// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "utils.hpp" #include "vulkan/vulkan.hpp" #include #include PFN_vkCreateDebugUtilsMessengerEXT pfnVkCreateDebugUtilsMessengerEXT; PFN_vkDestroyDebugUtilsMessengerEXT pfnVkDestroyDebugUtilsMessengerEXT; VKAPI_ATTR VkResult VKAPI_CALL vkCreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pMessenger) { return pfnVkCreateDebugUtilsMessengerEXT(instance, pCreateInfo, pAllocator, pMessenger); } VKAPI_ATTR void VKAPI_CALL vkDestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT messenger, VkAllocationCallbacks const * pAllocator) { return pfnVkDestroyDebugUtilsMessengerEXT(instance, messenger, pAllocator); } namespace vk { namespace su { vk::UniqueDeviceMemory allocateMemory(vk::UniqueDevice const& device, vk::PhysicalDeviceMemoryProperties const& memoryProperties, vk::MemoryRequirements const& memoryRequirements, vk::MemoryPropertyFlags memoryPropertyFlags) { uint32_t memoryTypeIndex = findMemoryType(memoryProperties, memoryRequirements.memoryTypeBits, memoryPropertyFlags); return device->allocateMemoryUnique(vk::MemoryAllocateInfo(memoryRequirements.size, memoryTypeIndex)); } vk::UniqueCommandPool createCommandPool(vk::UniqueDevice &device, uint32_t queueFamilyIndex) { vk::CommandPoolCreateInfo commandPoolCreateInfo(vk::CommandPoolCreateFlagBits::eResetCommandBuffer, queueFamilyIndex); return device->createCommandPoolUnique(commandPoolCreateInfo); } vk::UniqueDebugUtilsMessengerEXT createDebugUtilsMessenger(vk::UniqueInstance &instance) { vk::DebugUtilsMessageSeverityFlagsEXT severityFlags(vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning | vk::DebugUtilsMessageSeverityFlagBitsEXT::eError); vk::DebugUtilsMessageTypeFlagsEXT messageTypeFlags(vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral | vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance | vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation); return instance->createDebugUtilsMessengerEXTUnique(vk::DebugUtilsMessengerCreateInfoEXT({}, severityFlags, messageTypeFlags, &vk::su::debugUtilsMessengerCallback)); } vk::UniqueDescriptorPool createDescriptorPool(vk::UniqueDevice &device, std::vector const& poolSizes) { assert(!poolSizes.empty()); uint32_t maxSets = std::accumulate(poolSizes.begin(), poolSizes.end(), 0, [](uint32_t sum, vk::DescriptorPoolSize const& dps) { return sum + dps.descriptorCount; }); assert(0 < maxSets); vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, maxSets, checked_cast(poolSizes.size()), poolSizes.data()); return device->createDescriptorPoolUnique(descriptorPoolCreateInfo); } vk::UniqueDescriptorSetLayout createDescriptorSetLayout(vk::UniqueDevice const& device, std::vector> const& bindingData, vk::DescriptorSetLayoutCreateFlags flags) { std::vector bindings(bindingData.size()); for (size_t i = 0; i < bindingData.size(); i++) { bindings[i] = vk::DescriptorSetLayoutBinding(checked_cast(i), std::get<0>(bindingData[i]), std::get<1>(bindingData[i]), std::get<2>(bindingData[i])); } return device->createDescriptorSetLayoutUnique(vk::DescriptorSetLayoutCreateInfo(flags, checked_cast(bindings.size()), bindings.data())); } vk::UniqueDevice createDevice(vk::PhysicalDevice physicalDevice, uint32_t queueFamilyIndex, std::vector const& extensions, vk::PhysicalDeviceFeatures const* physicalDeviceFeatures, void const* pNext) { std::vector enabledExtensions; enabledExtensions.reserve(extensions.size()); for (auto const& ext : extensions) { enabledExtensions.push_back(ext.data()); } // create a UniqueDevice float queuePriority = 0.0f; vk::DeviceQueueCreateInfo deviceQueueCreateInfo(vk::DeviceQueueCreateFlags(), queueFamilyIndex, 1, &queuePriority); vk::DeviceCreateInfo deviceCreateInfo(vk::DeviceCreateFlags(), 1, &deviceQueueCreateInfo, 0, nullptr, checked_cast(enabledExtensions.size()), enabledExtensions.data(), physicalDeviceFeatures); deviceCreateInfo.pNext = pNext; return physicalDevice.createDeviceUnique(deviceCreateInfo); } std::vector createFramebuffers(vk::UniqueDevice &device, vk::UniqueRenderPass &renderPass, std::vector const& imageViews, vk::UniqueImageView const& depthImageView, vk::Extent2D const& extent) { vk::ImageView attachments[2]; attachments[1] = depthImageView.get(); vk::FramebufferCreateInfo framebufferCreateInfo(vk::FramebufferCreateFlags(), *renderPass, depthImageView ? 2 : 1, attachments, extent.width, extent.height, 1); std::vector framebuffers; framebuffers.reserve(imageViews.size()); for (auto const& view : imageViews) { attachments[0] = view.get(); framebuffers.push_back(device->createFramebufferUnique(framebufferCreateInfo)); } return framebuffers; } vk::UniquePipeline createGraphicsPipeline(vk::UniqueDevice const& device, vk::UniquePipelineCache const& pipelineCache, std::pair const& vertexShaderData, std::pair const& fragmentShaderData, uint32_t vertexStride, std::vector> const& vertexInputAttributeFormatOffset, vk::FrontFace frontFace, bool depthBuffered , vk::UniquePipelineLayout const& pipelineLayout, vk::UniqueRenderPass const& renderPass) { vk::PipelineShaderStageCreateInfo pipelineShaderStageCreateInfos[2] = { vk::PipelineShaderStageCreateInfo(vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eVertex, vertexShaderData.first, "main", vertexShaderData.second), vk::PipelineShaderStageCreateInfo(vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eFragment, fragmentShaderData.first, "main", fragmentShaderData.second) }; std::vector vertexInputAttributeDescriptions; vk::PipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo; if (0 < vertexStride) { vk::VertexInputBindingDescription vertexInputBindingDescription(0, vertexStride); vertexInputAttributeDescriptions.reserve(vertexInputAttributeFormatOffset.size()); for (uint32_t i=0 ; i(vertexInputAttributeDescriptions.size()); pipelineVertexInputStateCreateInfo.pVertexAttributeDescriptions = vertexInputAttributeDescriptions.data(); } vk::PipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateCreateInfo(vk::PipelineInputAssemblyStateCreateFlags(), vk::PrimitiveTopology::eTriangleList); vk::PipelineViewportStateCreateInfo pipelineViewportStateCreateInfo(vk::PipelineViewportStateCreateFlags(), 1, nullptr, 1, nullptr); vk::PipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo(vk::PipelineRasterizationStateCreateFlags(), false, false, vk::PolygonMode::eFill, vk::CullModeFlagBits::eBack, frontFace, false, 0.0f, 0.0f, 0.0f, 1.0f); vk::PipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo; vk::StencilOpState stencilOpState(vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::CompareOp::eAlways); vk::PipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo(vk::PipelineDepthStencilStateCreateFlags(), depthBuffered, depthBuffered, vk::CompareOp::eLessOrEqual, false, false, stencilOpState, stencilOpState); vk::ColorComponentFlags colorComponentFlags(vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG | vk::ColorComponentFlagBits::eB | vk::ColorComponentFlagBits::eA); vk::PipelineColorBlendAttachmentState pipelineColorBlendAttachmentState(false, vk::BlendFactor::eZero, vk::BlendFactor::eZero, vk::BlendOp::eAdd, vk::BlendFactor::eZero, vk::BlendFactor::eZero, vk::BlendOp::eAdd, colorComponentFlags); vk::PipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo(vk::PipelineColorBlendStateCreateFlags(), false, vk::LogicOp::eNoOp, 1, &pipelineColorBlendAttachmentState, { { (1.0f, 1.0f, 1.0f, 1.0f) } }); vk::DynamicState dynamicStates[2] = { vk::DynamicState::eViewport, vk::DynamicState::eScissor }; vk::PipelineDynamicStateCreateInfo pipelineDynamicStateCreateInfo(vk::PipelineDynamicStateCreateFlags(), 2, dynamicStates); vk::GraphicsPipelineCreateInfo graphicsPipelineCreateInfo(vk::PipelineCreateFlags(), 2, pipelineShaderStageCreateInfos, &pipelineVertexInputStateCreateInfo, &pipelineInputAssemblyStateCreateInfo, nullptr, &pipelineViewportStateCreateInfo, &pipelineRasterizationStateCreateInfo, &pipelineMultisampleStateCreateInfo, &pipelineDepthStencilStateCreateInfo, &pipelineColorBlendStateCreateInfo, &pipelineDynamicStateCreateInfo, pipelineLayout.get(), renderPass.get()); return device->createGraphicsPipelineUnique(pipelineCache.get(), graphicsPipelineCreateInfo); } vk::UniqueInstance createInstance(std::string const& appName, std::string const& engineName, std::vector const& layers, std::vector const& extensions, uint32_t apiVersion) { std::vector enabledLayers; enabledLayers.reserve(layers.size()); for (auto const& layer : layers) { enabledLayers.push_back(layer.data()); } #if !defined(NDEBUG) // Enable standard validation layer to find as much errors as possible! if (std::find(layers.begin(), layers.end(), "VK_LAYER_KHRONOS_validation") == layers.end()) { enabledLayers.push_back("VK_LAYER_KHRONOS_validation"); } #endif std::vector enabledExtensions; enabledExtensions.reserve(extensions.size()); for (auto const& ext : extensions) { enabledExtensions.push_back(ext.data()); } #if !defined(NDEBUG) if (std::find(extensions.begin(), extensions.end(), VK_EXT_DEBUG_UTILS_EXTENSION_NAME) == extensions.end()) { enabledExtensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME); } #endif // create a UniqueInstance vk::ApplicationInfo applicationInfo(appName.c_str(), 1, engineName.c_str(), 1, apiVersion); vk::UniqueInstance instance = vk::createInstanceUnique(vk::InstanceCreateInfo({}, &applicationInfo, checked_cast(enabledLayers.size()), enabledLayers.data(), checked_cast(enabledExtensions.size()), enabledExtensions.data())); #if !defined(NDEBUG) static bool initialized = false; if (!initialized) { pfnVkCreateDebugUtilsMessengerEXT = reinterpret_cast(instance->getProcAddr("vkCreateDebugUtilsMessengerEXT")); pfnVkDestroyDebugUtilsMessengerEXT = reinterpret_cast(instance->getProcAddr("vkDestroyDebugUtilsMessengerEXT")); assert(pfnVkCreateDebugUtilsMessengerEXT && pfnVkDestroyDebugUtilsMessengerEXT); initialized = true; } #endif return instance; } vk::UniqueRenderPass createRenderPass(vk::UniqueDevice &device, vk::Format colorFormat, vk::Format depthFormat, vk::AttachmentLoadOp loadOp, vk::ImageLayout colorFinalLayout) { std::vector attachmentDescriptions; assert(colorFormat != vk::Format::eUndefined); attachmentDescriptions.push_back(vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), colorFormat, vk::SampleCountFlagBits::e1, loadOp, vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare, vk::ImageLayout::eUndefined, colorFinalLayout)); if (depthFormat != vk::Format::eUndefined) { attachmentDescriptions.push_back(vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), depthFormat, vk::SampleCountFlagBits::e1, loadOp, vk::AttachmentStoreOp::eDontCare, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare, vk::ImageLayout::eUndefined, vk::ImageLayout::eDepthStencilAttachmentOptimal)); } vk::AttachmentReference colorAttachment(0, vk::ImageLayout::eColorAttachmentOptimal); vk::AttachmentReference depthAttachment(1, vk::ImageLayout::eDepthStencilAttachmentOptimal); vk::SubpassDescription subpassDescription(vk::SubpassDescriptionFlags(), vk::PipelineBindPoint::eGraphics, 0, nullptr, 1, &colorAttachment, nullptr, (depthFormat != vk::Format::eUndefined) ? &depthAttachment : nullptr); return device->createRenderPassUnique(vk::RenderPassCreateInfo(vk::RenderPassCreateFlags(), static_cast(attachmentDescriptions.size()), attachmentDescriptions.data(), 1, &subpassDescription)); } VkBool32 debugUtilsMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageTypes, VkDebugUtilsMessengerCallbackDataEXT const * pCallbackData, void * /*pUserData*/) { std::cerr << vk::to_string(static_cast(messageSeverity)) << ": " << vk::to_string(static_cast(messageTypes)) << ":\n"; std::cerr << "\t" << "messageIDName = <" << pCallbackData->pMessageIdName << ">\n"; std::cerr << "\t" << "messageIdNumber = " << pCallbackData->messageIdNumber << "\n"; std::cerr << "\t" << "message = <" << pCallbackData->pMessage << ">\n"; if (0 < pCallbackData->queueLabelCount) { std::cerr << "\t" << "Queue Labels:\n"; for (uint8_t i = 0; i < pCallbackData->queueLabelCount; i++) { std::cerr << "\t\t" << "lableName = <" << pCallbackData->pQueueLabels[i].pLabelName << ">\n"; } } if (0 < pCallbackData->cmdBufLabelCount) { std::cerr << "\t" << "CommandBuffer Labels:\n"; for (uint8_t i = 0; i < pCallbackData->cmdBufLabelCount; i++) { std::cerr << "\t\t" << "labelName = <" << pCallbackData->pCmdBufLabels[i].pLabelName << ">\n"; } } if (0 < pCallbackData->objectCount) { std::cerr << "\t" << "Objects:\n"; for (uint8_t i = 0; i < pCallbackData->objectCount; i++) { std::cerr << "\t\t" << "Object " << i << "\n"; std::cerr << "\t\t\t" << "objectType = " << vk::to_string(static_cast(pCallbackData->pObjects[i].objectType)) << "\n"; std::cerr << "\t\t\t" << "objectHandle = " << pCallbackData->pObjects[i].objectHandle << "\n"; if (pCallbackData->pObjects[i].pObjectName) { std::cerr << "\t\t\t" << "objectName = <" << pCallbackData->pObjects[i].pObjectName << ">\n"; } } } return VK_TRUE; } uint32_t findGraphicsQueueFamilyIndex(std::vector const& queueFamilyProperties) { // get the first index into queueFamiliyProperties which supports graphics size_t graphicsQueueFamilyIndex = std::distance(queueFamilyProperties.begin(), std::find_if(queueFamilyProperties.begin(), queueFamilyProperties.end(), [](vk::QueueFamilyProperties const& qfp) { return qfp.queueFlags & vk::QueueFlagBits::eGraphics; })); assert(graphicsQueueFamilyIndex < queueFamilyProperties.size()); return checked_cast(graphicsQueueFamilyIndex); } std::pair findGraphicsAndPresentQueueFamilyIndex(vk::PhysicalDevice physicalDevice, vk::SurfaceKHR const& surface) { std::vector queueFamilyProperties = physicalDevice.getQueueFamilyProperties(); assert(queueFamilyProperties.size() < std::numeric_limits::max()); uint32_t graphicsQueueFamilyIndex = findGraphicsQueueFamilyIndex(queueFamilyProperties); if (physicalDevice.getSurfaceSupportKHR(graphicsQueueFamilyIndex, surface)) { return std::make_pair(graphicsQueueFamilyIndex, graphicsQueueFamilyIndex); // the first graphicsQueueFamilyIndex does also support presents } // the graphicsQueueFamilyIndex doesn't support present -> look for an other family index that supports both graphics and present for (size_t i = 0; i < queueFamilyProperties.size(); i++) { if ((queueFamilyProperties[i].queueFlags & vk::QueueFlagBits::eGraphics) && physicalDevice.getSurfaceSupportKHR(static_cast(i), surface)) { return std::make_pair(static_cast(i), static_cast(i)); } } // there's nothing like a single family index that supports both graphics and present -> look for an other family index that supports present for (size_t i = 0; i < queueFamilyProperties.size(); i++) { if (physicalDevice.getSurfaceSupportKHR(static_cast(i), surface)) { return std::make_pair(graphicsQueueFamilyIndex, static_cast(i)); } } throw std::runtime_error("Could not find queues for both graphics or present -> terminating"); } uint32_t findMemoryType(vk::PhysicalDeviceMemoryProperties const& memoryProperties, uint32_t typeBits, vk::MemoryPropertyFlags requirementsMask) { uint32_t typeIndex = uint32_t(~0); for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { if ((typeBits & 1) && ((memoryProperties.memoryTypes[i].propertyFlags & requirementsMask) == requirementsMask)) { typeIndex = i; break; } typeBits >>= 1; } assert(typeIndex != ~0); return typeIndex; } std::vector getDeviceExtensions() { return{ VK_KHR_SWAPCHAIN_EXTENSION_NAME }; } std::vector getInstanceExtensions() { std::vector extensions; extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME); #if defined(VK_USE_PLATFORM_ANDROID_KHR) extensions.push_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_IOS_MVK) extensions.push_back(VK_MVK_IOS_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_MACOS_MVK) extensions.push_back(VK_MVK_MACOS_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_MIR_KHR) extensions.push_back(VK_KHR_MIR_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_VI_NN) extensions.push_back(VK_NN_VI_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) extensions.push_back(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_WIN32_KHR) extensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_XCB_KHR) extensions.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_XLIB_KHR) extensions.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_XLIB_XRANDR_EXT) extensions.push_back(VK_EXT_ACQUIRE_XLIB_DISPLAY_EXTENSION_NAME); #endif return extensions; } vk::Format pickDepthFormat(vk::PhysicalDevice const& physicalDevice) { std::vector candidates = {vk::Format::eD32Sfloat, vk::Format::eD32SfloatS8Uint, vk::Format::eD24UnormS8Uint}; for (vk::Format format : candidates) { vk::FormatProperties props = physicalDevice.getFormatProperties(format); if (props.optimalTilingFeatures & vk::FormatFeatureFlagBits::eDepthStencilAttachment) { return format; } } throw std::runtime_error("failed to find supported format!"); } vk::PresentModeKHR pickPresentMode(std::vector const& presentModes) { vk::PresentModeKHR pickedMode = vk::PresentModeKHR::eFifo; for(const auto& presentMode : presentModes) { if(presentMode == vk::PresentModeKHR::eMailbox) { pickedMode = presentMode; break; } if(presentMode == vk::PresentModeKHR::eImmediate) { pickedMode = presentMode; } } return pickedMode; } vk::SurfaceFormatKHR pickSurfaceFormat(std::vector const& formats) { assert(!formats.empty()); vk::SurfaceFormatKHR pickedFormat = formats[0]; if (formats.size() == 1) { if (formats[0].format == vk::Format::eUndefined) { pickedFormat.format = vk::Format::eB8G8R8A8Unorm; pickedFormat.colorSpace = vk::ColorSpaceKHR::eSrgbNonlinear; } } else { // request several formats, the first found will be used vk::Format requestedFormats[] = { vk::Format::eB8G8R8A8Unorm, vk::Format::eR8G8B8A8Unorm, vk::Format::eB8G8R8Unorm, vk::Format::eR8G8B8Unorm }; vk::ColorSpaceKHR requestedColorSpace = vk::ColorSpaceKHR::eSrgbNonlinear; for (size_t i = 0; i < sizeof(requestedFormats) / sizeof(requestedFormats[0]); i++) { vk::Format requestedFormat = requestedFormats[i]; auto it = std::find_if(formats.begin(), formats.end(), [requestedFormat, requestedColorSpace](auto const& f) { return (f.format == requestedFormat) && (f.colorSpace == requestedColorSpace); }); if (it != formats.end()) { pickedFormat = *it; break; } } } assert(pickedFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear); return pickedFormat; } void setImageLayout(vk::UniqueCommandBuffer const& commandBuffer, vk::Image image, vk::Format format, vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout) { vk::AccessFlags sourceAccessMask; switch (oldImageLayout) { case vk::ImageLayout::eTransferDstOptimal: sourceAccessMask = vk::AccessFlagBits::eTransferWrite; break; case vk::ImageLayout::ePreinitialized: sourceAccessMask = vk::AccessFlagBits::eHostWrite; break; case vk::ImageLayout::eGeneral: // sourceAccessMask is empty case vk::ImageLayout::eUndefined: break; default: assert(false); break; } vk::PipelineStageFlags sourceStage; switch (oldImageLayout) { case vk::ImageLayout::eGeneral: case vk::ImageLayout::ePreinitialized: sourceStage = vk::PipelineStageFlagBits::eHost; break; case vk::ImageLayout::eTransferDstOptimal: sourceStage = vk::PipelineStageFlagBits::eTransfer; break; case vk::ImageLayout::eUndefined: sourceStage = vk::PipelineStageFlagBits::eTopOfPipe; break; default: assert(false); break; } vk::AccessFlags destinationAccessMask; switch (newImageLayout) { case vk::ImageLayout::eColorAttachmentOptimal: destinationAccessMask = vk::AccessFlagBits::eColorAttachmentWrite; break; case vk::ImageLayout::eDepthStencilAttachmentOptimal: destinationAccessMask = vk::AccessFlagBits::eDepthStencilAttachmentRead | vk::AccessFlagBits::eDepthStencilAttachmentWrite; break; case vk::ImageLayout::eGeneral: // empty destinationAccessMask break; case vk::ImageLayout::eShaderReadOnlyOptimal: destinationAccessMask = vk::AccessFlagBits::eShaderRead; break; case vk::ImageLayout::eTransferSrcOptimal: destinationAccessMask = vk::AccessFlagBits::eTransferRead; break; case vk::ImageLayout::eTransferDstOptimal: destinationAccessMask = vk::AccessFlagBits::eTransferWrite; break; default: assert(false); break; } vk::PipelineStageFlags destinationStage; switch (newImageLayout) { case vk::ImageLayout::eColorAttachmentOptimal: destinationStage = vk::PipelineStageFlagBits::eColorAttachmentOutput; break; case vk::ImageLayout::eDepthStencilAttachmentOptimal: destinationStage = vk::PipelineStageFlagBits::eEarlyFragmentTests; break; case vk::ImageLayout::eGeneral: destinationStage = vk::PipelineStageFlagBits::eHost; break; case vk::ImageLayout::eShaderReadOnlyOptimal: destinationStage = vk::PipelineStageFlagBits::eFragmentShader; break; case vk::ImageLayout::eTransferDstOptimal: case vk::ImageLayout::eTransferSrcOptimal: destinationStage = vk::PipelineStageFlagBits::eTransfer; break; default: assert(false); break; } vk::ImageAspectFlags aspectMask; if (newImageLayout == vk::ImageLayout::eDepthStencilAttachmentOptimal) { aspectMask = vk::ImageAspectFlagBits::eDepth; if (format == vk::Format::eD32SfloatS8Uint || format == vk::Format::eD24UnormS8Uint) { aspectMask |= vk::ImageAspectFlagBits::eStencil; } } else { aspectMask = vk::ImageAspectFlagBits::eColor; } vk::ImageSubresourceRange imageSubresourceRange(aspectMask, 0, 1, 0, 1); vk::ImageMemoryBarrier imageMemoryBarrier(sourceAccessMask, destinationAccessMask, oldImageLayout, newImageLayout, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, image, imageSubresourceRange); return commandBuffer->pipelineBarrier(sourceStage, destinationStage, {}, nullptr, nullptr, imageMemoryBarrier); } void submitAndWait(vk::UniqueDevice &device, vk::Queue queue, vk::UniqueCommandBuffer &commandBuffer) { vk::UniqueFence fence = device->createFenceUnique(vk::FenceCreateInfo()); vk::PipelineStageFlags pipelineStageFlags = vk::PipelineStageFlagBits::eColorAttachmentOutput; queue.submit(vk::SubmitInfo(0, nullptr, &pipelineStageFlags, 1, &commandBuffer.get()), fence.get()); while (vk::Result::eTimeout == device->waitForFences(fence.get(), VK_TRUE, vk::su::FenceTimeout)) ; } void updateDescriptorSets(vk::UniqueDevice const& device, vk::UniqueDescriptorSet const& descriptorSet, std::vector> const& bufferData, vk::su::TextureData const& textureData, uint32_t bindingOffset) { std::vector bufferInfos; bufferInfos.reserve(bufferData.size()); std::vector writeDescriptorSets; writeDescriptorSets.reserve(bufferData.size() + 1); uint32_t dstBinding = bindingOffset; for (auto const& bd : bufferData) { bufferInfos.push_back(vk::DescriptorBufferInfo(*std::get<1>(bd), 0, VK_WHOLE_SIZE)); writeDescriptorSets.push_back(vk::WriteDescriptorSet(*descriptorSet, dstBinding++, 0, 1, std::get<0>(bd), nullptr, &bufferInfos.back(), std::get<2>(bd) ? &*std::get<2>(bd) : nullptr)); } vk::DescriptorImageInfo imageInfo(*textureData.textureSampler, *textureData.imageData->imageView, vk::ImageLayout::eShaderReadOnlyOptimal); writeDescriptorSets.push_back(vk::WriteDescriptorSet(*descriptorSet, dstBinding, 0, 1, vk::DescriptorType::eCombinedImageSampler, &imageInfo, nullptr, nullptr)); device->updateDescriptorSets(writeDescriptorSets, nullptr); } void updateDescriptorSets(vk::UniqueDevice const& device, vk::UniqueDescriptorSet const& descriptorSet, std::vector> const& bufferData, std::vector const& textureData, uint32_t bindingOffset) { std::vector bufferInfos; bufferInfos.reserve(bufferData.size()); std::vector writeDescriptorSets; writeDescriptorSets.reserve(bufferData.size() + textureData.empty() ? 0 : 1); uint32_t dstBinding = bindingOffset; for (auto const& bd : bufferData) { bufferInfos.push_back(vk::DescriptorBufferInfo(*std::get<1>(bd), 0, VK_WHOLE_SIZE)); writeDescriptorSets.push_back(vk::WriteDescriptorSet(*descriptorSet, dstBinding++, 0, 1, std::get<0>(bd), nullptr, &bufferInfos.back(), std::get<2>(bd) ? &*std::get<2>(bd) : nullptr)); } std::vector imageInfos; if (!textureData.empty()) { imageInfos.reserve(textureData.size()); for (auto const& td : textureData) { imageInfos.push_back(vk::DescriptorImageInfo(*td.textureSampler, *td.imageData->imageView, vk::ImageLayout::eShaderReadOnlyOptimal)); } writeDescriptorSets.push_back(vk::WriteDescriptorSet(*descriptorSet, dstBinding, 0, checked_cast(imageInfos.size()), vk::DescriptorType::eCombinedImageSampler, imageInfos.data(), nullptr, nullptr)); } device->updateDescriptorSets(writeDescriptorSets, nullptr); } BufferData::BufferData(vk::PhysicalDevice const& physicalDevice, vk::UniqueDevice const& device, vk::DeviceSize size, vk::BufferUsageFlags usage, vk::MemoryPropertyFlags propertyFlags) #if !defined(NDEBUG) : m_size(size) , m_usage(usage) , m_propertyFlags(propertyFlags) #endif { buffer = device->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(), size, usage)); deviceMemory = vk::su::allocateMemory(device, physicalDevice.getMemoryProperties(), device->getBufferMemoryRequirements(buffer.get()), propertyFlags); device->bindBufferMemory(buffer.get(), deviceMemory.get(), 0); } DepthBufferData::DepthBufferData(vk::PhysicalDevice &physicalDevice, vk::UniqueDevice & device, vk::Format format, vk::Extent2D const& extent) : ImageData(physicalDevice, device, format, extent, vk::ImageTiling::eOptimal, vk::ImageUsageFlagBits::eDepthStencilAttachment, vk::ImageLayout::eUndefined, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::ImageAspectFlagBits::eDepth) { } ImageData::ImageData(vk::PhysicalDevice const& physicalDevice, vk::UniqueDevice const& device, vk::Format format_, vk::Extent2D const& extent, vk::ImageTiling tiling, vk::ImageUsageFlags usage, vk::ImageLayout initialLayout, vk::MemoryPropertyFlags memoryProperties, vk::ImageAspectFlags aspectMask) : format(format_) { vk::ImageCreateInfo imageCreateInfo(vk::ImageCreateFlags(), vk::ImageType::e2D, format, vk::Extent3D(extent, 1), 1, 1, vk::SampleCountFlagBits::e1, tiling, usage | vk::ImageUsageFlagBits::eSampled, vk::SharingMode::eExclusive, 0, nullptr, initialLayout); image = device->createImageUnique(imageCreateInfo); deviceMemory = vk::su::allocateMemory(device, physicalDevice.getMemoryProperties(), device->getImageMemoryRequirements(image.get()), memoryProperties); device->bindImageMemory(image.get(), deviceMemory.get(), 0); vk::ComponentMapping componentMapping(ComponentSwizzle::eR, ComponentSwizzle::eG, ComponentSwizzle::eB, ComponentSwizzle::eA); vk::ImageViewCreateInfo imageViewCreateInfo(vk::ImageViewCreateFlags(), image.get(), vk::ImageViewType::e2D, format, componentMapping, vk::ImageSubresourceRange(aspectMask, 0, 1, 0, 1)); imageView = device->createImageViewUnique(imageViewCreateInfo); } SurfaceData::SurfaceData(vk::UniqueInstance &instance, std::string const& className, std::string const& windowName, vk::Extent2D const& extent_) : extent(extent_) { #if defined(VK_USE_PLATFORM_WIN32_KHR) window = vk::su::initializeWindow(className.c_str(), windowName.c_str(), extent.width, extent.height); surface = instance->createWin32SurfaceKHRUnique(vk::Win32SurfaceCreateInfoKHR(vk::Win32SurfaceCreateFlagsKHR(), GetModuleHandle(nullptr), window)); #else #pragma error "unhandled platform" #endif } SwapChainData::SwapChainData(vk::PhysicalDevice const& physicalDevice, vk::UniqueDevice const& device, vk::SurfaceKHR const& surface, vk::Extent2D const& extent, vk::ImageUsageFlags usage, vk::UniqueSwapchainKHR const& oldSwapChain, uint32_t graphicsQueueFamilyIndex, uint32_t presentQueueFamilyIndex) { vk::SurfaceFormatKHR surfaceFormat = vk::su::pickSurfaceFormat(physicalDevice.getSurfaceFormatsKHR(surface)); colorFormat = surfaceFormat.format; vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface); VkExtent2D swapchainExtent; if (surfaceCapabilities.currentExtent.width == std::numeric_limits::max()) { // If the surface size is undefined, the size is set to the size of the images requested. swapchainExtent.width = clamp(extent.width, surfaceCapabilities.minImageExtent.width, surfaceCapabilities.maxImageExtent.width); swapchainExtent.height = clamp(extent.height, surfaceCapabilities.minImageExtent.height, surfaceCapabilities.maxImageExtent.height); } else { // If the surface size is defined, the swap chain size must match swapchainExtent = surfaceCapabilities.currentExtent; } vk::SurfaceTransformFlagBitsKHR preTransform = (surfaceCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity) ? vk::SurfaceTransformFlagBitsKHR::eIdentity : surfaceCapabilities.currentTransform; vk::CompositeAlphaFlagBitsKHR compositeAlpha = (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePreMultiplied) ? vk::CompositeAlphaFlagBitsKHR::ePreMultiplied : (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePostMultiplied) ? vk::CompositeAlphaFlagBitsKHR::ePostMultiplied : (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::eInherit) ? vk::CompositeAlphaFlagBitsKHR::eInherit : vk::CompositeAlphaFlagBitsKHR::eOpaque; vk::PresentModeKHR presentMode = vk::su::pickPresentMode(physicalDevice.getSurfacePresentModesKHR(surface)); vk::SwapchainCreateInfoKHR swapChainCreateInfo({}, surface, surfaceCapabilities.minImageCount, colorFormat, surfaceFormat.colorSpace, swapchainExtent, 1, usage, vk::SharingMode::eExclusive, 0, nullptr, preTransform, compositeAlpha, presentMode, true, *oldSwapChain); if (graphicsQueueFamilyIndex != presentQueueFamilyIndex) { uint32_t queueFamilyIndices[2] = { graphicsQueueFamilyIndex, presentQueueFamilyIndex }; // If the graphics and present queues are from different queue families, we either have to explicitly transfer ownership of images between // the queues, or we have to create the swapchain with imageSharingMode as vk::SharingMode::eConcurrent swapChainCreateInfo.imageSharingMode = vk::SharingMode::eConcurrent; swapChainCreateInfo.queueFamilyIndexCount = 2; swapChainCreateInfo.pQueueFamilyIndices = queueFamilyIndices; } swapChain = device->createSwapchainKHRUnique(swapChainCreateInfo); images = device->getSwapchainImagesKHR(swapChain.get()); imageViews.reserve(images.size()); vk::ComponentMapping componentMapping(vk::ComponentSwizzle::eR, vk::ComponentSwizzle::eG, vk::ComponentSwizzle::eB, vk::ComponentSwizzle::eA); vk::ImageSubresourceRange subResourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1); for (auto image : images) { vk::ImageViewCreateInfo imageViewCreateInfo(vk::ImageViewCreateFlags(), image, vk::ImageViewType::e2D, colorFormat, componentMapping, subResourceRange); imageViews.push_back(device->createImageViewUnique(imageViewCreateInfo)); } } CheckerboardImageGenerator::CheckerboardImageGenerator(std::array const& rgb0, std::array const& rgb1) : m_rgb0(rgb0) , m_rgb1(rgb1) {} void CheckerboardImageGenerator::operator()(void* data, vk::Extent2D &extent) const { // Checkerboard of 16x16 pixel squares uint8_t *pImageMemory = static_cast(data); for (uint32_t row = 0; row < extent.height; row++) { for (uint32_t col = 0; col < extent.width; col++) { std::array const& rgb = (((row & 0x10) == 0) ^ ((col & 0x10) == 0)) ? m_rgb1 : m_rgb0; pImageMemory[0] = rgb[0]; pImageMemory[1] = rgb[1]; pImageMemory[2] = rgb[2]; pImageMemory[3] = 255; pImageMemory += 4; } } } MonochromeImageGenerator::MonochromeImageGenerator(std::array const& rgb) : m_rgb(rgb) {} void MonochromeImageGenerator::operator()(void* data, vk::Extent2D &extent) const { // fill in with the monochrome color unsigned char *pImageMemory = static_cast(data); for (uint32_t row = 0; row < extent.height; row++) { for (uint32_t col = 0; col < extent.width; col++) { pImageMemory[0] = m_rgb[0]; pImageMemory[1] = m_rgb[1]; pImageMemory[2] = m_rgb[2]; pImageMemory[3] = 255; pImageMemory += 4; } } } PixelsImageGenerator::PixelsImageGenerator(vk::Extent2D const& extent, size_t channels, unsigned char const* pixels) : m_extent(extent) , m_channels(channels) , m_pixels(pixels) { assert(m_channels == 4); } void PixelsImageGenerator::operator()(void* data, vk::Extent2D & extent) const { assert(extent == m_extent); memcpy(data, m_pixels, m_extent.width * m_extent.height * m_channels); } TextureData::TextureData(vk::PhysicalDevice const& physicalDevice, vk::UniqueDevice const& device, vk::Extent2D const& extent_, vk::ImageUsageFlags usageFlags, vk::FormatFeatureFlags formatFeatureFlags, bool anisotropyEnable, bool forceStaging) : format(vk::Format::eR8G8B8A8Unorm) , extent(extent_) { vk::PhysicalDeviceMemoryProperties memoryProperties = physicalDevice.getMemoryProperties(); vk::FormatProperties formatProperties = physicalDevice.getFormatProperties(format); formatFeatureFlags |= vk::FormatFeatureFlagBits::eSampledImage; needsStaging = forceStaging || ((formatProperties.linearTilingFeatures & formatFeatureFlags) != formatFeatureFlags); vk::ImageTiling imageTiling; vk::ImageLayout initialLayout; vk::MemoryPropertyFlags requirements; if (needsStaging) { assert((formatProperties.optimalTilingFeatures & formatFeatureFlags) == formatFeatureFlags); stagingBufferData = std::make_unique(physicalDevice, device, extent.width * extent.height * 4, vk::BufferUsageFlagBits::eTransferSrc); imageTiling = vk::ImageTiling::eOptimal; usageFlags |= vk::ImageUsageFlagBits::eTransferDst; initialLayout = vk::ImageLayout::eUndefined; } else { imageTiling = vk::ImageTiling::eLinear; initialLayout = vk::ImageLayout::ePreinitialized; requirements = vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible; } imageData = std::make_unique(physicalDevice, device, format, extent, imageTiling, usageFlags | vk::ImageUsageFlagBits::eSampled, initialLayout, requirements, vk::ImageAspectFlagBits::eColor); textureSampler = device->createSamplerUnique(vk::SamplerCreateInfo(vk::SamplerCreateFlags(), vk::Filter::eLinear, vk::Filter::eLinear, vk::SamplerMipmapMode::eLinear, vk::SamplerAddressMode::eRepeat, vk::SamplerAddressMode::eRepeat, vk::SamplerAddressMode::eRepeat, 0.0f, anisotropyEnable, 16.0f, false, vk::CompareOp::eNever, 0.0f, 0.0f, vk::BorderColor::eFloatOpaqueBlack)); } UUID::UUID(uint8_t data[VK_UUID_SIZE]) { memcpy(m_data, data, VK_UUID_SIZE * sizeof(uint8_t)); } #if defined(VK_USE_PLATFORM_WIN32_KHR) LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CLOSE: PostQuitMessage(0); break; default: break; } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } HWND initializeWindow(std::string const& className, std::string const& windowName, LONG width, LONG height) { WNDCLASSEX windowClass; memset(&windowClass, 0, sizeof(WNDCLASSEX)); HINSTANCE instance = GetModuleHandle(nullptr); windowClass.cbSize = sizeof(WNDCLASSEX); windowClass.style = CS_HREDRAW | CS_VREDRAW; windowClass.lpfnWndProc = WindowProc; windowClass.hInstance = instance; windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION); windowClass.hCursor = LoadCursor(NULL, IDC_ARROW); windowClass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH); windowClass.lpszClassName = className.c_str(); windowClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO); if (!RegisterClassEx(&windowClass)) { throw std::runtime_error("Failed to register WNDCLASSEX -> terminating"); } RECT windowRect = { 0, 0, width, height }; AdjustWindowRect(&windowRect, WS_OVERLAPPEDWINDOW, FALSE); HWND window = CreateWindowEx(0, className.c_str(), windowName.c_str(), WS_OVERLAPPEDWINDOW | WS_VISIBLE | WS_SYSMENU, 100, 100, windowRect.right - windowRect.left, windowRect.bottom - windowRect.top, nullptr, nullptr, instance, nullptr); if (!window) { throw std::runtime_error("Failed to create window -> terminating"); } return window; } #else #pragma error "unhandled platform" #endif } } std::ostream& operator<<(std::ostream& os, vk::su::UUID const& uuid) { os << std::setfill('0') << std::hex; for (int j = 0; j < VK_UUID_SIZE; ++j) { os << std::setw(2) << static_cast(uuid.m_data[j]); if (j == 3 || j == 5 || j == 7 || j == 9) { std::cout << '-'; } } os << std::setfill(' ') << std::dec; return os; }