrawIndirectCountAMD( m_commandBuffer, static_cast( buffer ), offset, static_cast( countBuffer ), countBufferOffset, maxDrawCount, stride ); } VULKAN_HPP_INLINE void CommandBuffer::drawIndexedIndirectCountAMD( Buffer buffer, DeviceSize offset, Buffer countBuffer, DeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride ) const { vkCmdDrawIndexedIndirectCountAMD( m_commandBuffer, static_cast( buffer ), offset, static_cast( countBuffer ), countBufferOffset, maxDrawCount, stride ); } VULKAN_HPP_INLINE void CommandBuffer::processCommandsNVX( const CmdProcessCommandsInfoNVX* pProcessCommandsInfo ) const { vkCmdProcessCommandsNVX( m_commandBuffer, reinterpret_cast( pProcessCommandsInfo ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::processCommandsNVX( const CmdProcessCommandsInfoNVX & processCommandsInfo ) const { vkCmdProcessCommandsNVX( m_commandBuffer, reinterpret_cast( &processCommandsInfo ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::reserveSpaceForCommandsNVX( const CmdReserveSpaceForCommandsInfoNVX* pReserveSpaceInfo ) const { vkCmdReserveSpaceForCommandsNVX( m_commandBuffer, reinterpret_cast( pReserveSpaceInfo ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::reserveSpaceForCommandsNVX( const CmdReserveSpaceForCommandsInfoNVX & reserveSpaceInfo ) const { vkCmdReserveSpaceForCommandsNVX( m_commandBuffer, reinterpret_cast( &reserveSpaceInfo ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::pushDescriptorSetKHR( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t set, uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites ) const { vkCmdPushDescriptorSetKHR( m_commandBuffer, static_cast( pipelineBindPoint ), static_cast( layout ), set, descriptorWriteCount, reinterpret_cast( pDescriptorWrites ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::pushDescriptorSetKHR( PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t set, ArrayProxy descriptorWrites ) const { vkCmdPushDescriptorSetKHR( m_commandBuffer, static_cast( pipelineBindPoint ), static_cast( layout ), set, descriptorWrites.size() , reinterpret_cast( descriptorWrites.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::setDeviceMaskKHX( uint32_t deviceMask ) const { vkCmdSetDeviceMaskKHX( m_commandBuffer, deviceMask ); } VULKAN_HPP_INLINE void CommandBuffer::dispatchBaseKHX( uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ ) const { vkCmdDispatchBaseKHX( m_commandBuffer, baseGroupX, baseGroupY, baseGroupZ, groupCountX, groupCountY, groupCountZ ); } VULKAN_HPP_INLINE void CommandBuffer::pushDescriptorSetWithTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, PipelineLayout layout, uint32_t set, const void* pData ) const { vkCmdPushDescriptorSetWithTemplateKHR( m_commandBuffer, static_cast( descriptorUpdateTemplate ), static_cast( layout ), set, pData ); } VULKAN_HPP_INLINE void CommandBuffer::setViewportWScalingNV( uint32_t firstViewport, uint32_t viewportCount, const ViewportWScalingNV* pViewportWScalings ) const { vkCmdSetViewportWScalingNV( m_commandBuffer, firstViewport, viewportCount, reinterpret_cast( pViewportWScalings ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::setViewportWScalingNV( uint32_t firstViewport, ArrayProxy viewportWScalings ) const { vkCmdSetViewportWScalingNV( m_commandBuffer, firstViewport, viewportWScalings.size() , reinterpret_cast( viewportWScalings.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void CommandBuffer::setDiscardRectangleEXT( uint32_t firstDiscardRectangle, uint32_t discardRectangleCount, const Rect2D* pDiscardRectangles ) const { vkCmdSetDiscardRectangleEXT( m_commandBuffer, firstDiscardRectangle, discardRectangleCount, reinterpret_cast( pDiscardRectangles ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void CommandBuffer::setDiscardRectangleEXT( uint32_t firstDiscardRectangle, ArrayProxy discardRectangles ) const { vkCmdSetDiscardRectangleEXT( m_commandBuffer, firstDiscardRectangle, discardRectangles.size() , reinterpret_cast( discardRectangles.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ struct SubmitInfo { SubmitInfo( uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, const PipelineStageFlags* pWaitDstStageMask_ = nullptr, uint32_t commandBufferCount_ = 0, const CommandBuffer* pCommandBuffers_ = nullptr, uint32_t signalSemaphoreCount_ = 0, const Semaphore* pSignalSemaphores_ = nullptr ) : sType( StructureType::eSubmitInfo ) , pNext( nullptr ) , waitSemaphoreCount( waitSemaphoreCount_ ) , pWaitSemaphores( pWaitSemaphores_ ) , pWaitDstStageMask( pWaitDstStageMask_ ) , commandBufferCount( commandBufferCount_ ) , pCommandBuffers( pCommandBuffers_ ) , signalSemaphoreCount( signalSemaphoreCount_ ) , pSignalSemaphores( pSignalSemaphores_ ) { } SubmitInfo( VkSubmitInfo const & rhs ) { memcpy( this, &rhs, sizeof( SubmitInfo ) ); } SubmitInfo& operator=( VkSubmitInfo const & rhs ) { memcpy( this, &rhs, sizeof( SubmitInfo ) ); return *this; } SubmitInfo& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } SubmitInfo& setWaitSemaphoreCount( uint32_t waitSemaphoreCount_ ) { waitSemaphoreCount = waitSemaphoreCount_; return *this; } SubmitInfo& setPWaitSemaphores( const Semaphore* pWaitSemaphores_ ) { pWaitSemaphores = pWaitSemaphores_; return *this; } SubmitInfo& setPWaitDstStageMask( const PipelineStageFlags* pWaitDstStageMask_ ) { pWaitDstStageMask = pWaitDstStageMask_; return *this; } SubmitInfo& setCommandBufferCount( uint32_t commandBufferCount_ ) { commandBufferCount = commandBufferCount_; return *this; } SubmitInfo& setPCommandBuffers( const CommandBuffer* pCommandBuffers_ ) { pCommandBuffers = pCommandBuffers_; return *this; } SubmitInfo& setSignalSemaphoreCount( uint32_t signalSemaphoreCount_ ) { signalSemaphoreCount = signalSemaphoreCount_; return *this; } SubmitInfo& setPSignalSemaphores( const Semaphore* pSignalSemaphores_ ) { pSignalSemaphores = pSignalSemaphores_; return *this; } operator const VkSubmitInfo&() const { return *reinterpret_cast(this); } bool operator==( SubmitInfo const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( waitSemaphoreCount == rhs.waitSemaphoreCount ) && ( pWaitSemaphores == rhs.pWaitSemaphores ) && ( pWaitDstStageMask == rhs.pWaitDstStageMask ) && ( commandBufferCount == rhs.commandBufferCount ) && ( pCommandBuffers == rhs.pCommandBuffers ) && ( signalSemaphoreCount == rhs.signalSemaphoreCount ) && ( pSignalSemaphores == rhs.pSignalSemaphores ); } bool operator!=( SubmitInfo const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t waitSemaphoreCount; const Semaphore* pWaitSemaphores; const PipelineStageFlags* pWaitDstStageMask; uint32_t commandBufferCount; const CommandBuffer* pCommandBuffers; uint32_t signalSemaphoreCount; const Semaphore* pSignalSemaphores; }; static_assert( sizeof( SubmitInfo ) == sizeof( VkSubmitInfo ), "struct and wrapper have different size!" ); class Queue { public: Queue() : m_queue(VK_NULL_HANDLE) {} Queue( std::nullptr_t ) : m_queue(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Queue( VkQueue queue ) : m_queue( queue ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Queue & operator=(VkQueue queue) { m_queue = queue; return *this; } #endif Queue & operator=( std::nullptr_t ) { m_queue = VK_NULL_HANDLE; return *this; } bool operator==( Queue const & rhs ) const { return m_queue == rhs.m_queue; } bool operator!=(Queue const & rhs ) const { return m_queue != rhs.m_queue; } bool operator<(Queue const & rhs ) const { return m_queue < rhs.m_queue; } Result submit( uint32_t submitCount, const SubmitInfo* pSubmits, Fence fence ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type submit( ArrayProxy submits, Fence fence ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result waitIdle() const; #else ResultValueType::type waitIdle() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result bindSparse( uint32_t bindInfoCount, const BindSparseInfo* pBindInfo, Fence fence ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type bindSparse( ArrayProxy bindInfo, Fence fence ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result presentKHR( const PresentInfoKHR* pPresentInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE Result presentKHR( const PresentInfoKHR & presentInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_TYPESAFE_EXPLICIT operator VkQueue() const { return m_queue; } explicit operator bool() const { return m_queue != VK_NULL_HANDLE; } bool operator!() const { return m_queue == VK_NULL_HANDLE; } private: VkQueue m_queue; }; static_assert( sizeof( Queue ) == sizeof( VkQueue ), "handle and wrapper have different size!" ); VULKAN_HPP_INLINE Result Queue::submit( uint32_t submitCount, const SubmitInfo* pSubmits, Fence fence ) const { return static_cast( vkQueueSubmit( m_queue, submitCount, reinterpret_cast( pSubmits ), static_cast( fence ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Queue::submit( ArrayProxy submits, Fence fence ) const { Result result = static_cast( vkQueueSubmit( m_queue, submits.size() , reinterpret_cast( submits.data() ), static_cast( fence ) ) ); return createResultValue( result, "vk::Queue::submit" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Queue::waitIdle() const { return static_cast( vkQueueWaitIdle( m_queue ) ); } #else VULKAN_HPP_INLINE ResultValueType::type Queue::waitIdle() const { Result result = static_cast( vkQueueWaitIdle( m_queue ) ); return createResultValue( result, "vk::Queue::waitIdle" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Queue::bindSparse( uint32_t bindInfoCount, const BindSparseInfo* pBindInfo, Fence fence ) const { return static_cast( vkQueueBindSparse( m_queue, bindInfoCount, reinterpret_cast( pBindInfo ), static_cast( fence ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Queue::bindSparse( ArrayProxy bindInfo, Fence fence ) const { Result result = static_cast( vkQueueBindSparse( m_queue, bindInfo.size() , reinterpret_cast( bindInfo.data() ), static_cast( fence ) ) ); return createResultValue( result, "vk::Queue::bindSparse" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Queue::presentKHR( const PresentInfoKHR* pPresentInfo ) const { return static_cast( vkQueuePresentKHR( m_queue, reinterpret_cast( pPresentInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Queue::presentKHR( const PresentInfoKHR & presentInfo ) const { Result result = static_cast( vkQueuePresentKHR( m_queue, reinterpret_cast( &presentInfo ) ) ); return createResultValue( result, "vk::Queue::presentKHR", { Result::eSuccess, Result::eSuboptimalKHR } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifndef VULKAN_HPP_NO_SMART_HANDLE class BufferDeleter; using UniqueBuffer = UniqueHandle; class BufferViewDeleter; using UniqueBufferView = UniqueHandle; class CommandBufferDeleter; using UniqueCommandBuffer = UniqueHandle; class CommandPoolDeleter; using UniqueCommandPool = UniqueHandle; class DescriptorPoolDeleter; using UniqueDescriptorPool = UniqueHandle; class DescriptorSetDeleter; using UniqueDescriptorSet = UniqueHandle; class DescriptorSetLayoutDeleter; using UniqueDescriptorSetLayout = UniqueHandle; class DescriptorUpdateTemplateKHRDeleter; using UniqueDescriptorUpdateTemplateKHR = UniqueHandle; class DeviceMemoryDeleter; using UniqueDeviceMemory = UniqueHandle; class EventDeleter; using UniqueEvent = UniqueHandle; class FenceDeleter; using UniqueFence = UniqueHandle; class FramebufferDeleter; using UniqueFramebuffer = UniqueHandle; class ImageDeleter; using UniqueImage = UniqueHandle; class ImageViewDeleter; using UniqueImageView = UniqueHandle; class IndirectCommandsLayoutNVXDeleter; using UniqueIndirectCommandsLayoutNVX = UniqueHandle; class ObjectTableNVXDeleter; using UniqueObjectTableNVX = UniqueHandle; class PipelineDeleter; using UniquePipeline = UniqueHandle; class PipelineCacheDeleter; using UniquePipelineCache = UniqueHandle; class PipelineLayoutDeleter; using UniquePipelineLayout = UniqueHandle; class QueryPoolDeleter; using UniqueQueryPool = UniqueHandle; class RenderPassDeleter; using UniqueRenderPass = UniqueHandle; class SamplerDeleter; using UniqueSampler = UniqueHandle; class SamplerYCbCrConversionKHRDeleter; using UniqueSamplerYCbCrConversionKHR = UniqueHandle; class SemaphoreDeleter; using UniqueSemaphore = UniqueHandle; class ShaderModuleDeleter; using UniqueShaderModule = UniqueHandle; class SwapchainKHRDeleter; using UniqueSwapchainKHR = UniqueHandle; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ class Device { public: Device() : m_device(VK_NULL_HANDLE) {} Device( std::nullptr_t ) : m_device(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Device( VkDevice device ) : m_device( device ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Device & operator=(VkDevice device) { m_device = device; return *this; } #endif Device & operator=( std::nullptr_t ) { m_device = VK_NULL_HANDLE; return *this; } bool operator==( Device const & rhs ) const { return m_device == rhs.m_device; } bool operator!=(Device const & rhs ) const { return m_device != rhs.m_device; } bool operator<(Device const & rhs ) const { return m_device < rhs.m_device; } PFN_vkVoidFunction getProcAddr( const char* pName ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PFN_vkVoidFunction getProcAddr( const std::string & name ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroy( const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroy( Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getQueue( uint32_t queueFamilyIndex, uint32_t queueIndex, Queue* pQueue ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE Queue getQueue( uint32_t queueFamilyIndex, uint32_t queueIndex ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result waitIdle() const; #else ResultValueType::type waitIdle() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result allocateMemory( const MemoryAllocateInfo* pAllocateInfo, const AllocationCallbacks* pAllocator, DeviceMemory* pMemory ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type allocateMemory( const MemoryAllocateInfo & allocateInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueDeviceMemory allocateMemoryUnique( const MemoryAllocateInfo & allocateInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void freeMemory( DeviceMemory memory, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void freeMemory( DeviceMemory memory, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result mapMemory( DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags, void** ppData ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type mapMemory( DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags = MemoryMapFlags() ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void unmapMemory( DeviceMemory memory ) const; Result flushMappedMemoryRanges( uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type flushMappedMemoryRanges( ArrayProxy memoryRanges ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result invalidateMappedMemoryRanges( uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type invalidateMappedMemoryRanges( ArrayProxy memoryRanges ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getMemoryCommitment( DeviceMemory memory, DeviceSize* pCommittedMemoryInBytes ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE DeviceSize getMemoryCommitment( DeviceMemory memory ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getBufferMemoryRequirements( Buffer buffer, MemoryRequirements* pMemoryRequirements ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE MemoryRequirements getBufferMemoryRequirements( Buffer buffer ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result bindBufferMemory( Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset ) const; #else ResultValueType::type bindBufferMemory( Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getImageMemoryRequirements( Image image, MemoryRequirements* pMemoryRequirements ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE MemoryRequirements getImageMemoryRequirements( Image image ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result bindImageMemory( Image image, DeviceMemory memory, DeviceSize memoryOffset ) const; #else ResultValueType::type bindImageMemory( Image image, DeviceMemory memory, DeviceSize memoryOffset ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getImageSparseMemoryRequirements( Image image, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements* pSparseMemoryRequirements ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > std::vector getImageSparseMemoryRequirements( Image image ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createFence( const FenceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createFence( const FenceCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueFence createFenceUnique( const FenceCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyFence( Fence fence, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyFence( Fence fence, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result resetFences( uint32_t fenceCount, const Fence* pFences ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type resetFences( ArrayProxy fences ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getFenceStatus( Fence fence ) const; Result waitForFences( uint32_t fenceCount, const Fence* pFences, Bool32 waitAll, uint64_t timeout ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE Result waitForFences( ArrayProxy fences, Bool32 waitAll, uint64_t timeout ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createSemaphore( const SemaphoreCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Semaphore* pSemaphore ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createSemaphore( const SemaphoreCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSemaphore createSemaphoreUnique( const SemaphoreCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroySemaphore( Semaphore semaphore, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroySemaphore( Semaphore semaphore, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createEvent( const EventCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Event* pEvent ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createEvent( const EventCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueEvent createEventUnique( const EventCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyEvent( Event event, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyEvent( Event event, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getEventStatus( Event event ) const; #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result setEvent( Event event ) const; #else ResultValueType::type setEvent( Event event ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result resetEvent( Event event ) const; #else ResultValueType::type resetEvent( Event event ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createQueryPool( const QueryPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, QueryPool* pQueryPool ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createQueryPool( const QueryPoolCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueQueryPool createQueryPoolUnique( const QueryPoolCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyQueryPool( QueryPool queryPool, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyQueryPool( QueryPool queryPool, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, DeviceSize stride, QueryResultFlags flags ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template Result getQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, ArrayProxy data, DeviceSize stride, QueryResultFlags flags ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createBuffer( const BufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Buffer* pBuffer ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createBuffer( const BufferCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueBuffer createBufferUnique( const BufferCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyBuffer( Buffer buffer, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyBuffer( Buffer buffer, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createBufferView( const BufferViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, BufferView* pView ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createBufferView( const BufferViewCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueBufferView createBufferViewUnique( const BufferViewCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyBufferView( BufferView bufferView, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyBufferView( BufferView bufferView, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createImage( const ImageCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Image* pImage ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createImage( const ImageCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueImage createImageUnique( const ImageCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyImage( Image image, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyImage( Image image, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getImageSubresourceLayout( Image image, const ImageSubresource* pSubresource, SubresourceLayout* pLayout ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE SubresourceLayout getImageSubresourceLayout( Image image, const ImageSubresource & subresource ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createImageView( const ImageViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ImageView* pView ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createImageView( const ImageViewCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueImageView createImageViewUnique( const ImageViewCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyImageView( ImageView imageView, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyImageView( ImageView imageView, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createShaderModule( const ShaderModuleCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ShaderModule* pShaderModule ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createShaderModule( const ShaderModuleCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueShaderModule createShaderModuleUnique( const ShaderModuleCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyShaderModule( ShaderModule shaderModule, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyShaderModule( ShaderModule shaderModule, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createPipelineCache( const PipelineCacheCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineCache* pPipelineCache ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createPipelineCache( const PipelineCacheCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniquePipelineCache createPipelineCacheUnique( const PipelineCacheCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyPipelineCache( PipelineCache pipelineCache, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyPipelineCache( PipelineCache pipelineCache, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getPipelineCacheData( PipelineCache pipelineCache, size_t* pDataSize, void* pData ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getPipelineCacheData( PipelineCache pipelineCache ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result mergePipelineCaches( PipelineCache dstCache, uint32_t srcCacheCount, const PipelineCache* pSrcCaches ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type mergePipelineCaches( PipelineCache dstCache, ArrayProxy srcCaches ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createGraphicsPipelines( PipelineCache pipelineCache, uint32_t createInfoCount, const GraphicsPipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type createGraphicsPipelines( PipelineCache pipelineCache, ArrayProxy createInfos, Optional allocator = nullptr ) const; ResultValueType::type createGraphicsPipeline( PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE template > std::vector createGraphicsPipelinesUnique( PipelineCache pipelineCache, ArrayProxy createInfos, Optional allocator = nullptr ) const; UniquePipeline createGraphicsPipelineUnique( PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createComputePipelines( PipelineCache pipelineCache, uint32_t createInfoCount, const ComputePipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type createComputePipelines( PipelineCache pipelineCache, ArrayProxy createInfos, Optional allocator = nullptr ) const; ResultValueType::type createComputePipeline( PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE template > std::vector createComputePipelinesUnique( PipelineCache pipelineCache, ArrayProxy createInfos, Optional allocator = nullptr ) const; UniquePipeline createComputePipelineUnique( PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyPipeline( Pipeline pipeline, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyPipeline( Pipeline pipeline, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createPipelineLayout( const PipelineLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineLayout* pPipelineLayout ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createPipelineLayout( const PipelineLayoutCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniquePipelineLayout createPipelineLayoutUnique( const PipelineLayoutCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyPipelineLayout( PipelineLayout pipelineLayout, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyPipelineLayout( PipelineLayout pipelineLayout, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createSampler( const SamplerCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Sampler* pSampler ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createSampler( const SamplerCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSampler createSamplerUnique( const SamplerCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroySampler( Sampler sampler, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroySampler( Sampler sampler, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createDescriptorSetLayout( const DescriptorSetLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorSetLayout* pSetLayout ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createDescriptorSetLayout( const DescriptorSetLayoutCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueDescriptorSetLayout createDescriptorSetLayoutUnique( const DescriptorSetLayoutCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createDescriptorPool( const DescriptorPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorPool* pDescriptorPool ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createDescriptorPool( const DescriptorPoolCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueDescriptorPool createDescriptorPoolUnique( const DescriptorPoolCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyDescriptorPool( DescriptorPool descriptorPool, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyDescriptorPool( DescriptorPool descriptorPool, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result resetDescriptorPool( DescriptorPool descriptorPool, DescriptorPoolResetFlags flags ) const; #else ResultValueType::type resetDescriptorPool( DescriptorPool descriptorPool, DescriptorPoolResetFlags flags = DescriptorPoolResetFlags() ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result allocateDescriptorSets( const DescriptorSetAllocateInfo* pAllocateInfo, DescriptorSet* pDescriptorSets ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type allocateDescriptorSets( const DescriptorSetAllocateInfo & allocateInfo ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE template > std::vector allocateDescriptorSetsUnique( const DescriptorSetAllocateInfo & allocateInfo ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result freeDescriptorSets( DescriptorPool descriptorPool, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type freeDescriptorSets( DescriptorPool descriptorPool, ArrayProxy descriptorSets ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void updateDescriptorSets( uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const CopyDescriptorSet* pDescriptorCopies ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void updateDescriptorSets( ArrayProxy descriptorWrites, ArrayProxy descriptorCopies ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createFramebuffer( const FramebufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Framebuffer* pFramebuffer ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createFramebuffer( const FramebufferCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueFramebuffer createFramebufferUnique( const FramebufferCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyFramebuffer( Framebuffer framebuffer, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyFramebuffer( Framebuffer framebuffer, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createRenderPass( const RenderPassCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, RenderPass* pRenderPass ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createRenderPass( const RenderPassCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueRenderPass createRenderPassUnique( const RenderPassCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyRenderPass( RenderPass renderPass, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyRenderPass( RenderPass renderPass, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getRenderAreaGranularity( RenderPass renderPass, Extent2D* pGranularity ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE Extent2D getRenderAreaGranularity( RenderPass renderPass ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createCommandPool( const CommandPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, CommandPool* pCommandPool ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createCommandPool( const CommandPoolCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueCommandPool createCommandPoolUnique( const CommandPoolCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyCommandPool( CommandPool commandPool, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyCommandPool( CommandPool commandPool, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result resetCommandPool( CommandPool commandPool, CommandPoolResetFlags flags ) const; #else ResultValueType::type resetCommandPool( CommandPool commandPool, CommandPoolResetFlags flags ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result allocateCommandBuffers( const CommandBufferAllocateInfo* pAllocateInfo, CommandBuffer* pCommandBuffers ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type allocateCommandBuffers( const CommandBufferAllocateInfo & allocateInfo ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE template > std::vector allocateCommandBuffersUnique( const CommandBufferAllocateInfo & allocateInfo ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void freeCommandBuffers( CommandPool commandPool, uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void freeCommandBuffers( CommandPool commandPool, ArrayProxy commandBuffers ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createSharedSwapchainsKHR( uint32_t swapchainCount, const SwapchainCreateInfoKHR* pCreateInfos, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchains ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type createSharedSwapchainsKHR( ArrayProxy createInfos, Optional allocator = nullptr ) const; ResultValueType::type createSharedSwapchainKHR( const SwapchainCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE template > std::vector createSharedSwapchainsKHRUnique( ArrayProxy createInfos, Optional allocator = nullptr ) const; UniqueSwapchainKHR createSharedSwapchainKHRUnique( const SwapchainCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createSwapchainKHR( const SwapchainCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchain ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createSwapchainKHR( const SwapchainCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSwapchainKHR createSwapchainKHRUnique( const SwapchainCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroySwapchainKHR( SwapchainKHR swapchain, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroySwapchainKHR( SwapchainKHR swapchain, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getSwapchainImagesKHR( SwapchainKHR swapchain, uint32_t* pSwapchainImageCount, Image* pSwapchainImages ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getSwapchainImagesKHR( SwapchainKHR swapchain ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result acquireNextImageKHR( SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence, uint32_t* pImageIndex ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValue acquireNextImageKHR( SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result debugMarkerSetObjectNameEXT( DebugMarkerObjectNameInfoEXT* pNameInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type debugMarkerSetObjectNameEXT() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result debugMarkerSetObjectTagEXT( DebugMarkerObjectTagInfoEXT* pTagInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type debugMarkerSetObjectTagEXT() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Result getMemoryWin32HandleNV( DeviceMemory memory, ExternalMemoryHandleTypeFlagsNV handleType, HANDLE* pHandle ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getMemoryWin32HandleNV( DeviceMemory memory, ExternalMemoryHandleTypeFlagsNV handleType ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ Result createIndirectCommandsLayoutNVX( const IndirectCommandsLayoutCreateInfoNVX* pCreateInfo, const AllocationCallbacks* pAllocator, IndirectCommandsLayoutNVX* pIndirectCommandsLayout ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createIndirectCommandsLayoutNVX( const IndirectCommandsLayoutCreateInfoNVX & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueIndirectCommandsLayoutNVX createIndirectCommandsLayoutNVXUnique( const IndirectCommandsLayoutCreateInfoNVX & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyIndirectCommandsLayoutNVX( IndirectCommandsLayoutNVX indirectCommandsLayout, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyIndirectCommandsLayoutNVX( IndirectCommandsLayoutNVX indirectCommandsLayout, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createObjectTableNVX( const ObjectTableCreateInfoNVX* pCreateInfo, const AllocationCallbacks* pAllocator, ObjectTableNVX* pObjectTable ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createObjectTableNVX( const ObjectTableCreateInfoNVX & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueObjectTableNVX createObjectTableNVXUnique( const ObjectTableCreateInfoNVX & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyObjectTableNVX( ObjectTableNVX objectTable, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyObjectTableNVX( ObjectTableNVX objectTable, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result registerObjectsNVX( ObjectTableNVX objectTable, uint32_t objectCount, const ObjectTableEntryNVX* const* ppObjectTableEntries, const uint32_t* pObjectIndices ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type registerObjectsNVX( ObjectTableNVX objectTable, ArrayProxy pObjectTableEntries, ArrayProxy objectIndices ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result unregisterObjectsNVX( ObjectTableNVX objectTable, uint32_t objectCount, const ObjectEntryTypeNVX* pObjectEntryTypes, const uint32_t* pObjectIndices ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type unregisterObjectsNVX( ObjectTableNVX objectTable, ArrayProxy objectEntryTypes, ArrayProxy objectIndices ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE void trimCommandPoolKHR( CommandPool commandPool, CommandPoolTrimFlagsKHR flags ) const; #else void trimCommandPoolKHR( CommandPool commandPool, CommandPoolTrimFlagsKHR flags = CommandPoolTrimFlagsKHR() ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Result getMemoryWin32HandleKHR( const MemoryGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getMemoryWin32HandleKHR( const MemoryGetWin32HandleInfoKHR & getWin32HandleInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Result getMemoryWin32HandlePropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, HANDLE handle, MemoryWin32HandlePropertiesKHR* pMemoryWin32HandleProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getMemoryWin32HandlePropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, HANDLE handle ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ Result getMemoryFdKHR( const MemoryGetFdInfoKHR* pGetFdInfo, int* pFd ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getMemoryFdKHR( const MemoryGetFdInfoKHR & getFdInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getMemoryFdPropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, int fd, MemoryFdPropertiesKHR* pMemoryFdProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getMemoryFdPropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, int fd ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Result getSemaphoreWin32HandleKHR( const SemaphoreGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getSemaphoreWin32HandleKHR( const SemaphoreGetWin32HandleInfoKHR & getWin32HandleInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Result importSemaphoreWin32HandleKHR( const ImportSemaphoreWin32HandleInfoKHR* pImportSemaphoreWin32HandleInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type importSemaphoreWin32HandleKHR( const ImportSemaphoreWin32HandleInfoKHR & importSemaphoreWin32HandleInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ Result getSemaphoreFdKHR( const SemaphoreGetFdInfoKHR* pGetFdInfo, int* pFd ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getSemaphoreFdKHR( const SemaphoreGetFdInfoKHR & getFdInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result importSemaphoreFdKHR( const ImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type importSemaphoreFdKHR( const ImportSemaphoreFdInfoKHR & importSemaphoreFdInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Result getFenceWin32HandleKHR( const FenceGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getFenceWin32HandleKHR( const FenceGetWin32HandleInfoKHR & getWin32HandleInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Result importFenceWin32HandleKHR( const ImportFenceWin32HandleInfoKHR* pImportFenceWin32HandleInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type importFenceWin32HandleKHR( const ImportFenceWin32HandleInfoKHR & importFenceWin32HandleInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ Result getFenceFdKHR( const FenceGetFdInfoKHR* pGetFdInfo, int* pFd ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getFenceFdKHR( const FenceGetFdInfoKHR & getFdInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result importFenceFdKHR( const ImportFenceFdInfoKHR* pImportFenceFdInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type importFenceFdKHR( const ImportFenceFdInfoKHR & importFenceFdInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result displayPowerControlEXT( DisplayKHR display, const DisplayPowerInfoEXT* pDisplayPowerInfo ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type displayPowerControlEXT( DisplayKHR display, const DisplayPowerInfoEXT & displayPowerInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result registerEventEXT( const DeviceEventInfoEXT* pDeviceEventInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type registerEventEXT( const DeviceEventInfoEXT & deviceEventInfo, const AllocationCallbacks & allocator ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result registerDisplayEventEXT( DisplayKHR display, const DisplayEventInfoEXT* pDisplayEventInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type registerDisplayEventEXT( DisplayKHR display, const DisplayEventInfoEXT & displayEventInfo, const AllocationCallbacks & allocator ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getSwapchainCounterEXT( SwapchainKHR swapchain, SurfaceCounterFlagBitsEXT counter, uint64_t* pCounterValue ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValue getSwapchainCounterEXT( SwapchainKHR swapchain, SurfaceCounterFlagBitsEXT counter ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getGroupPeerMemoryFeaturesKHX( uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, PeerMemoryFeatureFlagsKHX* pPeerMemoryFeatures ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PeerMemoryFeatureFlagsKHX getGroupPeerMemoryFeaturesKHX( uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result bindBufferMemory2KHX( uint32_t bindInfoCount, const BindBufferMemoryInfoKHX* pBindInfos ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type bindBufferMemory2KHX( ArrayProxy bindInfos ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result bindImageMemory2KHX( uint32_t bindInfoCount, const BindImageMemoryInfoKHX* pBindInfos ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type bindImageMemory2KHX( ArrayProxy bindInfos ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getGroupPresentCapabilitiesKHX( DeviceGroupPresentCapabilitiesKHX* pDeviceGroupPresentCapabilities ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getGroupPresentCapabilitiesKHX() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getGroupSurfacePresentModesKHX( SurfaceKHR surface, DeviceGroupPresentModeFlagsKHX* pModes ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getGroupSurfacePresentModesKHX( SurfaceKHR surface ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result acquireNextImage2KHX( const AcquireNextImageInfoKHX* pAcquireInfo, uint32_t* pImageIndex ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValue acquireNextImage2KHX( const AcquireNextImageInfoKHX & acquireInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createDescriptorUpdateTemplateKHR( const DescriptorUpdateTemplateCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorUpdateTemplateKHR* pDescriptorUpdateTemplate ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createDescriptorUpdateTemplateKHR( const DescriptorUpdateTemplateCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueDescriptorUpdateTemplateKHR createDescriptorUpdateTemplateKHRUnique( const DescriptorUpdateTemplateCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyDescriptorUpdateTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyDescriptorUpdateTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void updateDescriptorSetWithTemplateKHR( DescriptorSet descriptorSet, DescriptorUpdateTemplateKHR descriptorUpdateTemplate, const void* pData ) const; void setHdrMetadataEXT( uint32_t swapchainCount, const SwapchainKHR* pSwapchains, const HdrMetadataEXT* pMetadata ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void setHdrMetadataEXT( ArrayProxy swapchains, ArrayProxy metadata ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getSwapchainStatusKHR( SwapchainKHR swapchain ) const; Result getRefreshCycleDurationGOOGLE( SwapchainKHR swapchain, RefreshCycleDurationGOOGLE* pDisplayTimingProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getRefreshCycleDurationGOOGLE( SwapchainKHR swapchain ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getPastPresentationTimingGOOGLE( SwapchainKHR swapchain, uint32_t* pPresentationTimingCount, PastPresentationTimingGOOGLE* pPresentationTimings ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getPastPresentationTimingGOOGLE( SwapchainKHR swapchain ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR* pInfo, MemoryRequirements2KHR* pMemoryRequirements ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE MemoryRequirements2KHR getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR & info ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR* pInfo, MemoryRequirements2KHR* pMemoryRequirements ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE MemoryRequirements2KHR getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR & info ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getImageSparseMemoryRequirements2KHR( const ImageSparseMemoryRequirementsInfo2KHR* pInfo, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements2KHR* pSparseMemoryRequirements ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > std::vector getImageSparseMemoryRequirements2KHR( const ImageSparseMemoryRequirementsInfo2KHR & info ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createSamplerYCbCrConversionKHR( const SamplerYCbCrConversionCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SamplerYCbCrConversionKHR* pYCbCrConversion ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createSamplerYCbCrConversionKHR( const SamplerYCbCrConversionCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSamplerYCbCrConversionKHR createSamplerYCbCrConversionKHRUnique( const SamplerYCbCrConversionCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroySamplerYCbCrConversionKHR( SamplerYCbCrConversionKHR YCbCrConversion, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroySamplerYCbCrConversionKHR( SamplerYCbCrConversionKHR YCbCrConversion, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_TYPESAFE_EXPLICIT operator VkDevice() const { return m_device; } explicit operator bool() const { return m_device != VK_NULL_HANDLE; } bool operator!() const { return m_device == VK_NULL_HANDLE; } private: VkDevice m_device; }; static_assert( sizeof( Device ) == sizeof( VkDevice ), "handle and wrapper have different size!" ); #ifndef VULKAN_HPP_NO_SMART_HANDLE class BufferDeleter { public: BufferDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( Buffer buffer ) { m_device.destroyBuffer( buffer, m_allocator ); } private: Device m_device; Optional m_allocator; }; class BufferViewDeleter { public: BufferViewDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( BufferView bufferView ) { m_device.destroyBufferView( bufferView, m_allocator ); } private: Device m_device; Optional m_allocator; }; class CommandBufferDeleter { public: CommandBufferDeleter( Device device = Device(), CommandPool commandPool = CommandPool() ) : m_device( device ) , m_commandPool( commandPool ) {} void operator()( CommandBuffer commandBuffer ) { m_device.freeCommandBuffers( m_commandPool, commandBuffer ); } private: Device m_device; CommandPool m_commandPool; }; class CommandPoolDeleter { public: CommandPoolDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( CommandPool commandPool ) { m_device.destroyCommandPool( commandPool, m_allocator ); } private: Device m_device; Optional m_allocator; }; class DescriptorPoolDeleter { public: DescriptorPoolDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( DescriptorPool descriptorPool ) { m_device.destroyDescriptorPool( descriptorPool, m_allocator ); } private: Device m_device; Optional m_allocator; }; class DescriptorSetDeleter { public: DescriptorSetDeleter( Device device = Device(), DescriptorPool descriptorPool = DescriptorPool() ) : m_device( device ) , m_descriptorPool( descriptorPool ) {} void operator()( DescriptorSet descriptorSet ) { m_device.freeDescriptorSets( m_descriptorPool, descriptorSet ); } private: Device m_device; DescriptorPool m_descriptorPool; }; class DescriptorSetLayoutDeleter { public: DescriptorSetLayoutDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( DescriptorSetLayout descriptorSetLayout ) { m_device.destroyDescriptorSetLayout( descriptorSetLayout, m_allocator ); } private: Device m_device; Optional m_allocator; }; class DescriptorUpdateTemplateKHRDeleter { public: DescriptorUpdateTemplateKHRDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( DescriptorUpdateTemplateKHR descriptorUpdateTemplateKHR ) { m_device.destroyDescriptorUpdateTemplateKHR( descriptorUpdateTemplateKHR, m_allocator ); } private: Device m_device; Optional m_allocator; }; class DeviceMemoryDeleter { public: DeviceMemoryDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( DeviceMemory deviceMemory ) { m_device.freeMemory( deviceMemory, m_allocator ); } private: Device m_device; Optional m_allocator; }; class EventDeleter { public: EventDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( Event event ) { m_device.destroyEvent( event, m_allocator ); } private: Device m_device; Optional m_allocator; }; class FenceDeleter { public: FenceDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( Fence fence ) { m_device.destroyFence( fence, m_allocator ); } private: Device m_device; Optional m_allocator; }; class FramebufferDeleter { public: FramebufferDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( Framebuffer framebuffer ) { m_device.destroyFramebuffer( framebuffer, m_allocator ); } private: Device m_device; Optional m_allocator; }; class ImageDeleter { public: ImageDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( Image image ) { m_device.destroyImage( image, m_allocator ); } private: Device m_device; Optional m_allocator; }; class ImageViewDeleter { public: ImageViewDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( ImageView imageView ) { m_device.destroyImageView( imageView, m_allocator ); } private: Device m_device; Optional m_allocator; }; class IndirectCommandsLayoutNVXDeleter { public: IndirectCommandsLayoutNVXDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( IndirectCommandsLayoutNVX indirectCommandsLayoutNVX ) { m_device.destroyIndirectCommandsLayoutNVX( indirectCommandsLayoutNVX, m_allocator ); } private: Device m_device; Optional m_allocator; }; class ObjectTableNVXDeleter { public: ObjectTableNVXDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( ObjectTableNVX objectTableNVX ) { m_device.destroyObjectTableNVX( objectTableNVX, m_allocator ); } private: Device m_device; Optional m_allocator; }; class PipelineDeleter { public: PipelineDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( Pipeline pipeline ) { m_device.destroyPipeline( pipeline, m_allocator ); } private: Device m_device; Optional m_allocator; }; class PipelineCacheDeleter { public: PipelineCacheDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( PipelineCache pipelineCache ) { m_device.destroyPipelineCache( pipelineCache, m_allocator ); } private: Device m_device; Optional m_allocator; }; class PipelineLayoutDeleter { public: PipelineLayoutDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( PipelineLayout pipelineLayout ) { m_device.destroyPipelineLayout( pipelineLayout, m_allocator ); } private: Device m_device; Optional m_allocator; }; class QueryPoolDeleter { public: QueryPoolDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( QueryPool queryPool ) { m_device.destroyQueryPool( queryPool, m_allocator ); } private: Device m_device; Optional m_allocator; }; class RenderPassDeleter { public: RenderPassDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( RenderPass renderPass ) { m_device.destroyRenderPass( renderPass, m_allocator ); } private: Device m_device; Optional m_allocator; }; class SamplerDeleter { public: SamplerDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( Sampler sampler ) { m_device.destroySampler( sampler, m_allocator ); } private: Device m_device; Optional m_allocator; }; class SamplerYCbCrConversionKHRDeleter { public: SamplerYCbCrConversionKHRDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( SamplerYCbCrConversionKHR samplerYCbCrConversionKHR ) { m_device.destroySamplerYCbCrConversionKHR( samplerYCbCrConversionKHR, m_allocator ); } private: Device m_device; Optional m_allocator; }; class SemaphoreDeleter { public: SemaphoreDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( Semaphore semaphore ) { m_device.destroySemaphore( semaphore, m_allocator ); } private: Device m_device; Optional m_allocator; }; class ShaderModuleDeleter { public: ShaderModuleDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( ShaderModule shaderModule ) { m_device.destroyShaderModule( shaderModule, m_allocator ); } private: Device m_device; Optional m_allocator; }; class SwapchainKHRDeleter { public: SwapchainKHRDeleter( Device device = Device(), Optional allocator = nullptr ) : m_device( device ) , m_allocator( allocator ) {} void operator()( SwapchainKHR swapchainKHR ) { m_device.destroySwapchainKHR( swapchainKHR, m_allocator ); } private: Device m_device; Optional m_allocator; }; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ VULKAN_HPP_INLINE PFN_vkVoidFunction Device::getProcAddr( const char* pName ) const { return vkGetDeviceProcAddr( m_device, pName ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PFN_vkVoidFunction Device::getProcAddr( const std::string & name ) const { return vkGetDeviceProcAddr( m_device, name.c_str() ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroy( const AllocationCallbacks* pAllocator ) const { vkDestroyDevice( m_device, reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroy( Optional allocator ) const { vkDestroyDevice( m_device, reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getQueue( uint32_t queueFamilyIndex, uint32_t queueIndex, Queue* pQueue ) const { vkGetDeviceQueue( m_device, queueFamilyIndex, queueIndex, reinterpret_cast( pQueue ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Queue Device::getQueue( uint32_t queueFamilyIndex, uint32_t queueIndex ) const { Queue queue; vkGetDeviceQueue( m_device, queueFamilyIndex, queueIndex, reinterpret_cast( &queue ) ); return queue; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::waitIdle() const { return static_cast( vkDeviceWaitIdle( m_device ) ); } #else VULKAN_HPP_INLINE ResultValueType::type Device::waitIdle() const { Result result = static_cast( vkDeviceWaitIdle( m_device ) ); return createResultValue( result, "vk::Device::waitIdle" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::allocateMemory( const MemoryAllocateInfo* pAllocateInfo, const AllocationCallbacks* pAllocator, DeviceMemory* pMemory ) const { return static_cast( vkAllocateMemory( m_device, reinterpret_cast( pAllocateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pMemory ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::allocateMemory( const MemoryAllocateInfo & allocateInfo, Optional allocator ) const { DeviceMemory memory; Result result = static_cast( vkAllocateMemory( m_device, reinterpret_cast( &allocateInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &memory ) ) ); return createResultValue( result, memory, "vk::Device::allocateMemory" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueDeviceMemory Device::allocateMemoryUnique( const MemoryAllocateInfo & allocateInfo, Optional allocator ) const { DeviceMemoryDeleter deleter( *this, allocator ); return UniqueDeviceMemory( allocateMemory( allocateInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::freeMemory( DeviceMemory memory, const AllocationCallbacks* pAllocator ) const { vkFreeMemory( m_device, static_cast( memory ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::freeMemory( DeviceMemory memory, Optional allocator ) const { vkFreeMemory( m_device, static_cast( memory ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::mapMemory( DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags, void** ppData ) const { return static_cast( vkMapMemory( m_device, static_cast( memory ), offset, size, static_cast( flags ), ppData ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::mapMemory( DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags ) const { void* pData; Result result = static_cast( vkMapMemory( m_device, static_cast( memory ), offset, size, static_cast( flags ), &pData ) ); return createResultValue( result, pData, "vk::Device::mapMemory" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::unmapMemory( DeviceMemory memory ) const { vkUnmapMemory( m_device, static_cast( memory ) ); } VULKAN_HPP_INLINE Result Device::flushMappedMemoryRanges( uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges ) const { return static_cast( vkFlushMappedMemoryRanges( m_device, memoryRangeCount, reinterpret_cast( pMemoryRanges ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::flushMappedMemoryRanges( ArrayProxy memoryRanges ) const { Result result = static_cast( vkFlushMappedMemoryRanges( m_device, memoryRanges.size() , reinterpret_cast( memoryRanges.data() ) ) ); return createResultValue( result, "vk::Device::flushMappedMemoryRanges" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::invalidateMappedMemoryRanges( uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges ) const { return static_cast( vkInvalidateMappedMemoryRanges( m_device, memoryRangeCount, reinterpret_cast( pMemoryRanges ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::invalidateMappedMemoryRanges( ArrayProxy memoryRanges ) const { Result result = static_cast( vkInvalidateMappedMemoryRanges( m_device, memoryRanges.size() , reinterpret_cast( memoryRanges.data() ) ) ); return createResultValue( result, "vk::Device::invalidateMappedMemoryRanges" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getMemoryCommitment( DeviceMemory memory, DeviceSize* pCommittedMemoryInBytes ) const { vkGetDeviceMemoryCommitment( m_device, static_cast( memory ), pCommittedMemoryInBytes ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE DeviceSize Device::getMemoryCommitment( DeviceMemory memory ) const { DeviceSize committedMemoryInBytes; vkGetDeviceMemoryCommitment( m_device, static_cast( memory ), &committedMemoryInBytes ); return committedMemoryInBytes; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getBufferMemoryRequirements( Buffer buffer, MemoryRequirements* pMemoryRequirements ) const { vkGetBufferMemoryRequirements( m_device, static_cast( buffer ), reinterpret_cast( pMemoryRequirements ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE MemoryRequirements Device::getBufferMemoryRequirements( Buffer buffer ) const { MemoryRequirements memoryRequirements; vkGetBufferMemoryRequirements( m_device, static_cast( buffer ), reinterpret_cast( &memoryRequirements ) ); return memoryRequirements; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::bindBufferMemory( Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset ) const { return static_cast( vkBindBufferMemory( m_device, static_cast( buffer ), static_cast( memory ), memoryOffset ) ); } #else VULKAN_HPP_INLINE ResultValueType::type Device::bindBufferMemory( Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset ) const { Result result = static_cast( vkBindBufferMemory( m_device, static_cast( buffer ), static_cast( memory ), memoryOffset ) ); return createResultValue( result, "vk::Device::bindBufferMemory" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getImageMemoryRequirements( Image image, MemoryRequirements* pMemoryRequirements ) const { vkGetImageMemoryRequirements( m_device, static_cast( image ), reinterpret_cast( pMemoryRequirements ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE MemoryRequirements Device::getImageMemoryRequirements( Image image ) const { MemoryRequirements memoryRequirements; vkGetImageMemoryRequirements( m_device, static_cast( image ), reinterpret_cast( &memoryRequirements ) ); return memoryRequirements; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::bindImageMemory( Image image, DeviceMemory memory, DeviceSize memoryOffset ) const { return static_cast( vkBindImageMemory( m_device, static_cast( image ), static_cast( memory ), memoryOffset ) ); } #else VULKAN_HPP_INLINE ResultValueType::type Device::bindImageMemory( Image image, DeviceMemory memory, DeviceSize memoryOffset ) const { Result result = static_cast( vkBindImageMemory( m_device, static_cast( image ), static_cast( memory ), memoryOffset ) ); return createResultValue( result, "vk::Device::bindImageMemory" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getImageSparseMemoryRequirements( Image image, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements* pSparseMemoryRequirements ) const { vkGetImageSparseMemoryRequirements( m_device, static_cast( image ), pSparseMemoryRequirementCount, reinterpret_cast( pSparseMemoryRequirements ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE std::vector Device::getImageSparseMemoryRequirements( Image image ) const { std::vector sparseMemoryRequirements; uint32_t sparseMemoryRequirementCount; vkGetImageSparseMemoryRequirements( m_device, static_cast( image ), &sparseMemoryRequirementCount, nullptr ); sparseMemoryRequirements.resize( sparseMemoryRequirementCount ); vkGetImageSparseMemoryRequirements( m_device, static_cast( image ), &sparseMemoryRequirementCount, reinterpret_cast( sparseMemoryRequirements.data() ) ); return sparseMemoryRequirements; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createFence( const FenceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const { return static_cast( vkCreateFence( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pFence ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createFence( const FenceCreateInfo & createInfo, Optional allocator ) const { Fence fence; Result result = static_cast( vkCreateFence( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &fence ) ) ); return createResultValue( result, fence, "vk::Device::createFence" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueFence Device::createFenceUnique( const FenceCreateInfo & createInfo, Optional allocator ) const { FenceDeleter deleter( *this, allocator ); return UniqueFence( createFence( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyFence( Fence fence, const AllocationCallbacks* pAllocator ) const { vkDestroyFence( m_device, static_cast( fence ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyFence( Fence fence, Optional allocator ) const { vkDestroyFence( m_device, static_cast( fence ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::resetFences( uint32_t fenceCount, const Fence* pFences ) const { return static_cast( vkResetFences( m_device, fenceCount, reinterpret_cast( pFences ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::resetFences( ArrayProxy fences ) const { Result result = static_cast( vkResetFences( m_device, fences.size() , reinterpret_cast( fences.data() ) ) ); return createResultValue( result, "vk::Device::resetFences" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::getFenceStatus( Fence fence ) const { return static_cast( vkGetFenceStatus( m_device, static_cast( fence ) ) ); } #else VULKAN_HPP_INLINE Result Device::getFenceStatus( Fence fence ) const { Result result = static_cast( vkGetFenceStatus( m_device, static_cast( fence ) ) ); return createResultValue( result, "vk::Device::getFenceStatus", { Result::eSuccess, Result::eNotReady } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::waitForFences( uint32_t fenceCount, const Fence* pFences, Bool32 waitAll, uint64_t timeout ) const { return static_cast( vkWaitForFences( m_device, fenceCount, reinterpret_cast( pFences ), waitAll, timeout ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::waitForFences( ArrayProxy fences, Bool32 waitAll, uint64_t timeout ) const { Result result = static_cast( vkWaitForFences( m_device, fences.size() , reinterpret_cast( fences.data() ), waitAll, timeout ) ); return createResultValue( result, "vk::Device::waitForFences", { Result::eSuccess, Result::eTimeout } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createSemaphore( const SemaphoreCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Semaphore* pSemaphore ) const { return static_cast( vkCreateSemaphore( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSemaphore ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createSemaphore( const SemaphoreCreateInfo & createInfo, Optional allocator ) const { Semaphore semaphore; Result result = static_cast( vkCreateSemaphore( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &semaphore ) ) ); return createResultValue( result, semaphore, "vk::Device::createSemaphore" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSemaphore Device::createSemaphoreUnique( const SemaphoreCreateInfo & createInfo, Optional allocator ) const { SemaphoreDeleter deleter( *this, allocator ); return UniqueSemaphore( createSemaphore( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroySemaphore( Semaphore semaphore, const AllocationCallbacks* pAllocator ) const { vkDestroySemaphore( m_device, static_cast( semaphore ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroySemaphore( Semaphore semaphore, Optional allocator ) const { vkDestroySemaphore( m_device, static_cast( semaphore ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createEvent( const EventCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Event* pEvent ) const { return static_cast( vkCreateEvent( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pEvent ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createEvent( const EventCreateInfo & createInfo, Optional allocator ) const { Event event; Result result = static_cast( vkCreateEvent( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &event ) ) ); return createResultValue( result, event, "vk::Device::createEvent" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueEvent Device::createEventUnique( const EventCreateInfo & createInfo, Optional allocator ) const { EventDeleter deleter( *this, allocator ); return UniqueEvent( createEvent( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyEvent( Event event, const AllocationCallbacks* pAllocator ) const { vkDestroyEvent( m_device, static_cast( event ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyEvent( Event event, Optional allocator ) const { vkDestroyEvent( m_device, static_cast( event ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::getEventStatus( Event event ) const { return static_cast( vkGetEventStatus( m_device, static_cast( event ) ) ); } #else VULKAN_HPP_INLINE Result Device::getEventStatus( Event event ) const { Result result = static_cast( vkGetEventStatus( m_device, static_cast( event ) ) ); return createResultValue( result, "vk::Device::getEventStatus", { Result::eEventSet, Result::eEventReset } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::setEvent( Event event ) const { return static_cast( vkSetEvent( m_device, static_cast( event ) ) ); } #else VULKAN_HPP_INLINE ResultValueType::type Device::setEvent( Event event ) const { Result result = static_cast( vkSetEvent( m_device, static_cast( event ) ) ); return createResultValue( result, "vk::Device::setEvent" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::resetEvent( Event event ) const { return static_cast( vkResetEvent( m_device, static_cast( event ) ) ); } #else VULKAN_HPP_INLINE ResultValueType::type Device::resetEvent( Event event ) const { Result result = static_cast( vkResetEvent( m_device, static_cast( event ) ) ); return createResultValue( result, "vk::Device::resetEvent" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createQueryPool( const QueryPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, QueryPool* pQueryPool ) const { return static_cast( vkCreateQueryPool( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pQueryPool ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createQueryPool( const QueryPoolCreateInfo & createInfo, Optional allocator ) const { QueryPool queryPool; Result result = static_cast( vkCreateQueryPool( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &queryPool ) ) ); return createResultValue( result, queryPool, "vk::Device::createQueryPool" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueQueryPool Device::createQueryPoolUnique( const QueryPoolCreateInfo & createInfo, Optional allocator ) const { QueryPoolDeleter deleter( *this, allocator ); return UniqueQueryPool( createQueryPool( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyQueryPool( QueryPool queryPool, const AllocationCallbacks* pAllocator ) const { vkDestroyQueryPool( m_device, static_cast( queryPool ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyQueryPool( QueryPool queryPool, Optional allocator ) const { vkDestroyQueryPool( m_device, static_cast( queryPool ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, DeviceSize stride, QueryResultFlags flags ) const { return static_cast( vkGetQueryPoolResults( m_device, static_cast( queryPool ), firstQuery, queryCount, dataSize, pData, stride, static_cast( flags ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE Result Device::getQueryPoolResults( QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, ArrayProxy data, DeviceSize stride, QueryResultFlags flags ) const { Result result = static_cast( vkGetQueryPoolResults( m_device, static_cast( queryPool ), firstQuery, queryCount, data.size() * sizeof( T ) , reinterpret_cast( data.data() ), stride, static_cast( flags ) ) ); return createResultValue( result, "vk::Device::getQueryPoolResults", { Result::eSuccess, Result::eNotReady } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createBuffer( const BufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Buffer* pBuffer ) const { return static_cast( vkCreateBuffer( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pBuffer ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createBuffer( const BufferCreateInfo & createInfo, Optional allocator ) const { Buffer buffer; Result result = static_cast( vkCreateBuffer( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &buffer ) ) ); return createResultValue( result, buffer, "vk::Device::createBuffer" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueBuffer Device::createBufferUnique( const BufferCreateInfo & createInfo, Optional allocator ) const { BufferDeleter deleter( *this, allocator ); return UniqueBuffer( createBuffer( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyBuffer( Buffer buffer, const AllocationCallbacks* pAllocator ) const { vkDestroyBuffer( m_device, static_cast( buffer ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyBuffer( Buffer buffer, Optional allocator ) const { vkDestroyBuffer( m_device, static_cast( buffer ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createBufferView( const BufferViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, BufferView* pView ) const { return static_cast( vkCreateBufferView( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pView ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createBufferView( const BufferViewCreateInfo & createInfo, Optional allocator ) const { BufferView view; Result result = static_cast( vkCreateBufferView( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &view ) ) ); return createResultValue( result, view, "vk::Device::createBufferView" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueBufferView Device::createBufferViewUnique( const BufferViewCreateInfo & createInfo, Optional allocator ) const { BufferViewDeleter deleter( *this, allocator ); return UniqueBufferView( createBufferView( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyBufferView( BufferView bufferView, const AllocationCallbacks* pAllocator ) const { vkDestroyBufferView( m_device, static_cast( bufferView ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyBufferView( BufferView bufferView, Optional allocator ) const { vkDestroyBufferView( m_device, static_cast( bufferView ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createImage( const ImageCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Image* pImage ) const { return static_cast( vkCreateImage( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pImage ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createImage( const ImageCreateInfo & createInfo, Optional allocator ) const { Image image; Result result = static_cast( vkCreateImage( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &image ) ) ); return createResultValue( result, image, "vk::Device::createImage" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueImage Device::createImageUnique( const ImageCreateInfo & createInfo, Optional allocator ) const { ImageDeleter deleter( *this, allocator ); return UniqueImage( createImage( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyImage( Image image, const AllocationCallbacks* pAllocator ) const { vkDestroyImage( m_device, static_cast( image ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyImage( Image image, Optional allocator ) const { vkDestroyImage( m_device, static_cast( image ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getImageSubresourceLayout( Image image, const ImageSubresource* pSubresource, SubresourceLayout* pLayout ) const { vkGetImageSubresourceLayout( m_device, static_cast( image ), reinterpret_cast( pSubresource ), reinterpret_cast( pLayout ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE SubresourceLayout Device::getImageSubresourceLayout( Image image, const ImageSubresource & subresource ) const { SubresourceLayout layout; vkGetImageSubresourceLayout( m_device, static_cast( image ), reinterpret_cast( &subresource ), reinterpret_cast( &layout ) ); return layout; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createImageView( const ImageViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ImageView* pView ) const { return static_cast( vkCreateImageView( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pView ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createImageView( const ImageViewCreateInfo & createInfo, Optional allocator ) const { ImageView view; Result result = static_cast( vkCreateImageView( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &view ) ) ); return createResultValue( result, view, "vk::Device::createImageView" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueImageView Device::createImageViewUnique( const ImageViewCreateInfo & createInfo, Optional allocator ) const { ImageViewDeleter deleter( *this, allocator ); return UniqueImageView( createImageView( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyImageView( ImageView imageView, const AllocationCallbacks* pAllocator ) const { vkDestroyImageView( m_device, static_cast( imageView ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyImageView( ImageView imageView, Optional allocator ) const { vkDestroyImageView( m_device, static_cast( imageView ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createShaderModule( const ShaderModuleCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ShaderModule* pShaderModule ) const { return static_cast( vkCreateShaderModule( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pShaderModule ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createShaderModule( const ShaderModuleCreateInfo & createInfo, Optional allocator ) const { ShaderModule shaderModule; Result result = static_cast( vkCreateShaderModule( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &shaderModule ) ) ); return createResultValue( result, shaderModule, "vk::Device::createShaderModule" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueShaderModule Device::createShaderModuleUnique( const ShaderModuleCreateInfo & createInfo, Optional allocator ) const { ShaderModuleDeleter deleter( *this, allocator ); return UniqueShaderModule( createShaderModule( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyShaderModule( ShaderModule shaderModule, const AllocationCallbacks* pAllocator ) const { vkDestroyShaderModule( m_device, static_cast( shaderModule ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyShaderModule( ShaderModule shaderModule, Optional allocator ) const { vkDestroyShaderModule( m_device, static_cast( shaderModule ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createPipelineCache( const PipelineCacheCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineCache* pPipelineCache ) const { return static_cast( vkCreatePipelineCache( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pPipelineCache ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createPipelineCache( const PipelineCacheCreateInfo & createInfo, Optional allocator ) const { PipelineCache pipelineCache; Result result = static_cast( vkCreatePipelineCache( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &pipelineCache ) ) ); return createResultValue( result, pipelineCache, "vk::Device::createPipelineCache" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniquePipelineCache Device::createPipelineCacheUnique( const PipelineCacheCreateInfo & createInfo, Optional allocator ) const { PipelineCacheDeleter deleter( *this, allocator ); return UniquePipelineCache( createPipelineCache( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyPipelineCache( PipelineCache pipelineCache, const AllocationCallbacks* pAllocator ) const { vkDestroyPipelineCache( m_device, static_cast( pipelineCache ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyPipelineCache( PipelineCache pipelineCache, Optional allocator ) const { vkDestroyPipelineCache( m_device, static_cast( pipelineCache ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getPipelineCacheData( PipelineCache pipelineCache, size_t* pDataSize, void* pData ) const { return static_cast( vkGetPipelineCacheData( m_device, static_cast( pipelineCache ), pDataSize, pData ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Device::getPipelineCacheData( PipelineCache pipelineCache ) const { std::vector data; size_t dataSize; Result result; do { result = static_cast( vkGetPipelineCacheData( m_device, static_cast( pipelineCache ), &dataSize, nullptr ) ); if ( ( result == Result::eSuccess ) && dataSize ) { data.resize( dataSize ); result = static_cast( vkGetPipelineCacheData( m_device, static_cast( pipelineCache ), &dataSize, reinterpret_cast( data.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( dataSize <= data.size() ); data.resize( dataSize ); return createResultValue( result, data, "vk::Device::getPipelineCacheData" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::mergePipelineCaches( PipelineCache dstCache, uint32_t srcCacheCount, const PipelineCache* pSrcCaches ) const { return static_cast( vkMergePipelineCaches( m_device, static_cast( dstCache ), srcCacheCount, reinterpret_cast( pSrcCaches ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::mergePipelineCaches( PipelineCache dstCache, ArrayProxy srcCaches ) const { Result result = static_cast( vkMergePipelineCaches( m_device, static_cast( dstCache ), srcCaches.size() , reinterpret_cast( srcCaches.data() ) ) ); return createResultValue( result, "vk::Device::mergePipelineCaches" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createGraphicsPipelines( PipelineCache pipelineCache, uint32_t createInfoCount, const GraphicsPipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines ) const { return static_cast( vkCreateGraphicsPipelines( m_device, static_cast( pipelineCache ), createInfoCount, reinterpret_cast( pCreateInfos ), reinterpret_cast( pAllocator ), reinterpret_cast( pPipelines ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Device::createGraphicsPipelines( PipelineCache pipelineCache, ArrayProxy createInfos, Optional allocator ) const { std::vector pipelines( createInfos.size() ); Result result = static_cast( vkCreateGraphicsPipelines( m_device, static_cast( pipelineCache ), createInfos.size() , reinterpret_cast( createInfos.data() ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( pipelines.data() ) ) ); return createResultValue( result, pipelines, "vk::Device::createGraphicsPipelines" ); } VULKAN_HPP_INLINE ResultValueType::type Device::createGraphicsPipeline( PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional allocator ) const { Pipeline pipeline; Result result = static_cast( vkCreateGraphicsPipelines( m_device, static_cast( pipelineCache ), 1 , reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &pipeline ) ) ); return createResultValue( result, pipeline, "vk::Device::createGraphicsPipeline" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE template VULKAN_HPP_INLINE std::vector Device::createGraphicsPipelinesUnique( PipelineCache pipelineCache, ArrayProxy createInfos, Optional allocator ) const { PipelineDeleter deleter( *this, allocator ); std::vector pipelines = createGraphicsPipelines( pipelineCache, createInfos, allocator ); std::vector uniquePipelines; uniquePipelines.reserve( pipelines.size() ); for ( auto pipeline : pipelines ) { uniquePipelines.push_back( UniquePipeline( pipeline, deleter ) ); } return uniquePipelines; } VULKAN_HPP_INLINE UniquePipeline Device::createGraphicsPipelineUnique( PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional allocator ) const { PipelineDeleter deleter( *this, allocator ); return UniquePipeline( createGraphicsPipeline( pipelineCache, createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createComputePipelines( PipelineCache pipelineCache, uint32_t createInfoCount, const ComputePipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines ) const { return static_cast( vkCreateComputePipelines( m_device, static_cast( pipelineCache ), createInfoCount, reinterpret_cast( pCreateInfos ), reinterpret_cast( pAllocator ), reinterpret_cast( pPipelines ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Device::createComputePipelines( PipelineCache pipelineCache, ArrayProxy createInfos, Optional allocator ) const { std::vector pipelines( createInfos.size() ); Result result = static_cast( vkCreateComputePipelines( m_device, static_cast( pipelineCache ), createInfos.size() , reinterpret_cast( createInfos.data() ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( pipelines.data() ) ) ); return createResultValue( result, pipelines, "vk::Device::createComputePipelines" ); } VULKAN_HPP_INLINE ResultValueType::type Device::createComputePipeline( PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional allocator ) const { Pipeline pipeline; Result result = static_cast( vkCreateComputePipelines( m_device, static_cast( pipelineCache ), 1 , reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &pipeline ) ) ); return createResultValue( result, pipeline, "vk::Device::createComputePipeline" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE template VULKAN_HPP_INLINE std::vector Device::createComputePipelinesUnique( PipelineCache pipelineCache, ArrayProxy createInfos, Optional allocator ) const { PipelineDeleter deleter( *this, allocator ); std::vector pipelines = createComputePipelines( pipelineCache, createInfos, allocator ); std::vector uniquePipelines; uniquePipelines.reserve( pipelines.size() ); for ( auto pipeline : pipelines ) { uniquePipelines.push_back( UniquePipeline( pipeline, deleter ) ); } return uniquePipelines; } VULKAN_HPP_INLINE UniquePipeline Device::createComputePipelineUnique( PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional allocator ) const { PipelineDeleter deleter( *this, allocator ); return UniquePipeline( createComputePipeline( pipelineCache, createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyPipeline( Pipeline pipeline, const AllocationCallbacks* pAllocator ) const { vkDestroyPipeline( m_device, static_cast( pipeline ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyPipeline( Pipeline pipeline, Optional allocator ) const { vkDestroyPipeline( m_device, static_cast( pipeline ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createPipelineLayout( const PipelineLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineLayout* pPipelineLayout ) const { return static_cast( vkCreatePipelineLayout( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pPipelineLayout ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createPipelineLayout( const PipelineLayoutCreateInfo & createInfo, Optional allocator ) const { PipelineLayout pipelineLayout; Result result = static_cast( vkCreatePipelineLayout( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &pipelineLayout ) ) ); return createResultValue( result, pipelineLayout, "vk::Device::createPipelineLayout" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniquePipelineLayout Device::createPipelineLayoutUnique( const PipelineLayoutCreateInfo & createInfo, Optional allocator ) const { PipelineLayoutDeleter deleter( *this, allocator ); return UniquePipelineLayout( createPipelineLayout( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyPipelineLayout( PipelineLayout pipelineLayout, const AllocationCallbacks* pAllocator ) const { vkDestroyPipelineLayout( m_device, static_cast( pipelineLayout ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyPipelineLayout( PipelineLayout pipelineLayout, Optional allocator ) const { vkDestroyPipelineLayout( m_device, static_cast( pipelineLayout ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createSampler( const SamplerCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Sampler* pSampler ) const { return static_cast( vkCreateSampler( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSampler ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createSampler( const SamplerCreateInfo & createInfo, Optional allocator ) const { Sampler sampler; Result result = static_cast( vkCreateSampler( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &sampler ) ) ); return createResultValue( result, sampler, "vk::Device::createSampler" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSampler Device::createSamplerUnique( const SamplerCreateInfo & createInfo, Optional allocator ) const { SamplerDeleter deleter( *this, allocator ); return UniqueSampler( createSampler( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroySampler( Sampler sampler, const AllocationCallbacks* pAllocator ) const { vkDestroySampler( m_device, static_cast( sampler ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroySampler( Sampler sampler, Optional allocator ) const { vkDestroySampler( m_device, static_cast( sampler ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createDescriptorSetLayout( const DescriptorSetLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorSetLayout* pSetLayout ) const { return static_cast( vkCreateDescriptorSetLayout( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSetLayout ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createDescriptorSetLayout( const DescriptorSetLayoutCreateInfo & createInfo, Optional allocator ) const { DescriptorSetLayout setLayout; Result result = static_cast( vkCreateDescriptorSetLayout( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &setLayout ) ) ); return createResultValue( result, setLayout, "vk::Device::createDescriptorSetLayout" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueDescriptorSetLayout Device::createDescriptorSetLayoutUnique( const DescriptorSetLayoutCreateInfo & createInfo, Optional allocator ) const { DescriptorSetLayoutDeleter deleter( *this, allocator ); return UniqueDescriptorSetLayout( createDescriptorSetLayout( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout, const AllocationCallbacks* pAllocator ) const { vkDestroyDescriptorSetLayout( m_device, static_cast( descriptorSetLayout ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyDescriptorSetLayout( DescriptorSetLayout descriptorSetLayout, Optional allocator ) const { vkDestroyDescriptorSetLayout( m_device, static_cast( descriptorSetLayout ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createDescriptorPool( const DescriptorPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorPool* pDescriptorPool ) const { return static_cast( vkCreateDescriptorPool( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pDescriptorPool ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createDescriptorPool( const DescriptorPoolCreateInfo & createInfo, Optional allocator ) const { DescriptorPool descriptorPool; Result result = static_cast( vkCreateDescriptorPool( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &descriptorPool ) ) ); return createResultValue( result, descriptorPool, "vk::Device::createDescriptorPool" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueDescriptorPool Device::createDescriptorPoolUnique( const DescriptorPoolCreateInfo & createInfo, Optional allocator ) const { DescriptorPoolDeleter deleter( *this, allocator ); return UniqueDescriptorPool( createDescriptorPool( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyDescriptorPool( DescriptorPool descriptorPool, const AllocationCallbacks* pAllocator ) const { vkDestroyDescriptorPool( m_device, static_cast( descriptorPool ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyDescriptorPool( DescriptorPool descriptorPool, Optional allocator ) const { vkDestroyDescriptorPool( m_device, static_cast( descriptorPool ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::resetDescriptorPool( DescriptorPool descriptorPool, DescriptorPoolResetFlags flags ) const { return static_cast( vkResetDescriptorPool( m_device, static_cast( descriptorPool ), static_cast( flags ) ) ); } #else VULKAN_HPP_INLINE ResultValueType::type Device::resetDescriptorPool( DescriptorPool descriptorPool, DescriptorPoolResetFlags flags ) const { Result result = static_cast( vkResetDescriptorPool( m_device, static_cast( descriptorPool ), static_cast( flags ) ) ); return createResultValue( result, "vk::Device::resetDescriptorPool" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::allocateDescriptorSets( const DescriptorSetAllocateInfo* pAllocateInfo, DescriptorSet* pDescriptorSets ) const { return static_cast( vkAllocateDescriptorSets( m_device, reinterpret_cast( pAllocateInfo ), reinterpret_cast( pDescriptorSets ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Device::allocateDescriptorSets( const DescriptorSetAllocateInfo & allocateInfo ) const { std::vector descriptorSets( allocateInfo.descriptorSetCount ); Result result = static_cast( vkAllocateDescriptorSets( m_device, reinterpret_cast( &allocateInfo ), reinterpret_cast( descriptorSets.data() ) ) ); return createResultValue( result, descriptorSets, "vk::Device::allocateDescriptorSets" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE template VULKAN_HPP_INLINE std::vector Device::allocateDescriptorSetsUnique( const DescriptorSetAllocateInfo & allocateInfo ) const { DescriptorSetDeleter deleter( *this, allocateInfo.descriptorPool ); std::vector descriptorSets = allocateDescriptorSets( allocateInfo ); std::vector uniqueDescriptorSets; uniqueDescriptorSets.reserve( descriptorSets.size() ); for ( auto descriptorSet : descriptorSets ) { uniqueDescriptorSets.push_back( UniqueDescriptorSet( descriptorSet, deleter ) ); } return uniqueDescriptorSets; } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::freeDescriptorSets( DescriptorPool descriptorPool, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets ) const { return static_cast( vkFreeDescriptorSets( m_device, static_cast( descriptorPool ), descriptorSetCount, reinterpret_cast( pDescriptorSets ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::freeDescriptorSets( DescriptorPool descriptorPool, ArrayProxy descriptorSets ) const { Result result = static_cast( vkFreeDescriptorSets( m_device, static_cast( descriptorPool ), descriptorSets.size() , reinterpret_cast( descriptorSets.data() ) ) ); return createResultValue( result, "vk::Device::freeDescriptorSets" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::updateDescriptorSets( uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const CopyDescriptorSet* pDescriptorCopies ) const { vkUpdateDescriptorSets( m_device, descriptorWriteCount, reinterpret_cast( pDescriptorWrites ), descriptorCopyCount, reinterpret_cast( pDescriptorCopies ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::updateDescriptorSets( ArrayProxy descriptorWrites, ArrayProxy descriptorCopies ) const { vkUpdateDescriptorSets( m_device, descriptorWrites.size() , reinterpret_cast( descriptorWrites.data() ), descriptorCopies.size() , reinterpret_cast( descriptorCopies.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createFramebuffer( const FramebufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Framebuffer* pFramebuffer ) const { return static_cast( vkCreateFramebuffer( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pFramebuffer ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createFramebuffer( const FramebufferCreateInfo & createInfo, Optional allocator ) const { Framebuffer framebuffer; Result result = static_cast( vkCreateFramebuffer( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &framebuffer ) ) ); return createResultValue( result, framebuffer, "vk::Device::createFramebuffer" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueFramebuffer Device::createFramebufferUnique( const FramebufferCreateInfo & createInfo, Optional allocator ) const { FramebufferDeleter deleter( *this, allocator ); return UniqueFramebuffer( createFramebuffer( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyFramebuffer( Framebuffer framebuffer, const AllocationCallbacks* pAllocator ) const { vkDestroyFramebuffer( m_device, static_cast( framebuffer ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyFramebuffer( Framebuffer framebuffer, Optional allocator ) const { vkDestroyFramebuffer( m_device, static_cast( framebuffer ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createRenderPass( const RenderPassCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, RenderPass* pRenderPass ) const { return static_cast( vkCreateRenderPass( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pRenderPass ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createRenderPass( const RenderPassCreateInfo & createInfo, Optional allocator ) const { RenderPass renderPass; Result result = static_cast( vkCreateRenderPass( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &renderPass ) ) ); return createResultValue( result, renderPass, "vk::Device::createRenderPass" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueRenderPass Device::createRenderPassUnique( const RenderPassCreateInfo & createInfo, Optional allocator ) const { RenderPassDeleter deleter( *this, allocator ); return UniqueRenderPass( createRenderPass( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyRenderPass( RenderPass renderPass, const AllocationCallbacks* pAllocator ) const { vkDestroyRenderPass( m_device, static_cast( renderPass ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyRenderPass( RenderPass renderPass, Optional allocator ) const { vkDestroyRenderPass( m_device, static_cast( renderPass ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getRenderAreaGranularity( RenderPass renderPass, Extent2D* pGranularity ) const { vkGetRenderAreaGranularity( m_device, static_cast( renderPass ), reinterpret_cast( pGranularity ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Extent2D Device::getRenderAreaGranularity( RenderPass renderPass ) const { Extent2D granularity; vkGetRenderAreaGranularity( m_device, static_cast( renderPass ), reinterpret_cast( &granularity ) ); return granularity; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createCommandPool( const CommandPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, CommandPool* pCommandPool ) const { return static_cast( vkCreateCommandPool( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pCommandPool ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createCommandPool( const CommandPoolCreateInfo & createInfo, Optional allocator ) const { CommandPool commandPool; Result result = static_cast( vkCreateCommandPool( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &commandPool ) ) ); return createResultValue( result, commandPool, "vk::Device::createCommandPool" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueCommandPool Device::createCommandPoolUnique( const CommandPoolCreateInfo & createInfo, Optional allocator ) const { CommandPoolDeleter deleter( *this, allocator ); return UniqueCommandPool( createCommandPool( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyCommandPool( CommandPool commandPool, const AllocationCallbacks* pAllocator ) const { vkDestroyCommandPool( m_device, static_cast( commandPool ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyCommandPool( CommandPool commandPool, Optional allocator ) const { vkDestroyCommandPool( m_device, static_cast( commandPool ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::resetCommandPool( CommandPool commandPool, CommandPoolResetFlags flags ) const { return static_cast( vkResetCommandPool( m_device, static_cast( commandPool ), static_cast( flags ) ) ); } #else VULKAN_HPP_INLINE ResultValueType::type Device::resetCommandPool( CommandPool commandPool, CommandPoolResetFlags flags ) const { Result result = static_cast( vkResetCommandPool( m_device, static_cast( commandPool ), static_cast( flags ) ) ); return createResultValue( result, "vk::Device::resetCommandPool" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::allocateCommandBuffers( const CommandBufferAllocateInfo* pAllocateInfo, CommandBuffer* pCommandBuffers ) const { return static_cast( vkAllocateCommandBuffers( m_device, reinterpret_cast( pAllocateInfo ), reinterpret_cast( pCommandBuffers ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Device::allocateCommandBuffers( const CommandBufferAllocateInfo & allocateInfo ) const { std::vector commandBuffers( allocateInfo.commandBufferCount ); Result result = static_cast( vkAllocateCommandBuffers( m_device, reinterpret_cast( &allocateInfo ), reinterpret_cast( commandBuffers.data() ) ) ); return createResultValue( result, commandBuffers, "vk::Device::allocateCommandBuffers" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE template VULKAN_HPP_INLINE std::vector Device::allocateCommandBuffersUnique( const CommandBufferAllocateInfo & allocateInfo ) const { CommandBufferDeleter deleter( *this, allocateInfo.commandPool ); std::vector commandBuffers = allocateCommandBuffers( allocateInfo ); std::vector uniqueCommandBuffers; uniqueCommandBuffers.reserve( commandBuffers.size() ); for ( auto commandBuffer : commandBuffers ) { uniqueCommandBuffers.push_back( UniqueCommandBuffer( commandBuffer, deleter ) ); } return uniqueCommandBuffers; } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::freeCommandBuffers( CommandPool commandPool, uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers ) const { vkFreeCommandBuffers( m_device, static_cast( commandPool ), commandBufferCount, reinterpret_cast( pCommandBuffers ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::freeCommandBuffers( CommandPool commandPool, ArrayProxy commandBuffers ) const { vkFreeCommandBuffers( m_device, static_cast( commandPool ), commandBuffers.size() , reinterpret_cast( commandBuffers.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createSharedSwapchainsKHR( uint32_t swapchainCount, const SwapchainCreateInfoKHR* pCreateInfos, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchains ) const { return static_cast( vkCreateSharedSwapchainsKHR( m_device, swapchainCount, reinterpret_cast( pCreateInfos ), reinterpret_cast( pAllocator ), reinterpret_cast( pSwapchains ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Device::createSharedSwapchainsKHR( ArrayProxy createInfos, Optional allocator ) const { std::vector swapchains( createInfos.size() ); Result result = static_cast( vkCreateSharedSwapchainsKHR( m_device, createInfos.size() , reinterpret_cast( createInfos.data() ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( swapchains.data() ) ) ); return createResultValue( result, swapchains, "vk::Device::createSharedSwapchainsKHR" ); } VULKAN_HPP_INLINE ResultValueType::type Device::createSharedSwapchainKHR( const SwapchainCreateInfoKHR & createInfo, Optional allocator ) const { SwapchainKHR swapchain; Result result = static_cast( vkCreateSharedSwapchainsKHR( m_device, 1 , reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &swapchain ) ) ); return createResultValue( result, swapchain, "vk::Device::createSharedSwapchainKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE template VULKAN_HPP_INLINE std::vector Device::createSharedSwapchainsKHRUnique( ArrayProxy createInfos, Optional allocator ) const { SwapchainKHRDeleter deleter( *this, allocator ); std::vector swapchainKHRs = createSharedSwapchainsKHR( createInfos, allocator ); std::vector uniqueSwapchainKHRs; uniqueSwapchainKHRs.reserve( swapchainKHRs.size() ); for ( auto swapchainKHR : swapchainKHRs ) { uniqueSwapchainKHRs.push_back( UniqueSwapchainKHR( swapchainKHR, deleter ) ); } return uniqueSwapchainKHRs; } VULKAN_HPP_INLINE UniqueSwapchainKHR Device::createSharedSwapchainKHRUnique( const SwapchainCreateInfoKHR & createInfo, Optional allocator ) const { SwapchainKHRDeleter deleter( *this, allocator ); return UniqueSwapchainKHR( createSharedSwapchainKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createSwapchainKHR( const SwapchainCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchain ) const { return static_cast( vkCreateSwapchainKHR( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSwapchain ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createSwapchainKHR( const SwapchainCreateInfoKHR & createInfo, Optional allocator ) const { SwapchainKHR swapchain; Result result = static_cast( vkCreateSwapchainKHR( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &swapchain ) ) ); return createResultValue( result, swapchain, "vk::Device::createSwapchainKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSwapchainKHR Device::createSwapchainKHRUnique( const SwapchainCreateInfoKHR & createInfo, Optional allocator ) const { SwapchainKHRDeleter deleter( *this, allocator ); return UniqueSwapchainKHR( createSwapchainKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroySwapchainKHR( SwapchainKHR swapchain, const AllocationCallbacks* pAllocator ) const { vkDestroySwapchainKHR( m_device, static_cast( swapchain ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroySwapchainKHR( SwapchainKHR swapchain, Optional allocator ) const { vkDestroySwapchainKHR( m_device, static_cast( swapchain ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getSwapchainImagesKHR( SwapchainKHR swapchain, uint32_t* pSwapchainImageCount, Image* pSwapchainImages ) const { return static_cast( vkGetSwapchainImagesKHR( m_device, static_cast( swapchain ), pSwapchainImageCount, reinterpret_cast( pSwapchainImages ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Device::getSwapchainImagesKHR( SwapchainKHR swapchain ) const { std::vector swapchainImages; uint32_t swapchainImageCount; Result result; do { result = static_cast( vkGetSwapchainImagesKHR( m_device, static_cast( swapchain ), &swapchainImageCount, nullptr ) ); if ( ( result == Result::eSuccess ) && swapchainImageCount ) { swapchainImages.resize( swapchainImageCount ); result = static_cast( vkGetSwapchainImagesKHR( m_device, static_cast( swapchain ), &swapchainImageCount, reinterpret_cast( swapchainImages.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( swapchainImageCount <= swapchainImages.size() ); swapchainImages.resize( swapchainImageCount ); return createResultValue( result, swapchainImages, "vk::Device::getSwapchainImagesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::acquireNextImageKHR( SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence, uint32_t* pImageIndex ) const { return static_cast( vkAcquireNextImageKHR( m_device, static_cast( swapchain ), timeout, static_cast( semaphore ), static_cast( fence ), pImageIndex ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValue Device::acquireNextImageKHR( SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence ) const { uint32_t imageIndex; Result result = static_cast( vkAcquireNextImageKHR( m_device, static_cast( swapchain ), timeout, static_cast( semaphore ), static_cast( fence ), &imageIndex ) ); return createResultValue( result, imageIndex, "vk::Device::acquireNextImageKHR", { Result::eSuccess, Result::eTimeout, Result::eNotReady, Result::eSuboptimalKHR } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::debugMarkerSetObjectNameEXT( DebugMarkerObjectNameInfoEXT* pNameInfo ) const { return static_cast( vkDebugMarkerSetObjectNameEXT( m_device, reinterpret_cast( pNameInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::debugMarkerSetObjectNameEXT() const { DebugMarkerObjectNameInfoEXT nameInfo; Result result = static_cast( vkDebugMarkerSetObjectNameEXT( m_device, reinterpret_cast( &nameInfo ) ) ); return createResultValue( result, nameInfo, "vk::Device::debugMarkerSetObjectNameEXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::debugMarkerSetObjectTagEXT( DebugMarkerObjectTagInfoEXT* pTagInfo ) const { return static_cast( vkDebugMarkerSetObjectTagEXT( m_device, reinterpret_cast( pTagInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::debugMarkerSetObjectTagEXT() const { DebugMarkerObjectTagInfoEXT tagInfo; Result result = static_cast( vkDebugMarkerSetObjectTagEXT( m_device, reinterpret_cast( &tagInfo ) ) ); return createResultValue( result, tagInfo, "vk::Device::debugMarkerSetObjectTagEXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Result Device::getMemoryWin32HandleNV( DeviceMemory memory, ExternalMemoryHandleTypeFlagsNV handleType, HANDLE* pHandle ) const { return static_cast( vkGetMemoryWin32HandleNV( m_device, static_cast( memory ), static_cast( handleType ), pHandle ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getMemoryWin32HandleNV( DeviceMemory memory, ExternalMemoryHandleTypeFlagsNV handleType ) const { HANDLE handle; Result result = static_cast( vkGetMemoryWin32HandleNV( m_device, static_cast( memory ), static_cast( handleType ), &handle ) ); return createResultValue( result, handle, "vk::Device::getMemoryWin32HandleNV" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ VULKAN_HPP_INLINE Result Device::createIndirectCommandsLayoutNVX( const IndirectCommandsLayoutCreateInfoNVX* pCreateInfo, const AllocationCallbacks* pAllocator, IndirectCommandsLayoutNVX* pIndirectCommandsLayout ) const { return static_cast( vkCreateIndirectCommandsLayoutNVX( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pIndirectCommandsLayout ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createIndirectCommandsLayoutNVX( const IndirectCommandsLayoutCreateInfoNVX & createInfo, Optional allocator ) const { IndirectCommandsLayoutNVX indirectCommandsLayout; Result result = static_cast( vkCreateIndirectCommandsLayoutNVX( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &indirectCommandsLayout ) ) ); return createResultValue( result, indirectCommandsLayout, "vk::Device::createIndirectCommandsLayoutNVX" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueIndirectCommandsLayoutNVX Device::createIndirectCommandsLayoutNVXUnique( const IndirectCommandsLayoutCreateInfoNVX & createInfo, Optional allocator ) const { IndirectCommandsLayoutNVXDeleter deleter( *this, allocator ); return UniqueIndirectCommandsLayoutNVX( createIndirectCommandsLayoutNVX( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyIndirectCommandsLayoutNVX( IndirectCommandsLayoutNVX indirectCommandsLayout, const AllocationCallbacks* pAllocator ) const { vkDestroyIndirectCommandsLayoutNVX( m_device, static_cast( indirectCommandsLayout ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyIndirectCommandsLayoutNVX( IndirectCommandsLayoutNVX indirectCommandsLayout, Optional allocator ) const { vkDestroyIndirectCommandsLayoutNVX( m_device, static_cast( indirectCommandsLayout ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createObjectTableNVX( const ObjectTableCreateInfoNVX* pCreateInfo, const AllocationCallbacks* pAllocator, ObjectTableNVX* pObjectTable ) const { return static_cast( vkCreateObjectTableNVX( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pObjectTable ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createObjectTableNVX( const ObjectTableCreateInfoNVX & createInfo, Optional allocator ) const { ObjectTableNVX objectTable; Result result = static_cast( vkCreateObjectTableNVX( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &objectTable ) ) ); return createResultValue( result, objectTable, "vk::Device::createObjectTableNVX" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueObjectTableNVX Device::createObjectTableNVXUnique( const ObjectTableCreateInfoNVX & createInfo, Optional allocator ) const { ObjectTableNVXDeleter deleter( *this, allocator ); return UniqueObjectTableNVX( createObjectTableNVX( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyObjectTableNVX( ObjectTableNVX objectTable, const AllocationCallbacks* pAllocator ) const { vkDestroyObjectTableNVX( m_device, static_cast( objectTable ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyObjectTableNVX( ObjectTableNVX objectTable, Optional allocator ) const { vkDestroyObjectTableNVX( m_device, static_cast( objectTable ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::registerObjectsNVX( ObjectTableNVX objectTable, uint32_t objectCount, const ObjectTableEntryNVX* const* ppObjectTableEntries, const uint32_t* pObjectIndices ) const { return static_cast( vkRegisterObjectsNVX( m_device, static_cast( objectTable ), objectCount, reinterpret_cast( ppObjectTableEntries ), pObjectIndices ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::registerObjectsNVX( ObjectTableNVX objectTable, ArrayProxy pObjectTableEntries, ArrayProxy objectIndices ) const { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( pObjectTableEntries.size() == objectIndices.size() ); #else if ( pObjectTableEntries.size() != objectIndices.size() ) { throw LogicError( "vk::Device::registerObjectsNVX: pObjectTableEntries.size() != objectIndices.size()" ); } #endif // VULKAN_HPP_NO_EXCEPTIONS Result result = static_cast( vkRegisterObjectsNVX( m_device, static_cast( objectTable ), pObjectTableEntries.size() , reinterpret_cast( pObjectTableEntries.data() ), objectIndices.data() ) ); return createResultValue( result, "vk::Device::registerObjectsNVX" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::unregisterObjectsNVX( ObjectTableNVX objectTable, uint32_t objectCount, const ObjectEntryTypeNVX* pObjectEntryTypes, const uint32_t* pObjectIndices ) const { return static_cast( vkUnregisterObjectsNVX( m_device, static_cast( objectTable ), objectCount, reinterpret_cast( pObjectEntryTypes ), pObjectIndices ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::unregisterObjectsNVX( ObjectTableNVX objectTable, ArrayProxy objectEntryTypes, ArrayProxy objectIndices ) const { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( objectEntryTypes.size() == objectIndices.size() ); #else if ( objectEntryTypes.size() != objectIndices.size() ) { throw LogicError( "vk::Device::unregisterObjectsNVX: objectEntryTypes.size() != objectIndices.size()" ); } #endif // VULKAN_HPP_NO_EXCEPTIONS Result result = static_cast( vkUnregisterObjectsNVX( m_device, static_cast( objectTable ), objectEntryTypes.size() , reinterpret_cast( objectEntryTypes.data() ), objectIndices.data() ) ); return createResultValue( result, "vk::Device::unregisterObjectsNVX" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::trimCommandPoolKHR( CommandPool commandPool, CommandPoolTrimFlagsKHR flags ) const { vkTrimCommandPoolKHR( m_device, static_cast( commandPool ), static_cast( flags ) ); } #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Result Device::getMemoryWin32HandleKHR( const MemoryGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const { return static_cast( vkGetMemoryWin32HandleKHR( m_device, reinterpret_cast( pGetWin32HandleInfo ), pHandle ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getMemoryWin32HandleKHR( const MemoryGetWin32HandleInfoKHR & getWin32HandleInfo ) const { HANDLE handle; Result result = static_cast( vkGetMemoryWin32HandleKHR( m_device, reinterpret_cast( &getWin32HandleInfo ), &handle ) ); return createResultValue( result, handle, "vk::Device::getMemoryWin32HandleKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Result Device::getMemoryWin32HandlePropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, HANDLE handle, MemoryWin32HandlePropertiesKHR* pMemoryWin32HandleProperties ) const { return static_cast( vkGetMemoryWin32HandlePropertiesKHR( m_device, static_cast( handleType ), handle, reinterpret_cast( pMemoryWin32HandleProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getMemoryWin32HandlePropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, HANDLE handle ) const { MemoryWin32HandlePropertiesKHR memoryWin32HandleProperties; Result result = static_cast( vkGetMemoryWin32HandlePropertiesKHR( m_device, static_cast( handleType ), handle, reinterpret_cast( &memoryWin32HandleProperties ) ) ); return createResultValue( result, memoryWin32HandleProperties, "vk::Device::getMemoryWin32HandlePropertiesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ VULKAN_HPP_INLINE Result Device::getMemoryFdKHR( const MemoryGetFdInfoKHR* pGetFdInfo, int* pFd ) const { return static_cast( vkGetMemoryFdKHR( m_device, reinterpret_cast( pGetFdInfo ), pFd ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getMemoryFdKHR( const MemoryGetFdInfoKHR & getFdInfo ) const { int fd; Result result = static_cast( vkGetMemoryFdKHR( m_device, reinterpret_cast( &getFdInfo ), &fd ) ); return createResultValue( result, fd, "vk::Device::getMemoryFdKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getMemoryFdPropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, int fd, MemoryFdPropertiesKHR* pMemoryFdProperties ) const { return static_cast( vkGetMemoryFdPropertiesKHR( m_device, static_cast( handleType ), fd, reinterpret_cast( pMemoryFdProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getMemoryFdPropertiesKHR( ExternalMemoryHandleTypeFlagBitsKHR handleType, int fd ) const { MemoryFdPropertiesKHR memoryFdProperties; Result result = static_cast( vkGetMemoryFdPropertiesKHR( m_device, static_cast( handleType ), fd, reinterpret_cast( &memoryFdProperties ) ) ); return createResultValue( result, memoryFdProperties, "vk::Device::getMemoryFdPropertiesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Result Device::getSemaphoreWin32HandleKHR( const SemaphoreGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const { return static_cast( vkGetSemaphoreWin32HandleKHR( m_device, reinterpret_cast( pGetWin32HandleInfo ), pHandle ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getSemaphoreWin32HandleKHR( const SemaphoreGetWin32HandleInfoKHR & getWin32HandleInfo ) const { HANDLE handle; Result result = static_cast( vkGetSemaphoreWin32HandleKHR( m_device, reinterpret_cast( &getWin32HandleInfo ), &handle ) ); return createResultValue( result, handle, "vk::Device::getSemaphoreWin32HandleKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Result Device::importSemaphoreWin32HandleKHR( const ImportSemaphoreWin32HandleInfoKHR* pImportSemaphoreWin32HandleInfo ) const { return static_cast( vkImportSemaphoreWin32HandleKHR( m_device, reinterpret_cast( pImportSemaphoreWin32HandleInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::importSemaphoreWin32HandleKHR( const ImportSemaphoreWin32HandleInfoKHR & importSemaphoreWin32HandleInfo ) const { Result result = static_cast( vkImportSemaphoreWin32HandleKHR( m_device, reinterpret_cast( &importSemaphoreWin32HandleInfo ) ) ); return createResultValue( result, "vk::Device::importSemaphoreWin32HandleKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ VULKAN_HPP_INLINE Result Device::getSemaphoreFdKHR( const SemaphoreGetFdInfoKHR* pGetFdInfo, int* pFd ) const { return static_cast( vkGetSemaphoreFdKHR( m_device, reinterpret_cast( pGetFdInfo ), pFd ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getSemaphoreFdKHR( const SemaphoreGetFdInfoKHR & getFdInfo ) const { int fd; Result result = static_cast( vkGetSemaphoreFdKHR( m_device, reinterpret_cast( &getFdInfo ), &fd ) ); return createResultValue( result, fd, "vk::Device::getSemaphoreFdKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::importSemaphoreFdKHR( const ImportSemaphoreFdInfoKHR* pImportSemaphoreFdInfo ) const { return static_cast( vkImportSemaphoreFdKHR( m_device, reinterpret_cast( pImportSemaphoreFdInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::importSemaphoreFdKHR( const ImportSemaphoreFdInfoKHR & importSemaphoreFdInfo ) const { Result result = static_cast( vkImportSemaphoreFdKHR( m_device, reinterpret_cast( &importSemaphoreFdInfo ) ) ); return createResultValue( result, "vk::Device::importSemaphoreFdKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Result Device::getFenceWin32HandleKHR( const FenceGetWin32HandleInfoKHR* pGetWin32HandleInfo, HANDLE* pHandle ) const { return static_cast( vkGetFenceWin32HandleKHR( m_device, reinterpret_cast( pGetWin32HandleInfo ), pHandle ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getFenceWin32HandleKHR( const FenceGetWin32HandleInfoKHR & getWin32HandleInfo ) const { HANDLE handle; Result result = static_cast( vkGetFenceWin32HandleKHR( m_device, reinterpret_cast( &getWin32HandleInfo ), &handle ) ); return createResultValue( result, handle, "vk::Device::getFenceWin32HandleKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Result Device::importFenceWin32HandleKHR( const ImportFenceWin32HandleInfoKHR* pImportFenceWin32HandleInfo ) const { return static_cast( vkImportFenceWin32HandleKHR( m_device, reinterpret_cast( pImportFenceWin32HandleInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::importFenceWin32HandleKHR( const ImportFenceWin32HandleInfoKHR & importFenceWin32HandleInfo ) const { Result result = static_cast( vkImportFenceWin32HandleKHR( m_device, reinterpret_cast( &importFenceWin32HandleInfo ) ) ); return createResultValue( result, "vk::Device::importFenceWin32HandleKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ VULKAN_HPP_INLINE Result Device::getFenceFdKHR( const FenceGetFdInfoKHR* pGetFdInfo, int* pFd ) const { return static_cast( vkGetFenceFdKHR( m_device, reinterpret_cast( pGetFdInfo ), pFd ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getFenceFdKHR( const FenceGetFdInfoKHR & getFdInfo ) const { int fd; Result result = static_cast( vkGetFenceFdKHR( m_device, reinterpret_cast( &getFdInfo ), &fd ) ); return createResultValue( result, fd, "vk::Device::getFenceFdKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::importFenceFdKHR( const ImportFenceFdInfoKHR* pImportFenceFdInfo ) const { return static_cast( vkImportFenceFdKHR( m_device, reinterpret_cast( pImportFenceFdInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::importFenceFdKHR( const ImportFenceFdInfoKHR & importFenceFdInfo ) const { Result result = static_cast( vkImportFenceFdKHR( m_device, reinterpret_cast( &importFenceFdInfo ) ) ); return createResultValue( result, "vk::Device::importFenceFdKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::displayPowerControlEXT( DisplayKHR display, const DisplayPowerInfoEXT* pDisplayPowerInfo ) const { return static_cast( vkDisplayPowerControlEXT( m_device, static_cast( display ), reinterpret_cast( pDisplayPowerInfo ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::displayPowerControlEXT( DisplayKHR display, const DisplayPowerInfoEXT & displayPowerInfo ) const { Result result = static_cast( vkDisplayPowerControlEXT( m_device, static_cast( display ), reinterpret_cast( &displayPowerInfo ) ) ); return createResultValue( result, "vk::Device::displayPowerControlEXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::registerEventEXT( const DeviceEventInfoEXT* pDeviceEventInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const { return static_cast( vkRegisterDeviceEventEXT( m_device, reinterpret_cast( pDeviceEventInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pFence ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::registerEventEXT( const DeviceEventInfoEXT & deviceEventInfo, const AllocationCallbacks & allocator ) const { Fence fence; Result result = static_cast( vkRegisterDeviceEventEXT( m_device, reinterpret_cast( &deviceEventInfo ), reinterpret_cast( &allocator ), reinterpret_cast( &fence ) ) ); return createResultValue( result, fence, "vk::Device::registerEventEXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::registerDisplayEventEXT( DisplayKHR display, const DisplayEventInfoEXT* pDisplayEventInfo, const AllocationCallbacks* pAllocator, Fence* pFence ) const { return static_cast( vkRegisterDisplayEventEXT( m_device, static_cast( display ), reinterpret_cast( pDisplayEventInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pFence ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::registerDisplayEventEXT( DisplayKHR display, const DisplayEventInfoEXT & displayEventInfo, const AllocationCallbacks & allocator ) const { Fence fence; Result result = static_cast( vkRegisterDisplayEventEXT( m_device, static_cast( display ), reinterpret_cast( &displayEventInfo ), reinterpret_cast( &allocator ), reinterpret_cast( &fence ) ) ); return createResultValue( result, fence, "vk::Device::registerDisplayEventEXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getSwapchainCounterEXT( SwapchainKHR swapchain, SurfaceCounterFlagBitsEXT counter, uint64_t* pCounterValue ) const { return static_cast( vkGetSwapchainCounterEXT( m_device, static_cast( swapchain ), static_cast( counter ), pCounterValue ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValue Device::getSwapchainCounterEXT( SwapchainKHR swapchain, SurfaceCounterFlagBitsEXT counter ) const { uint64_t counterValue; Result result = static_cast( vkGetSwapchainCounterEXT( m_device, static_cast( swapchain ), static_cast( counter ), &counterValue ) ); return createResultValue( result, counterValue, "vk::Device::getSwapchainCounterEXT", { Result::eSuccess, Result::eErrorDeviceLost, Result::eErrorOutOfDateKHR } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getGroupPeerMemoryFeaturesKHX( uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, PeerMemoryFeatureFlagsKHX* pPeerMemoryFeatures ) const { vkGetDeviceGroupPeerMemoryFeaturesKHX( m_device, heapIndex, localDeviceIndex, remoteDeviceIndex, reinterpret_cast( pPeerMemoryFeatures ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PeerMemoryFeatureFlagsKHX Device::getGroupPeerMemoryFeaturesKHX( uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex ) const { PeerMemoryFeatureFlagsKHX peerMemoryFeatures; vkGetDeviceGroupPeerMemoryFeaturesKHX( m_device, heapIndex, localDeviceIndex, remoteDeviceIndex, reinterpret_cast( &peerMemoryFeatures ) ); return peerMemoryFeatures; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::bindBufferMemory2KHX( uint32_t bindInfoCount, const BindBufferMemoryInfoKHX* pBindInfos ) const { return static_cast( vkBindBufferMemory2KHX( m_device, bindInfoCount, reinterpret_cast( pBindInfos ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::bindBufferMemory2KHX( ArrayProxy bindInfos ) const { Result result = static_cast( vkBindBufferMemory2KHX( m_device, bindInfos.size() , reinterpret_cast( bindInfos.data() ) ) ); return createResultValue( result, "vk::Device::bindBufferMemory2KHX" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::bindImageMemory2KHX( uint32_t bindInfoCount, const BindImageMemoryInfoKHX* pBindInfos ) const { return static_cast( vkBindImageMemory2KHX( m_device, bindInfoCount, reinterpret_cast( pBindInfos ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::bindImageMemory2KHX( ArrayProxy bindInfos ) const { Result result = static_cast( vkBindImageMemory2KHX( m_device, bindInfos.size() , reinterpret_cast( bindInfos.data() ) ) ); return createResultValue( result, "vk::Device::bindImageMemory2KHX" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getGroupPresentCapabilitiesKHX( DeviceGroupPresentCapabilitiesKHX* pDeviceGroupPresentCapabilities ) const { return static_cast( vkGetDeviceGroupPresentCapabilitiesKHX( m_device, reinterpret_cast( pDeviceGroupPresentCapabilities ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getGroupPresentCapabilitiesKHX() const { DeviceGroupPresentCapabilitiesKHX deviceGroupPresentCapabilities; Result result = static_cast( vkGetDeviceGroupPresentCapabilitiesKHX( m_device, reinterpret_cast( &deviceGroupPresentCapabilities ) ) ); return createResultValue( result, deviceGroupPresentCapabilities, "vk::Device::getGroupPresentCapabilitiesKHX" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getGroupSurfacePresentModesKHX( SurfaceKHR surface, DeviceGroupPresentModeFlagsKHX* pModes ) const { return static_cast( vkGetDeviceGroupSurfacePresentModesKHX( m_device, static_cast( surface ), reinterpret_cast( pModes ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getGroupSurfacePresentModesKHX( SurfaceKHR surface ) const { DeviceGroupPresentModeFlagsKHX modes; Result result = static_cast( vkGetDeviceGroupSurfacePresentModesKHX( m_device, static_cast( surface ), reinterpret_cast( &modes ) ) ); return createResultValue( result, modes, "vk::Device::getGroupSurfacePresentModesKHX" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::acquireNextImage2KHX( const AcquireNextImageInfoKHX* pAcquireInfo, uint32_t* pImageIndex ) const { return static_cast( vkAcquireNextImage2KHX( m_device, reinterpret_cast( pAcquireInfo ), pImageIndex ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValue Device::acquireNextImage2KHX( const AcquireNextImageInfoKHX & acquireInfo ) const { uint32_t imageIndex; Result result = static_cast( vkAcquireNextImage2KHX( m_device, reinterpret_cast( &acquireInfo ), &imageIndex ) ); return createResultValue( result, imageIndex, "vk::Device::acquireNextImage2KHX", { Result::eSuccess, Result::eTimeout, Result::eNotReady, Result::eSuboptimalKHR } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createDescriptorUpdateTemplateKHR( const DescriptorUpdateTemplateCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorUpdateTemplateKHR* pDescriptorUpdateTemplate ) const { return static_cast( vkCreateDescriptorUpdateTemplateKHR( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pDescriptorUpdateTemplate ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createDescriptorUpdateTemplateKHR( const DescriptorUpdateTemplateCreateInfoKHR & createInfo, Optional allocator ) const { DescriptorUpdateTemplateKHR descriptorUpdateTemplate; Result result = static_cast( vkCreateDescriptorUpdateTemplateKHR( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &descriptorUpdateTemplate ) ) ); return createResultValue( result, descriptorUpdateTemplate, "vk::Device::createDescriptorUpdateTemplateKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueDescriptorUpdateTemplateKHR Device::createDescriptorUpdateTemplateKHRUnique( const DescriptorUpdateTemplateCreateInfoKHR & createInfo, Optional allocator ) const { DescriptorUpdateTemplateKHRDeleter deleter( *this, allocator ); return UniqueDescriptorUpdateTemplateKHR( createDescriptorUpdateTemplateKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroyDescriptorUpdateTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, const AllocationCallbacks* pAllocator ) const { vkDestroyDescriptorUpdateTemplateKHR( m_device, static_cast( descriptorUpdateTemplate ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroyDescriptorUpdateTemplateKHR( DescriptorUpdateTemplateKHR descriptorUpdateTemplate, Optional allocator ) const { vkDestroyDescriptorUpdateTemplateKHR( m_device, static_cast( descriptorUpdateTemplate ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::updateDescriptorSetWithTemplateKHR( DescriptorSet descriptorSet, DescriptorUpdateTemplateKHR descriptorUpdateTemplate, const void* pData ) const { vkUpdateDescriptorSetWithTemplateKHR( m_device, static_cast( descriptorSet ), static_cast( descriptorUpdateTemplate ), pData ); } VULKAN_HPP_INLINE void Device::setHdrMetadataEXT( uint32_t swapchainCount, const SwapchainKHR* pSwapchains, const HdrMetadataEXT* pMetadata ) const { vkSetHdrMetadataEXT( m_device, swapchainCount, reinterpret_cast( pSwapchains ), reinterpret_cast( pMetadata ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::setHdrMetadataEXT( ArrayProxy swapchains, ArrayProxy metadata ) const { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( swapchains.size() == metadata.size() ); #else if ( swapchains.size() != metadata.size() ) { throw LogicError( "vk::Device::setHdrMetadataEXT: swapchains.size() != metadata.size()" ); } #endif // VULKAN_HPP_NO_EXCEPTIONS vkSetHdrMetadataEXT( m_device, swapchains.size() , reinterpret_cast( swapchains.data() ), reinterpret_cast( metadata.data() ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result Device::getSwapchainStatusKHR( SwapchainKHR swapchain ) const { return static_cast( vkGetSwapchainStatusKHR( m_device, static_cast( swapchain ) ) ); } #else VULKAN_HPP_INLINE Result Device::getSwapchainStatusKHR( SwapchainKHR swapchain ) const { Result result = static_cast( vkGetSwapchainStatusKHR( m_device, static_cast( swapchain ) ) ); return createResultValue( result, "vk::Device::getSwapchainStatusKHR", { Result::eSuccess, Result::eSuboptimalKHR } ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getRefreshCycleDurationGOOGLE( SwapchainKHR swapchain, RefreshCycleDurationGOOGLE* pDisplayTimingProperties ) const { return static_cast( vkGetRefreshCycleDurationGOOGLE( m_device, static_cast( swapchain ), reinterpret_cast( pDisplayTimingProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::getRefreshCycleDurationGOOGLE( SwapchainKHR swapchain ) const { RefreshCycleDurationGOOGLE displayTimingProperties; Result result = static_cast( vkGetRefreshCycleDurationGOOGLE( m_device, static_cast( swapchain ), reinterpret_cast( &displayTimingProperties ) ) ); return createResultValue( result, displayTimingProperties, "vk::Device::getRefreshCycleDurationGOOGLE" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::getPastPresentationTimingGOOGLE( SwapchainKHR swapchain, uint32_t* pPresentationTimingCount, PastPresentationTimingGOOGLE* pPresentationTimings ) const { return static_cast( vkGetPastPresentationTimingGOOGLE( m_device, static_cast( swapchain ), pPresentationTimingCount, reinterpret_cast( pPresentationTimings ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Device::getPastPresentationTimingGOOGLE( SwapchainKHR swapchain ) const { std::vector presentationTimings; uint32_t presentationTimingCount; Result result = static_cast( vkGetPastPresentationTimingGOOGLE( m_device, static_cast( swapchain ), &presentationTimingCount, nullptr ) ); if ( ( result == Result::eSuccess ) && presentationTimingCount ) { presentationTimings.resize( presentationTimingCount ); result = static_cast( vkGetPastPresentationTimingGOOGLE( m_device, static_cast( swapchain ), &presentationTimingCount, reinterpret_cast( presentationTimings.data() ) ) ); } return createResultValue( result, presentationTimings, "vk::Device::getPastPresentationTimingGOOGLE" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR* pInfo, MemoryRequirements2KHR* pMemoryRequirements ) const { vkGetBufferMemoryRequirements2KHR( m_device, reinterpret_cast( pInfo ), reinterpret_cast( pMemoryRequirements ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE MemoryRequirements2KHR Device::getBufferMemoryRequirements2KHR( const BufferMemoryRequirementsInfo2KHR & info ) const { MemoryRequirements2KHR memoryRequirements; vkGetBufferMemoryRequirements2KHR( m_device, reinterpret_cast( &info ), reinterpret_cast( &memoryRequirements ) ); return memoryRequirements; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR* pInfo, MemoryRequirements2KHR* pMemoryRequirements ) const { vkGetImageMemoryRequirements2KHR( m_device, reinterpret_cast( pInfo ), reinterpret_cast( pMemoryRequirements ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE MemoryRequirements2KHR Device::getImageMemoryRequirements2KHR( const ImageMemoryRequirementsInfo2KHR & info ) const { MemoryRequirements2KHR memoryRequirements; vkGetImageMemoryRequirements2KHR( m_device, reinterpret_cast( &info ), reinterpret_cast( &memoryRequirements ) ); return memoryRequirements; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::getImageSparseMemoryRequirements2KHR( const ImageSparseMemoryRequirementsInfo2KHR* pInfo, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements2KHR* pSparseMemoryRequirements ) const { vkGetImageSparseMemoryRequirements2KHR( m_device, reinterpret_cast( pInfo ), pSparseMemoryRequirementCount, reinterpret_cast( pSparseMemoryRequirements ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE std::vector Device::getImageSparseMemoryRequirements2KHR( const ImageSparseMemoryRequirementsInfo2KHR & info ) const { std::vector sparseMemoryRequirements; uint32_t sparseMemoryRequirementCount; vkGetImageSparseMemoryRequirements2KHR( m_device, reinterpret_cast( &info ), &sparseMemoryRequirementCount, nullptr ); sparseMemoryRequirements.resize( sparseMemoryRequirementCount ); vkGetImageSparseMemoryRequirements2KHR( m_device, reinterpret_cast( &info ), &sparseMemoryRequirementCount, reinterpret_cast( sparseMemoryRequirements.data() ) ); return sparseMemoryRequirements; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Device::createSamplerYCbCrConversionKHR( const SamplerYCbCrConversionCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SamplerYCbCrConversionKHR* pYCbCrConversion ) const { return static_cast( vkCreateSamplerYCbCrConversionKHR( m_device, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pYCbCrConversion ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Device::createSamplerYCbCrConversionKHR( const SamplerYCbCrConversionCreateInfoKHR & createInfo, Optional allocator ) const { SamplerYCbCrConversionKHR yCbCrConversion; Result result = static_cast( vkCreateSamplerYCbCrConversionKHR( m_device, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &yCbCrConversion ) ) ); return createResultValue( result, yCbCrConversion, "vk::Device::createSamplerYCbCrConversionKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSamplerYCbCrConversionKHR Device::createSamplerYCbCrConversionKHRUnique( const SamplerYCbCrConversionCreateInfoKHR & createInfo, Optional allocator ) const { SamplerYCbCrConversionKHRDeleter deleter( *this, allocator ); return UniqueSamplerYCbCrConversionKHR( createSamplerYCbCrConversionKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Device::destroySamplerYCbCrConversionKHR( SamplerYCbCrConversionKHR YCbCrConversion, const AllocationCallbacks* pAllocator ) const { vkDestroySamplerYCbCrConversionKHR( m_device, static_cast( YCbCrConversion ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Device::destroySamplerYCbCrConversionKHR( SamplerYCbCrConversionKHR YCbCrConversion, Optional allocator ) const { vkDestroySamplerYCbCrConversionKHR( m_device, static_cast( YCbCrConversion ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifndef VULKAN_HPP_NO_SMART_HANDLE class DeviceDeleter; using UniqueDevice = UniqueHandle; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ class PhysicalDevice { public: PhysicalDevice() : m_physicalDevice(VK_NULL_HANDLE) {} PhysicalDevice( std::nullptr_t ) : m_physicalDevice(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT PhysicalDevice( VkPhysicalDevice physicalDevice ) : m_physicalDevice( physicalDevice ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) PhysicalDevice & operator=(VkPhysicalDevice physicalDevice) { m_physicalDevice = physicalDevice; return *this; } #endif PhysicalDevice & operator=( std::nullptr_t ) { m_physicalDevice = VK_NULL_HANDLE; return *this; } bool operator==( PhysicalDevice const & rhs ) const { return m_physicalDevice == rhs.m_physicalDevice; } bool operator!=(PhysicalDevice const & rhs ) const { return m_physicalDevice != rhs.m_physicalDevice; } bool operator<(PhysicalDevice const & rhs ) const { return m_physicalDevice < rhs.m_physicalDevice; } void getProperties( PhysicalDeviceProperties* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PhysicalDeviceProperties getProperties() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getQueueFamilyProperties( uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties* pQueueFamilyProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > std::vector getQueueFamilyProperties() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getMemoryProperties( PhysicalDeviceMemoryProperties* pMemoryProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PhysicalDeviceMemoryProperties getMemoryProperties() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getFeatures( PhysicalDeviceFeatures* pFeatures ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PhysicalDeviceFeatures getFeatures() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getFormatProperties( Format format, FormatProperties* pFormatProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE FormatProperties getFormatProperties( Format format ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getImageFormatProperties( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ImageFormatProperties* pImageFormatProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getImageFormatProperties( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createDevice( const DeviceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Device* pDevice ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createDevice( const DeviceCreateInfo & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueDevice createDeviceUnique( const DeviceCreateInfo & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result enumerateDeviceLayerProperties( uint32_t* pPropertyCount, LayerProperties* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type enumerateDeviceLayerProperties() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result enumerateDeviceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type enumerateDeviceExtensionProperties( Optional layerName = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getSparseImageFormatProperties( Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling, uint32_t* pPropertyCount, SparseImageFormatProperties* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > std::vector getSparseImageFormatProperties( Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayPropertiesKHR( uint32_t* pPropertyCount, DisplayPropertiesKHR* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getDisplayPropertiesKHR() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayPlanePropertiesKHR( uint32_t* pPropertyCount, DisplayPlanePropertiesKHR* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getDisplayPlanePropertiesKHR() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayPlaneSupportedDisplaysKHR( uint32_t planeIndex, uint32_t* pDisplayCount, DisplayKHR* pDisplays ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getDisplayPlaneSupportedDisplaysKHR( uint32_t planeIndex ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayModePropertiesKHR( DisplayKHR display, uint32_t* pPropertyCount, DisplayModePropertiesKHR* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getDisplayModePropertiesKHR( DisplayKHR display ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result createDisplayModeKHR( DisplayKHR display, const DisplayModeCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DisplayModeKHR* pMode ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createDisplayModeKHR( DisplayKHR display, const DisplayModeCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayPlaneCapabilitiesKHR( DisplayModeKHR mode, uint32_t planeIndex, DisplayPlaneCapabilitiesKHR* pCapabilities ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getDisplayPlaneCapabilitiesKHR( DisplayModeKHR mode, uint32_t planeIndex ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_MIR_KHR Bool32 getMirPresentationSupportKHR( uint32_t queueFamilyIndex, MirConnection* connection ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE Bool32 getMirPresentationSupportKHR( uint32_t queueFamilyIndex, MirConnection & connection ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_MIR_KHR*/ Result getSurfaceSupportKHR( uint32_t queueFamilyIndex, SurfaceKHR surface, Bool32* pSupported ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getSurfaceSupportKHR( uint32_t queueFamilyIndex, SurfaceKHR surface ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getSurfaceCapabilitiesKHR( SurfaceKHR surface, SurfaceCapabilitiesKHR* pSurfaceCapabilities ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getSurfaceCapabilitiesKHR( SurfaceKHR surface ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getSurfaceFormatsKHR( SurfaceKHR surface, uint32_t* pSurfaceFormatCount, SurfaceFormatKHR* pSurfaceFormats ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getSurfaceFormatsKHR( SurfaceKHR surface ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getSurfacePresentModesKHR( SurfaceKHR surface, uint32_t* pPresentModeCount, PresentModeKHR* pPresentModes ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getSurfacePresentModesKHR( SurfaceKHR surface ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR Bool32 getWaylandPresentationSupportKHR( uint32_t queueFamilyIndex, struct wl_display* display ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE Bool32 getWaylandPresentationSupportKHR( uint32_t queueFamilyIndex, struct wl_display & display ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Bool32 getWin32PresentationSupportKHR( uint32_t queueFamilyIndex ) const; #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR Bool32 getXlibPresentationSupportKHR( uint32_t queueFamilyIndex, Display* dpy, VisualID visualID ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE Bool32 getXlibPresentationSupportKHR( uint32_t queueFamilyIndex, Display & dpy, VisualID visualID ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR Bool32 getXcbPresentationSupportKHR( uint32_t queueFamilyIndex, xcb_connection_t* connection, xcb_visualid_t visual_id ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE Bool32 getXcbPresentationSupportKHR( uint32_t queueFamilyIndex, xcb_connection_t & connection, xcb_visualid_t visual_id ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XCB_KHR*/ Result getExternalImageFormatPropertiesNV( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ExternalMemoryHandleTypeFlagsNV externalHandleType, ExternalImageFormatPropertiesNV* pExternalImageFormatProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getExternalImageFormatPropertiesNV( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ExternalMemoryHandleTypeFlagsNV externalHandleType ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getGeneratedCommandsPropertiesNVX( DeviceGeneratedCommandsFeaturesNVX* pFeatures, DeviceGeneratedCommandsLimitsNVX* pLimits ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE DeviceGeneratedCommandsLimitsNVX getGeneratedCommandsPropertiesNVX( DeviceGeneratedCommandsFeaturesNVX & features ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getFeatures2KHR( PhysicalDeviceFeatures2KHR* pFeatures ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PhysicalDeviceFeatures2KHR getFeatures2KHR() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getProperties2KHR( PhysicalDeviceProperties2KHR* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PhysicalDeviceProperties2KHR getProperties2KHR() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getFormatProperties2KHR( Format format, FormatProperties2KHR* pFormatProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE FormatProperties2KHR getFormatProperties2KHR( Format format ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR* pImageFormatInfo, ImageFormatProperties2KHR* pImageFormatProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR & imageFormatInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getQueueFamilyProperties2KHR( uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties2KHR* pQueueFamilyProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > std::vector getQueueFamilyProperties2KHR() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getMemoryProperties2KHR( PhysicalDeviceMemoryProperties2KHR* pMemoryProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PhysicalDeviceMemoryProperties2KHR getMemoryProperties2KHR() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getSparseImageFormatProperties2KHR( const PhysicalDeviceSparseImageFormatInfo2KHR* pFormatInfo, uint32_t* pPropertyCount, SparseImageFormatProperties2KHR* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > std::vector getSparseImageFormatProperties2KHR( const PhysicalDeviceSparseImageFormatInfo2KHR & formatInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getExternalBufferPropertiesKHR( const PhysicalDeviceExternalBufferInfoKHR* pExternalBufferInfo, ExternalBufferPropertiesKHR* pExternalBufferProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ExternalBufferPropertiesKHR getExternalBufferPropertiesKHR( const PhysicalDeviceExternalBufferInfoKHR & externalBufferInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getExternalSemaphorePropertiesKHR( const PhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo, ExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ExternalSemaphorePropertiesKHR getExternalSemaphorePropertiesKHR( const PhysicalDeviceExternalSemaphoreInfoKHR & externalSemaphoreInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void getExternalFencePropertiesKHR( const PhysicalDeviceExternalFenceInfoKHR* pExternalFenceInfo, ExternalFencePropertiesKHR* pExternalFenceProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ExternalFencePropertiesKHR getExternalFencePropertiesKHR( const PhysicalDeviceExternalFenceInfoKHR & externalFenceInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE Result releaseDisplayEXT( DisplayKHR display ) const; #else ResultValueType::type releaseDisplayEXT( DisplayKHR display ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT Result acquireXlibDisplayEXT( Display* dpy, DisplayKHR display ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type acquireXlibDisplayEXT( DisplayKHR display ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XLIB_XRANDR_EXT*/ #ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT Result getRandROutputDisplayEXT( Display* dpy, RROutput rrOutput, DisplayKHR* pDisplay ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getRandROutputDisplayEXT( Display & dpy, RROutput rrOutput ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XLIB_XRANDR_EXT*/ Result getSurfaceCapabilities2EXT( SurfaceKHR surface, SurfaceCapabilities2EXT* pSurfaceCapabilities ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getSurfaceCapabilities2EXT( SurfaceKHR surface ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getPresentRectanglesKHX( SurfaceKHR surface, uint32_t* pRectCount, Rect2D* pRects ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getPresentRectanglesKHX( SurfaceKHR surface ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, SurfaceCapabilities2KHR* pSurfaceCapabilities ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getSurfaceFormats2KHR( const PhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, uint32_t* pSurfaceFormatCount, SurfaceFormat2KHR* pSurfaceFormats ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getSurfaceFormats2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayProperties2KHR( uint32_t* pPropertyCount, DisplayProperties2KHR* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getDisplayProperties2KHR() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayPlaneProperties2KHR( uint32_t* pPropertyCount, DisplayPlaneProperties2KHR* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getDisplayPlaneProperties2KHR() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayModeProperties2KHR( DisplayKHR display, uint32_t* pPropertyCount, DisplayModeProperties2KHR* pProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type getDisplayModeProperties2KHR( DisplayKHR display ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result getDisplayPlaneCapabilities2KHR( const DisplayPlaneInfo2KHR* pDisplayPlaneInfo, DisplayPlaneCapabilities2KHR* pCapabilities ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type getDisplayPlaneCapabilities2KHR( const DisplayPlaneInfo2KHR & displayPlaneInfo ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_TYPESAFE_EXPLICIT operator VkPhysicalDevice() const { return m_physicalDevice; } explicit operator bool() const { return m_physicalDevice != VK_NULL_HANDLE; } bool operator!() const { return m_physicalDevice == VK_NULL_HANDLE; } private: VkPhysicalDevice m_physicalDevice; }; static_assert( sizeof( PhysicalDevice ) == sizeof( VkPhysicalDevice ), "handle and wrapper have different size!" ); #ifndef VULKAN_HPP_NO_SMART_HANDLE class DeviceDeleter { public: DeviceDeleter( Optional allocator = nullptr ) : m_allocator( allocator ) {} void operator()( Device device ) { device.destroy( m_allocator ); } private: Optional m_allocator; }; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ VULKAN_HPP_INLINE void PhysicalDevice::getProperties( PhysicalDeviceProperties* pProperties ) const { vkGetPhysicalDeviceProperties( m_physicalDevice, reinterpret_cast( pProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PhysicalDeviceProperties PhysicalDevice::getProperties() const { PhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties( m_physicalDevice, reinterpret_cast( &properties ) ); return properties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getQueueFamilyProperties( uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties* pQueueFamilyProperties ) const { vkGetPhysicalDeviceQueueFamilyProperties( m_physicalDevice, pQueueFamilyPropertyCount, reinterpret_cast( pQueueFamilyProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE std::vector PhysicalDevice::getQueueFamilyProperties() const { std::vector queueFamilyProperties; uint32_t queueFamilyPropertyCount; vkGetPhysicalDeviceQueueFamilyProperties( m_physicalDevice, &queueFamilyPropertyCount, nullptr ); queueFamilyProperties.resize( queueFamilyPropertyCount ); vkGetPhysicalDeviceQueueFamilyProperties( m_physicalDevice, &queueFamilyPropertyCount, reinterpret_cast( queueFamilyProperties.data() ) ); return queueFamilyProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getMemoryProperties( PhysicalDeviceMemoryProperties* pMemoryProperties ) const { vkGetPhysicalDeviceMemoryProperties( m_physicalDevice, reinterpret_cast( pMemoryProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PhysicalDeviceMemoryProperties PhysicalDevice::getMemoryProperties() const { PhysicalDeviceMemoryProperties memoryProperties; vkGetPhysicalDeviceMemoryProperties( m_physicalDevice, reinterpret_cast( &memoryProperties ) ); return memoryProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getFeatures( PhysicalDeviceFeatures* pFeatures ) const { vkGetPhysicalDeviceFeatures( m_physicalDevice, reinterpret_cast( pFeatures ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PhysicalDeviceFeatures PhysicalDevice::getFeatures() const { PhysicalDeviceFeatures features; vkGetPhysicalDeviceFeatures( m_physicalDevice, reinterpret_cast( &features ) ); return features; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getFormatProperties( Format format, FormatProperties* pFormatProperties ) const { vkGetPhysicalDeviceFormatProperties( m_physicalDevice, static_cast( format ), reinterpret_cast( pFormatProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE FormatProperties PhysicalDevice::getFormatProperties( Format format ) const { FormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties( m_physicalDevice, static_cast( format ), reinterpret_cast( &formatProperties ) ); return formatProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getImageFormatProperties( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ImageFormatProperties* pImageFormatProperties ) const { return static_cast( vkGetPhysicalDeviceImageFormatProperties( m_physicalDevice, static_cast( format ), static_cast( type ), static_cast( tiling ), static_cast( usage ), static_cast( flags ), reinterpret_cast( pImageFormatProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getImageFormatProperties( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags ) const { ImageFormatProperties imageFormatProperties; Result result = static_cast( vkGetPhysicalDeviceImageFormatProperties( m_physicalDevice, static_cast( format ), static_cast( type ), static_cast( tiling ), static_cast( usage ), static_cast( flags ), reinterpret_cast( &imageFormatProperties ) ) ); return createResultValue( result, imageFormatProperties, "vk::PhysicalDevice::getImageFormatProperties" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::createDevice( const DeviceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Device* pDevice ) const { return static_cast( vkCreateDevice( m_physicalDevice, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pDevice ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::createDevice( const DeviceCreateInfo & createInfo, Optional allocator ) const { Device device; Result result = static_cast( vkCreateDevice( m_physicalDevice, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &device ) ) ); return createResultValue( result, device, "vk::PhysicalDevice::createDevice" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueDevice PhysicalDevice::createDeviceUnique( const DeviceCreateInfo & createInfo, Optional allocator ) const { DeviceDeleter deleter( allocator ); return UniqueDevice( createDevice( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::enumerateDeviceLayerProperties( uint32_t* pPropertyCount, LayerProperties* pProperties ) const { return static_cast( vkEnumerateDeviceLayerProperties( m_physicalDevice, pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::enumerateDeviceLayerProperties() const { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkEnumerateDeviceLayerProperties( m_physicalDevice, &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkEnumerateDeviceLayerProperties( m_physicalDevice, &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::PhysicalDevice::enumerateDeviceLayerProperties" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::enumerateDeviceExtensionProperties( const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties ) const { return static_cast( vkEnumerateDeviceExtensionProperties( m_physicalDevice, pLayerName, pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::enumerateDeviceExtensionProperties( Optional layerName ) const { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkEnumerateDeviceExtensionProperties( m_physicalDevice, layerName ? layerName->c_str() : nullptr, &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkEnumerateDeviceExtensionProperties( m_physicalDevice, layerName ? layerName->c_str() : nullptr, &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::PhysicalDevice::enumerateDeviceExtensionProperties" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getSparseImageFormatProperties( Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling, uint32_t* pPropertyCount, SparseImageFormatProperties* pProperties ) const { vkGetPhysicalDeviceSparseImageFormatProperties( m_physicalDevice, static_cast( format ), static_cast( type ), static_cast( samples ), static_cast( usage ), static_cast( tiling ), pPropertyCount, reinterpret_cast( pProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE std::vector PhysicalDevice::getSparseImageFormatProperties( Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling ) const { std::vector properties; uint32_t propertyCount; vkGetPhysicalDeviceSparseImageFormatProperties( m_physicalDevice, static_cast( format ), static_cast( type ), static_cast( samples ), static_cast( usage ), static_cast( tiling ), &propertyCount, nullptr ); properties.resize( propertyCount ); vkGetPhysicalDeviceSparseImageFormatProperties( m_physicalDevice, static_cast( format ), static_cast( type ), static_cast( samples ), static_cast( usage ), static_cast( tiling ), &propertyCount, reinterpret_cast( properties.data() ) ); return properties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPropertiesKHR( uint32_t* pPropertyCount, DisplayPropertiesKHR* pProperties ) const { return static_cast( vkGetPhysicalDeviceDisplayPropertiesKHR( m_physicalDevice, pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getDisplayPropertiesKHR() const { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkGetPhysicalDeviceDisplayPropertiesKHR( m_physicalDevice, &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkGetPhysicalDeviceDisplayPropertiesKHR( m_physicalDevice, &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::PhysicalDevice::getDisplayPropertiesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPlanePropertiesKHR( uint32_t* pPropertyCount, DisplayPlanePropertiesKHR* pProperties ) const { return static_cast( vkGetPhysicalDeviceDisplayPlanePropertiesKHR( m_physicalDevice, pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getDisplayPlanePropertiesKHR() const { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkGetPhysicalDeviceDisplayPlanePropertiesKHR( m_physicalDevice, &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkGetPhysicalDeviceDisplayPlanePropertiesKHR( m_physicalDevice, &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::PhysicalDevice::getDisplayPlanePropertiesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPlaneSupportedDisplaysKHR( uint32_t planeIndex, uint32_t* pDisplayCount, DisplayKHR* pDisplays ) const { return static_cast( vkGetDisplayPlaneSupportedDisplaysKHR( m_physicalDevice, planeIndex, pDisplayCount, reinterpret_cast( pDisplays ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getDisplayPlaneSupportedDisplaysKHR( uint32_t planeIndex ) const { std::vector displays; uint32_t displayCount; Result result; do { result = static_cast( vkGetDisplayPlaneSupportedDisplaysKHR( m_physicalDevice, planeIndex, &displayCount, nullptr ) ); if ( ( result == Result::eSuccess ) && displayCount ) { displays.resize( displayCount ); result = static_cast( vkGetDisplayPlaneSupportedDisplaysKHR( m_physicalDevice, planeIndex, &displayCount, reinterpret_cast( displays.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( displayCount <= displays.size() ); displays.resize( displayCount ); return createResultValue( result, displays, "vk::PhysicalDevice::getDisplayPlaneSupportedDisplaysKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayModePropertiesKHR( DisplayKHR display, uint32_t* pPropertyCount, DisplayModePropertiesKHR* pProperties ) const { return static_cast( vkGetDisplayModePropertiesKHR( m_physicalDevice, static_cast( display ), pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getDisplayModePropertiesKHR( DisplayKHR display ) const { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkGetDisplayModePropertiesKHR( m_physicalDevice, static_cast( display ), &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkGetDisplayModePropertiesKHR( m_physicalDevice, static_cast( display ), &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::PhysicalDevice::getDisplayModePropertiesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::createDisplayModeKHR( DisplayKHR display, const DisplayModeCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DisplayModeKHR* pMode ) const { return static_cast( vkCreateDisplayModeKHR( m_physicalDevice, static_cast( display ), reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pMode ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::createDisplayModeKHR( DisplayKHR display, const DisplayModeCreateInfoKHR & createInfo, Optional allocator ) const { DisplayModeKHR mode; Result result = static_cast( vkCreateDisplayModeKHR( m_physicalDevice, static_cast( display ), reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &mode ) ) ); return createResultValue( result, mode, "vk::PhysicalDevice::createDisplayModeKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPlaneCapabilitiesKHR( DisplayModeKHR mode, uint32_t planeIndex, DisplayPlaneCapabilitiesKHR* pCapabilities ) const { return static_cast( vkGetDisplayPlaneCapabilitiesKHR( m_physicalDevice, static_cast( mode ), planeIndex, reinterpret_cast( pCapabilities ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getDisplayPlaneCapabilitiesKHR( DisplayModeKHR mode, uint32_t planeIndex ) const { DisplayPlaneCapabilitiesKHR capabilities; Result result = static_cast( vkGetDisplayPlaneCapabilitiesKHR( m_physicalDevice, static_cast( mode ), planeIndex, reinterpret_cast( &capabilities ) ) ); return createResultValue( result, capabilities, "vk::PhysicalDevice::getDisplayPlaneCapabilitiesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_MIR_KHR VULKAN_HPP_INLINE Bool32 PhysicalDevice::getMirPresentationSupportKHR( uint32_t queueFamilyIndex, MirConnection* connection ) const { return vkGetPhysicalDeviceMirPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, connection ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Bool32 PhysicalDevice::getMirPresentationSupportKHR( uint32_t queueFamilyIndex, MirConnection & connection ) const { return vkGetPhysicalDeviceMirPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, &connection ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_MIR_KHR*/ VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceSupportKHR( uint32_t queueFamilyIndex, SurfaceKHR surface, Bool32* pSupported ) const { return static_cast( vkGetPhysicalDeviceSurfaceSupportKHR( m_physicalDevice, queueFamilyIndex, static_cast( surface ), pSupported ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getSurfaceSupportKHR( uint32_t queueFamilyIndex, SurfaceKHR surface ) const { Bool32 supported; Result result = static_cast( vkGetPhysicalDeviceSurfaceSupportKHR( m_physicalDevice, queueFamilyIndex, static_cast( surface ), &supported ) ); return createResultValue( result, supported, "vk::PhysicalDevice::getSurfaceSupportKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceCapabilitiesKHR( SurfaceKHR surface, SurfaceCapabilitiesKHR* pSurfaceCapabilities ) const { return static_cast( vkGetPhysicalDeviceSurfaceCapabilitiesKHR( m_physicalDevice, static_cast( surface ), reinterpret_cast( pSurfaceCapabilities ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getSurfaceCapabilitiesKHR( SurfaceKHR surface ) const { SurfaceCapabilitiesKHR surfaceCapabilities; Result result = static_cast( vkGetPhysicalDeviceSurfaceCapabilitiesKHR( m_physicalDevice, static_cast( surface ), reinterpret_cast( &surfaceCapabilities ) ) ); return createResultValue( result, surfaceCapabilities, "vk::PhysicalDevice::getSurfaceCapabilitiesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceFormatsKHR( SurfaceKHR surface, uint32_t* pSurfaceFormatCount, SurfaceFormatKHR* pSurfaceFormats ) const { return static_cast( vkGetPhysicalDeviceSurfaceFormatsKHR( m_physicalDevice, static_cast( surface ), pSurfaceFormatCount, reinterpret_cast( pSurfaceFormats ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getSurfaceFormatsKHR( SurfaceKHR surface ) const { std::vector surfaceFormats; uint32_t surfaceFormatCount; Result result; do { result = static_cast( vkGetPhysicalDeviceSurfaceFormatsKHR( m_physicalDevice, static_cast( surface ), &surfaceFormatCount, nullptr ) ); if ( ( result == Result::eSuccess ) && surfaceFormatCount ) { surfaceFormats.resize( surfaceFormatCount ); result = static_cast( vkGetPhysicalDeviceSurfaceFormatsKHR( m_physicalDevice, static_cast( surface ), &surfaceFormatCount, reinterpret_cast( surfaceFormats.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( surfaceFormatCount <= surfaceFormats.size() ); surfaceFormats.resize( surfaceFormatCount ); return createResultValue( result, surfaceFormats, "vk::PhysicalDevice::getSurfaceFormatsKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getSurfacePresentModesKHR( SurfaceKHR surface, uint32_t* pPresentModeCount, PresentModeKHR* pPresentModes ) const { return static_cast( vkGetPhysicalDeviceSurfacePresentModesKHR( m_physicalDevice, static_cast( surface ), pPresentModeCount, reinterpret_cast( pPresentModes ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getSurfacePresentModesKHR( SurfaceKHR surface ) const { std::vector presentModes; uint32_t presentModeCount; Result result; do { result = static_cast( vkGetPhysicalDeviceSurfacePresentModesKHR( m_physicalDevice, static_cast( surface ), &presentModeCount, nullptr ) ); if ( ( result == Result::eSuccess ) && presentModeCount ) { presentModes.resize( presentModeCount ); result = static_cast( vkGetPhysicalDeviceSurfacePresentModesKHR( m_physicalDevice, static_cast( surface ), &presentModeCount, reinterpret_cast( presentModes.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( presentModeCount <= presentModes.size() ); presentModes.resize( presentModeCount ); return createResultValue( result, presentModes, "vk::PhysicalDevice::getSurfacePresentModesKHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR VULKAN_HPP_INLINE Bool32 PhysicalDevice::getWaylandPresentationSupportKHR( uint32_t queueFamilyIndex, struct wl_display* display ) const { return vkGetPhysicalDeviceWaylandPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, display ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Bool32 PhysicalDevice::getWaylandPresentationSupportKHR( uint32_t queueFamilyIndex, struct wl_display & display ) const { return vkGetPhysicalDeviceWaylandPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, &display ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Bool32 PhysicalDevice::getWin32PresentationSupportKHR( uint32_t queueFamilyIndex ) const { return vkGetPhysicalDeviceWin32PresentationSupportKHR( m_physicalDevice, queueFamilyIndex ); } #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR VULKAN_HPP_INLINE Bool32 PhysicalDevice::getXlibPresentationSupportKHR( uint32_t queueFamilyIndex, Display* dpy, VisualID visualID ) const { return vkGetPhysicalDeviceXlibPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, dpy, visualID ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Bool32 PhysicalDevice::getXlibPresentationSupportKHR( uint32_t queueFamilyIndex, Display & dpy, VisualID visualID ) const { return vkGetPhysicalDeviceXlibPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, &dpy, visualID ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR VULKAN_HPP_INLINE Bool32 PhysicalDevice::getXcbPresentationSupportKHR( uint32_t queueFamilyIndex, xcb_connection_t* connection, xcb_visualid_t visual_id ) const { return vkGetPhysicalDeviceXcbPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, connection, visual_id ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Bool32 PhysicalDevice::getXcbPresentationSupportKHR( uint32_t queueFamilyIndex, xcb_connection_t & connection, xcb_visualid_t visual_id ) const { return vkGetPhysicalDeviceXcbPresentationSupportKHR( m_physicalDevice, queueFamilyIndex, &connection, visual_id ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XCB_KHR*/ VULKAN_HPP_INLINE Result PhysicalDevice::getExternalImageFormatPropertiesNV( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ExternalMemoryHandleTypeFlagsNV externalHandleType, ExternalImageFormatPropertiesNV* pExternalImageFormatProperties ) const { return static_cast( vkGetPhysicalDeviceExternalImageFormatPropertiesNV( m_physicalDevice, static_cast( format ), static_cast( type ), static_cast( tiling ), static_cast( usage ), static_cast( flags ), static_cast( externalHandleType ), reinterpret_cast( pExternalImageFormatProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getExternalImageFormatPropertiesNV( Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ExternalMemoryHandleTypeFlagsNV externalHandleType ) const { ExternalImageFormatPropertiesNV externalImageFormatProperties; Result result = static_cast( vkGetPhysicalDeviceExternalImageFormatPropertiesNV( m_physicalDevice, static_cast( format ), static_cast( type ), static_cast( tiling ), static_cast( usage ), static_cast( flags ), static_cast( externalHandleType ), reinterpret_cast( &externalImageFormatProperties ) ) ); return createResultValue( result, externalImageFormatProperties, "vk::PhysicalDevice::getExternalImageFormatPropertiesNV" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getGeneratedCommandsPropertiesNVX( DeviceGeneratedCommandsFeaturesNVX* pFeatures, DeviceGeneratedCommandsLimitsNVX* pLimits ) const { vkGetPhysicalDeviceGeneratedCommandsPropertiesNVX( m_physicalDevice, reinterpret_cast( pFeatures ), reinterpret_cast( pLimits ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE DeviceGeneratedCommandsLimitsNVX PhysicalDevice::getGeneratedCommandsPropertiesNVX( DeviceGeneratedCommandsFeaturesNVX & features ) const { DeviceGeneratedCommandsLimitsNVX limits; vkGetPhysicalDeviceGeneratedCommandsPropertiesNVX( m_physicalDevice, reinterpret_cast( &features ), reinterpret_cast( &limits ) ); return limits; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getFeatures2KHR( PhysicalDeviceFeatures2KHR* pFeatures ) const { vkGetPhysicalDeviceFeatures2KHR( m_physicalDevice, reinterpret_cast( pFeatures ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PhysicalDeviceFeatures2KHR PhysicalDevice::getFeatures2KHR() const { PhysicalDeviceFeatures2KHR features; vkGetPhysicalDeviceFeatures2KHR( m_physicalDevice, reinterpret_cast( &features ) ); return features; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getProperties2KHR( PhysicalDeviceProperties2KHR* pProperties ) const { vkGetPhysicalDeviceProperties2KHR( m_physicalDevice, reinterpret_cast( pProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PhysicalDeviceProperties2KHR PhysicalDevice::getProperties2KHR() const { PhysicalDeviceProperties2KHR properties; vkGetPhysicalDeviceProperties2KHR( m_physicalDevice, reinterpret_cast( &properties ) ); return properties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getFormatProperties2KHR( Format format, FormatProperties2KHR* pFormatProperties ) const { vkGetPhysicalDeviceFormatProperties2KHR( m_physicalDevice, static_cast( format ), reinterpret_cast( pFormatProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE FormatProperties2KHR PhysicalDevice::getFormatProperties2KHR( Format format ) const { FormatProperties2KHR formatProperties; vkGetPhysicalDeviceFormatProperties2KHR( m_physicalDevice, static_cast( format ), reinterpret_cast( &formatProperties ) ); return formatProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR* pImageFormatInfo, ImageFormatProperties2KHR* pImageFormatProperties ) const { return static_cast( vkGetPhysicalDeviceImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast( pImageFormatInfo ), reinterpret_cast( pImageFormatProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getImageFormatProperties2KHR( const PhysicalDeviceImageFormatInfo2KHR & imageFormatInfo ) const { ImageFormatProperties2KHR imageFormatProperties; Result result = static_cast( vkGetPhysicalDeviceImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast( &imageFormatInfo ), reinterpret_cast( &imageFormatProperties ) ) ); return createResultValue( result, imageFormatProperties, "vk::PhysicalDevice::getImageFormatProperties2KHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getQueueFamilyProperties2KHR( uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties2KHR* pQueueFamilyProperties ) const { vkGetPhysicalDeviceQueueFamilyProperties2KHR( m_physicalDevice, pQueueFamilyPropertyCount, reinterpret_cast( pQueueFamilyProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE std::vector PhysicalDevice::getQueueFamilyProperties2KHR() const { std::vector queueFamilyProperties; uint32_t queueFamilyPropertyCount; vkGetPhysicalDeviceQueueFamilyProperties2KHR( m_physicalDevice, &queueFamilyPropertyCount, nullptr ); queueFamilyProperties.resize( queueFamilyPropertyCount ); vkGetPhysicalDeviceQueueFamilyProperties2KHR( m_physicalDevice, &queueFamilyPropertyCount, reinterpret_cast( queueFamilyProperties.data() ) ); return queueFamilyProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getMemoryProperties2KHR( PhysicalDeviceMemoryProperties2KHR* pMemoryProperties ) const { vkGetPhysicalDeviceMemoryProperties2KHR( m_physicalDevice, reinterpret_cast( pMemoryProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PhysicalDeviceMemoryProperties2KHR PhysicalDevice::getMemoryProperties2KHR() const { PhysicalDeviceMemoryProperties2KHR memoryProperties; vkGetPhysicalDeviceMemoryProperties2KHR( m_physicalDevice, reinterpret_cast( &memoryProperties ) ); return memoryProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getSparseImageFormatProperties2KHR( const PhysicalDeviceSparseImageFormatInfo2KHR* pFormatInfo, uint32_t* pPropertyCount, SparseImageFormatProperties2KHR* pProperties ) const { vkGetPhysicalDeviceSparseImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast( pFormatInfo ), pPropertyCount, reinterpret_cast( pProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE std::vector PhysicalDevice::getSparseImageFormatProperties2KHR( const PhysicalDeviceSparseImageFormatInfo2KHR & formatInfo ) const { std::vector properties; uint32_t propertyCount; vkGetPhysicalDeviceSparseImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast( &formatInfo ), &propertyCount, nullptr ); properties.resize( propertyCount ); vkGetPhysicalDeviceSparseImageFormatProperties2KHR( m_physicalDevice, reinterpret_cast( &formatInfo ), &propertyCount, reinterpret_cast( properties.data() ) ); return properties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getExternalBufferPropertiesKHR( const PhysicalDeviceExternalBufferInfoKHR* pExternalBufferInfo, ExternalBufferPropertiesKHR* pExternalBufferProperties ) const { vkGetPhysicalDeviceExternalBufferPropertiesKHR( m_physicalDevice, reinterpret_cast( pExternalBufferInfo ), reinterpret_cast( pExternalBufferProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ExternalBufferPropertiesKHR PhysicalDevice::getExternalBufferPropertiesKHR( const PhysicalDeviceExternalBufferInfoKHR & externalBufferInfo ) const { ExternalBufferPropertiesKHR externalBufferProperties; vkGetPhysicalDeviceExternalBufferPropertiesKHR( m_physicalDevice, reinterpret_cast( &externalBufferInfo ), reinterpret_cast( &externalBufferProperties ) ); return externalBufferProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getExternalSemaphorePropertiesKHR( const PhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo, ExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties ) const { vkGetPhysicalDeviceExternalSemaphorePropertiesKHR( m_physicalDevice, reinterpret_cast( pExternalSemaphoreInfo ), reinterpret_cast( pExternalSemaphoreProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ExternalSemaphorePropertiesKHR PhysicalDevice::getExternalSemaphorePropertiesKHR( const PhysicalDeviceExternalSemaphoreInfoKHR & externalSemaphoreInfo ) const { ExternalSemaphorePropertiesKHR externalSemaphoreProperties; vkGetPhysicalDeviceExternalSemaphorePropertiesKHR( m_physicalDevice, reinterpret_cast( &externalSemaphoreInfo ), reinterpret_cast( &externalSemaphoreProperties ) ); return externalSemaphoreProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void PhysicalDevice::getExternalFencePropertiesKHR( const PhysicalDeviceExternalFenceInfoKHR* pExternalFenceInfo, ExternalFencePropertiesKHR* pExternalFenceProperties ) const { vkGetPhysicalDeviceExternalFencePropertiesKHR( m_physicalDevice, reinterpret_cast( pExternalFenceInfo ), reinterpret_cast( pExternalFenceProperties ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ExternalFencePropertiesKHR PhysicalDevice::getExternalFencePropertiesKHR( const PhysicalDeviceExternalFenceInfoKHR & externalFenceInfo ) const { ExternalFencePropertiesKHR externalFenceProperties; vkGetPhysicalDeviceExternalFencePropertiesKHR( m_physicalDevice, reinterpret_cast( &externalFenceInfo ), reinterpret_cast( &externalFenceProperties ) ); return externalFenceProperties; } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE Result PhysicalDevice::releaseDisplayEXT( DisplayKHR display ) const { return static_cast( vkReleaseDisplayEXT( m_physicalDevice, static_cast( display ) ) ); } #else VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::releaseDisplayEXT( DisplayKHR display ) const { Result result = static_cast( vkReleaseDisplayEXT( m_physicalDevice, static_cast( display ) ) ); return createResultValue( result, "vk::PhysicalDevice::releaseDisplayEXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT VULKAN_HPP_INLINE Result PhysicalDevice::acquireXlibDisplayEXT( Display* dpy, DisplayKHR display ) const { return static_cast( vkAcquireXlibDisplayEXT( m_physicalDevice, dpy, static_cast( display ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::acquireXlibDisplayEXT( DisplayKHR display ) const { Display dpy; Result result = static_cast( vkAcquireXlibDisplayEXT( m_physicalDevice, &dpy, static_cast( display ) ) ); return createResultValue( result, dpy, "vk::PhysicalDevice::acquireXlibDisplayEXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XLIB_XRANDR_EXT*/ #ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT VULKAN_HPP_INLINE Result PhysicalDevice::getRandROutputDisplayEXT( Display* dpy, RROutput rrOutput, DisplayKHR* pDisplay ) const { return static_cast( vkGetRandROutputDisplayEXT( m_physicalDevice, dpy, rrOutput, reinterpret_cast( pDisplay ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getRandROutputDisplayEXT( Display & dpy, RROutput rrOutput ) const { DisplayKHR display; Result result = static_cast( vkGetRandROutputDisplayEXT( m_physicalDevice, &dpy, rrOutput, reinterpret_cast( &display ) ) ); return createResultValue( result, display, "vk::PhysicalDevice::getRandROutputDisplayEXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XLIB_XRANDR_EXT*/ VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceCapabilities2EXT( SurfaceKHR surface, SurfaceCapabilities2EXT* pSurfaceCapabilities ) const { return static_cast( vkGetPhysicalDeviceSurfaceCapabilities2EXT( m_physicalDevice, static_cast( surface ), reinterpret_cast( pSurfaceCapabilities ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getSurfaceCapabilities2EXT( SurfaceKHR surface ) const { SurfaceCapabilities2EXT surfaceCapabilities; Result result = static_cast( vkGetPhysicalDeviceSurfaceCapabilities2EXT( m_physicalDevice, static_cast( surface ), reinterpret_cast( &surfaceCapabilities ) ) ); return createResultValue( result, surfaceCapabilities, "vk::PhysicalDevice::getSurfaceCapabilities2EXT" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getPresentRectanglesKHX( SurfaceKHR surface, uint32_t* pRectCount, Rect2D* pRects ) const { return static_cast( vkGetPhysicalDevicePresentRectanglesKHX( m_physicalDevice, static_cast( surface ), pRectCount, reinterpret_cast( pRects ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getPresentRectanglesKHX( SurfaceKHR surface ) const { std::vector rects; uint32_t rectCount; Result result; do { result = static_cast( vkGetPhysicalDevicePresentRectanglesKHX( m_physicalDevice, static_cast( surface ), &rectCount, nullptr ) ); if ( ( result == Result::eSuccess ) && rectCount ) { rects.resize( rectCount ); result = static_cast( vkGetPhysicalDevicePresentRectanglesKHX( m_physicalDevice, static_cast( surface ), &rectCount, reinterpret_cast( rects.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( rectCount <= rects.size() ); rects.resize( rectCount ); return createResultValue( result, rects, "vk::PhysicalDevice::getPresentRectanglesKHX" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, SurfaceCapabilities2KHR* pSurfaceCapabilities ) const { return static_cast( vkGetPhysicalDeviceSurfaceCapabilities2KHR( m_physicalDevice, reinterpret_cast( pSurfaceInfo ), reinterpret_cast( pSurfaceCapabilities ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getSurfaceCapabilities2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const { SurfaceCapabilities2KHR surfaceCapabilities; Result result = static_cast( vkGetPhysicalDeviceSurfaceCapabilities2KHR( m_physicalDevice, reinterpret_cast( &surfaceInfo ), reinterpret_cast( &surfaceCapabilities ) ) ); return createResultValue( result, surfaceCapabilities, "vk::PhysicalDevice::getSurfaceCapabilities2KHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getSurfaceFormats2KHR( const PhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo, uint32_t* pSurfaceFormatCount, SurfaceFormat2KHR* pSurfaceFormats ) const { return static_cast( vkGetPhysicalDeviceSurfaceFormats2KHR( m_physicalDevice, reinterpret_cast( pSurfaceInfo ), pSurfaceFormatCount, reinterpret_cast( pSurfaceFormats ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getSurfaceFormats2KHR( const PhysicalDeviceSurfaceInfo2KHR & surfaceInfo ) const { std::vector surfaceFormats; uint32_t surfaceFormatCount; Result result; do { result = static_cast( vkGetPhysicalDeviceSurfaceFormats2KHR( m_physicalDevice, reinterpret_cast( &surfaceInfo ), &surfaceFormatCount, nullptr ) ); if ( ( result == Result::eSuccess ) && surfaceFormatCount ) { surfaceFormats.resize( surfaceFormatCount ); result = static_cast( vkGetPhysicalDeviceSurfaceFormats2KHR( m_physicalDevice, reinterpret_cast( &surfaceInfo ), &surfaceFormatCount, reinterpret_cast( surfaceFormats.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( surfaceFormatCount <= surfaceFormats.size() ); surfaceFormats.resize( surfaceFormatCount ); return createResultValue( result, surfaceFormats, "vk::PhysicalDevice::getSurfaceFormats2KHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayProperties2KHR( uint32_t* pPropertyCount, DisplayProperties2KHR* pProperties ) const { return static_cast( vkGetPhysicalDeviceDisplayProperties2KHR( m_physicalDevice, pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getDisplayProperties2KHR() const { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkGetPhysicalDeviceDisplayProperties2KHR( m_physicalDevice, &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkGetPhysicalDeviceDisplayProperties2KHR( m_physicalDevice, &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::PhysicalDevice::getDisplayProperties2KHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPlaneProperties2KHR( uint32_t* pPropertyCount, DisplayPlaneProperties2KHR* pProperties ) const { return static_cast( vkGetPhysicalDeviceDisplayPlaneProperties2KHR( m_physicalDevice, pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getDisplayPlaneProperties2KHR() const { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkGetPhysicalDeviceDisplayPlaneProperties2KHR( m_physicalDevice, &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkGetPhysicalDeviceDisplayPlaneProperties2KHR( m_physicalDevice, &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::PhysicalDevice::getDisplayPlaneProperties2KHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayModeProperties2KHR( DisplayKHR display, uint32_t* pPropertyCount, DisplayModeProperties2KHR* pProperties ) const { return static_cast( vkGetDisplayModeProperties2KHR( m_physicalDevice, static_cast( display ), pPropertyCount, reinterpret_cast( pProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type PhysicalDevice::getDisplayModeProperties2KHR( DisplayKHR display ) const { std::vector properties; uint32_t propertyCount; Result result; do { result = static_cast( vkGetDisplayModeProperties2KHR( m_physicalDevice, static_cast( display ), &propertyCount, nullptr ) ); if ( ( result == Result::eSuccess ) && propertyCount ) { properties.resize( propertyCount ); result = static_cast( vkGetDisplayModeProperties2KHR( m_physicalDevice, static_cast( display ), &propertyCount, reinterpret_cast( properties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( propertyCount <= properties.size() ); properties.resize( propertyCount ); return createResultValue( result, properties, "vk::PhysicalDevice::getDisplayModeProperties2KHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result PhysicalDevice::getDisplayPlaneCapabilities2KHR( const DisplayPlaneInfo2KHR* pDisplayPlaneInfo, DisplayPlaneCapabilities2KHR* pCapabilities ) const { return static_cast( vkGetDisplayPlaneCapabilities2KHR( m_physicalDevice, reinterpret_cast( pDisplayPlaneInfo ), reinterpret_cast( pCapabilities ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type PhysicalDevice::getDisplayPlaneCapabilities2KHR( const DisplayPlaneInfo2KHR & displayPlaneInfo ) const { DisplayPlaneCapabilities2KHR capabilities; Result result = static_cast( vkGetDisplayPlaneCapabilities2KHR( m_physicalDevice, reinterpret_cast( &displayPlaneInfo ), reinterpret_cast( &capabilities ) ) ); return createResultValue( result, capabilities, "vk::PhysicalDevice::getDisplayPlaneCapabilities2KHR" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ struct CmdProcessCommandsInfoNVX { CmdProcessCommandsInfoNVX( ObjectTableNVX objectTable_ = ObjectTableNVX(), IndirectCommandsLayoutNVX indirectCommandsLayout_ = IndirectCommandsLayoutNVX(), uint32_t indirectCommandsTokenCount_ = 0, const IndirectCommandsTokenNVX* pIndirectCommandsTokens_ = nullptr, uint32_t maxSequencesCount_ = 0, CommandBuffer targetCommandBuffer_ = CommandBuffer(), Buffer sequencesCountBuffer_ = Buffer(), DeviceSize sequencesCountOffset_ = 0, Buffer sequencesIndexBuffer_ = Buffer(), DeviceSize sequencesIndexOffset_ = 0 ) : sType( StructureType::eCmdProcessCommandsInfoNVX ) , pNext( nullptr ) , objectTable( objectTable_ ) , indirectCommandsLayout( indirectCommandsLayout_ ) , indirectCommandsTokenCount( indirectCommandsTokenCount_ ) , pIndirectCommandsTokens( pIndirectCommandsTokens_ ) , maxSequencesCount( maxSequencesCount_ ) , targetCommandBuffer( targetCommandBuffer_ ) , sequencesCountBuffer( sequencesCountBuffer_ ) , sequencesCountOffset( sequencesCountOffset_ ) , sequencesIndexBuffer( sequencesIndexBuffer_ ) , sequencesIndexOffset( sequencesIndexOffset_ ) { } CmdProcessCommandsInfoNVX( VkCmdProcessCommandsInfoNVX const & rhs ) { memcpy( this, &rhs, sizeof( CmdProcessCommandsInfoNVX ) ); } CmdProcessCommandsInfoNVX& operator=( VkCmdProcessCommandsInfoNVX const & rhs ) { memcpy( this, &rhs, sizeof( CmdProcessCommandsInfoNVX ) ); return *this; } CmdProcessCommandsInfoNVX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } CmdProcessCommandsInfoNVX& setObjectTable( ObjectTableNVX objectTable_ ) { objectTable = objectTable_; return *this; } CmdProcessCommandsInfoNVX& setIndirectCommandsLayout( IndirectCommandsLayoutNVX indirectCommandsLayout_ ) { indirectCommandsLayout = indirectCommandsLayout_; return *this; } CmdProcessCommandsInfoNVX& setIndirectCommandsTokenCount( uint32_t indirectCommandsTokenCount_ ) { indirectCommandsTokenCount = indirectCommandsTokenCount_; return *this; } CmdProcessCommandsInfoNVX& setPIndirectCommandsTokens( const IndirectCommandsTokenNVX* pIndirectCommandsTokens_ ) { pIndirectCommandsTokens = pIndirectCommandsTokens_; return *this; } CmdProcessCommandsInfoNVX& setMaxSequencesCount( uint32_t maxSequencesCount_ ) { maxSequencesCount = maxSequencesCount_; return *this; } CmdProcessCommandsInfoNVX& setTargetCommandBuffer( CommandBuffer targetCommandBuffer_ ) { targetCommandBuffer = targetCommandBuffer_; return *this; } CmdProcessCommandsInfoNVX& setSequencesCountBuffer( Buffer sequencesCountBuffer_ ) { sequencesCountBuffer = sequencesCountBuffer_; return *this; } CmdProcessCommandsInfoNVX& setSequencesCountOffset( DeviceSize sequencesCountOffset_ ) { sequencesCountOffset = sequencesCountOffset_; return *this; } CmdProcessCommandsInfoNVX& setSequencesIndexBuffer( Buffer sequencesIndexBuffer_ ) { sequencesIndexBuffer = sequencesIndexBuffer_; return *this; } CmdProcessCommandsInfoNVX& setSequencesIndexOffset( DeviceSize sequencesIndexOffset_ ) { sequencesIndexOffset = sequencesIndexOffset_; return *this; } operator const VkCmdProcessCommandsInfoNVX&() const { return *reinterpret_cast(this); } bool operator==( CmdProcessCommandsInfoNVX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( objectTable == rhs.objectTable ) && ( indirectCommandsLayout == rhs.indirectCommandsLayout ) && ( indirectCommandsTokenCount == rhs.indirectCommandsTokenCount ) && ( pIndirectCommandsTokens == rhs.pIndirectCommandsTokens ) && ( maxSequencesCount == rhs.maxSequencesCount ) && ( targetCommandBuffer == rhs.targetCommandBuffer ) && ( sequencesCountBuffer == rhs.sequencesCountBuffer ) && ( sequencesCountOffset == rhs.sequencesCountOffset ) && ( sequencesIndexBuffer == rhs.sequencesIndexBuffer ) && ( sequencesIndexOffset == rhs.sequencesIndexOffset ); } bool operator!=( CmdProcessCommandsInfoNVX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; ObjectTableNVX objectTable; IndirectCommandsLayoutNVX indirectCommandsLayout; uint32_t indirectCommandsTokenCount; const IndirectCommandsTokenNVX* pIndirectCommandsTokens; uint32_t maxSequencesCount; CommandBuffer targetCommandBuffer; Buffer sequencesCountBuffer; DeviceSize sequencesCountOffset; Buffer sequencesIndexBuffer; DeviceSize sequencesIndexOffset; }; static_assert( sizeof( CmdProcessCommandsInfoNVX ) == sizeof( VkCmdProcessCommandsInfoNVX ), "struct and wrapper have different size!" ); struct PhysicalDeviceGroupPropertiesKHX { operator const VkPhysicalDeviceGroupPropertiesKHX&() const { return *reinterpret_cast(this); } bool operator==( PhysicalDeviceGroupPropertiesKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( physicalDeviceCount == rhs.physicalDeviceCount ) && ( memcmp( physicalDevices, rhs.physicalDevices, VK_MAX_DEVICE_GROUP_SIZE_KHX * sizeof( PhysicalDevice ) ) == 0 ) && ( subsetAllocation == rhs.subsetAllocation ); } bool operator!=( PhysicalDeviceGroupPropertiesKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: void* pNext; uint32_t physicalDeviceCount; PhysicalDevice physicalDevices[VK_MAX_DEVICE_GROUP_SIZE_KHX]; Bool32 subsetAllocation; }; static_assert( sizeof( PhysicalDeviceGroupPropertiesKHX ) == sizeof( VkPhysicalDeviceGroupPropertiesKHX ), "struct and wrapper have different size!" ); #ifndef VULKAN_HPP_NO_SMART_HANDLE class DebugReportCallbackEXTDeleter; using UniqueDebugReportCallbackEXT = UniqueHandle; class SurfaceKHRDeleter; using UniqueSurfaceKHR = UniqueHandle; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ class Instance { public: Instance() : m_instance(VK_NULL_HANDLE) {} Instance( std::nullptr_t ) : m_instance(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT Instance( VkInstance instance ) : m_instance( instance ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) Instance & operator=(VkInstance instance) { m_instance = instance; return *this; } #endif Instance & operator=( std::nullptr_t ) { m_instance = VK_NULL_HANDLE; return *this; } bool operator==( Instance const & rhs ) const { return m_instance == rhs.m_instance; } bool operator!=(Instance const & rhs ) const { return m_instance != rhs.m_instance; } bool operator<(Instance const & rhs ) const { return m_instance < rhs.m_instance; } void destroy( const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroy( Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result enumeratePhysicalDevices( uint32_t* pPhysicalDeviceCount, PhysicalDevice* pPhysicalDevices ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type enumeratePhysicalDevices() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ PFN_vkVoidFunction getProcAddr( const char* pName ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE PFN_vkVoidFunction getProcAddr( const std::string & name ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_ANDROID_KHR Result createAndroidSurfaceKHR( const AndroidSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createAndroidSurfaceKHR( const AndroidSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createAndroidSurfaceKHRUnique( const AndroidSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_ANDROID_KHR*/ Result createDisplayPlaneSurfaceKHR( const DisplaySurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createDisplayPlaneSurfaceKHR( const DisplaySurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createDisplayPlaneSurfaceKHRUnique( const DisplaySurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_MIR_KHR Result createMirSurfaceKHR( const MirSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createMirSurfaceKHR( const MirSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createMirSurfaceKHRUnique( const MirSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_MIR_KHR*/ void destroySurfaceKHR( SurfaceKHR surface, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroySurfaceKHR( SurfaceKHR surface, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_VI_NN Result createViSurfaceNN( const ViSurfaceCreateInfoNN* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createViSurfaceNN( const ViSurfaceCreateInfoNN & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createViSurfaceNNUnique( const ViSurfaceCreateInfoNN & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_VI_NN*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR Result createWaylandSurfaceKHR( const WaylandSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createWaylandSurfaceKHR( const WaylandSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createWaylandSurfaceKHRUnique( const WaylandSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR Result createWin32SurfaceKHR( const Win32SurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createWin32SurfaceKHR( const Win32SurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createWin32SurfaceKHRUnique( const Win32SurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR Result createXlibSurfaceKHR( const XlibSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createXlibSurfaceKHR( const XlibSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createXlibSurfaceKHRUnique( const XlibSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR Result createXcbSurfaceKHR( const XcbSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createXcbSurfaceKHR( const XcbSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createXcbSurfaceKHRUnique( const XcbSurfaceCreateInfoKHR & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XCB_KHR*/ Result createDebugReportCallbackEXT( const DebugReportCallbackCreateInfoEXT* pCreateInfo, const AllocationCallbacks* pAllocator, DebugReportCallbackEXT* pCallback ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createDebugReportCallbackEXT( const DebugReportCallbackCreateInfoEXT & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueDebugReportCallbackEXT createDebugReportCallbackEXTUnique( const DebugReportCallbackCreateInfoEXT & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void destroyDebugReportCallbackEXT( DebugReportCallbackEXT callback, const AllocationCallbacks* pAllocator ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void destroyDebugReportCallbackEXT( DebugReportCallbackEXT callback, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ void debugReportMessageEXT( DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE void debugReportMessageEXT( DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const std::string & layerPrefix, const std::string & message ) const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ Result enumeratePhysicalDeviceGroupsKHX( uint32_t* pPhysicalDeviceGroupCount, PhysicalDeviceGroupPropertiesKHX* pPhysicalDeviceGroupProperties ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template > typename ResultValueType>::type enumeratePhysicalDeviceGroupsKHX() const; #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_IOS_MVK Result createIOSSurfaceMVK( const IOSSurfaceCreateInfoMVK* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createIOSSurfaceMVK( const IOSSurfaceCreateInfoMVK & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createIOSSurfaceMVKUnique( const IOSSurfaceCreateInfoMVK & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_IOS_MVK*/ #ifdef VK_USE_PLATFORM_MACOS_MVK Result createMacOSSurfaceMVK( const MacOSSurfaceCreateInfoMVK* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const; #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createMacOSSurfaceMVK( const MacOSSurfaceCreateInfoMVK & createInfo, Optional allocator = nullptr ) const; #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueSurfaceKHR createMacOSSurfaceMVKUnique( const MacOSSurfaceCreateInfoMVK & createInfo, Optional allocator = nullptr ) const; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_MACOS_MVK*/ VULKAN_HPP_TYPESAFE_EXPLICIT operator VkInstance() const { return m_instance; } explicit operator bool() const { return m_instance != VK_NULL_HANDLE; } bool operator!() const { return m_instance == VK_NULL_HANDLE; } private: VkInstance m_instance; }; static_assert( sizeof( Instance ) == sizeof( VkInstance ), "handle and wrapper have different size!" ); #ifndef VULKAN_HPP_NO_SMART_HANDLE class DebugReportCallbackEXTDeleter { public: DebugReportCallbackEXTDeleter( Instance instance = Instance(), Optional allocator = nullptr ) : m_instance( instance ) , m_allocator( allocator ) {} void operator()( DebugReportCallbackEXT debugReportCallbackEXT ) { m_instance.destroyDebugReportCallbackEXT( debugReportCallbackEXT, m_allocator ); } private: Instance m_instance; Optional m_allocator; }; class SurfaceKHRDeleter { public: SurfaceKHRDeleter( Instance instance = Instance(), Optional allocator = nullptr ) : m_instance( instance ) , m_allocator( allocator ) {} void operator()( SurfaceKHR surfaceKHR ) { m_instance.destroySurfaceKHR( surfaceKHR, m_allocator ); } private: Instance m_instance; Optional m_allocator; }; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ VULKAN_HPP_INLINE void Instance::destroy( const AllocationCallbacks* pAllocator ) const { vkDestroyInstance( m_instance, reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Instance::destroy( Optional allocator ) const { vkDestroyInstance( m_instance, reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Instance::enumeratePhysicalDevices( uint32_t* pPhysicalDeviceCount, PhysicalDevice* pPhysicalDevices ) const { return static_cast( vkEnumeratePhysicalDevices( m_instance, pPhysicalDeviceCount, reinterpret_cast( pPhysicalDevices ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Instance::enumeratePhysicalDevices() const { std::vector physicalDevices; uint32_t physicalDeviceCount; Result result; do { result = static_cast( vkEnumeratePhysicalDevices( m_instance, &physicalDeviceCount, nullptr ) ); if ( ( result == Result::eSuccess ) && physicalDeviceCount ) { physicalDevices.resize( physicalDeviceCount ); result = static_cast( vkEnumeratePhysicalDevices( m_instance, &physicalDeviceCount, reinterpret_cast( physicalDevices.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( physicalDeviceCount <= physicalDevices.size() ); physicalDevices.resize( physicalDeviceCount ); return createResultValue( result, physicalDevices, "vk::Instance::enumeratePhysicalDevices" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE PFN_vkVoidFunction Instance::getProcAddr( const char* pName ) const { return vkGetInstanceProcAddr( m_instance, pName ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE PFN_vkVoidFunction Instance::getProcAddr( const std::string & name ) const { return vkGetInstanceProcAddr( m_instance, name.c_str() ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_ANDROID_KHR VULKAN_HPP_INLINE Result Instance::createAndroidSurfaceKHR( const AndroidSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateAndroidSurfaceKHR( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createAndroidSurfaceKHR( const AndroidSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateAndroidSurfaceKHR( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createAndroidSurfaceKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createAndroidSurfaceKHRUnique( const AndroidSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createAndroidSurfaceKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_ANDROID_KHR*/ VULKAN_HPP_INLINE Result Instance::createDisplayPlaneSurfaceKHR( const DisplaySurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateDisplayPlaneSurfaceKHR( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createDisplayPlaneSurfaceKHR( const DisplaySurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateDisplayPlaneSurfaceKHR( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createDisplayPlaneSurfaceKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createDisplayPlaneSurfaceKHRUnique( const DisplaySurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createDisplayPlaneSurfaceKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_MIR_KHR VULKAN_HPP_INLINE Result Instance::createMirSurfaceKHR( const MirSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateMirSurfaceKHR( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createMirSurfaceKHR( const MirSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateMirSurfaceKHR( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createMirSurfaceKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createMirSurfaceKHRUnique( const MirSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createMirSurfaceKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_MIR_KHR*/ VULKAN_HPP_INLINE void Instance::destroySurfaceKHR( SurfaceKHR surface, const AllocationCallbacks* pAllocator ) const { vkDestroySurfaceKHR( m_instance, static_cast( surface ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Instance::destroySurfaceKHR( SurfaceKHR surface, Optional allocator ) const { vkDestroySurfaceKHR( m_instance, static_cast( surface ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_VI_NN VULKAN_HPP_INLINE Result Instance::createViSurfaceNN( const ViSurfaceCreateInfoNN* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateViSurfaceNN( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createViSurfaceNN( const ViSurfaceCreateInfoNN & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateViSurfaceNN( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createViSurfaceNN" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createViSurfaceNNUnique( const ViSurfaceCreateInfoNN & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createViSurfaceNN( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_VI_NN*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR VULKAN_HPP_INLINE Result Instance::createWaylandSurfaceKHR( const WaylandSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateWaylandSurfaceKHR( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createWaylandSurfaceKHR( const WaylandSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateWaylandSurfaceKHR( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createWaylandSurfaceKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createWaylandSurfaceKHRUnique( const WaylandSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createWaylandSurfaceKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE Result Instance::createWin32SurfaceKHR( const Win32SurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateWin32SurfaceKHR( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createWin32SurfaceKHR( const Win32SurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateWin32SurfaceKHR( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createWin32SurfaceKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createWin32SurfaceKHRUnique( const Win32SurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createWin32SurfaceKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR VULKAN_HPP_INLINE Result Instance::createXlibSurfaceKHR( const XlibSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateXlibSurfaceKHR( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createXlibSurfaceKHR( const XlibSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateXlibSurfaceKHR( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createXlibSurfaceKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createXlibSurfaceKHRUnique( const XlibSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createXlibSurfaceKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR VULKAN_HPP_INLINE Result Instance::createXcbSurfaceKHR( const XcbSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateXcbSurfaceKHR( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createXcbSurfaceKHR( const XcbSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateXcbSurfaceKHR( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createXcbSurfaceKHR" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createXcbSurfaceKHRUnique( const XcbSurfaceCreateInfoKHR & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createXcbSurfaceKHR( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_XCB_KHR*/ VULKAN_HPP_INLINE Result Instance::createDebugReportCallbackEXT( const DebugReportCallbackCreateInfoEXT* pCreateInfo, const AllocationCallbacks* pAllocator, DebugReportCallbackEXT* pCallback ) const { return static_cast( vkCreateDebugReportCallbackEXT( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pCallback ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createDebugReportCallbackEXT( const DebugReportCallbackCreateInfoEXT & createInfo, Optional allocator ) const { DebugReportCallbackEXT callback; Result result = static_cast( vkCreateDebugReportCallbackEXT( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &callback ) ) ); return createResultValue( result, callback, "vk::Instance::createDebugReportCallbackEXT" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueDebugReportCallbackEXT Instance::createDebugReportCallbackEXTUnique( const DebugReportCallbackCreateInfoEXT & createInfo, Optional allocator ) const { DebugReportCallbackEXTDeleter deleter( *this, allocator ); return UniqueDebugReportCallbackEXT( createDebugReportCallbackEXT( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Instance::destroyDebugReportCallbackEXT( DebugReportCallbackEXT callback, const AllocationCallbacks* pAllocator ) const { vkDestroyDebugReportCallbackEXT( m_instance, static_cast( callback ), reinterpret_cast( pAllocator ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Instance::destroyDebugReportCallbackEXT( DebugReportCallbackEXT callback, Optional allocator ) const { vkDestroyDebugReportCallbackEXT( m_instance, static_cast( callback ), reinterpret_cast( static_cast( allocator ) ) ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE void Instance::debugReportMessageEXT( DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage ) const { vkDebugReportMessageEXT( m_instance, static_cast( flags ), static_cast( objectType ), object, location, messageCode, pLayerPrefix, pMessage ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE void Instance::debugReportMessageEXT( DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const std::string & layerPrefix, const std::string & message ) const { #ifdef VULKAN_HPP_NO_EXCEPTIONS assert( layerPrefix.size() == message.size() ); #else if ( layerPrefix.size() != message.size() ) { throw LogicError( "vk::Instance::debugReportMessageEXT: layerPrefix.size() != message.size()" ); } #endif // VULKAN_HPP_NO_EXCEPTIONS vkDebugReportMessageEXT( m_instance, static_cast( flags ), static_cast( objectType ), object, location, messageCode, layerPrefix.c_str(), message.c_str() ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE Result Instance::enumeratePhysicalDeviceGroupsKHX( uint32_t* pPhysicalDeviceGroupCount, PhysicalDeviceGroupPropertiesKHX* pPhysicalDeviceGroupProperties ) const { return static_cast( vkEnumeratePhysicalDeviceGroupsKHX( m_instance, pPhysicalDeviceGroupCount, reinterpret_cast( pPhysicalDeviceGroupProperties ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template VULKAN_HPP_INLINE typename ResultValueType>::type Instance::enumeratePhysicalDeviceGroupsKHX() const { std::vector physicalDeviceGroupProperties; uint32_t physicalDeviceGroupCount; Result result; do { result = static_cast( vkEnumeratePhysicalDeviceGroupsKHX( m_instance, &physicalDeviceGroupCount, nullptr ) ); if ( ( result == Result::eSuccess ) && physicalDeviceGroupCount ) { physicalDeviceGroupProperties.resize( physicalDeviceGroupCount ); result = static_cast( vkEnumeratePhysicalDeviceGroupsKHX( m_instance, &physicalDeviceGroupCount, reinterpret_cast( physicalDeviceGroupProperties.data() ) ) ); } } while ( result == Result::eIncomplete ); assert( physicalDeviceGroupCount <= physicalDeviceGroupProperties.size() ); physicalDeviceGroupProperties.resize( physicalDeviceGroupCount ); return createResultValue( result, physicalDeviceGroupProperties, "vk::Instance::enumeratePhysicalDeviceGroupsKHX" ); } #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifdef VK_USE_PLATFORM_IOS_MVK VULKAN_HPP_INLINE Result Instance::createIOSSurfaceMVK( const IOSSurfaceCreateInfoMVK* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateIOSSurfaceMVK( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createIOSSurfaceMVK( const IOSSurfaceCreateInfoMVK & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateIOSSurfaceMVK( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createIOSSurfaceMVK" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createIOSSurfaceMVKUnique( const IOSSurfaceCreateInfoMVK & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createIOSSurfaceMVK( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_IOS_MVK*/ #ifdef VK_USE_PLATFORM_MACOS_MVK VULKAN_HPP_INLINE Result Instance::createMacOSSurfaceMVK( const MacOSSurfaceCreateInfoMVK* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface ) const { return static_cast( vkCreateMacOSSurfaceMVK( m_instance, reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pSurface ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type Instance::createMacOSSurfaceMVK( const MacOSSurfaceCreateInfoMVK & createInfo, Optional allocator ) const { SurfaceKHR surface; Result result = static_cast( vkCreateMacOSSurfaceMVK( m_instance, reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &surface ) ) ); return createResultValue( result, surface, "vk::Instance::createMacOSSurfaceMVK" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueSurfaceKHR Instance::createMacOSSurfaceMVKUnique( const MacOSSurfaceCreateInfoMVK & createInfo, Optional allocator ) const { SurfaceKHRDeleter deleter( *this, allocator ); return UniqueSurfaceKHR( createMacOSSurfaceMVK( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #endif /*VK_USE_PLATFORM_MACOS_MVK*/ struct DeviceGroupDeviceCreateInfoKHX { DeviceGroupDeviceCreateInfoKHX( uint32_t physicalDeviceCount_ = 0, const PhysicalDevice* pPhysicalDevices_ = nullptr ) : sType( StructureType::eDeviceGroupDeviceCreateInfoKHX ) , pNext( nullptr ) , physicalDeviceCount( physicalDeviceCount_ ) , pPhysicalDevices( pPhysicalDevices_ ) { } DeviceGroupDeviceCreateInfoKHX( VkDeviceGroupDeviceCreateInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupDeviceCreateInfoKHX ) ); } DeviceGroupDeviceCreateInfoKHX& operator=( VkDeviceGroupDeviceCreateInfoKHX const & rhs ) { memcpy( this, &rhs, sizeof( DeviceGroupDeviceCreateInfoKHX ) ); return *this; } DeviceGroupDeviceCreateInfoKHX& setPNext( const void* pNext_ ) { pNext = pNext_; return *this; } DeviceGroupDeviceCreateInfoKHX& setPhysicalDeviceCount( uint32_t physicalDeviceCount_ ) { physicalDeviceCount = physicalDeviceCount_; return *this; } DeviceGroupDeviceCreateInfoKHX& setPPhysicalDevices( const PhysicalDevice* pPhysicalDevices_ ) { pPhysicalDevices = pPhysicalDevices_; return *this; } operator const VkDeviceGroupDeviceCreateInfoKHX&() const { return *reinterpret_cast(this); } bool operator==( DeviceGroupDeviceCreateInfoKHX const& rhs ) const { return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( physicalDeviceCount == rhs.physicalDeviceCount ) && ( pPhysicalDevices == rhs.pPhysicalDevices ); } bool operator!=( DeviceGroupDeviceCreateInfoKHX const& rhs ) const { return !operator==( rhs ); } private: StructureType sType; public: const void* pNext; uint32_t physicalDeviceCount; const PhysicalDevice* pPhysicalDevices; }; static_assert( sizeof( DeviceGroupDeviceCreateInfoKHX ) == sizeof( VkDeviceGroupDeviceCreateInfoKHX ), "struct and wrapper have different size!" ); #ifndef VULKAN_HPP_NO_SMART_HANDLE class InstanceDeleter; using UniqueInstance = UniqueHandle; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ Result createInstance( const InstanceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Instance* pInstance ); #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE ResultValueType::type createInstance( const InstanceCreateInfo & createInfo, Optional allocator = nullptr ); #ifndef VULKAN_HPP_NO_SMART_HANDLE UniqueInstance createInstanceUnique( const InstanceCreateInfo & createInfo, Optional allocator = nullptr ); #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #ifndef VULKAN_HPP_NO_SMART_HANDLE class InstanceDeleter { public: InstanceDeleter( Optional allocator = nullptr ) : m_allocator( allocator ) {} void operator()( Instance instance ) { instance.destroy( m_allocator ); } private: Optional m_allocator; }; #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ VULKAN_HPP_INLINE Result createInstance( const InstanceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Instance* pInstance ) { return static_cast( vkCreateInstance( reinterpret_cast( pCreateInfo ), reinterpret_cast( pAllocator ), reinterpret_cast( pInstance ) ) ); } #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE VULKAN_HPP_INLINE ResultValueType::type createInstance( const InstanceCreateInfo & createInfo, Optional allocator ) { Instance instance; Result result = static_cast( vkCreateInstance( reinterpret_cast( &createInfo ), reinterpret_cast( static_cast( allocator ) ), reinterpret_cast( &instance ) ) ); return createResultValue( result, instance, "vk::createInstance" ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE VULKAN_HPP_INLINE UniqueInstance createInstanceUnique( const InstanceCreateInfo & createInfo, Optional allocator ) { InstanceDeleter deleter( allocator ); return UniqueInstance( createInstance( createInfo, allocator ), deleter ); } #endif /*VULKAN_HPP_NO_SMART_HANDLE*/ #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ VULKAN_HPP_INLINE std::string to_string(FramebufferCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(FramebufferCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(QueryPoolCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(QueryPoolCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(RenderPassCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(RenderPassCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(SamplerCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(SamplerCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineLayoutCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineLayoutCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineCacheCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineCacheCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineDepthStencilStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineDepthStencilStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineDynamicStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineDynamicStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineColorBlendStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineColorBlendStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineMultisampleStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineMultisampleStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineRasterizationStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineRasterizationStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineViewportStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineViewportStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineTessellationStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineTessellationStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineInputAssemblyStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineInputAssemblyStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineVertexInputStateCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineVertexInputStateCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineShaderStageCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineShaderStageCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(BufferViewCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(BufferViewCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(InstanceCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(InstanceCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(DeviceCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(DeviceCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(DeviceQueueCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(DeviceQueueCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(ImageViewCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(ImageViewCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(SemaphoreCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(SemaphoreCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(ShaderModuleCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(ShaderModuleCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(EventCreateFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(EventCreateFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(MemoryMapFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(MemoryMapFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(DescriptorPoolResetFlagBits) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(DescriptorPoolResetFlags) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(DescriptorUpdateTemplateCreateFlagBitsKHR) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(DescriptorUpdateTemplateCreateFlagsKHR) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(DisplayModeCreateFlagBitsKHR) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(DisplayModeCreateFlagsKHR) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(DisplaySurfaceCreateFlagBitsKHR) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(DisplaySurfaceCreateFlagsKHR) { return "{}"; } #ifdef VK_USE_PLATFORM_ANDROID_KHR VULKAN_HPP_INLINE std::string to_string(AndroidSurfaceCreateFlagBitsKHR) { return "(void)"; } #endif /*VK_USE_PLATFORM_ANDROID_KHR*/ #ifdef VK_USE_PLATFORM_ANDROID_KHR VULKAN_HPP_INLINE std::string to_string(AndroidSurfaceCreateFlagsKHR) { return "{}"; } #endif /*VK_USE_PLATFORM_ANDROID_KHR*/ #ifdef VK_USE_PLATFORM_MIR_KHR VULKAN_HPP_INLINE std::string to_string(MirSurfaceCreateFlagBitsKHR) { return "(void)"; } #endif /*VK_USE_PLATFORM_MIR_KHR*/ #ifdef VK_USE_PLATFORM_MIR_KHR VULKAN_HPP_INLINE std::string to_string(MirSurfaceCreateFlagsKHR) { return "{}"; } #endif /*VK_USE_PLATFORM_MIR_KHR*/ #ifdef VK_USE_PLATFORM_VI_NN VULKAN_HPP_INLINE std::string to_string(ViSurfaceCreateFlagBitsNN) { return "(void)"; } #endif /*VK_USE_PLATFORM_VI_NN*/ #ifdef VK_USE_PLATFORM_VI_NN VULKAN_HPP_INLINE std::string to_string(ViSurfaceCreateFlagsNN) { return "{}"; } #endif /*VK_USE_PLATFORM_VI_NN*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR VULKAN_HPP_INLINE std::string to_string(WaylandSurfaceCreateFlagBitsKHR) { return "(void)"; } #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WAYLAND_KHR VULKAN_HPP_INLINE std::string to_string(WaylandSurfaceCreateFlagsKHR) { return "{}"; } #endif /*VK_USE_PLATFORM_WAYLAND_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE std::string to_string(Win32SurfaceCreateFlagBitsKHR) { return "(void)"; } #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_WIN32_KHR VULKAN_HPP_INLINE std::string to_string(Win32SurfaceCreateFlagsKHR) { return "{}"; } #endif /*VK_USE_PLATFORM_WIN32_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR VULKAN_HPP_INLINE std::string to_string(XlibSurfaceCreateFlagBitsKHR) { return "(void)"; } #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XLIB_KHR VULKAN_HPP_INLINE std::string to_string(XlibSurfaceCreateFlagsKHR) { return "{}"; } #endif /*VK_USE_PLATFORM_XLIB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR VULKAN_HPP_INLINE std::string to_string(XcbSurfaceCreateFlagBitsKHR) { return "(void)"; } #endif /*VK_USE_PLATFORM_XCB_KHR*/ #ifdef VK_USE_PLATFORM_XCB_KHR VULKAN_HPP_INLINE std::string to_string(XcbSurfaceCreateFlagsKHR) { return "{}"; } #endif /*VK_USE_PLATFORM_XCB_KHR*/ #ifdef VK_USE_PLATFORM_IOS_MVK VULKAN_HPP_INLINE std::string to_string(IOSSurfaceCreateFlagBitsMVK) { return "(void)"; } #endif /*VK_USE_PLATFORM_IOS_MVK*/ #ifdef VK_USE_PLATFORM_IOS_MVK VULKAN_HPP_INLINE std::string to_string(IOSSurfaceCreateFlagsMVK) { return "{}"; } #endif /*VK_USE_PLATFORM_IOS_MVK*/ #ifdef VK_USE_PLATFORM_MACOS_MVK VULKAN_HPP_INLINE std::string to_string(MacOSSurfaceCreateFlagBitsMVK) { return "(void)"; } #endif /*VK_USE_PLATFORM_MACOS_MVK*/ #ifdef VK_USE_PLATFORM_MACOS_MVK VULKAN_HPP_INLINE std::string to_string(MacOSSurfaceCreateFlagsMVK) { return "{}"; } #endif /*VK_USE_PLATFORM_MACOS_MVK*/ VULKAN_HPP_INLINE std::string to_string(CommandPoolTrimFlagBitsKHR) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(CommandPoolTrimFlagsKHR) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineViewportSwizzleStateCreateFlagBitsNV) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineViewportSwizzleStateCreateFlagsNV) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(PipelineDiscardRectangleStateCreateFlagBitsEXT) { return "(void)"; } VULKAN_HPP_INLINE std::string to_string(PipelineDiscardRectangleStateCreateFlagsEXT) { return "{}"; } VULKAN_HPP_INLINE std::string to_string(ImageLayout value) { switch (value) { case ImageLayout::eUndefined: return "Undefined"; case ImageLayout::eGeneral: return "General"; case ImageLayout::eColorAttachmentOptimal: return "ColorAttachmentOptimal"; case ImageLayout::eDepthStencilAttachmentOptimal: return "DepthStencilAttachmentOptimal"; case ImageLayout::eDepthStencilReadOnlyOptimal: return "DepthStencilReadOnlyOptimal"; case ImageLayout::eShaderReadOnlyOptimal: return "ShaderReadOnlyOptimal"; case ImageLayout::eTransferSrcOptimal: return "TransferSrcOptimal"; case ImageLayout::eTransferDstOptimal: return "TransferDstOptimal"; case ImageLayout::ePreinitialized: return "Preinitialized"; case ImageLayout::ePresentSrcKHR: return "PresentSrcKHR"; case ImageLayout::eSharedPresentKHR: return "SharedPresentKHR"; case ImageLayout::eDepthReadOnlyStencilAttachmentOptimalKHR: return "DepthReadOnlyStencilAttachmentOptimalKHR"; case ImageLayout::eDepthAttachmentStencilReadOnlyOptimalKHR: return "DepthAttachmentStencilReadOnlyOptimalKHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(AttachmentLoadOp value) { switch (value) { case AttachmentLoadOp::eLoad: return "Load"; case AttachmentLoadOp::eClear: return "Clear"; case AttachmentLoadOp::eDontCare: return "DontCare"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(AttachmentStoreOp value) { switch (value) { case AttachmentStoreOp::eStore: return "Store"; case AttachmentStoreOp::eDontCare: return "DontCare"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ImageType value) { switch (value) { case ImageType::e1D: return "1D"; case ImageType::e2D: return "2D"; case ImageType::e3D: return "3D"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ImageTiling value) { switch (value) { case ImageTiling::eOptimal: return "Optimal"; case ImageTiling::eLinear: return "Linear"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ImageViewType value) { switch (value) { case ImageViewType::e1D: return "1D"; case ImageViewType::e2D: return "2D"; case ImageViewType::e3D: return "3D"; case ImageViewType::eCube: return "Cube"; case ImageViewType::e1DArray: return "1DArray"; case ImageViewType::e2DArray: return "2DArray"; case ImageViewType::eCubeArray: return "CubeArray"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CommandBufferLevel value) { switch (value) { case CommandBufferLevel::ePrimary: return "Primary"; case CommandBufferLevel::eSecondary: return "Secondary"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ComponentSwizzle value) { switch (value) { case ComponentSwizzle::eIdentity: return "Identity"; case ComponentSwizzle::eZero: return "Zero"; case ComponentSwizzle::eOne: return "One"; case ComponentSwizzle::eR: return "R"; case ComponentSwizzle::eG: return "G"; case ComponentSwizzle::eB: return "B"; case ComponentSwizzle::eA: return "A"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DescriptorType value) { switch (value) { case DescriptorType::eSampler: return "Sampler"; case DescriptorType::eCombinedImageSampler: return "CombinedImageSampler"; case DescriptorType::eSampledImage: return "SampledImage"; case DescriptorType::eStorageImage: return "StorageImage"; case DescriptorType::eUniformTexelBuffer: return "UniformTexelBuffer"; case DescriptorType::eStorageTexelBuffer: return "StorageTexelBuffer"; case DescriptorType::eUniformBuffer: return "UniformBuffer"; case DescriptorType::eStorageBuffer: return "StorageBuffer"; case DescriptorType::eUniformBufferDynamic: return "UniformBufferDynamic"; case DescriptorType::eStorageBufferDynamic: return "StorageBufferDynamic"; case DescriptorType::eInputAttachment: return "InputAttachment"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(QueryType value) { switch (value) { case QueryType::eOcclusion: return "Occlusion"; case QueryType::ePipelineStatistics: return "PipelineStatistics"; case QueryType::eTimestamp: return "Timestamp"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(BorderColor value) { switch (value) { case BorderColor::eFloatTransparentBlack: return "FloatTransparentBlack"; case BorderColor::eIntTransparentBlack: return "IntTransparentBlack"; case BorderColor::eFloatOpaqueBlack: return "FloatOpaqueBlack"; case BorderColor::eIntOpaqueBlack: return "IntOpaqueBlack"; case BorderColor::eFloatOpaqueWhite: return "FloatOpaqueWhite"; case BorderColor::eIntOpaqueWhite: return "IntOpaqueWhite"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PipelineBindPoint value) { switch (value) { case PipelineBindPoint::eGraphics: return "Graphics"; case PipelineBindPoint::eCompute: return "Compute"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PipelineCacheHeaderVersion value) { switch (value) { case PipelineCacheHeaderVersion::eOne: return "One"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PrimitiveTopology value) { switch (value) { case PrimitiveTopology::ePointList: return "PointList"; case PrimitiveTopology::eLineList: return "LineList"; case PrimitiveTopology::eLineStrip: return "LineStrip"; case PrimitiveTopology::eTriangleList: return "TriangleList"; case PrimitiveTopology::eTriangleStrip: return "TriangleStrip"; case PrimitiveTopology::eTriangleFan: return "TriangleFan"; case PrimitiveTopology::eLineListWithAdjacency: return "LineListWithAdjacency"; case PrimitiveTopology::eLineStripWithAdjacency: return "LineStripWithAdjacency"; case PrimitiveTopology::eTriangleListWithAdjacency: return "TriangleListWithAdjacency"; case PrimitiveTopology::eTriangleStripWithAdjacency: return "TriangleStripWithAdjacency"; case PrimitiveTopology::ePatchList: return "PatchList"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SharingMode value) { switch (value) { case SharingMode::eExclusive: return "Exclusive"; case SharingMode::eConcurrent: return "Concurrent"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(IndexType value) { switch (value) { case IndexType::eUint16: return "Uint16"; case IndexType::eUint32: return "Uint32"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(Filter value) { switch (value) { case Filter::eNearest: return "Nearest"; case Filter::eLinear: return "Linear"; case Filter::eCubicIMG: return "CubicIMG"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SamplerMipmapMode value) { switch (value) { case SamplerMipmapMode::eNearest: return "Nearest"; case SamplerMipmapMode::eLinear: return "Linear"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SamplerAddressMode value) { switch (value) { case SamplerAddressMode::eRepeat: return "Repeat"; case SamplerAddressMode::eMirroredRepeat: return "MirroredRepeat"; case SamplerAddressMode::eClampToEdge: return "ClampToEdge"; case SamplerAddressMode::eClampToBorder: return "ClampToBorder"; case SamplerAddressMode::eMirrorClampToEdge: return "MirrorClampToEdge"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CompareOp value) { switch (value) { case CompareOp::eNever: return "Never"; case CompareOp::eLess: return "Less"; case CompareOp::eEqual: return "Equal"; case CompareOp::eLessOrEqual: return "LessOrEqual"; case CompareOp::eGreater: return "Greater"; case CompareOp::eNotEqual: return "NotEqual"; case CompareOp::eGreaterOrEqual: return "GreaterOrEqual"; case CompareOp::eAlways: return "Always"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PolygonMode value) { switch (value) { case PolygonMode::eFill: return "Fill"; case PolygonMode::eLine: return "Line"; case PolygonMode::ePoint: return "Point"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CullModeFlagBits value) { switch (value) { case CullModeFlagBits::eNone: return "None"; case CullModeFlagBits::eFront: return "Front"; case CullModeFlagBits::eBack: return "Back"; case CullModeFlagBits::eFrontAndBack: return "FrontAndBack"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CullModeFlags value) { if (!value) return "{}"; std::string result; if (value & CullModeFlagBits::eNone) result += "None | "; if (value & CullModeFlagBits::eFront) result += "Front | "; if (value & CullModeFlagBits::eBack) result += "Back | "; if (value & CullModeFlagBits::eFrontAndBack) result += "FrontAndBack | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(FrontFace value) { switch (value) { case FrontFace::eCounterClockwise: return "CounterClockwise"; case FrontFace::eClockwise: return "Clockwise"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(BlendFactor value) { switch (value) { case BlendFactor::eZero: return "Zero"; case BlendFactor::eOne: return "One"; case BlendFactor::eSrcColor: return "SrcColor"; case BlendFactor::eOneMinusSrcColor: return "OneMinusSrcColor"; case BlendFactor::eDstColor: return "DstColor"; case BlendFactor::eOneMinusDstColor: return "OneMinusDstColor"; case BlendFactor::eSrcAlpha: return "SrcAlpha"; case BlendFactor::eOneMinusSrcAlpha: return "OneMinusSrcAlpha"; case BlendFactor::eDstAlpha: return "DstAlpha"; case BlendFactor::eOneMinusDstAlpha: return "OneMinusDstAlpha"; case BlendFactor::eConstantColor: return "ConstantColor"; case BlendFactor::eOneMinusConstantColor: return "OneMinusConstantColor"; case BlendFactor::eConstantAlpha: return "ConstantAlpha"; case BlendFactor::eOneMinusConstantAlpha: return "OneMinusConstantAlpha"; case BlendFactor::eSrcAlphaSaturate: return "SrcAlphaSaturate"; case BlendFactor::eSrc1Color: return "Src1Color"; case BlendFactor::eOneMinusSrc1Color: return "OneMinusSrc1Color"; case BlendFactor::eSrc1Alpha: return "Src1Alpha"; case BlendFactor::eOneMinusSrc1Alpha: return "OneMinusSrc1Alpha"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(BlendOp value) { switch (value) { case BlendOp::eAdd: return "Add"; case BlendOp::eSubtract: return "Subtract"; case BlendOp::eReverseSubtract: return "ReverseSubtract"; case BlendOp::eMin: return "Min"; case BlendOp::eMax: return "Max"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(StencilOp value) { switch (value) { case StencilOp::eKeep: return "Keep"; case StencilOp::eZero: return "Zero"; case StencilOp::eReplace: return "Replace"; case StencilOp::eIncrementAndClamp: return "IncrementAndClamp"; case StencilOp::eDecrementAndClamp: return "DecrementAndClamp"; case StencilOp::eInvert: return "Invert"; case StencilOp::eIncrementAndWrap: return "IncrementAndWrap"; case StencilOp::eDecrementAndWrap: return "DecrementAndWrap"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(LogicOp value) { switch (value) { case LogicOp::eClear: return "Clear"; case LogicOp::eAnd: return "And"; case LogicOp::eAndReverse: return "AndReverse"; case LogicOp::eCopy: return "Copy"; case LogicOp::eAndInverted: return "AndInverted"; case LogicOp::eNoOp: return "NoOp"; case LogicOp::eXor: return "Xor"; case LogicOp::eOr: return "Or"; case LogicOp::eNor: return "Nor"; case LogicOp::eEquivalent: return "Equivalent"; case LogicOp::eInvert: return "Invert"; case LogicOp::eOrReverse: return "OrReverse"; case LogicOp::eCopyInverted: return "CopyInverted"; case LogicOp::eOrInverted: return "OrInverted"; case LogicOp::eNand: return "Nand"; case LogicOp::eSet: return "Set"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(InternalAllocationType value) { switch (value) { case InternalAllocationType::eExecutable: return "Executable"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SystemAllocationScope value) { switch (value) { case SystemAllocationScope::eCommand: return "Command"; case SystemAllocationScope::eObject: return "Object"; case SystemAllocationScope::eCache: return "Cache"; case SystemAllocationScope::eDevice: return "Device"; case SystemAllocationScope::eInstance: return "Instance"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PhysicalDeviceType value) { switch (value) { case PhysicalDeviceType::eOther: return "Other"; case PhysicalDeviceType::eIntegratedGpu: return "IntegratedGpu"; case PhysicalDeviceType::eDiscreteGpu: return "DiscreteGpu"; case PhysicalDeviceType::eVirtualGpu: return "VirtualGpu"; case PhysicalDeviceType::eCpu: return "Cpu"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(VertexInputRate value) { switch (value) { case VertexInputRate::eVertex: return "Vertex"; case VertexInputRate::eInstance: return "Instance"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(Format value) { switch (value) { case Format::eUndefined: return "Undefined"; case Format::eR4G4UnormPack8: return "R4G4UnormPack8"; case Format::eR4G4B4A4UnormPack16: return "R4G4B4A4UnormPack16"; case Format::eB4G4R4A4UnormPack16: return "B4G4R4A4UnormPack16"; case Format::eR5G6B5UnormPack16: return "R5G6B5UnormPack16"; case Format::eB5G6R5UnormPack16: return "B5G6R5UnormPack16"; case Format::eR5G5B5A1UnormPack16: return "R5G5B5A1UnormPack16"; case Format::eB5G5R5A1UnormPack16: return "B5G5R5A1UnormPack16"; case Format::eA1R5G5B5UnormPack16: return "A1R5G5B5UnormPack16"; case Format::eR8Unorm: return "R8Unorm"; case Format::eR8Snorm: return "R8Snorm"; case Format::eR8Uscaled: return "R8Uscaled"; case Format::eR8Sscaled: return "R8Sscaled"; case Format::eR8Uint: return "R8Uint"; case Format::eR8Sint: return "R8Sint"; case Format::eR8Srgb: return "R8Srgb"; case Format::eR8G8Unorm: return "R8G8Unorm"; case Format::eR8G8Snorm: return "R8G8Snorm"; case Format::eR8G8Uscaled: return "R8G8Uscaled"; case Format::eR8G8Sscaled: return "R8G8Sscaled"; case Format::eR8G8Uint: return "R8G8Uint"; case Format::eR8G8Sint: return "R8G8Sint"; case Format::eR8G8Srgb: return "R8G8Srgb"; case Format::eR8G8B8Unorm: return "R8G8B8Unorm"; case Format::eR8G8B8Snorm: return "R8G8B8Snorm"; case Format::eR8G8B8Uscaled: return "R8G8B8Uscaled"; case Format::eR8G8B8Sscaled: return "R8G8B8Sscaled"; case Format::eR8G8B8Uint: return "R8G8B8Uint"; case Format::eR8G8B8Sint: return "R8G8B8Sint"; case Format::eR8G8B8Srgb: return "R8G8B8Srgb"; case Format::eB8G8R8Unorm: return "B8G8R8Unorm"; case Format::eB8G8R8Snorm: return "B8G8R8Snorm"; case Format::eB8G8R8Uscaled: return "B8G8R8Uscaled"; case Format::eB8G8R8Sscaled: return "B8G8R8Sscaled"; case Format::eB8G8R8Uint: return "B8G8R8Uint"; case Format::eB8G8R8Sint: return "B8G8R8Sint"; case Format::eB8G8R8Srgb: return "B8G8R8Srgb"; case Format::eR8G8B8A8Unorm: return "R8G8B8A8Unorm"; case Format::eR8G8B8A8Snorm: return "R8G8B8A8Snorm"; case Format::eR8G8B8A8Uscaled: return "R8G8B8A8Uscaled"; case Format::eR8G8B8A8Sscaled: return "R8G8B8A8Sscaled"; case Format::eR8G8B8A8Uint: return "R8G8B8A8Uint"; case Format::eR8G8B8A8Sint: return "R8G8B8A8Sint"; case Format::eR8G8B8A8Srgb: return "R8G8B8A8Srgb"; case Format::eB8G8R8A8Unorm: return "B8G8R8A8Unorm"; case Format::eB8G8R8A8Snorm: return "B8G8R8A8Snorm"; case Format::eB8G8R8A8Uscaled: return "B8G8R8A8Uscaled"; case Format::eB8G8R8A8Sscaled: return "B8G8R8A8Sscaled"; case Format::eB8G8R8A8Uint: return "B8G8R8A8Uint"; case Format::eB8G8R8A8Sint: return "B8G8R8A8Sint"; case Format::eB8G8R8A8Srgb: return "B8G8R8A8Srgb"; case Format::eA8B8G8R8UnormPack32: return "A8B8G8R8UnormPack32"; case Format::eA8B8G8R8SnormPack32: return "A8B8G8R8SnormPack32"; case Format::eA8B8G8R8UscaledPack32: return "A8B8G8R8UscaledPack32"; case Format::eA8B8G8R8SscaledPack32: return "A8B8G8R8SscaledPack32"; case Format::eA8B8G8R8UintPack32: return "A8B8G8R8UintPack32"; case Format::eA8B8G8R8SintPack32: return "A8B8G8R8SintPack32"; case Format::eA8B8G8R8SrgbPack32: return "A8B8G8R8SrgbPack32"; case Format::eA2R10G10B10UnormPack32: return "A2R10G10B10UnormPack32"; case Format::eA2R10G10B10SnormPack32: return "A2R10G10B10SnormPack32"; case Format::eA2R10G10B10UscaledPack32: return "A2R10G10B10UscaledPack32"; case Format::eA2R10G10B10SscaledPack32: return "A2R10G10B10SscaledPack32"; case Format::eA2R10G10B10UintPack32: return "A2R10G10B10UintPack32"; case Format::eA2R10G10B10SintPack32: return "A2R10G10B10SintPack32"; case Format::eA2B10G10R10UnormPack32: return "A2B10G10R10UnormPack32"; case Format::eA2B10G10R10SnormPack32: return "A2B10G10R10SnormPack32"; case Format::eA2B10G10R10UscaledPack32: return "A2B10G10R10UscaledPack32"; case Format::eA2B10G10R10SscaledPack32: return "A2B10G10R10SscaledPack32"; case Format::eA2B10G10R10UintPack32: return "A2B10G10R10UintPack32"; case Format::eA2B10G10R10SintPack32: return "A2B10G10R10SintPack32"; case Format::eR16Unorm: return "R16Unorm"; case Format::eR16Snorm: return "R16Snorm"; case Format::eR16Uscaled: return "R16Uscaled"; case Format::eR16Sscaled: return "R16Sscaled"; case Format::eR16Uint: return "R16Uint"; case Format::eR16Sint: return "R16Sint"; case Format::eR16Sfloat: return "R16Sfloat"; case Format::eR16G16Unorm: return "R16G16Unorm"; case Format::eR16G16Snorm: return "R16G16Snorm"; case Format::eR16G16Uscaled: return "R16G16Uscaled"; case Format::eR16G16Sscaled: return "R16G16Sscaled"; case Format::eR16G16Uint: return "R16G16Uint"; case Format::eR16G16Sint: return "R16G16Sint"; case Format::eR16G16Sfloat: return "R16G16Sfloat"; case Format::eR16G16B16Unorm: return "R16G16B16Unorm"; case Format::eR16G16B16Snorm: return "R16G16B16Snorm"; case Format::eR16G16B16Uscaled: return "R16G16B16Uscaled"; case Format::eR16G16B16Sscaled: return "R16G16B16Sscaled"; case Format::eR16G16B16Uint: return "R16G16B16Uint"; case Format::eR16G16B16Sint: return "R16G16B16Sint"; case Format::eR16G16B16Sfloat: return "R16G16B16Sfloat"; case Format::eR16G16B16A16Unorm: return "R16G16B16A16Unorm"; case Format::eR16G16B16A16Snorm: return "R16G16B16A16Snorm"; case Format::eR16G16B16A16Uscaled: return "R16G16B16A16Uscaled"; case Format::eR16G16B16A16Sscaled: return "R16G16B16A16Sscaled"; case Format::eR16G16B16A16Uint: return "R16G16B16A16Uint"; case Format::eR16G16B16A16Sint: return "R16G16B16A16Sint"; case Format::eR16G16B16A16Sfloat: return "R16G16B16A16Sfloat"; case Format::eR32Uint: return "R32Uint"; case Format::eR32Sint: return "R32Sint"; case Format::eR32Sfloat: return "R32Sfloat"; case Format::eR32G32Uint: return "R32G32Uint"; case Format::eR32G32Sint: return "R32G32Sint"; case Format::eR32G32Sfloat: return "R32G32Sfloat"; case Format::eR32G32B32Uint: return "R32G32B32Uint"; case Format::eR32G32B32Sint: return "R32G32B32Sint"; case Format::eR32G32B32Sfloat: return "R32G32B32Sfloat"; case Format::eR32G32B32A32Uint: return "R32G32B32A32Uint"; case Format::eR32G32B32A32Sint: return "R32G32B32A32Sint"; case Format::eR32G32B32A32Sfloat: return "R32G32B32A32Sfloat"; case Format::eR64Uint: return "R64Uint"; case Format::eR64Sint: return "R64Sint"; case Format::eR64Sfloat: return "R64Sfloat"; case Format::eR64G64Uint: return "R64G64Uint"; case Format::eR64G64Sint: return "R64G64Sint"; case Format::eR64G64Sfloat: return "R64G64Sfloat"; case Format::eR64G64B64Uint: return "R64G64B64Uint"; case Format::eR64G64B64Sint: return "R64G64B64Sint"; case Format::eR64G64B64Sfloat: return "R64G64B64Sfloat"; case Format::eR64G64B64A64Uint: return "R64G64B64A64Uint"; case Format::eR64G64B64A64Sint: return "R64G64B64A64Sint"; case Format::eR64G64B64A64Sfloat: return "R64G64B64A64Sfloat"; case Format::eB10G11R11UfloatPack32: return "B10G11R11UfloatPack32"; case Format::eE5B9G9R9UfloatPack32: return "E5B9G9R9UfloatPack32"; case Format::eD16Unorm: return "D16Unorm"; case Format::eX8D24UnormPack32: return "X8D24UnormPack32"; case Format::eD32Sfloat: return "D32Sfloat"; case Format::eS8Uint: return "S8Uint"; case Format::eD16UnormS8Uint: return "D16UnormS8Uint"; case Format::eD24UnormS8Uint: return "D24UnormS8Uint"; case Format::eD32SfloatS8Uint: return "D32SfloatS8Uint"; case Format::eBc1RgbUnormBlock: return "Bc1RgbUnormBlock"; case Format::eBc1RgbSrgbBlock: return "Bc1RgbSrgbBlock"; case Format::eBc1RgbaUnormBlock: return "Bc1RgbaUnormBlock"; case Format::eBc1RgbaSrgbBlock: return "Bc1RgbaSrgbBlock"; case Format::eBc2UnormBlock: return "Bc2UnormBlock"; case Format::eBc2SrgbBlock: return "Bc2SrgbBlock"; case Format::eBc3UnormBlock: return "Bc3UnormBlock"; case Format::eBc3SrgbBlock: return "Bc3SrgbBlock"; case Format::eBc4UnormBlock: return "Bc4UnormBlock"; case Format::eBc4SnormBlock: return "Bc4SnormBlock"; case Format::eBc5UnormBlock: return "Bc5UnormBlock"; case Format::eBc5SnormBlock: return "Bc5SnormBlock"; case Format::eBc6HUfloatBlock: return "Bc6HUfloatBlock"; case Format::eBc6HSfloatBlock: return "Bc6HSfloatBlock"; case Format::eBc7UnormBlock: return "Bc7UnormBlock"; case Format::eBc7SrgbBlock: return "Bc7SrgbBlock"; case Format::eEtc2R8G8B8UnormBlock: return "Etc2R8G8B8UnormBlock"; case Format::eEtc2R8G8B8SrgbBlock: return "Etc2R8G8B8SrgbBlock"; case Format::eEtc2R8G8B8A1UnormBlock: return "Etc2R8G8B8A1UnormBlock"; case Format::eEtc2R8G8B8A1SrgbBlock: return "Etc2R8G8B8A1SrgbBlock"; case Format::eEtc2R8G8B8A8UnormBlock: return "Etc2R8G8B8A8UnormBlock"; case Format::eEtc2R8G8B8A8SrgbBlock: return "Etc2R8G8B8A8SrgbBlock"; case Format::eEacR11UnormBlock: return "EacR11UnormBlock"; case Format::eEacR11SnormBlock: return "EacR11SnormBlock"; case Format::eEacR11G11UnormBlock: return "EacR11G11UnormBlock"; case Format::eEacR11G11SnormBlock: return "EacR11G11SnormBlock"; case Format::eAstc4x4UnormBlock: return "Astc4x4UnormBlock"; case Format::eAstc4x4SrgbBlock: return "Astc4x4SrgbBlock"; case Format::eAstc5x4UnormBlock: return "Astc5x4UnormBlock"; case Format::eAstc5x4SrgbBlock: return "Astc5x4SrgbBlock"; case Format::eAstc5x5UnormBlock: return "Astc5x5UnormBlock"; case Format::eAstc5x5SrgbBlock: return "Astc5x5SrgbBlock"; case Format::eAstc6x5UnormBlock: return "Astc6x5UnormBlock"; case Format::eAstc6x5SrgbBlock: return "Astc6x5SrgbBlock"; case Format::eAstc6x6UnormBlock: return "Astc6x6UnormBlock"; case Format::eAstc6x6SrgbBlock: return "Astc6x6SrgbBlock"; case Format::eAstc8x5UnormBlock: return "Astc8x5UnormBlock"; case Format::eAstc8x5SrgbBlock: return "Astc8x5SrgbBlock"; case Format::eAstc8x6UnormBlock: return "Astc8x6UnormBlock"; case Format::eAstc8x6SrgbBlock: return "Astc8x6SrgbBlock"; case Format::eAstc8x8UnormBlock: return "Astc8x8UnormBlock"; case Format::eAstc8x8SrgbBlock: return "Astc8x8SrgbBlock"; case Format::eAstc10x5UnormBlock: return "Astc10x5UnormBlock"; case Format::eAstc10x5SrgbBlock: return "Astc10x5SrgbBlock"; case Format::eAstc10x6UnormBlock: return "Astc10x6UnormBlock"; case Format::eAstc10x6SrgbBlock: return "Astc10x6SrgbBlock"; case Format::eAstc10x8UnormBlock: return "Astc10x8UnormBlock"; case Format::eAstc10x8SrgbBlock: return "Astc10x8SrgbBlock"; case Format::eAstc10x10UnormBlock: return "Astc10x10UnormBlock"; case Format::eAstc10x10SrgbBlock: return "Astc10x10SrgbBlock"; case Format::eAstc12x10UnormBlock: return "Astc12x10UnormBlock"; case Format::eAstc12x10SrgbBlock: return "Astc12x10SrgbBlock"; case Format::eAstc12x12UnormBlock: return "Astc12x12UnormBlock"; case Format::eAstc12x12SrgbBlock: return "Astc12x12SrgbBlock"; case Format::ePvrtc12BppUnormBlockIMG: return "Pvrtc12BppUnormBlockIMG"; case Format::ePvrtc14BppUnormBlockIMG: return "Pvrtc14BppUnormBlockIMG"; case Format::ePvrtc22BppUnormBlockIMG: return "Pvrtc22BppUnormBlockIMG"; case Format::ePvrtc24BppUnormBlockIMG: return "Pvrtc24BppUnormBlockIMG"; case Format::ePvrtc12BppSrgbBlockIMG: return "Pvrtc12BppSrgbBlockIMG"; case Format::ePvrtc14BppSrgbBlockIMG: return "Pvrtc14BppSrgbBlockIMG"; case Format::ePvrtc22BppSrgbBlockIMG: return "Pvrtc22BppSrgbBlockIMG"; case Format::ePvrtc24BppSrgbBlockIMG: return "Pvrtc24BppSrgbBlockIMG"; case Format::eG8B8G8R8422UnormKHR: return "G8B8G8R8422UnormKHR"; case Format::eB8G8R8G8422UnormKHR: return "B8G8R8G8422UnormKHR"; case Format::eG8B8R83Plane420UnormKHR: return "G8B8R83Plane420UnormKHR"; case Format::eG8B8R82Plane420UnormKHR: return "G8B8R82Plane420UnormKHR"; case Format::eG8B8R83Plane422UnormKHR: return "G8B8R83Plane422UnormKHR"; case Format::eG8B8R82Plane422UnormKHR: return "G8B8R82Plane422UnormKHR"; case Format::eG8B8R83Plane444UnormKHR: return "G8B8R83Plane444UnormKHR"; case Format::eR10X6UnormPack16KHR: return "R10X6UnormPack16KHR"; case Format::eR10X6G10X6Unorm2Pack16KHR: return "R10X6G10X6Unorm2Pack16KHR"; case Format::eR10X6G10X6B10X6A10X6Unorm4Pack16KHR: return "R10X6G10X6B10X6A10X6Unorm4Pack16KHR"; case Format::eG10X6B10X6G10X6R10X6422Unorm4Pack16KHR: return "G10X6B10X6G10X6R10X6422Unorm4Pack16KHR"; case Format::eB10X6G10X6R10X6G10X6422Unorm4Pack16KHR: return "B10X6G10X6R10X6G10X6422Unorm4Pack16KHR"; case Format::eG10X6B10X6R10X63Plane420Unorm3Pack16KHR: return "G10X6B10X6R10X63Plane420Unorm3Pack16KHR"; case Format::eG10X6B10X6R10X62Plane420Unorm3Pack16KHR: return "G10X6B10X6R10X62Plane420Unorm3Pack16KHR"; case Format::eG10X6B10X6R10X63Plane422Unorm3Pack16KHR: return "G10X6B10X6R10X63Plane422Unorm3Pack16KHR"; case Format::eG10X6B10X6R10X62Plane422Unorm3Pack16KHR: return "G10X6B10X6R10X62Plane422Unorm3Pack16KHR"; case Format::eG10X6B10X6R10X63Plane444Unorm3Pack16KHR: return "G10X6B10X6R10X63Plane444Unorm3Pack16KHR"; case Format::eR12X4UnormPack16KHR: return "R12X4UnormPack16KHR"; case Format::eR12X4G12X4Unorm2Pack16KHR: return "R12X4G12X4Unorm2Pack16KHR"; case Format::eR12X4G12X4B12X4A12X4Unorm4Pack16KHR: return "R12X4G12X4B12X4A12X4Unorm4Pack16KHR"; case Format::eG12X4B12X4G12X4R12X4422Unorm4Pack16KHR: return "G12X4B12X4G12X4R12X4422Unorm4Pack16KHR"; case Format::eB12X4G12X4R12X4G12X4422Unorm4Pack16KHR: return "B12X4G12X4R12X4G12X4422Unorm4Pack16KHR"; case Format::eG12X4B12X4R12X43Plane420Unorm3Pack16KHR: return "G12X4B12X4R12X43Plane420Unorm3Pack16KHR"; case Format::eG12X4B12X4R12X42Plane420Unorm3Pack16KHR: return "G12X4B12X4R12X42Plane420Unorm3Pack16KHR"; case Format::eG12X4B12X4R12X43Plane422Unorm3Pack16KHR: return "G12X4B12X4R12X43Plane422Unorm3Pack16KHR"; case Format::eG12X4B12X4R12X42Plane422Unorm3Pack16KHR: return "G12X4B12X4R12X42Plane422Unorm3Pack16KHR"; case Format::eG12X4B12X4R12X43Plane444Unorm3Pack16KHR: return "G12X4B12X4R12X43Plane444Unorm3Pack16KHR"; case Format::eG16B16G16R16422UnormKHR: return "G16B16G16R16422UnormKHR"; case Format::eB16G16R16G16422UnormKHR: return "B16G16R16G16422UnormKHR"; case Format::eG16B16R163Plane420UnormKHR: return "G16B16R163Plane420UnormKHR"; case Format::eG16B16R162Plane420UnormKHR: return "G16B16R162Plane420UnormKHR"; case Format::eG16B16R163Plane422UnormKHR: return "G16B16R163Plane422UnormKHR"; case Format::eG16B16R162Plane422UnormKHR: return "G16B16R162Plane422UnormKHR"; case Format::eG16B16R163Plane444UnormKHR: return "G16B16R163Plane444UnormKHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(StructureType value) { switch (value) { case StructureType::eApplicationInfo: return "ApplicationInfo"; case StructureType::eInstanceCreateInfo: return "InstanceCreateInfo"; case StructureType::eDeviceQueueCreateInfo: return "DeviceQueueCreateInfo"; case StructureType::eDeviceCreateInfo: return "DeviceCreateInfo"; case StructureType::eSubmitInfo: return "SubmitInfo"; case StructureType::eMemoryAllocateInfo: return "MemoryAllocateInfo"; case StructureType::eMappedMemoryRange: return "MappedMemoryRange"; case StructureType::eBindSparseInfo: return "BindSparseInfo"; case StructureType::eFenceCreateInfo: return "FenceCreateInfo"; case StructureType::eSemaphoreCreateInfo: return "SemaphoreCreateInfo"; case StructureType::eEventCreateInfo: return "EventCreateInfo"; case StructureType::eQueryPoolCreateInfo: return "QueryPoolCreateInfo"; case StructureType::eBufferCreateInfo: return "BufferCreateInfo"; case StructureType::eBufferViewCreateInfo: return "BufferViewCreateInfo"; case StructureType::eImageCreateInfo: return "ImageCreateInfo"; case StructureType::eImageViewCreateInfo: return "ImageViewCreateInfo"; case StructureType::eShaderModuleCreateInfo: return "ShaderModuleCreateInfo"; case StructureType::ePipelineCacheCreateInfo: return "PipelineCacheCreateInfo"; case StructureType::ePipelineShaderStageCreateInfo: return "PipelineShaderStageCreateInfo"; case StructureType::ePipelineVertexInputStateCreateInfo: return "PipelineVertexInputStateCreateInfo"; case StructureType::ePipelineInputAssemblyStateCreateInfo: return "PipelineInputAssemblyStateCreateInfo"; case StructureType::ePipelineTessellationStateCreateInfo: return "PipelineTessellationStateCreateInfo"; case StructureType::ePipelineViewportStateCreateInfo: return "PipelineViewportStateCreateInfo"; case StructureType::ePipelineRasterizationStateCreateInfo: return "PipelineRasterizationStateCreateInfo"; case StructureType::ePipelineMultisampleStateCreateInfo: return "PipelineMultisampleStateCreateInfo"; case StructureType::ePipelineDepthStencilStateCreateInfo: return "PipelineDepthStencilStateCreateInfo"; case StructureType::ePipelineColorBlendStateCreateInfo: return "PipelineColorBlendStateCreateInfo"; case StructureType::ePipelineDynamicStateCreateInfo: return "PipelineDynamicStateCreateInfo"; case StructureType::eGraphicsPipelineCreateInfo: return "GraphicsPipelineCreateInfo"; case StructureType::eComputePipelineCreateInfo: return "ComputePipelineCreateInfo"; case StructureType::ePipelineLayoutCreateInfo: return "PipelineLayoutCreateInfo"; case StructureType::eSamplerCreateInfo: return "SamplerCreateInfo"; case StructureType::eDescriptorSetLayoutCreateInfo: return "DescriptorSetLayoutCreateInfo"; case StructureType::eDescriptorPoolCreateInfo: return "DescriptorPoolCreateInfo"; case StructureType::eDescriptorSetAllocateInfo: return "DescriptorSetAllocateInfo"; case StructureType::eWriteDescriptorSet: return "WriteDescriptorSet"; case StructureType::eCopyDescriptorSet: return "CopyDescriptorSet"; case StructureType::eFramebufferCreateInfo: return "FramebufferCreateInfo"; case StructureType::eRenderPassCreateInfo: return "RenderPassCreateInfo"; case StructureType::eCommandPoolCreateInfo: return "CommandPoolCreateInfo"; case StructureType::eCommandBufferAllocateInfo: return "CommandBufferAllocateInfo"; case StructureType::eCommandBufferInheritanceInfo: return "CommandBufferInheritanceInfo"; case StructureType::eCommandBufferBeginInfo: return "CommandBufferBeginInfo"; case StructureType::eRenderPassBeginInfo: return "RenderPassBeginInfo"; case StructureType::eBufferMemoryBarrier: return "BufferMemoryBarrier"; case StructureType::eImageMemoryBarrier: return "ImageMemoryBarrier"; case StructureType::eMemoryBarrier: return "MemoryBarrier"; case StructureType::eLoaderInstanceCreateInfo: return "LoaderInstanceCreateInfo"; case StructureType::eLoaderDeviceCreateInfo: return "LoaderDeviceCreateInfo"; case StructureType::eSwapchainCreateInfoKHR: return "SwapchainCreateInfoKHR"; case StructureType::ePresentInfoKHR: return "PresentInfoKHR"; case StructureType::eDisplayModeCreateInfoKHR: return "DisplayModeCreateInfoKHR"; case StructureType::eDisplaySurfaceCreateInfoKHR: return "DisplaySurfaceCreateInfoKHR"; case StructureType::eDisplayPresentInfoKHR: return "DisplayPresentInfoKHR"; case StructureType::eXlibSurfaceCreateInfoKHR: return "XlibSurfaceCreateInfoKHR"; case StructureType::eXcbSurfaceCreateInfoKHR: return "XcbSurfaceCreateInfoKHR"; case StructureType::eWaylandSurfaceCreateInfoKHR: return "WaylandSurfaceCreateInfoKHR"; case StructureType::eMirSurfaceCreateInfoKHR: return "MirSurfaceCreateInfoKHR"; case StructureType::eAndroidSurfaceCreateInfoKHR: return "AndroidSurfaceCreateInfoKHR"; case StructureType::eWin32SurfaceCreateInfoKHR: return "Win32SurfaceCreateInfoKHR"; case StructureType::eDebugReportCallbackCreateInfoEXT: return "DebugReportCallbackCreateInfoEXT"; case StructureType::ePipelineRasterizationStateRasterizationOrderAMD: return "PipelineRasterizationStateRasterizationOrderAMD"; case StructureType::eDebugMarkerObjectNameInfoEXT: return "DebugMarkerObjectNameInfoEXT"; case StructureType::eDebugMarkerObjectTagInfoEXT: return "DebugMarkerObjectTagInfoEXT"; case StructureType::eDebugMarkerMarkerInfoEXT: return "DebugMarkerMarkerInfoEXT"; case StructureType::eDedicatedAllocationImageCreateInfoNV: return "DedicatedAllocationImageCreateInfoNV"; case StructureType::eDedicatedAllocationBufferCreateInfoNV: return "DedicatedAllocationBufferCreateInfoNV"; case StructureType::eDedicatedAllocationMemoryAllocateInfoNV: return "DedicatedAllocationMemoryAllocateInfoNV"; case StructureType::eTextureLodGatherFormatPropertiesAMD: return "TextureLodGatherFormatPropertiesAMD"; case StructureType::eRenderPassMultiviewCreateInfoKHX: return "RenderPassMultiviewCreateInfoKHX"; case StructureType::ePhysicalDeviceMultiviewFeaturesKHX: return "PhysicalDeviceMultiviewFeaturesKHX"; case StructureType::ePhysicalDeviceMultiviewPropertiesKHX: return "PhysicalDeviceMultiviewPropertiesKHX"; case StructureType::eExternalMemoryImageCreateInfoNV: return "ExternalMemoryImageCreateInfoNV"; case StructureType::eExportMemoryAllocateInfoNV: return "ExportMemoryAllocateInfoNV"; case StructureType::eImportMemoryWin32HandleInfoNV: return "ImportMemoryWin32HandleInfoNV"; case StructureType::eExportMemoryWin32HandleInfoNV: return "ExportMemoryWin32HandleInfoNV"; case StructureType::eWin32KeyedMutexAcquireReleaseInfoNV: return "Win32KeyedMutexAcquireReleaseInfoNV"; case StructureType::ePhysicalDeviceFeatures2KHR: return "PhysicalDeviceFeatures2KHR"; case StructureType::ePhysicalDeviceProperties2KHR: return "PhysicalDeviceProperties2KHR"; case StructureType::eFormatProperties2KHR: return "FormatProperties2KHR"; case StructureType::eImageFormatProperties2KHR: return "ImageFormatProperties2KHR"; case StructureType::ePhysicalDeviceImageFormatInfo2KHR: return "PhysicalDeviceImageFormatInfo2KHR"; case StructureType::eQueueFamilyProperties2KHR: return "QueueFamilyProperties2KHR"; case StructureType::ePhysicalDeviceMemoryProperties2KHR: return "PhysicalDeviceMemoryProperties2KHR"; case StructureType::eSparseImageFormatProperties2KHR: return "SparseImageFormatProperties2KHR"; case StructureType::ePhysicalDeviceSparseImageFormatInfo2KHR: return "PhysicalDeviceSparseImageFormatInfo2KHR"; case StructureType::eMemoryAllocateFlagsInfoKHX: return "MemoryAllocateFlagsInfoKHX"; case StructureType::eBindBufferMemoryInfoKHX: return "BindBufferMemoryInfoKHX"; case StructureType::eBindImageMemoryInfoKHX: return "BindImageMemoryInfoKHX"; case StructureType::eDeviceGroupRenderPassBeginInfoKHX: return "DeviceGroupRenderPassBeginInfoKHX"; case StructureType::eDeviceGroupCommandBufferBeginInfoKHX: return "DeviceGroupCommandBufferBeginInfoKHX"; case StructureType::eDeviceGroupSubmitInfoKHX: return "DeviceGroupSubmitInfoKHX"; case StructureType::eDeviceGroupBindSparseInfoKHX: return "DeviceGroupBindSparseInfoKHX"; case StructureType::eDeviceGroupPresentCapabilitiesKHX: return "DeviceGroupPresentCapabilitiesKHX"; case StructureType::eImageSwapchainCreateInfoKHX: return "ImageSwapchainCreateInfoKHX"; case StructureType::eBindImageMemorySwapchainInfoKHX: return "BindImageMemorySwapchainInfoKHX"; case StructureType::eAcquireNextImageInfoKHX: return "AcquireNextImageInfoKHX"; case StructureType::eDeviceGroupPresentInfoKHX: return "DeviceGroupPresentInfoKHX"; case StructureType::eDeviceGroupSwapchainCreateInfoKHX: return "DeviceGroupSwapchainCreateInfoKHX"; case StructureType::eValidationFlagsEXT: return "ValidationFlagsEXT"; case StructureType::eViSurfaceCreateInfoNN: return "ViSurfaceCreateInfoNN"; case StructureType::ePhysicalDeviceGroupPropertiesKHX: return "PhysicalDeviceGroupPropertiesKHX"; case StructureType::eDeviceGroupDeviceCreateInfoKHX: return "DeviceGroupDeviceCreateInfoKHX"; case StructureType::ePhysicalDeviceExternalImageFormatInfoKHR: return "PhysicalDeviceExternalImageFormatInfoKHR"; case StructureType::eExternalImageFormatPropertiesKHR: return "ExternalImageFormatPropertiesKHR"; case StructureType::ePhysicalDeviceExternalBufferInfoKHR: return "PhysicalDeviceExternalBufferInfoKHR"; case StructureType::eExternalBufferPropertiesKHR: return "ExternalBufferPropertiesKHR"; case StructureType::ePhysicalDeviceIdPropertiesKHR: return "PhysicalDeviceIdPropertiesKHR"; case StructureType::eExternalMemoryBufferCreateInfoKHR: return "ExternalMemoryBufferCreateInfoKHR"; case StructureType::eExternalMemoryImageCreateInfoKHR: return "ExternalMemoryImageCreateInfoKHR"; case StructureType::eExportMemoryAllocateInfoKHR: return "ExportMemoryAllocateInfoKHR"; case StructureType::eImportMemoryWin32HandleInfoKHR: return "ImportMemoryWin32HandleInfoKHR"; case StructureType::eExportMemoryWin32HandleInfoKHR: return "ExportMemoryWin32HandleInfoKHR"; case StructureType::eMemoryWin32HandlePropertiesKHR: return "MemoryWin32HandlePropertiesKHR"; case StructureType::eMemoryGetWin32HandleInfoKHR: return "MemoryGetWin32HandleInfoKHR"; case StructureType::eImportMemoryFdInfoKHR: return "ImportMemoryFdInfoKHR"; case StructureType::eMemoryFdPropertiesKHR: return "MemoryFdPropertiesKHR"; case StructureType::eMemoryGetFdInfoKHR: return "MemoryGetFdInfoKHR"; case StructureType::eWin32KeyedMutexAcquireReleaseInfoKHR: return "Win32KeyedMutexAcquireReleaseInfoKHR"; case StructureType::ePhysicalDeviceExternalSemaphoreInfoKHR: return "PhysicalDeviceExternalSemaphoreInfoKHR"; case StructureType::eExternalSemaphorePropertiesKHR: return "ExternalSemaphorePropertiesKHR"; case StructureType::eExportSemaphoreCreateInfoKHR: return "ExportSemaphoreCreateInfoKHR"; case StructureType::eImportSemaphoreWin32HandleInfoKHR: return "ImportSemaphoreWin32HandleInfoKHR"; case StructureType::eExportSemaphoreWin32HandleInfoKHR: return "ExportSemaphoreWin32HandleInfoKHR"; case StructureType::eD3D12FenceSubmitInfoKHR: return "D3D12FenceSubmitInfoKHR"; case StructureType::eSemaphoreGetWin32HandleInfoKHR: return "SemaphoreGetWin32HandleInfoKHR"; case StructureType::eImportSemaphoreFdInfoKHR: return "ImportSemaphoreFdInfoKHR"; case StructureType::eSemaphoreGetFdInfoKHR: return "SemaphoreGetFdInfoKHR"; case StructureType::ePhysicalDevicePushDescriptorPropertiesKHR: return "PhysicalDevicePushDescriptorPropertiesKHR"; case StructureType::ePhysicalDevice16BitStorageFeaturesKHR: return "PhysicalDevice16BitStorageFeaturesKHR"; case StructureType::ePresentRegionsKHR: return "PresentRegionsKHR"; case StructureType::eDescriptorUpdateTemplateCreateInfoKHR: return "DescriptorUpdateTemplateCreateInfoKHR"; case StructureType::eObjectTableCreateInfoNVX: return "ObjectTableCreateInfoNVX"; case StructureType::eIndirectCommandsLayoutCreateInfoNVX: return "IndirectCommandsLayoutCreateInfoNVX"; case StructureType::eCmdProcessCommandsInfoNVX: return "CmdProcessCommandsInfoNVX"; case StructureType::eCmdReserveSpaceForCommandsInfoNVX: return "CmdReserveSpaceForCommandsInfoNVX"; case StructureType::eDeviceGeneratedCommandsLimitsNVX: return "DeviceGeneratedCommandsLimitsNVX"; case StructureType::eDeviceGeneratedCommandsFeaturesNVX: return "DeviceGeneratedCommandsFeaturesNVX"; case StructureType::ePipelineViewportWScalingStateCreateInfoNV: return "PipelineViewportWScalingStateCreateInfoNV"; case StructureType::eSurfaceCapabilities2EXT: return "SurfaceCapabilities2EXT"; case StructureType::eDisplayPowerInfoEXT: return "DisplayPowerInfoEXT"; case StructureType::eDeviceEventInfoEXT: return "DeviceEventInfoEXT"; case StructureType::eDisplayEventInfoEXT: return "DisplayEventInfoEXT"; case StructureType::eSwapchainCounterCreateInfoEXT: return "SwapchainCounterCreateInfoEXT"; case StructureType::ePresentTimesInfoGOOGLE: return "PresentTimesInfoGOOGLE"; case StructureType::ePhysicalDeviceSubgroupPropertiesKHX: return "PhysicalDeviceSubgroupPropertiesKHX"; case StructureType::ePhysicalDeviceMultiviewPerViewAttributesPropertiesNVX: return "PhysicalDeviceMultiviewPerViewAttributesPropertiesNVX"; case StructureType::ePipelineViewportSwizzleStateCreateInfoNV: return "PipelineViewportSwizzleStateCreateInfoNV"; case StructureType::ePhysicalDeviceDiscardRectanglePropertiesEXT: return "PhysicalDeviceDiscardRectanglePropertiesEXT"; case StructureType::ePipelineDiscardRectangleStateCreateInfoEXT: return "PipelineDiscardRectangleStateCreateInfoEXT"; case StructureType::eHdrMetadataEXT: return "HdrMetadataEXT"; case StructureType::eSharedPresentSurfaceCapabilitiesKHR: return "SharedPresentSurfaceCapabilitiesKHR"; case StructureType::ePhysicalDeviceExternalFenceInfoKHR: return "PhysicalDeviceExternalFenceInfoKHR"; case StructureType::eExternalFencePropertiesKHR: return "ExternalFencePropertiesKHR"; case StructureType::eExportFenceCreateInfoKHR: return "ExportFenceCreateInfoKHR"; case StructureType::eImportFenceWin32HandleInfoKHR: return "ImportFenceWin32HandleInfoKHR"; case StructureType::eExportFenceWin32HandleInfoKHR: return "ExportFenceWin32HandleInfoKHR"; case StructureType::eFenceGetWin32HandleInfoKHR: return "FenceGetWin32HandleInfoKHR"; case StructureType::eImportFenceFdInfoKHR: return "ImportFenceFdInfoKHR"; case StructureType::eFenceGetFdInfoKHR: return "FenceGetFdInfoKHR"; case StructureType::ePhysicalDevicePointClippingPropertiesKHR: return "PhysicalDevicePointClippingPropertiesKHR"; case StructureType::eRenderPassInputAttachmentAspectCreateInfoKHR: return "RenderPassInputAttachmentAspectCreateInfoKHR"; case StructureType::eImageViewUsageCreateInfoKHR: return "ImageViewUsageCreateInfoKHR"; case StructureType::ePipelineTessellationDomainOriginStateCreateInfoKHR: return "PipelineTessellationDomainOriginStateCreateInfoKHR"; case StructureType::ePhysicalDeviceSurfaceInfo2KHR: return "PhysicalDeviceSurfaceInfo2KHR"; case StructureType::eSurfaceCapabilities2KHR: return "SurfaceCapabilities2KHR"; case StructureType::eSurfaceFormat2KHR: return "SurfaceFormat2KHR"; case StructureType::ePhysicalDeviceVariablePointerFeaturesKHR: return "PhysicalDeviceVariablePointerFeaturesKHR"; case StructureType::eDisplayProperties2KHR: return "DisplayProperties2KHR"; case StructureType::eDisplayPlaneProperties2KHR: return "DisplayPlaneProperties2KHR"; case StructureType::eDisplayModeProperties2KHR: return "DisplayModeProperties2KHR"; case StructureType::eDisplayPlaneInfo2KHR: return "DisplayPlaneInfo2KHR"; case StructureType::eDisplayPlaneCapabilities2KHR: return "DisplayPlaneCapabilities2KHR"; case StructureType::eIosSurfaceCreateInfoMVK: return "IosSurfaceCreateInfoMVK"; case StructureType::eMacosSurfaceCreateInfoMVK: return "MacosSurfaceCreateInfoMVK"; case StructureType::eMemoryDedicatedRequirementsKHR: return "MemoryDedicatedRequirementsKHR"; case StructureType::eMemoryDedicatedAllocateInfoKHR: return "MemoryDedicatedAllocateInfoKHR"; case StructureType::ePhysicalDeviceSamplerFilterMinmaxPropertiesKHR: return "PhysicalDeviceSamplerFilterMinmaxPropertiesKHR"; case StructureType::eSamplerReductionModeCreateInfoKHR: return "SamplerReductionModeCreateInfoKHR"; case StructureType::eBufferMemoryRequirementsInfo2KHR: return "BufferMemoryRequirementsInfo2KHR"; case StructureType::eImageMemoryRequirementsInfo2KHR: return "ImageMemoryRequirementsInfo2KHR"; case StructureType::eImageSparseMemoryRequirementsInfo2KHR: return "ImageSparseMemoryRequirementsInfo2KHR"; case StructureType::eMemoryRequirements2KHR: return "MemoryRequirements2KHR"; case StructureType::eSparseImageMemoryRequirements2KHR: return "SparseImageMemoryRequirements2KHR"; case StructureType::eSamplerYCbCrConversionCreateInfoKHR: return "SamplerYCbCrConversionCreateInfoKHR"; case StructureType::eSamplerSamplerYCbCrConversionCreateInfoKHR: return "SamplerSamplerYCbCrConversionCreateInfoKHR"; case StructureType::eBindImagePlaneMemoryInfoKHR: return "BindImagePlaneMemoryInfoKHR"; case StructureType::eImagePlaneMemoryRequirementsInfoKHR: return "ImagePlaneMemoryRequirementsInfoKHR"; case StructureType::ePhysicalDeviceSamplerYCbCrConversionFeaturesKHR: return "PhysicalDeviceSamplerYCbCrConversionFeaturesKHR"; case StructureType::eSamplerYCbCrConversionImageFormatPropertiesKHR: return "SamplerYCbCrConversionImageFormatPropertiesKHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SubpassContents value) { switch (value) { case SubpassContents::eInline: return "Inline"; case SubpassContents::eSecondaryCommandBuffers: return "SecondaryCommandBuffers"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DynamicState value) { switch (value) { case DynamicState::eViewport: return "Viewport"; case DynamicState::eScissor: return "Scissor"; case DynamicState::eLineWidth: return "LineWidth"; case DynamicState::eDepthBias: return "DepthBias"; case DynamicState::eBlendConstants: return "BlendConstants"; case DynamicState::eDepthBounds: return "DepthBounds"; case DynamicState::eStencilCompareMask: return "StencilCompareMask"; case DynamicState::eStencilWriteMask: return "StencilWriteMask"; case DynamicState::eStencilReference: return "StencilReference"; case DynamicState::eViewportWScalingNV: return "ViewportWScalingNV"; case DynamicState::eDiscardRectangleEXT: return "DiscardRectangleEXT"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DescriptorUpdateTemplateTypeKHR value) { switch (value) { case DescriptorUpdateTemplateTypeKHR::eDescriptorSet: return "DescriptorSet"; case DescriptorUpdateTemplateTypeKHR::ePushDescriptors: return "PushDescriptors"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ObjectType value) { switch (value) { case ObjectType::eUnknown: return "Unknown"; case ObjectType::eInstance: return "Instance"; case ObjectType::ePhysicalDevice: return "PhysicalDevice"; case ObjectType::eDevice: return "Device"; case ObjectType::eQueue: return "Queue"; case ObjectType::eSemaphore: return "Semaphore"; case ObjectType::eCommandBuffer: return "CommandBuffer"; case ObjectType::eFence: return "Fence"; case ObjectType::eDeviceMemory: return "DeviceMemory"; case ObjectType::eBuffer: return "Buffer"; case ObjectType::eImage: return "Image"; case ObjectType::eEvent: return "Event"; case ObjectType::eQueryPool: return "QueryPool"; case ObjectType::eBufferView: return "BufferView"; case ObjectType::eImageView: return "ImageView"; case ObjectType::eShaderModule: return "ShaderModule"; case ObjectType::ePipelineCache: return "PipelineCache"; case ObjectType::ePipelineLayout: return "PipelineLayout"; case ObjectType::eRenderPass: return "RenderPass"; case ObjectType::ePipeline: return "Pipeline"; case ObjectType::eDescriptorSetLayout: return "DescriptorSetLayout"; case ObjectType::eSampler: return "Sampler"; case ObjectType::eDescriptorPool: return "DescriptorPool"; case ObjectType::eDescriptorSet: return "DescriptorSet"; case ObjectType::eFramebuffer: return "Framebuffer"; case ObjectType::eCommandPool: return "CommandPool"; case ObjectType::eSurfaceKHR: return "SurfaceKHR"; case ObjectType::eSwapchainKHR: return "SwapchainKHR"; case ObjectType::eDisplayKHR: return "DisplayKHR"; case ObjectType::eDisplayModeKHR: return "DisplayModeKHR"; case ObjectType::eDebugReportCallbackEXT: return "DebugReportCallbackEXT"; case ObjectType::eDescriptorUpdateTemplateKHR: return "DescriptorUpdateTemplateKHR"; case ObjectType::eObjectTableNVX: return "ObjectTableNVX"; case ObjectType::eIndirectCommandsLayoutNVX: return "IndirectCommandsLayoutNVX"; case ObjectType::eSamplerYCbCrConversionKHR: return "SamplerYCbCrConversionKHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(QueueFlagBits value) { switch (value) { case QueueFlagBits::eGraphics: return "Graphics"; case QueueFlagBits::eCompute: return "Compute"; case QueueFlagBits::eTransfer: return "Transfer"; case QueueFlagBits::eSparseBinding: return "SparseBinding"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(QueueFlags value) { if (!value) return "{}"; std::string result; if (value & QueueFlagBits::eGraphics) result += "Graphics | "; if (value & QueueFlagBits::eCompute) result += "Compute | "; if (value & QueueFlagBits::eTransfer) result += "Transfer | "; if (value & QueueFlagBits::eSparseBinding) result += "SparseBinding | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(MemoryPropertyFlagBits value) { switch (value) { case MemoryPropertyFlagBits::eDeviceLocal: return "DeviceLocal"; case MemoryPropertyFlagBits::eHostVisible: return "HostVisible"; case MemoryPropertyFlagBits::eHostCoherent: return "HostCoherent"; case MemoryPropertyFlagBits::eHostCached: return "HostCached"; case MemoryPropertyFlagBits::eLazilyAllocated: return "LazilyAllocated"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(MemoryPropertyFlags value) { if (!value) return "{}"; std::string result; if (value & MemoryPropertyFlagBits::eDeviceLocal) result += "DeviceLocal | "; if (value & MemoryPropertyFlagBits::eHostVisible) result += "HostVisible | "; if (value & MemoryPropertyFlagBits::eHostCoherent) result += "HostCoherent | "; if (value & MemoryPropertyFlagBits::eHostCached) result += "HostCached | "; if (value & MemoryPropertyFlagBits::eLazilyAllocated) result += "LazilyAllocated | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(MemoryHeapFlagBits value) { switch (value) { case MemoryHeapFlagBits::eDeviceLocal: return "DeviceLocal"; case MemoryHeapFlagBits::eMultiInstanceKHX: return "MultiInstanceKHX"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(MemoryHeapFlags value) { if (!value) return "{}"; std::string result; if (value & MemoryHeapFlagBits::eDeviceLocal) result += "DeviceLocal | "; if (value & MemoryHeapFlagBits::eMultiInstanceKHX) result += "MultiInstanceKHX | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(AccessFlagBits value) { switch (value) { case AccessFlagBits::eIndirectCommandRead: return "IndirectCommandRead"; case AccessFlagBits::eIndexRead: return "IndexRead"; case AccessFlagBits::eVertexAttributeRead: return "VertexAttributeRead"; case AccessFlagBits::eUniformRead: return "UniformRead"; case AccessFlagBits::eInputAttachmentRead: return "InputAttachmentRead"; case AccessFlagBits::eShaderRead: return "ShaderRead"; case AccessFlagBits::eShaderWrite: return "ShaderWrite"; case AccessFlagBits::eColorAttachmentRead: return "ColorAttachmentRead"; case AccessFlagBits::eColorAttachmentWrite: return "ColorAttachmentWrite"; case AccessFlagBits::eDepthStencilAttachmentRead: return "DepthStencilAttachmentRead"; case AccessFlagBits::eDepthStencilAttachmentWrite: return "DepthStencilAttachmentWrite"; case AccessFlagBits::eTransferRead: return "TransferRead"; case AccessFlagBits::eTransferWrite: return "TransferWrite"; case AccessFlagBits::eHostRead: return "HostRead"; case AccessFlagBits::eHostWrite: return "HostWrite"; case AccessFlagBits::eMemoryRead: return "MemoryRead"; case AccessFlagBits::eMemoryWrite: return "MemoryWrite"; case AccessFlagBits::eCommandProcessReadNVX: return "CommandProcessReadNVX"; case AccessFlagBits::eCommandProcessWriteNVX: return "CommandProcessWriteNVX"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(AccessFlags value) { if (!value) return "{}"; std::string result; if (value & AccessFlagBits::eIndirectCommandRead) result += "IndirectCommandRead | "; if (value & AccessFlagBits::eIndexRead) result += "IndexRead | "; if (value & AccessFlagBits::eVertexAttributeRead) result += "VertexAttributeRead | "; if (value & AccessFlagBits::eUniformRead) result += "UniformRead | "; if (value & AccessFlagBits::eInputAttachmentRead) result += "InputAttachmentRead | "; if (value & AccessFlagBits::eShaderRead) result += "ShaderRead | "; if (value & AccessFlagBits::eShaderWrite) result += "ShaderWrite | "; if (value & AccessFlagBits::eColorAttachmentRead) result += "ColorAttachmentRead | "; if (value & AccessFlagBits::eColorAttachmentWrite) result += "ColorAttachmentWrite | "; if (value & AccessFlagBits::eDepthStencilAttachmentRead) result += "DepthStencilAttachmentRead | "; if (value & AccessFlagBits::eDepthStencilAttachmentWrite) result += "DepthStencilAttachmentWrite | "; if (value & AccessFlagBits::eTransferRead) result += "TransferRead | "; if (value & AccessFlagBits::eTransferWrite) result += "TransferWrite | "; if (value & AccessFlagBits::eHostRead) result += "HostRead | "; if (value & AccessFlagBits::eHostWrite) result += "HostWrite | "; if (value & AccessFlagBits::eMemoryRead) result += "MemoryRead | "; if (value & AccessFlagBits::eMemoryWrite) result += "MemoryWrite | "; if (value & AccessFlagBits::eCommandProcessReadNVX) result += "CommandProcessReadNVX | "; if (value & AccessFlagBits::eCommandProcessWriteNVX) result += "CommandProcessWriteNVX | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(BufferUsageFlagBits value) { switch (value) { case BufferUsageFlagBits::eTransferSrc: return "TransferSrc"; case BufferUsageFlagBits::eTransferDst: return "TransferDst"; case BufferUsageFlagBits::eUniformTexelBuffer: return "UniformTexelBuffer"; case BufferUsageFlagBits::eStorageTexelBuffer: return "StorageTexelBuffer"; case BufferUsageFlagBits::eUniformBuffer: return "UniformBuffer"; case BufferUsageFlagBits::eStorageBuffer: return "StorageBuffer"; case BufferUsageFlagBits::eIndexBuffer: return "IndexBuffer"; case BufferUsageFlagBits::eVertexBuffer: return "VertexBuffer"; case BufferUsageFlagBits::eIndirectBuffer: return "IndirectBuffer"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(BufferUsageFlags value) { if (!value) return "{}"; std::string result; if (value & BufferUsageFlagBits::eTransferSrc) result += "TransferSrc | "; if (value & BufferUsageFlagBits::eTransferDst) result += "TransferDst | "; if (value & BufferUsageFlagBits::eUniformTexelBuffer) result += "UniformTexelBuffer | "; if (value & BufferUsageFlagBits::eStorageTexelBuffer) result += "StorageTexelBuffer | "; if (value & BufferUsageFlagBits::eUniformBuffer) result += "UniformBuffer | "; if (value & BufferUsageFlagBits::eStorageBuffer) result += "StorageBuffer | "; if (value & BufferUsageFlagBits::eIndexBuffer) result += "IndexBuffer | "; if (value & BufferUsageFlagBits::eVertexBuffer) result += "VertexBuffer | "; if (value & BufferUsageFlagBits::eIndirectBuffer) result += "IndirectBuffer | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(BufferCreateFlagBits value) { switch (value) { case BufferCreateFlagBits::eSparseBinding: return "SparseBinding"; case BufferCreateFlagBits::eSparseResidency: return "SparseResidency"; case BufferCreateFlagBits::eSparseAliased: return "SparseAliased"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(BufferCreateFlags value) { if (!value) return "{}"; std::string result; if (value & BufferCreateFlagBits::eSparseBinding) result += "SparseBinding | "; if (value & BufferCreateFlagBits::eSparseResidency) result += "SparseResidency | "; if (value & BufferCreateFlagBits::eSparseAliased) result += "SparseAliased | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ShaderStageFlagBits value) { switch (value) { case ShaderStageFlagBits::eVertex: return "Vertex"; case ShaderStageFlagBits::eTessellationControl: return "TessellationControl"; case ShaderStageFlagBits::eTessellationEvaluation: return "TessellationEvaluation"; case ShaderStageFlagBits::eGeometry: return "Geometry"; case ShaderStageFlagBits::eFragment: return "Fragment"; case ShaderStageFlagBits::eCompute: return "Compute"; case ShaderStageFlagBits::eAllGraphics: return "AllGraphics"; case ShaderStageFlagBits::eAll: return "All"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ShaderStageFlags value) { if (!value) return "{}"; std::string result; if (value & ShaderStageFlagBits::eVertex) result += "Vertex | "; if (value & ShaderStageFlagBits::eTessellationControl) result += "TessellationControl | "; if (value & ShaderStageFlagBits::eTessellationEvaluation) result += "TessellationEvaluation | "; if (value & ShaderStageFlagBits::eGeometry) result += "Geometry | "; if (value & ShaderStageFlagBits::eFragment) result += "Fragment | "; if (value & ShaderStageFlagBits::eCompute) result += "Compute | "; if (value & ShaderStageFlagBits::eAllGraphics) result += "AllGraphics | "; if (value & ShaderStageFlagBits::eAll) result += "All | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ImageUsageFlagBits value) { switch (value) { case ImageUsageFlagBits::eTransferSrc: return "TransferSrc"; case ImageUsageFlagBits::eTransferDst: return "TransferDst"; case ImageUsageFlagBits::eSampled: return "Sampled"; case ImageUsageFlagBits::eStorage: return "Storage"; case ImageUsageFlagBits::eColorAttachment: return "ColorAttachment"; case ImageUsageFlagBits::eDepthStencilAttachment: return "DepthStencilAttachment"; case ImageUsageFlagBits::eTransientAttachment: return "TransientAttachment"; case ImageUsageFlagBits::eInputAttachment: return "InputAttachment"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ImageUsageFlags value) { if (!value) return "{}"; std::string result; if (value & ImageUsageFlagBits::eTransferSrc) result += "TransferSrc | "; if (value & ImageUsageFlagBits::eTransferDst) result += "TransferDst | "; if (value & ImageUsageFlagBits::eSampled) result += "Sampled | "; if (value & ImageUsageFlagBits::eStorage) result += "Storage | "; if (value & ImageUsageFlagBits::eColorAttachment) result += "ColorAttachment | "; if (value & ImageUsageFlagBits::eDepthStencilAttachment) result += "DepthStencilAttachment | "; if (value & ImageUsageFlagBits::eTransientAttachment) result += "TransientAttachment | "; if (value & ImageUsageFlagBits::eInputAttachment) result += "InputAttachment | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ImageCreateFlagBits value) { switch (value) { case ImageCreateFlagBits::eSparseBinding: return "SparseBinding"; case ImageCreateFlagBits::eSparseResidency: return "SparseResidency"; case ImageCreateFlagBits::eSparseAliased: return "SparseAliased"; case ImageCreateFlagBits::eMutableFormat: return "MutableFormat"; case ImageCreateFlagBits::eCubeCompatible: return "CubeCompatible"; case ImageCreateFlagBits::eBindSfrKHX: return "BindSfrKHX"; case ImageCreateFlagBits::e2DArrayCompatibleKHR: return "2DArrayCompatibleKHR"; case ImageCreateFlagBits::eBlockTexelViewCompatibleKHR: return "BlockTexelViewCompatibleKHR"; case ImageCreateFlagBits::eExtendedUsageKHR: return "ExtendedUsageKHR"; case ImageCreateFlagBits::eDisjointKHR: return "DisjointKHR"; case ImageCreateFlagBits::ePlanarAliasKHR: return "PlanarAliasKHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ImageCreateFlags value) { if (!value) return "{}"; std::string result; if (value & ImageCreateFlagBits::eSparseBinding) result += "SparseBinding | "; if (value & ImageCreateFlagBits::eSparseResidency) result += "SparseResidency | "; if (value & ImageCreateFlagBits::eSparseAliased) result += "SparseAliased | "; if (value & ImageCreateFlagBits::eMutableFormat) result += "MutableFormat | "; if (value & ImageCreateFlagBits::eCubeCompatible) result += "CubeCompatible | "; if (value & ImageCreateFlagBits::eBindSfrKHX) result += "BindSfrKHX | "; if (value & ImageCreateFlagBits::e2DArrayCompatibleKHR) result += "2DArrayCompatibleKHR | "; if (value & ImageCreateFlagBits::eBlockTexelViewCompatibleKHR) result += "BlockTexelViewCompatibleKHR | "; if (value & ImageCreateFlagBits::eExtendedUsageKHR) result += "ExtendedUsageKHR | "; if (value & ImageCreateFlagBits::eDisjointKHR) result += "DisjointKHR | "; if (value & ImageCreateFlagBits::ePlanarAliasKHR) result += "PlanarAliasKHR | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(PipelineCreateFlagBits value) { switch (value) { case PipelineCreateFlagBits::eDisableOptimization: return "DisableOptimization"; case PipelineCreateFlagBits::eAllowDerivatives: return "AllowDerivatives"; case PipelineCreateFlagBits::eDerivative: return "Derivative"; case PipelineCreateFlagBits::eViewIndexFromDeviceIndexKHX: return "ViewIndexFromDeviceIndexKHX"; case PipelineCreateFlagBits::eDispatchBaseKHX: return "DispatchBaseKHX"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PipelineCreateFlags value) { if (!value) return "{}"; std::string result; if (value & PipelineCreateFlagBits::eDisableOptimization) result += "DisableOptimization | "; if (value & PipelineCreateFlagBits::eAllowDerivatives) result += "AllowDerivatives | "; if (value & PipelineCreateFlagBits::eDerivative) result += "Derivative | "; if (value & PipelineCreateFlagBits::eViewIndexFromDeviceIndexKHX) result += "ViewIndexFromDeviceIndexKHX | "; if (value & PipelineCreateFlagBits::eDispatchBaseKHX) result += "DispatchBaseKHX | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ColorComponentFlagBits value) { switch (value) { case ColorComponentFlagBits::eR: return "R"; case ColorComponentFlagBits::eG: return "G"; case ColorComponentFlagBits::eB: return "B"; case ColorComponentFlagBits::eA: return "A"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ColorComponentFlags value) { if (!value) return "{}"; std::string result; if (value & ColorComponentFlagBits::eR) result += "R | "; if (value & ColorComponentFlagBits::eG) result += "G | "; if (value & ColorComponentFlagBits::eB) result += "B | "; if (value & ColorComponentFlagBits::eA) result += "A | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(FenceCreateFlagBits value) { switch (value) { case FenceCreateFlagBits::eSignaled: return "Signaled"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(FenceCreateFlags value) { if (!value) return "{}"; std::string result; if (value & FenceCreateFlagBits::eSignaled) result += "Signaled | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(FormatFeatureFlagBits value) { switch (value) { case FormatFeatureFlagBits::eSampledImage: return "SampledImage"; case FormatFeatureFlagBits::eStorageImage: return "StorageImage"; case FormatFeatureFlagBits::eStorageImageAtomic: return "StorageImageAtomic"; case FormatFeatureFlagBits::eUniformTexelBuffer: return "UniformTexelBuffer"; case FormatFeatureFlagBits::eStorageTexelBuffer: return "StorageTexelBuffer"; case FormatFeatureFlagBits::eStorageTexelBufferAtomic: return "StorageTexelBufferAtomic"; case FormatFeatureFlagBits::eVertexBuffer: return "VertexBuffer"; case FormatFeatureFlagBits::eColorAttachment: return "ColorAttachment"; case FormatFeatureFlagBits::eColorAttachmentBlend: return "ColorAttachmentBlend"; case FormatFeatureFlagBits::eDepthStencilAttachment: return "DepthStencilAttachment"; case FormatFeatureFlagBits::eBlitSrc: return "BlitSrc"; case FormatFeatureFlagBits::eBlitDst: return "BlitDst"; case FormatFeatureFlagBits::eSampledImageFilterLinear: return "SampledImageFilterLinear"; case FormatFeatureFlagBits::eSampledImageFilterCubicIMG: return "SampledImageFilterCubicIMG"; case FormatFeatureFlagBits::eTransferSrcKHR: return "TransferSrcKHR"; case FormatFeatureFlagBits::eTransferDstKHR: return "TransferDstKHR"; case FormatFeatureFlagBits::eSampledImageFilterMinmaxKHR: return "SampledImageFilterMinmaxKHR"; case FormatFeatureFlagBits::eSampledImageYCbCrConversionSupportedKHR: return "SampledImageYCbCrConversionSupportedKHR"; case FormatFeatureFlagBits::eSampledImageYCbCrConversionLinearFilterKHR: return "SampledImageYCbCrConversionLinearFilterKHR"; case FormatFeatureFlagBits::eSampledImageYCbCrConversionSeparateReconstructionFilterKHR: return "SampledImageYCbCrConversionSeparateReconstructionFilterKHR"; case FormatFeatureFlagBits::eSampledImageYCbCrConversionChromaReconstructionExplicitKHR: return "SampledImageYCbCrConversionChromaReconstructionExplicitKHR"; case FormatFeatureFlagBits::eSampledImageYCbCrConversionChromaReconstructionExplicitForceableKHR: return "SampledImageYCbCrConversionChromaReconstructionExplicitForceableKHR"; case FormatFeatureFlagBits::eDisjointKHR: return "DisjointKHR"; case FormatFeatureFlagBits::eCositedChromaSamplesKHR: return "CositedChromaSamplesKHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(FormatFeatureFlags value) { if (!value) return "{}"; std::string result; if (value & FormatFeatureFlagBits::eSampledImage) result += "SampledImage | "; if (value & FormatFeatureFlagBits::eStorageImage) result += "StorageImage | "; if (value & FormatFeatureFlagBits::eStorageImageAtomic) result += "StorageImageAtomic | "; if (value & FormatFeatureFlagBits::eUniformTexelBuffer) result += "UniformTexelBuffer | "; if (value & FormatFeatureFlagBits::eStorageTexelBuffer) result += "StorageTexelBuffer | "; if (value & FormatFeatureFlagBits::eStorageTexelBufferAtomic) result += "StorageTexelBufferAtomic | "; if (value & FormatFeatureFlagBits::eVertexBuffer) result += "VertexBuffer | "; if (value & FormatFeatureFlagBits::eColorAttachment) result += "ColorAttachment | "; if (value & FormatFeatureFlagBits::eColorAttachmentBlend) result += "ColorAttachmentBlend | "; if (value & FormatFeatureFlagBits::eDepthStencilAttachment) result += "DepthStencilAttachment | "; if (value & FormatFeatureFlagBits::eBlitSrc) result += "BlitSrc | "; if (value & FormatFeatureFlagBits::eBlitDst) result += "BlitDst | "; if (value & FormatFeatureFlagBits::eSampledImageFilterLinear) result += "SampledImageFilterLinear | "; if (value & FormatFeatureFlagBits::eSampledImageFilterCubicIMG) result += "SampledImageFilterCubicIMG | "; if (value & FormatFeatureFlagBits::eTransferSrcKHR) result += "TransferSrcKHR | "; if (value & FormatFeatureFlagBits::eTransferDstKHR) result += "TransferDstKHR | "; if (value & FormatFeatureFlagBits::eSampledImageFilterMinmaxKHR) result += "SampledImageFilterMinmaxKHR | "; if (value & FormatFeatureFlagBits::eSampledImageYCbCrConversionSupportedKHR) result += "SampledImageYCbCrConversionSupportedKHR | "; if (value & FormatFeatureFlagBits::eSampledImageYCbCrConversionLinearFilterKHR) result += "SampledImageYCbCrConversionLinearFilterKHR | "; if (value & FormatFeatureFlagBits::eSampledImageYCbCrConversionSeparateReconstructionFilterKHR) result += "SampledImageYCbCrConversionSeparateReconstructionFilterKHR | "; if (value & FormatFeatureFlagBits::eSampledImageYCbCrConversionChromaReconstructionExplicitKHR) result += "SampledImageYCbCrConversionChromaReconstructionExplicitKHR | "; if (value & FormatFeatureFlagBits::eSampledImageYCbCrConversionChromaReconstructionExplicitForceableKHR) result += "SampledImageYCbCrConversionChromaReconstructionExplicitForceableKHR | "; if (value & FormatFeatureFlagBits::eDisjointKHR) result += "DisjointKHR | "; if (value & FormatFeatureFlagBits::eCositedChromaSamplesKHR) result += "CositedChromaSamplesKHR | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(QueryControlFlagBits value) { switch (value) { case QueryControlFlagBits::ePrecise: return "Precise"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(QueryControlFlags value) { if (!value) return "{}"; std::string result; if (value & QueryControlFlagBits::ePrecise) result += "Precise | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(QueryResultFlagBits value) { switch (value) { case QueryResultFlagBits::e64: return "64"; case QueryResultFlagBits::eWait: return "Wait"; case QueryResultFlagBits::eWithAvailability: return "WithAvailability"; case QueryResultFlagBits::ePartial: return "Partial"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(QueryResultFlags value) { if (!value) return "{}"; std::string result; if (value & QueryResultFlagBits::e64) result += "64 | "; if (value & QueryResultFlagBits::eWait) result += "Wait | "; if (value & QueryResultFlagBits::eWithAvailability) result += "WithAvailability | "; if (value & QueryResultFlagBits::ePartial) result += "Partial | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(CommandBufferUsageFlagBits value) { switch (value) { case CommandBufferUsageFlagBits::eOneTimeSubmit: return "OneTimeSubmit"; case CommandBufferUsageFlagBits::eRenderPassContinue: return "RenderPassContinue"; case CommandBufferUsageFlagBits::eSimultaneousUse: return "SimultaneousUse"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CommandBufferUsageFlags value) { if (!value) return "{}"; std::string result; if (value & CommandBufferUsageFlagBits::eOneTimeSubmit) result += "OneTimeSubmit | "; if (value & CommandBufferUsageFlagBits::eRenderPassContinue) result += "RenderPassContinue | "; if (value & CommandBufferUsageFlagBits::eSimultaneousUse) result += "SimultaneousUse | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(QueryPipelineStatisticFlagBits value) { switch (value) { case QueryPipelineStatisticFlagBits::eInputAssemblyVertices: return "InputAssemblyVertices"; case QueryPipelineStatisticFlagBits::eInputAssemblyPrimitives: return "InputAssemblyPrimitives"; case QueryPipelineStatisticFlagBits::eVertexShaderInvocations: return "VertexShaderInvocations"; case QueryPipelineStatisticFlagBits::eGeometryShaderInvocations: return "GeometryShaderInvocations"; case QueryPipelineStatisticFlagBits::eGeometryShaderPrimitives: return "GeometryShaderPrimitives"; case QueryPipelineStatisticFlagBits::eClippingInvocations: return "ClippingInvocations"; case QueryPipelineStatisticFlagBits::eClippingPrimitives: return "ClippingPrimitives"; case QueryPipelineStatisticFlagBits::eFragmentShaderInvocations: return "FragmentShaderInvocations"; case QueryPipelineStatisticFlagBits::eTessellationControlShaderPatches: return "TessellationControlShaderPatches"; case QueryPipelineStatisticFlagBits::eTessellationEvaluationShaderInvocations: return "TessellationEvaluationShaderInvocations"; case QueryPipelineStatisticFlagBits::eComputeShaderInvocations: return "ComputeShaderInvocations"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(QueryPipelineStatisticFlags value) { if (!value) return "{}"; std::string result; if (value & QueryPipelineStatisticFlagBits::eInputAssemblyVertices) result += "InputAssemblyVertices | "; if (value & QueryPipelineStatisticFlagBits::eInputAssemblyPrimitives) result += "InputAssemblyPrimitives | "; if (value & QueryPipelineStatisticFlagBits::eVertexShaderInvocations) result += "VertexShaderInvocations | "; if (value & QueryPipelineStatisticFlagBits::eGeometryShaderInvocations) result += "GeometryShaderInvocations | "; if (value & QueryPipelineStatisticFlagBits::eGeometryShaderPrimitives) result += "GeometryShaderPrimitives | "; if (value & QueryPipelineStatisticFlagBits::eClippingInvocations) result += "ClippingInvocations | "; if (value & QueryPipelineStatisticFlagBits::eClippingPrimitives) result += "ClippingPrimitives | "; if (value & QueryPipelineStatisticFlagBits::eFragmentShaderInvocations) result += "FragmentShaderInvocations | "; if (value & QueryPipelineStatisticFlagBits::eTessellationControlShaderPatches) result += "TessellationControlShaderPatches | "; if (value & QueryPipelineStatisticFlagBits::eTessellationEvaluationShaderInvocations) result += "TessellationEvaluationShaderInvocations | "; if (value & QueryPipelineStatisticFlagBits::eComputeShaderInvocations) result += "ComputeShaderInvocations | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ImageAspectFlagBits value) { switch (value) { case ImageAspectFlagBits::eColor: return "Color"; case ImageAspectFlagBits::eDepth: return "Depth"; case ImageAspectFlagBits::eStencil: return "Stencil"; case ImageAspectFlagBits::eMetadata: return "Metadata"; case ImageAspectFlagBits::ePlane0KHR: return "Plane0KHR"; case ImageAspectFlagBits::ePlane1KHR: return "Plane1KHR"; case ImageAspectFlagBits::ePlane2KHR: return "Plane2KHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ImageAspectFlags value) { if (!value) return "{}"; std::string result; if (value & ImageAspectFlagBits::eColor) result += "Color | "; if (value & ImageAspectFlagBits::eDepth) result += "Depth | "; if (value & ImageAspectFlagBits::eStencil) result += "Stencil | "; if (value & ImageAspectFlagBits::eMetadata) result += "Metadata | "; if (value & ImageAspectFlagBits::ePlane0KHR) result += "Plane0KHR | "; if (value & ImageAspectFlagBits::ePlane1KHR) result += "Plane1KHR | "; if (value & ImageAspectFlagBits::ePlane2KHR) result += "Plane2KHR | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(SparseImageFormatFlagBits value) { switch (value) { case SparseImageFormatFlagBits::eSingleMiptail: return "SingleMiptail"; case SparseImageFormatFlagBits::eAlignedMipSize: return "AlignedMipSize"; case SparseImageFormatFlagBits::eNonstandardBlockSize: return "NonstandardBlockSize"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SparseImageFormatFlags value) { if (!value) return "{}"; std::string result; if (value & SparseImageFormatFlagBits::eSingleMiptail) result += "SingleMiptail | "; if (value & SparseImageFormatFlagBits::eAlignedMipSize) result += "AlignedMipSize | "; if (value & SparseImageFormatFlagBits::eNonstandardBlockSize) result += "NonstandardBlockSize | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(SparseMemoryBindFlagBits value) { switch (value) { case SparseMemoryBindFlagBits::eMetadata: return "Metadata"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SparseMemoryBindFlags value) { if (!value) return "{}"; std::string result; if (value & SparseMemoryBindFlagBits::eMetadata) result += "Metadata | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(PipelineStageFlagBits value) { switch (value) { case PipelineStageFlagBits::eTopOfPipe: return "TopOfPipe"; case PipelineStageFlagBits::eDrawIndirect: return "DrawIndirect"; case PipelineStageFlagBits::eVertexInput: return "VertexInput"; case PipelineStageFlagBits::eVertexShader: return "VertexShader"; case PipelineStageFlagBits::eTessellationControlShader: return "TessellationControlShader"; case PipelineStageFlagBits::eTessellationEvaluationShader: return "TessellationEvaluationShader"; case PipelineStageFlagBits::eGeometryShader: return "GeometryShader"; case PipelineStageFlagBits::eFragmentShader: return "FragmentShader"; case PipelineStageFlagBits::eEarlyFragmentTests: return "EarlyFragmentTests"; case PipelineStageFlagBits::eLateFragmentTests: return "LateFragmentTests"; case PipelineStageFlagBits::eColorAttachmentOutput: return "ColorAttachmentOutput"; case PipelineStageFlagBits::eComputeShader: return "ComputeShader"; case PipelineStageFlagBits::eTransfer: return "Transfer"; case PipelineStageFlagBits::eBottomOfPipe: return "BottomOfPipe"; case PipelineStageFlagBits::eHost: return "Host"; case PipelineStageFlagBits::eAllGraphics: return "AllGraphics"; case PipelineStageFlagBits::eAllCommands: return "AllCommands"; case PipelineStageFlagBits::eCommandProcessNVX: return "CommandProcessNVX"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PipelineStageFlags value) { if (!value) return "{}"; std::string result; if (value & PipelineStageFlagBits::eTopOfPipe) result += "TopOfPipe | "; if (value & PipelineStageFlagBits::eDrawIndirect) result += "DrawIndirect | "; if (value & PipelineStageFlagBits::eVertexInput) result += "VertexInput | "; if (value & PipelineStageFlagBits::eVertexShader) result += "VertexShader | "; if (value & PipelineStageFlagBits::eTessellationControlShader) result += "TessellationControlShader | "; if (value & PipelineStageFlagBits::eTessellationEvaluationShader) result += "TessellationEvaluationShader | "; if (value & PipelineStageFlagBits::eGeometryShader) result += "GeometryShader | "; if (value & PipelineStageFlagBits::eFragmentShader) result += "FragmentShader | "; if (value & PipelineStageFlagBits::eEarlyFragmentTests) result += "EarlyFragmentTests | "; if (value & PipelineStageFlagBits::eLateFragmentTests) result += "LateFragmentTests | "; if (value & PipelineStageFlagBits::eColorAttachmentOutput) result += "ColorAttachmentOutput | "; if (value & PipelineStageFlagBits::eComputeShader) result += "ComputeShader | "; if (value & PipelineStageFlagBits::eTransfer) result += "Transfer | "; if (value & PipelineStageFlagBits::eBottomOfPipe) result += "BottomOfPipe | "; if (value & PipelineStageFlagBits::eHost) result += "Host | "; if (value & PipelineStageFlagBits::eAllGraphics) result += "AllGraphics | "; if (value & PipelineStageFlagBits::eAllCommands) result += "AllCommands | "; if (value & PipelineStageFlagBits::eCommandProcessNVX) result += "CommandProcessNVX | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(CommandPoolCreateFlagBits value) { switch (value) { case CommandPoolCreateFlagBits::eTransient: return "Transient"; case CommandPoolCreateFlagBits::eResetCommandBuffer: return "ResetCommandBuffer"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CommandPoolCreateFlags value) { if (!value) return "{}"; std::string result; if (value & CommandPoolCreateFlagBits::eTransient) result += "Transient | "; if (value & CommandPoolCreateFlagBits::eResetCommandBuffer) result += "ResetCommandBuffer | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(CommandPoolResetFlagBits value) { switch (value) { case CommandPoolResetFlagBits::eReleaseResources: return "ReleaseResources"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CommandPoolResetFlags value) { if (!value) return "{}"; std::string result; if (value & CommandPoolResetFlagBits::eReleaseResources) result += "ReleaseResources | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(CommandBufferResetFlagBits value) { switch (value) { case CommandBufferResetFlagBits::eReleaseResources: return "ReleaseResources"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CommandBufferResetFlags value) { if (!value) return "{}"; std::string result; if (value & CommandBufferResetFlagBits::eReleaseResources) result += "ReleaseResources | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(SampleCountFlagBits value) { switch (value) { case SampleCountFlagBits::e1: return "1"; case SampleCountFlagBits::e2: return "2"; case SampleCountFlagBits::e4: return "4"; case SampleCountFlagBits::e8: return "8"; case SampleCountFlagBits::e16: return "16"; case SampleCountFlagBits::e32: return "32"; case SampleCountFlagBits::e64: return "64"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SampleCountFlags value) { if (!value) return "{}"; std::string result; if (value & SampleCountFlagBits::e1) result += "1 | "; if (value & SampleCountFlagBits::e2) result += "2 | "; if (value & SampleCountFlagBits::e4) result += "4 | "; if (value & SampleCountFlagBits::e8) result += "8 | "; if (value & SampleCountFlagBits::e16) result += "16 | "; if (value & SampleCountFlagBits::e32) result += "32 | "; if (value & SampleCountFlagBits::e64) result += "64 | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(AttachmentDescriptionFlagBits value) { switch (value) { case AttachmentDescriptionFlagBits::eMayAlias: return "MayAlias"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(AttachmentDescriptionFlags value) { if (!value) return "{}"; std::string result; if (value & AttachmentDescriptionFlagBits::eMayAlias) result += "MayAlias | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(StencilFaceFlagBits value) { switch (value) { case StencilFaceFlagBits::eFront: return "Front"; case StencilFaceFlagBits::eBack: return "Back"; case StencilFaceFlagBits::eVkStencilFrontAndBack: return "VkStencilFrontAndBack"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(StencilFaceFlags value) { if (!value) return "{}"; std::string result; if (value & StencilFaceFlagBits::eFront) result += "Front | "; if (value & StencilFaceFlagBits::eBack) result += "Back | "; if (value & StencilFaceFlagBits::eVkStencilFrontAndBack) result += "VkStencilFrontAndBack | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(DescriptorPoolCreateFlagBits value) { switch (value) { case DescriptorPoolCreateFlagBits::eFreeDescriptorSet: return "FreeDescriptorSet"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DescriptorPoolCreateFlags value) { if (!value) return "{}"; std::string result; if (value & DescriptorPoolCreateFlagBits::eFreeDescriptorSet) result += "FreeDescriptorSet | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(DependencyFlagBits value) { switch (value) { case DependencyFlagBits::eByRegion: return "ByRegion"; case DependencyFlagBits::eViewLocalKHX: return "ViewLocalKHX"; case DependencyFlagBits::eDeviceGroupKHX: return "DeviceGroupKHX"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DependencyFlags value) { if (!value) return "{}"; std::string result; if (value & DependencyFlagBits::eByRegion) result += "ByRegion | "; if (value & DependencyFlagBits::eViewLocalKHX) result += "ViewLocalKHX | "; if (value & DependencyFlagBits::eDeviceGroupKHX) result += "DeviceGroupKHX | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(PresentModeKHR value) { switch (value) { case PresentModeKHR::eImmediate: return "Immediate"; case PresentModeKHR::eMailbox: return "Mailbox"; case PresentModeKHR::eFifo: return "Fifo"; case PresentModeKHR::eFifoRelaxed: return "FifoRelaxed"; case PresentModeKHR::eSharedDemandRefresh: return "SharedDemandRefresh"; case PresentModeKHR::eSharedContinuousRefresh: return "SharedContinuousRefresh"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ColorSpaceKHR value) { switch (value) { case ColorSpaceKHR::eSrgbNonlinear: return "SrgbNonlinear"; case ColorSpaceKHR::eDisplayP3NonlinearEXT: return "DisplayP3NonlinearEXT"; case ColorSpaceKHR::eExtendedSrgbLinearEXT: return "ExtendedSrgbLinearEXT"; case ColorSpaceKHR::eDciP3LinearEXT: return "DciP3LinearEXT"; case ColorSpaceKHR::eDciP3NonlinearEXT: return "DciP3NonlinearEXT"; case ColorSpaceKHR::eBt709LinearEXT: return "Bt709LinearEXT"; case ColorSpaceKHR::eBt709NonlinearEXT: return "Bt709NonlinearEXT"; case ColorSpaceKHR::eBt2020LinearEXT: return "Bt2020LinearEXT"; case ColorSpaceKHR::eHdr10St2084EXT: return "Hdr10St2084EXT"; case ColorSpaceKHR::eDolbyvisionEXT: return "DolbyvisionEXT"; case ColorSpaceKHR::eHdr10HlgEXT: return "Hdr10HlgEXT"; case ColorSpaceKHR::eAdobergbLinearEXT: return "AdobergbLinearEXT"; case ColorSpaceKHR::eAdobergbNonlinearEXT: return "AdobergbNonlinearEXT"; case ColorSpaceKHR::ePassThroughEXT: return "PassThroughEXT"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DisplayPlaneAlphaFlagBitsKHR value) { switch (value) { case DisplayPlaneAlphaFlagBitsKHR::eOpaque: return "Opaque"; case DisplayPlaneAlphaFlagBitsKHR::eGlobal: return "Global"; case DisplayPlaneAlphaFlagBitsKHR::ePerPixel: return "PerPixel"; case DisplayPlaneAlphaFlagBitsKHR::ePerPixelPremultiplied: return "PerPixelPremultiplied"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DisplayPlaneAlphaFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & DisplayPlaneAlphaFlagBitsKHR::eOpaque) result += "Opaque | "; if (value & DisplayPlaneAlphaFlagBitsKHR::eGlobal) result += "Global | "; if (value & DisplayPlaneAlphaFlagBitsKHR::ePerPixel) result += "PerPixel | "; if (value & DisplayPlaneAlphaFlagBitsKHR::ePerPixelPremultiplied) result += "PerPixelPremultiplied | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(CompositeAlphaFlagBitsKHR value) { switch (value) { case CompositeAlphaFlagBitsKHR::eOpaque: return "Opaque"; case CompositeAlphaFlagBitsKHR::ePreMultiplied: return "PreMultiplied"; case CompositeAlphaFlagBitsKHR::ePostMultiplied: return "PostMultiplied"; case CompositeAlphaFlagBitsKHR::eInherit: return "Inherit"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(CompositeAlphaFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & CompositeAlphaFlagBitsKHR::eOpaque) result += "Opaque | "; if (value & CompositeAlphaFlagBitsKHR::ePreMultiplied) result += "PreMultiplied | "; if (value & CompositeAlphaFlagBitsKHR::ePostMultiplied) result += "PostMultiplied | "; if (value & CompositeAlphaFlagBitsKHR::eInherit) result += "Inherit | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(SurfaceTransformFlagBitsKHR value) { switch (value) { case SurfaceTransformFlagBitsKHR::eIdentity: return "Identity"; case SurfaceTransformFlagBitsKHR::eRotate90: return "Rotate90"; case SurfaceTransformFlagBitsKHR::eRotate180: return "Rotate180"; case SurfaceTransformFlagBitsKHR::eRotate270: return "Rotate270"; case SurfaceTransformFlagBitsKHR::eHorizontalMirror: return "HorizontalMirror"; case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate90: return "HorizontalMirrorRotate90"; case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate180: return "HorizontalMirrorRotate180"; case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate270: return "HorizontalMirrorRotate270"; case SurfaceTransformFlagBitsKHR::eInherit: return "Inherit"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SurfaceTransformFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & SurfaceTransformFlagBitsKHR::eIdentity) result += "Identity | "; if (value & SurfaceTransformFlagBitsKHR::eRotate90) result += "Rotate90 | "; if (value & SurfaceTransformFlagBitsKHR::eRotate180) result += "Rotate180 | "; if (value & SurfaceTransformFlagBitsKHR::eRotate270) result += "Rotate270 | "; if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirror) result += "HorizontalMirror | "; if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate90) result += "HorizontalMirrorRotate90 | "; if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate180) result += "HorizontalMirrorRotate180 | "; if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate270) result += "HorizontalMirrorRotate270 | "; if (value & SurfaceTransformFlagBitsKHR::eInherit) result += "Inherit | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(DebugReportFlagBitsEXT value) { switch (value) { case DebugReportFlagBitsEXT::eInformation: return "Information"; case DebugReportFlagBitsEXT::eWarning: return "Warning"; case DebugReportFlagBitsEXT::ePerformanceWarning: return "PerformanceWarning"; case DebugReportFlagBitsEXT::eError: return "Error"; case DebugReportFlagBitsEXT::eDebug: return "Debug"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DebugReportFlagsEXT value) { if (!value) return "{}"; std::string result; if (value & DebugReportFlagBitsEXT::eInformation) result += "Information | "; if (value & DebugReportFlagBitsEXT::eWarning) result += "Warning | "; if (value & DebugReportFlagBitsEXT::ePerformanceWarning) result += "PerformanceWarning | "; if (value & DebugReportFlagBitsEXT::eError) result += "Error | "; if (value & DebugReportFlagBitsEXT::eDebug) result += "Debug | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(DebugReportObjectTypeEXT value) { switch (value) { case DebugReportObjectTypeEXT::eUnknown: return "Unknown"; case DebugReportObjectTypeEXT::eInstance: return "Instance"; case DebugReportObjectTypeEXT::ePhysicalDevice: return "PhysicalDevice"; case DebugReportObjectTypeEXT::eDevice: return "Device"; case DebugReportObjectTypeEXT::eQueue: return "Queue"; case DebugReportObjectTypeEXT::eSemaphore: return "Semaphore"; case DebugReportObjectTypeEXT::eCommandBuffer: return "CommandBuffer"; case DebugReportObjectTypeEXT::eFence: return "Fence"; case DebugReportObjectTypeEXT::eDeviceMemory: return "DeviceMemory"; case DebugReportObjectTypeEXT::eBuffer: return "Buffer"; case DebugReportObjectTypeEXT::eImage: return "Image"; case DebugReportObjectTypeEXT::eEvent: return "Event"; case DebugReportObjectTypeEXT::eQueryPool: return "QueryPool"; case DebugReportObjectTypeEXT::eBufferView: return "BufferView"; case DebugReportObjectTypeEXT::eImageView: return "ImageView"; case DebugReportObjectTypeEXT::eShaderModule: return "ShaderModule"; case DebugReportObjectTypeEXT::ePipelineCache: return "PipelineCache"; case DebugReportObjectTypeEXT::ePipelineLayout: return "PipelineLayout"; case DebugReportObjectTypeEXT::eRenderPass: return "RenderPass"; case DebugReportObjectTypeEXT::ePipeline: return "Pipeline"; case DebugReportObjectTypeEXT::eDescriptorSetLayout: return "DescriptorSetLayout"; case DebugReportObjectTypeEXT::eSampler: return "Sampler"; case DebugReportObjectTypeEXT::eDescriptorPool: return "DescriptorPool"; case DebugReportObjectTypeEXT::eDescriptorSet: return "DescriptorSet"; case DebugReportObjectTypeEXT::eFramebuffer: return "Framebuffer"; case DebugReportObjectTypeEXT::eCommandPool: return "CommandPool"; case DebugReportObjectTypeEXT::eSurfaceKhr: return "SurfaceKhr"; case DebugReportObjectTypeEXT::eSwapchainKhr: return "SwapchainKhr"; case DebugReportObjectTypeEXT::eDebugReportCallbackExt: return "DebugReportCallbackExt"; case DebugReportObjectTypeEXT::eDisplayKhr: return "DisplayKhr"; case DebugReportObjectTypeEXT::eDisplayModeKhr: return "DisplayModeKhr"; case DebugReportObjectTypeEXT::eObjectTableNvx: return "ObjectTableNvx"; case DebugReportObjectTypeEXT::eIndirectCommandsLayoutNvx: return "IndirectCommandsLayoutNvx"; case DebugReportObjectTypeEXT::eDescriptorUpdateTemplateKHR: return "DescriptorUpdateTemplateKHR"; case DebugReportObjectTypeEXT::eSamplerYCbCrConversionKHR: return "SamplerYCbCrConversionKHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(RasterizationOrderAMD value) { switch (value) { case RasterizationOrderAMD::eStrict: return "Strict"; case RasterizationOrderAMD::eRelaxed: return "Relaxed"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalMemoryHandleTypeFlagBitsNV value) { switch (value) { case ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32: return "OpaqueWin32"; case ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32Kmt: return "OpaqueWin32Kmt"; case ExternalMemoryHandleTypeFlagBitsNV::eD3D11Image: return "D3D11Image"; case ExternalMemoryHandleTypeFlagBitsNV::eD3D11ImageKmt: return "D3D11ImageKmt"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalMemoryHandleTypeFlagsNV value) { if (!value) return "{}"; std::string result; if (value & ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32) result += "OpaqueWin32 | "; if (value & ExternalMemoryHandleTypeFlagBitsNV::eOpaqueWin32Kmt) result += "OpaqueWin32Kmt | "; if (value & ExternalMemoryHandleTypeFlagBitsNV::eD3D11Image) result += "D3D11Image | "; if (value & ExternalMemoryHandleTypeFlagBitsNV::eD3D11ImageKmt) result += "D3D11ImageKmt | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ExternalMemoryFeatureFlagBitsNV value) { switch (value) { case ExternalMemoryFeatureFlagBitsNV::eDedicatedOnly: return "DedicatedOnly"; case ExternalMemoryFeatureFlagBitsNV::eExportable: return "Exportable"; case ExternalMemoryFeatureFlagBitsNV::eImportable: return "Importable"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalMemoryFeatureFlagsNV value) { if (!value) return "{}"; std::string result; if (value & ExternalMemoryFeatureFlagBitsNV::eDedicatedOnly) result += "DedicatedOnly | "; if (value & ExternalMemoryFeatureFlagBitsNV::eExportable) result += "Exportable | "; if (value & ExternalMemoryFeatureFlagBitsNV::eImportable) result += "Importable | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ValidationCheckEXT value) { switch (value) { case ValidationCheckEXT::eAll: return "All"; case ValidationCheckEXT::eShaders: return "Shaders"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SubgroupFeatureFlagBitsKHX value) { switch (value) { case SubgroupFeatureFlagBitsKHX::eBasic: return "Basic"; case SubgroupFeatureFlagBitsKHX::eVote: return "Vote"; case SubgroupFeatureFlagBitsKHX::eArithmetic: return "Arithmetic"; case SubgroupFeatureFlagBitsKHX::eBallot: return "Ballot"; case SubgroupFeatureFlagBitsKHX::eShuffle: return "Shuffle"; case SubgroupFeatureFlagBitsKHX::eShuffleRelative: return "ShuffleRelative"; case SubgroupFeatureFlagBitsKHX::eClustered: return "Clustered"; case SubgroupFeatureFlagBitsKHX::eQuad: return "Quad"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SubgroupFeatureFlagsKHX value) { if (!value) return "{}"; std::string result; if (value & SubgroupFeatureFlagBitsKHX::eBasic) result += "Basic | "; if (value & SubgroupFeatureFlagBitsKHX::eVote) result += "Vote | "; if (value & SubgroupFeatureFlagBitsKHX::eArithmetic) result += "Arithmetic | "; if (value & SubgroupFeatureFlagBitsKHX::eBallot) result += "Ballot | "; if (value & SubgroupFeatureFlagBitsKHX::eShuffle) result += "Shuffle | "; if (value & SubgroupFeatureFlagBitsKHX::eShuffleRelative) result += "ShuffleRelative | "; if (value & SubgroupFeatureFlagBitsKHX::eClustered) result += "Clustered | "; if (value & SubgroupFeatureFlagBitsKHX::eQuad) result += "Quad | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(IndirectCommandsLayoutUsageFlagBitsNVX value) { switch (value) { case IndirectCommandsLayoutUsageFlagBitsNVX::eUnorderedSequences: return "UnorderedSequences"; case IndirectCommandsLayoutUsageFlagBitsNVX::eSparseSequences: return "SparseSequences"; case IndirectCommandsLayoutUsageFlagBitsNVX::eEmptyExecutions: return "EmptyExecutions"; case IndirectCommandsLayoutUsageFlagBitsNVX::eIndexedSequences: return "IndexedSequences"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(IndirectCommandsLayoutUsageFlagsNVX value) { if (!value) return "{}"; std::string result; if (value & IndirectCommandsLayoutUsageFlagBitsNVX::eUnorderedSequences) result += "UnorderedSequences | "; if (value & IndirectCommandsLayoutUsageFlagBitsNVX::eSparseSequences) result += "SparseSequences | "; if (value & IndirectCommandsLayoutUsageFlagBitsNVX::eEmptyExecutions) result += "EmptyExecutions | "; if (value & IndirectCommandsLayoutUsageFlagBitsNVX::eIndexedSequences) result += "IndexedSequences | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ObjectEntryUsageFlagBitsNVX value) { switch (value) { case ObjectEntryUsageFlagBitsNVX::eGraphics: return "Graphics"; case ObjectEntryUsageFlagBitsNVX::eCompute: return "Compute"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ObjectEntryUsageFlagsNVX value) { if (!value) return "{}"; std::string result; if (value & ObjectEntryUsageFlagBitsNVX::eGraphics) result += "Graphics | "; if (value & ObjectEntryUsageFlagBitsNVX::eCompute) result += "Compute | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(IndirectCommandsTokenTypeNVX value) { switch (value) { case IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenPipeline: return "VkIndirectCommandsTokenPipeline"; case IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenDescriptorSet: return "VkIndirectCommandsTokenDescriptorSet"; case IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenIndexBuffer: return "VkIndirectCommandsTokenIndexBuffer"; case IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenVertexBuffer: return "VkIndirectCommandsTokenVertexBuffer"; case IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenPushConstant: return "VkIndirectCommandsTokenPushConstant"; case IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenDrawIndexed: return "VkIndirectCommandsTokenDrawIndexed"; case IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenDraw: return "VkIndirectCommandsTokenDraw"; case IndirectCommandsTokenTypeNVX::eVkIndirectCommandsTokenDispatch: return "VkIndirectCommandsTokenDispatch"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ObjectEntryTypeNVX value) { switch (value) { case ObjectEntryTypeNVX::eVkObjectEntryDescriptorSet: return "VkObjectEntryDescriptorSet"; case ObjectEntryTypeNVX::eVkObjectEntryPipeline: return "VkObjectEntryPipeline"; case ObjectEntryTypeNVX::eVkObjectEntryIndexBuffer: return "VkObjectEntryIndexBuffer"; case ObjectEntryTypeNVX::eVkObjectEntryVertexBuffer: return "VkObjectEntryVertexBuffer"; case ObjectEntryTypeNVX::eVkObjectEntryPushConstant: return "VkObjectEntryPushConstant"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DescriptorSetLayoutCreateFlagBits value) { switch (value) { case DescriptorSetLayoutCreateFlagBits::ePushDescriptorKHR: return "PushDescriptorKHR"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DescriptorSetLayoutCreateFlags value) { if (!value) return "{}"; std::string result; if (value & DescriptorSetLayoutCreateFlagBits::ePushDescriptorKHR) result += "PushDescriptorKHR | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ExternalMemoryHandleTypeFlagBitsKHR value) { switch (value) { case ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd: return "OpaqueFd"; case ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32: return "OpaqueWin32"; case ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32Kmt: return "OpaqueWin32Kmt"; case ExternalMemoryHandleTypeFlagBitsKHR::eD3D11Texture: return "D3D11Texture"; case ExternalMemoryHandleTypeFlagBitsKHR::eD3D11TextureKmt: return "D3D11TextureKmt"; case ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Heap: return "D3D12Heap"; case ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Resource: return "D3D12Resource"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalMemoryHandleTypeFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueFd) result += "OpaqueFd | "; if (value & ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32) result += "OpaqueWin32 | "; if (value & ExternalMemoryHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) result += "OpaqueWin32Kmt | "; if (value & ExternalMemoryHandleTypeFlagBitsKHR::eD3D11Texture) result += "D3D11Texture | "; if (value & ExternalMemoryHandleTypeFlagBitsKHR::eD3D11TextureKmt) result += "D3D11TextureKmt | "; if (value & ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Heap) result += "D3D12Heap | "; if (value & ExternalMemoryHandleTypeFlagBitsKHR::eD3D12Resource) result += "D3D12Resource | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ExternalMemoryFeatureFlagBitsKHR value) { switch (value) { case ExternalMemoryFeatureFlagBitsKHR::eDedicatedOnly: return "DedicatedOnly"; case ExternalMemoryFeatureFlagBitsKHR::eExportable: return "Exportable"; case ExternalMemoryFeatureFlagBitsKHR::eImportable: return "Importable"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalMemoryFeatureFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & ExternalMemoryFeatureFlagBitsKHR::eDedicatedOnly) result += "DedicatedOnly | "; if (value & ExternalMemoryFeatureFlagBitsKHR::eExportable) result += "Exportable | "; if (value & ExternalMemoryFeatureFlagBitsKHR::eImportable) result += "Importable | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ExternalSemaphoreHandleTypeFlagBitsKHR value) { switch (value) { case ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd: return "OpaqueFd"; case ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32: return "OpaqueWin32"; case ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32Kmt: return "OpaqueWin32Kmt"; case ExternalSemaphoreHandleTypeFlagBitsKHR::eD3D12Fence: return "D3D12Fence"; case ExternalSemaphoreHandleTypeFlagBitsKHR::eSyncFd: return "SyncFd"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalSemaphoreHandleTypeFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueFd) result += "OpaqueFd | "; if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32) result += "OpaqueWin32 | "; if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) result += "OpaqueWin32Kmt | "; if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eD3D12Fence) result += "D3D12Fence | "; if (value & ExternalSemaphoreHandleTypeFlagBitsKHR::eSyncFd) result += "SyncFd | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ExternalSemaphoreFeatureFlagBitsKHR value) { switch (value) { case ExternalSemaphoreFeatureFlagBitsKHR::eExportable: return "Exportable"; case ExternalSemaphoreFeatureFlagBitsKHR::eImportable: return "Importable"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalSemaphoreFeatureFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & ExternalSemaphoreFeatureFlagBitsKHR::eExportable) result += "Exportable | "; if (value & ExternalSemaphoreFeatureFlagBitsKHR::eImportable) result += "Importable | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(SemaphoreImportFlagBitsKHR value) { switch (value) { case SemaphoreImportFlagBitsKHR::eTemporary: return "Temporary"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SemaphoreImportFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & SemaphoreImportFlagBitsKHR::eTemporary) result += "Temporary | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ExternalFenceHandleTypeFlagBitsKHR value) { switch (value) { case ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd: return "OpaqueFd"; case ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32: return "OpaqueWin32"; case ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32Kmt: return "OpaqueWin32Kmt"; case ExternalFenceHandleTypeFlagBitsKHR::eSyncFd: return "SyncFd"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalFenceHandleTypeFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & ExternalFenceHandleTypeFlagBitsKHR::eOpaqueFd) result += "OpaqueFd | "; if (value & ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32) result += "OpaqueWin32 | "; if (value & ExternalFenceHandleTypeFlagBitsKHR::eOpaqueWin32Kmt) result += "OpaqueWin32Kmt | "; if (value & ExternalFenceHandleTypeFlagBitsKHR::eSyncFd) result += "SyncFd | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ExternalFenceFeatureFlagBitsKHR value) { switch (value) { case ExternalFenceFeatureFlagBitsKHR::eExportable: return "Exportable"; case ExternalFenceFeatureFlagBitsKHR::eImportable: return "Importable"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ExternalFenceFeatureFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & ExternalFenceFeatureFlagBitsKHR::eExportable) result += "Exportable | "; if (value & ExternalFenceFeatureFlagBitsKHR::eImportable) result += "Importable | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(FenceImportFlagBitsKHR value) { switch (value) { case FenceImportFlagBitsKHR::eTemporary: return "Temporary"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(FenceImportFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & FenceImportFlagBitsKHR::eTemporary) result += "Temporary | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(SurfaceCounterFlagBitsEXT value) { switch (value) { case SurfaceCounterFlagBitsEXT::eVblank: return "Vblank"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SurfaceCounterFlagsEXT value) { if (!value) return "{}"; std::string result; if (value & SurfaceCounterFlagBitsEXT::eVblank) result += "Vblank | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(DisplayPowerStateEXT value) { switch (value) { case DisplayPowerStateEXT::eOff: return "Off"; case DisplayPowerStateEXT::eSuspend: return "Suspend"; case DisplayPowerStateEXT::eOn: return "On"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DeviceEventTypeEXT value) { switch (value) { case DeviceEventTypeEXT::eDisplayHotplug: return "DisplayHotplug"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DisplayEventTypeEXT value) { switch (value) { case DisplayEventTypeEXT::eFirstPixelOut: return "FirstPixelOut"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PeerMemoryFeatureFlagBitsKHX value) { switch (value) { case PeerMemoryFeatureFlagBitsKHX::eCopySrc: return "CopySrc"; case PeerMemoryFeatureFlagBitsKHX::eCopyDst: return "CopyDst"; case PeerMemoryFeatureFlagBitsKHX::eGenericSrc: return "GenericSrc"; case PeerMemoryFeatureFlagBitsKHX::eGenericDst: return "GenericDst"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(PeerMemoryFeatureFlagsKHX value) { if (!value) return "{}"; std::string result; if (value & PeerMemoryFeatureFlagBitsKHX::eCopySrc) result += "CopySrc | "; if (value & PeerMemoryFeatureFlagBitsKHX::eCopyDst) result += "CopyDst | "; if (value & PeerMemoryFeatureFlagBitsKHX::eGenericSrc) result += "GenericSrc | "; if (value & PeerMemoryFeatureFlagBitsKHX::eGenericDst) result += "GenericDst | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(MemoryAllocateFlagBitsKHX value) { switch (value) { case MemoryAllocateFlagBitsKHX::eDeviceMask: return "DeviceMask"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(MemoryAllocateFlagsKHX value) { if (!value) return "{}"; std::string result; if (value & MemoryAllocateFlagBitsKHX::eDeviceMask) result += "DeviceMask | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(DeviceGroupPresentModeFlagBitsKHX value) { switch (value) { case DeviceGroupPresentModeFlagBitsKHX::eLocal: return "Local"; case DeviceGroupPresentModeFlagBitsKHX::eRemote: return "Remote"; case DeviceGroupPresentModeFlagBitsKHX::eSum: return "Sum"; case DeviceGroupPresentModeFlagBitsKHX::eLocalMultiDevice: return "LocalMultiDevice"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DeviceGroupPresentModeFlagsKHX value) { if (!value) return "{}"; std::string result; if (value & DeviceGroupPresentModeFlagBitsKHX::eLocal) result += "Local | "; if (value & DeviceGroupPresentModeFlagBitsKHX::eRemote) result += "Remote | "; if (value & DeviceGroupPresentModeFlagBitsKHX::eSum) result += "Sum | "; if (value & DeviceGroupPresentModeFlagBitsKHX::eLocalMultiDevice) result += "LocalMultiDevice | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(SwapchainCreateFlagBitsKHR value) { switch (value) { case SwapchainCreateFlagBitsKHR::eBindSfrKHX: return "BindSfrKHX"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SwapchainCreateFlagsKHR value) { if (!value) return "{}"; std::string result; if (value & SwapchainCreateFlagBitsKHR::eBindSfrKHX) result += "BindSfrKHX | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(ViewportCoordinateSwizzleNV value) { switch (value) { case ViewportCoordinateSwizzleNV::ePositiveX: return "PositiveX"; case ViewportCoordinateSwizzleNV::eNegativeX: return "NegativeX"; case ViewportCoordinateSwizzleNV::ePositiveY: return "PositiveY"; case ViewportCoordinateSwizzleNV::eNegativeY: return "NegativeY"; case ViewportCoordinateSwizzleNV::ePositiveZ: return "PositiveZ"; case ViewportCoordinateSwizzleNV::eNegativeZ: return "NegativeZ"; case ViewportCoordinateSwizzleNV::ePositiveW: return "PositiveW"; case ViewportCoordinateSwizzleNV::eNegativeW: return "NegativeW"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(DiscardRectangleModeEXT value) { switch (value) { case DiscardRectangleModeEXT::eInclusive: return "Inclusive"; case DiscardRectangleModeEXT::eExclusive: return "Exclusive"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SubpassDescriptionFlagBits value) { switch (value) { case SubpassDescriptionFlagBits::ePerViewAttributesNVX: return "PerViewAttributesNVX"; case SubpassDescriptionFlagBits::ePerViewPositionXOnlyNVX: return "PerViewPositionXOnlyNVX"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SubpassDescriptionFlags value) { if (!value) return "{}"; std::string result; if (value & SubpassDescriptionFlagBits::ePerViewAttributesNVX) result += "PerViewAttributesNVX | "; if (value & SubpassDescriptionFlagBits::ePerViewPositionXOnlyNVX) result += "PerViewPositionXOnlyNVX | "; return "{" + result.substr(0, result.size() - 3) + "}"; } VULKAN_HPP_INLINE std::string to_string(PointClippingBehaviorKHR value) { switch (value) { case PointClippingBehaviorKHR::eAllClipPlanes: return "AllClipPlanes"; case PointClippingBehaviorKHR::eUserClipPlanesOnly: return "UserClipPlanesOnly"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SamplerReductionModeKHR value) { switch (value) { case SamplerReductionModeKHR::eWeightedAverage: return "WeightedAverage"; case SamplerReductionModeKHR::eMin: return "Min"; case SamplerReductionModeKHR::eMax: return "Max"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(TessellationDomainOriginKHR value) { switch (value) { case TessellationDomainOriginKHR::eUpperLeft: return "UpperLeft"; case TessellationDomainOriginKHR::eLowerLeft: return "LowerLeft"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SamplerYCbCrModelConversionKHR value) { switch (value) { case SamplerYCbCrModelConversionKHR::eVkSamplerYCbCrModelConversionRgbIdentity: return "VkSamplerYCbCrModelConversionRgbIdentity"; case SamplerYCbCrModelConversionKHR::eVkSamplerYCbCrModelConversionYCbCrIdentity: return "VkSamplerYCbCrModelConversionYCbCrIdentity"; case SamplerYCbCrModelConversionKHR::eVkSamplerYCbCrModelConversionYCbCr709: return "VkSamplerYCbCrModelConversionYCbCr709"; case SamplerYCbCrModelConversionKHR::eVkSamplerYCbCrModelConversionYCbCr601: return "VkSamplerYCbCrModelConversionYCbCr601"; case SamplerYCbCrModelConversionKHR::eVkSamplerYCbCrModelConversionYCbCr2020: return "VkSamplerYCbCrModelConversionYCbCr2020"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(SamplerYCbCrRangeKHR value) { switch (value) { case SamplerYCbCrRangeKHR::eVkSamplerYCbCrRangeKhronos: return "VkSamplerYCbCrRangeKhronos"; case SamplerYCbCrRangeKHR::eVkSamplerYCbCrRangeItuFull: return "VkSamplerYCbCrRangeItuFull"; case SamplerYCbCrRangeKHR::eVkSamplerYCbCrRangeItuNarrow: return "VkSamplerYCbCrRangeItuNarrow"; default: return "invalid"; } } VULKAN_HPP_INLINE std::string to_string(ChromaLocationKHR value) { switch (value) { case ChromaLocationKHR::eCositedEven: return "CositedEven"; case ChromaLocationKHR::eMidpoint: return "Midpoint"; default: return "invalid"; } } } // namespace vk #endif