// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : SecondaryCommandBuffer // Draw several cubes using primary and secondary command buffers #include "../utils/geometries.hpp" #include "../utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "SPIRV/GlslangToSpv.h" #include "vulkan/vulkan.hpp" #include #include static char const * AppName = "SecondaryCommandBuffer"; static char const * EngineName = "Vulkan.hpp"; int main( int /*argc*/, char ** /*argv*/ ) { try { vk::UniqueInstance instance = vk::su::createInstance( AppName, EngineName, {}, vk::su::getInstanceExtensions() ); #if !defined( NDEBUG ) vk::UniqueDebugUtilsMessengerEXT debugUtilsMessenger = vk::su::createDebugUtilsMessenger( instance ); #endif vk::PhysicalDevice physicalDevice = instance->enumeratePhysicalDevices().front(); vk::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) ); std::pair graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, *surfaceData.surface ); vk::UniqueDevice device = vk::su::createDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() ); vk::UniqueCommandPool commandPool = vk::su::createCommandPool( device, graphicsAndPresentQueueFamilyIndex.first ); vk::UniqueCommandBuffer commandBuffer = std::move( device ->allocateCommandBuffersUnique( vk::CommandBufferAllocateInfo( commandPool.get(), vk::CommandBufferLevel::ePrimary, 1 ) ) .front() ); vk::Queue graphicsQueue = device->getQueue( graphicsAndPresentQueueFamilyIndex.first, 0 ); vk::Queue presentQueue = device->getQueue( graphicsAndPresentQueueFamilyIndex.second, 0 ); vk::su::SwapChainData swapChainData( physicalDevice, device, *surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc, vk::UniqueSwapchainKHR(), graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second ); vk::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent ); vk::su::BufferData uniformBufferData( physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer ); vk::su::copyToDevice( device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix( surfaceData.extent ) ); vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout( device, { { vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex }, { vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment } } ); vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique( vk::PipelineLayoutCreateInfo( vk::PipelineLayoutCreateFlags(), *descriptorSetLayout ) ); vk::UniqueRenderPass renderPass = vk::su::createRenderPass( device, vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface.get() ) ).format, depthBufferData.format, vk::AttachmentLoadOp::eClear, vk::ImageLayout::eColorAttachmentOptimal ); glslang::InitializeProcess(); vk::UniqueShaderModule vertexShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T ); vk::UniqueShaderModule fragmentShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C ); glslang::FinalizeProcess(); std::vector framebuffers = vk::su::createFramebuffers( device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent ); vk::su::BufferData vertexBufferData( physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer ); vk::su::copyToDevice( device, vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) ); vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique( vk::PipelineCacheCreateInfo() ); vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline( device, pipelineCache, std::make_pair( *vertexShaderModule, nullptr ), std::make_pair( *fragmentShaderModule, nullptr ), sizeof( texturedCubeData[0] ), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } }, vk::FrontFace::eClockwise, true, pipelineLayout, renderPass ); commandBuffer->begin( vk::CommandBufferBeginInfo() ); vk::su::TextureData greenTextureData( physicalDevice, device ); greenTextureData.setImage( device, commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) ); vk::su::TextureData checkeredTextureData( physicalDevice, device ); checkeredTextureData.setImage( device, commandBuffer, vk::su::CheckerboardImageGenerator() ); // create two identical descriptor sets, each with a different texture but identical UBOs vk::UniqueDescriptorPool descriptorPool = vk::su::createDescriptorPool( device, { { vk::DescriptorType::eUniformBuffer, 2 }, { vk::DescriptorType::eCombinedImageSampler, 2 } } ); std::array layouts = { descriptorSetLayout.get(), descriptorSetLayout.get() }; std::vector descriptorSets = device->allocateDescriptorSetsUnique( vk::DescriptorSetAllocateInfo( descriptorPool.get(), layouts ) ); assert( descriptorSets.size() == 2 ); vk::su::updateDescriptorSets( device, descriptorSets[0], { { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, {} } }, greenTextureData ); vk::su::updateDescriptorSets( device, descriptorSets[1], { { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, {} } }, checkeredTextureData ); /* VULKAN_KEY_START */ // create four secondary command buffers, for each quadrant of the screen std::vector secondaryCommandBuffers = device->allocateCommandBuffersUnique( vk::CommandBufferAllocateInfo( commandPool.get(), vk::CommandBufferLevel::eSecondary, 4 ) ); // Get the index of the next available swapchain image: vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique( vk::SemaphoreCreateInfo() ); vk::ResultValue currentBuffer = device->acquireNextImageKHR( swapChainData.swapChain.get(), vk::su::FenceTimeout, imageAcquiredSemaphore.get(), nullptr ); assert( currentBuffer.result == vk::Result::eSuccess ); assert( currentBuffer.value < framebuffers.size() ); vk::su::setImageLayout( commandBuffer, swapChainData.images[currentBuffer.value], swapChainData.colorFormat, vk::ImageLayout::eUndefined, vk::ImageLayout::eColorAttachmentOptimal ); const vk::DeviceSize offset = 0; vk::Viewport viewport( 0.0f, 0.0f, 200.0f, 200.0f, 0.0f, 1.0f ); vk::Rect2D scissor( vk::Offset2D( 0, 0 ), vk::Extent2D( surfaceData.extent ) ); // now we record four separate command buffers, one for each quadrant of the screen vk::CommandBufferInheritanceInfo commandBufferInheritanceInfo( renderPass.get(), 0, framebuffers[currentBuffer.value].get() ); vk::CommandBufferBeginInfo secondaryBeginInfo( vk::CommandBufferUsageFlagBits::eOneTimeSubmit | vk::CommandBufferUsageFlagBits::eRenderPassContinue, &commandBufferInheritanceInfo ); for ( int i = 0; i < 4; i++ ) { viewport.x = 25.0f + 250.0f * ( i % 2 ); viewport.y = 25.0f + 250.0f * ( i / 2 ); secondaryCommandBuffers[i]->begin( secondaryBeginInfo ); secondaryCommandBuffers[i]->bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline.get() ); secondaryCommandBuffers[i]->bindDescriptorSets( vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSets[i == 0 || i == 3].get(), nullptr ); secondaryCommandBuffers[i]->bindVertexBuffers( 0, vertexBufferData.buffer.get(), offset ); secondaryCommandBuffers[i]->setViewport( 0, viewport ); secondaryCommandBuffers[i]->setScissor( 0, scissor ); secondaryCommandBuffers[i]->draw( 12 * 3, 1, 0, 0 ); secondaryCommandBuffers[i]->end(); } std::array clearValues; clearValues[0].color = vk::ClearColorValue( std::array( { { 0.2f, 0.2f, 0.2f, 0.2f } } ) ); clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 ); vk::RenderPassBeginInfo renderPassBeginInfo( renderPass.get(), framebuffers[currentBuffer.value].get(), vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ), clearValues ); // specifying VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS means this render pass may ONLY call // vkCmdExecuteCommands commandBuffer->beginRenderPass( renderPassBeginInfo, vk::SubpassContents::eSecondaryCommandBuffers ); commandBuffer->executeCommands( vk::uniqueToRaw( secondaryCommandBuffers ) ); commandBuffer->endRenderPass(); vk::ImageMemoryBarrier prePresentBarrier( vk::AccessFlagBits::eColorAttachmentWrite, vk::AccessFlagBits::eMemoryRead, vk::ImageLayout::eColorAttachmentOptimal, vk::ImageLayout::ePresentSrcKHR, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, swapChainData.images[currentBuffer.value], vk::ImageSubresourceRange( vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 ) ); commandBuffer->pipelineBarrier( vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eBottomOfPipe, vk::DependencyFlags(), nullptr, nullptr, prePresentBarrier ); commandBuffer->end(); vk::UniqueFence drawFence = device->createFenceUnique( vk::FenceCreateInfo() ); vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput ); vk::SubmitInfo submitInfo( *imageAcquiredSemaphore, waitDestinationStageMask, *commandBuffer ); graphicsQueue.submit( submitInfo, drawFence.get() ); while ( vk::Result::eTimeout == device->waitForFences( drawFence.get(), VK_TRUE, vk::su::FenceTimeout ) ) ; vk::Result result = presentQueue.presentKHR( vk::PresentInfoKHR( {}, *swapChainData.swapChain, currentBuffer.value ) ); switch ( result ) { case vk::Result::eSuccess: break; case vk::Result::eSuboptimalKHR: std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n"; default: assert( false ); // an unexpected result is returned ! } std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) ); /* VULKAN_KEY_END */ device->waitIdle(); } catch ( vk::SystemError & err ) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit( -1 ); } catch ( std::exception & err ) { std::cout << "std::exception: " << err.what() << std::endl; exit( -1 ); } catch ( ... ) { std::cout << "unknown error\n"; exit( -1 ); } return 0; }