// Copyright(c) 2015-2016, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include "VulkanHppGenerator.hpp" const std::string vkNamespace = R"( #if !defined(VULKAN_HPP_NAMESPACE) #define VULKAN_HPP_NAMESPACE vk #endif #define VULKAN_HPP_STRINGIFY2(text) #text #define VULKAN_HPP_STRINGIFY(text) VULKAN_HPP_STRINGIFY2(text) #define VULKAN_HPP_NAMESPACE_STRING VULKAN_HPP_STRINGIFY(VULKAN_HPP_NAMESPACE) namespace VULKAN_HPP_NAMESPACE { )"; const std::string constExprHeader = R"( #if defined(_MSC_VER) && (_MSC_VER <= 1800) # define VULKAN_HPP_CONSTEXPR #else # define VULKAN_HPP_CONSTEXPR constexpr #endif )"; const std::string exceptionHeader = R"( #if defined(_MSC_VER) && (_MSC_VER == 1800) # define noexcept _NOEXCEPT #endif class ErrorCategoryImpl : public std::error_category { public: virtual const char* name() const noexcept override { return VULKAN_HPP_NAMESPACE_STRING"::Result"; } virtual std::string message(int ev) const override { return to_string(static_cast(ev)); } }; #if defined(_MSC_VER) && (_MSC_VER == 1800) # undef noexcept #endif VULKAN_HPP_INLINE const std::error_category& errorCategory() { static ErrorCategoryImpl instance; return instance; } VULKAN_HPP_INLINE std::error_code make_error_code(Result e) { return std::error_code(static_cast(e), errorCategory()); } VULKAN_HPP_INLINE std::error_condition make_error_condition(Result e) { return std::error_condition(static_cast(e), errorCategory()); } )"; const std::string exceptionClassesHeader = R"( #if defined(_MSC_VER) && (_MSC_VER == 1800) # define noexcept _NOEXCEPT #endif class Error { public: virtual ~Error() = default; virtual const char* what() const noexcept = 0; }; class LogicError : public Error, public std::logic_error { public: explicit LogicError( const std::string& what ) : Error(), std::logic_error(what) {} explicit LogicError( char const * what ) : Error(), std::logic_error(what) {} virtual ~LogicError() = default; virtual const char* what() const noexcept { return std::logic_error::what(); } }; class SystemError : public Error, public std::system_error { public: SystemError( std::error_code ec ) : Error(), std::system_error(ec) {} SystemError( std::error_code ec, std::string const& what ) : Error(), std::system_error(ec, what) {} SystemError( std::error_code ec, char const * what ) : Error(), std::system_error(ec, what) {} SystemError( int ev, std::error_category const& ecat ) : Error(), std::system_error(ev, ecat) {} SystemError( int ev, std::error_category const& ecat, std::string const& what) : Error(), std::system_error(ev, ecat, what) {} SystemError( int ev, std::error_category const& ecat, char const * what) : Error(), std::system_error(ev, ecat, what) {} virtual ~SystemError() = default; virtual const char* what() const noexcept { return std::system_error::what(); } }; #if defined(_MSC_VER) && (_MSC_VER == 1800) # undef noexcept #endif )"; const std::string flagsHeader = R"( template struct FlagTraits { enum { allFlags = 0 }; }; template class Flags { public: VULKAN_HPP_CONSTEXPR Flags() : m_mask(0) { } Flags(BitType bit) : m_mask(static_cast(bit)) { } Flags(Flags const& rhs) : m_mask(rhs.m_mask) { } explicit Flags(MaskType flags) : m_mask(flags) { } Flags & operator=(Flags const& rhs) { m_mask = rhs.m_mask; return *this; } Flags & operator|=(Flags const& rhs) { m_mask |= rhs.m_mask; return *this; } Flags & operator&=(Flags const& rhs) { m_mask &= rhs.m_mask; return *this; } Flags & operator^=(Flags const& rhs) { m_mask ^= rhs.m_mask; return *this; } Flags operator|(Flags const& rhs) const { Flags result(*this); result |= rhs; return result; } Flags operator&(Flags const& rhs) const { Flags result(*this); result &= rhs; return result; } Flags operator^(Flags const& rhs) const { Flags result(*this); result ^= rhs; return result; } bool operator!() const { return !m_mask; } Flags operator~() const { Flags result(*this); result.m_mask ^= FlagTraits::allFlags; return result; } bool operator==(Flags const& rhs) const { return m_mask == rhs.m_mask; } bool operator!=(Flags const& rhs) const { return m_mask != rhs.m_mask; } explicit operator bool() const { return !!m_mask; } explicit operator MaskType() const { return m_mask; } private: MaskType m_mask; }; template Flags operator|(BitType bit, Flags const& flags) { return flags | bit; } template Flags operator&(BitType bit, Flags const& flags) { return flags & bit; } template Flags operator^(BitType bit, Flags const& flags) { return flags ^ bit; } )"; const std::string optionalClassHeader = R"( template class Optional { public: Optional(RefType & reference) { m_ptr = &reference; } Optional(RefType * ptr) { m_ptr = ptr; } Optional(std::nullptr_t) { m_ptr = nullptr; } operator RefType*() const { return m_ptr; } RefType const* operator->() const { return m_ptr; } explicit operator bool() const { return !!m_ptr; } private: RefType *m_ptr; }; )"; const std::string arrayProxyHeader = R"( #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE template class ArrayProxy { public: VULKAN_HPP_CONSTEXPR ArrayProxy(std::nullptr_t) : m_count(0) , m_ptr(nullptr) {} ArrayProxy(T & ptr) : m_count(1) , m_ptr(&ptr) {} ArrayProxy(uint32_t count, T * ptr) : m_count(count) , m_ptr(ptr) {} template ArrayProxy(std::array::type, N> & data) : m_count(N) , m_ptr(data.data()) {} template ArrayProxy(std::array::type, N> const& data) : m_count(N) , m_ptr(data.data()) {} template ::type>> ArrayProxy(std::vector::type, Allocator> & data) : m_count(static_cast(data.size())) , m_ptr(data.data()) {} template ::type>> ArrayProxy(std::vector::type, Allocator> const& data) : m_count(static_cast(data.size())) , m_ptr(data.data()) {} ArrayProxy(std::initializer_list const& data) : m_count(static_cast(data.end() - data.begin())) , m_ptr(data.begin()) {} const T * begin() const { return m_ptr; } const T * end() const { return m_ptr + m_count; } const T & front() const { VULKAN_HPP_ASSERT(m_count && m_ptr); return *m_ptr; } const T & back() const { VULKAN_HPP_ASSERT(m_count && m_ptr); return *(m_ptr + m_count - 1); } bool empty() const { return (m_count == 0); } uint32_t size() const { return m_count; } T * data() const { return m_ptr; } private: uint32_t m_count; T * m_ptr; }; #endif )"; const std::string structureChainHeader = R"( template struct isStructureChainValid { enum { value = false }; }; template class StructureChainElement { public: explicit operator Element&() { return value; } explicit operator const Element&() const { return value; } private: Element value; }; template class StructureChain : private StructureChainElement... { public: StructureChain() { link(); } StructureChain(StructureChain const &rhs) { linkAndCopy(rhs); } StructureChain(StructureElements const &... elems) { linkAndCopyElements(elems...); } StructureChain& operator=(StructureChain const &rhs) { linkAndCopy(rhs); return *this; } template ClassType& get() { return static_cast(*this);} private: template void link() { } template void link() { static_assert(isStructureChainValid::value, "The structure chain is not valid!"); X& x = static_cast(*this); Y& y = static_cast(*this); x.pNext = &y; link(); } template void linkAndCopy(StructureChain const &rhs) { static_cast(*this) = static_cast(rhs); } template void linkAndCopy(StructureChain const &rhs) { static_assert(isStructureChainValid::value, "The structure chain is not valid!"); X& x = static_cast(*this); Y& y = static_cast(*this); x = static_cast(rhs); x.pNext = &y; linkAndCopy(rhs); } template void linkAndCopyElements(X const &xelem) { static_cast(*this) = xelem; } template void linkAndCopyElements(X const &xelem, Y const &yelem, Z const &... zelem) { static_assert(isStructureChainValid::value, "The structure chain is not valid!"); X& x = static_cast(*this); Y& y = static_cast(*this); x = xelem; x.pNext = &y; linkAndCopyElements(yelem, zelem...); } }; )"; const std::string versionCheckHeader = R"( #if !defined(VULKAN_HPP_HAS_UNRESTRICTED_UNIONS) # if defined(__clang__) # if __has_feature(cxx_unrestricted_unions) # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # elif defined(__GNUC__) # define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) # if 40600 <= GCC_VERSION # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # elif defined(_MSC_VER) # if 1900 <= _MSC_VER # define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS # endif # endif #endif )"; const std::string inlineHeader = R"( #if !defined(VULKAN_HPP_INLINE) # if defined(__clang___) # if __has_attribute(always_inline) # define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__ # else # define VULKAN_HPP_INLINE inline # endif # elif defined(__GNUC__) # define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__ # elif defined(_MSC_VER) # define VULKAN_HPP_INLINE __forceinline # else # define VULKAN_HPP_INLINE inline # endif #endif )"; const std::string explicitHeader = R"( #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) # define VULKAN_HPP_TYPESAFE_EXPLICIT #else # define VULKAN_HPP_TYPESAFE_EXPLICIT explicit #endif )"; const std::string resultValueHeader = R"( template struct ResultValue { ResultValue( Result r, T & v ) : result( r ) , value( v ) {} ResultValue( Result r, T && v ) : result( r ) , value( std::move( v ) ) {} Result result; T value; operator std::tuple() { return std::tuple(result, value); } }; template struct ResultValueType { #ifdef VULKAN_HPP_NO_EXCEPTIONS typedef ResultValue type; #else typedef T type; #endif }; template <> struct ResultValueType { #ifdef VULKAN_HPP_NO_EXCEPTIONS typedef Result type; #else typedef void type; #endif }; )"; const std::string createResultValueHeader = R"( VULKAN_HPP_INLINE ResultValueType::type createResultValue( Result result, char const * message ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS VULKAN_HPP_ASSERT( result == Result::eSuccess ); return result; #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } #endif } template VULKAN_HPP_INLINE typename ResultValueType::type createResultValue( Result result, T & data, char const * message ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS VULKAN_HPP_ASSERT( result == Result::eSuccess ); return ResultValue( result, data ); #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } return std::move( data ); #endif } VULKAN_HPP_INLINE Result createResultValue( Result result, char const * message, std::initializer_list successCodes ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS VULKAN_HPP_ASSERT( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() ); #else if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() ) { throwResultException( result, message ); } #endif return result; } template VULKAN_HPP_INLINE ResultValue createResultValue( Result result, T & data, char const * message, std::initializer_list successCodes ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS VULKAN_HPP_ASSERT( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() ); #else if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() ) { throwResultException( result, message ); } #endif return ResultValue( result, data ); } #ifndef VULKAN_HPP_NO_SMART_HANDLE template VULKAN_HPP_INLINE typename ResultValueType>::type createResultValue( Result result, T & data, char const * message, typename UniqueHandleTraits::deleter const& deleter ) { #ifdef VULKAN_HPP_NO_EXCEPTIONS VULKAN_HPP_ASSERT( result == Result::eSuccess ); return ResultValue>( result, UniqueHandle(data, deleter) ); #else if ( result != Result::eSuccess ) { throwResultException( result, message ); } return UniqueHandle(data, deleter); #endif } #endif )"; const std::string uniqueHandleHeader = R"( #ifndef VULKAN_HPP_NO_SMART_HANDLE template class UniqueHandleTraits; template class UniqueHandle : public UniqueHandleTraits::deleter { private: using Deleter = typename UniqueHandleTraits::deleter; public: explicit UniqueHandle( Type const& value = Type(), Deleter const& deleter = Deleter() ) : Deleter( deleter) , m_value( value ) {} UniqueHandle( UniqueHandle const& ) = delete; UniqueHandle( UniqueHandle && other ) : Deleter( std::move( static_cast( other ) ) ) , m_value( other.release() ) {} ~UniqueHandle() { if ( m_value ) this->destroy( m_value ); } UniqueHandle & operator=( UniqueHandle const& ) = delete; UniqueHandle & operator=( UniqueHandle && other ) { reset( other.release() ); *static_cast(this) = std::move( static_cast(other) ); return *this; } explicit operator bool() const { return m_value.operator bool(); } Type const* operator->() const { return &m_value; } Type * operator->() { return &m_value; } Type const& operator*() const { return m_value; } Type & operator*() { return m_value; } const Type & get() const { return m_value; } Type & get() { return m_value; } void reset( Type const& value = Type() ) { if ( m_value != value ) { if ( m_value ) this->destroy( m_value ); m_value = value; } } Type release() { Type value = m_value; m_value = nullptr; return value; } void swap( UniqueHandle & rhs ) { std::swap(m_value, rhs.m_value); std::swap(static_cast(*this), static_cast(rhs)); } private: Type m_value; }; template VULKAN_HPP_INLINE void swap( UniqueHandle & lhs, UniqueHandle & rhs ) { lhs.swap( rhs ); } #endif )"; const std::string deleterClassString = R"( struct AllocationCallbacks; template class ObjectDestroy { public: ObjectDestroy(OwnerType owner = OwnerType(), Optional allocator = nullptr) : m_owner(owner) , m_allocator(allocator) {} OwnerType getOwner() const { return m_owner; } Optional getAllocator() const { return m_allocator; } protected: template void destroy(T t) { m_owner.destroy(t, m_allocator); } private: OwnerType m_owner; Optional m_allocator; }; class NoParent; template <> class ObjectDestroy { public: ObjectDestroy( Optional allocator = nullptr ) : m_allocator( allocator ) {} Optional getAllocator() const { return m_allocator; } protected: template void destroy(T t) { t.destroy( m_allocator ); } private: Optional m_allocator; }; template class ObjectFree { public: ObjectFree(OwnerType owner = OwnerType(), Optional allocator = nullptr) : m_owner(owner) , m_allocator(allocator) {} OwnerType getOwner() const { return m_owner; } Optional getAllocator() const { return m_allocator; } protected: template void destroy(T t) { m_owner.free(t, m_allocator); } private: OwnerType m_owner; Optional m_allocator; }; template class PoolFree { public: PoolFree(OwnerType owner = OwnerType(), PoolType pool = PoolType()) : m_owner(owner) , m_pool(pool) {} OwnerType getOwner() const { return m_owner; } PoolType getPool() const { return m_pool; } protected: template void destroy(T t) { m_owner.free(m_pool, t); } private: OwnerType m_owner; PoolType m_pool; }; )"; std::string replaceWithMap(std::string const &input, std::map replacements) { // This will match ${someVariable} and contain someVariable in match group 1 std::regex re(R"(\$\{([^\}]+)\})"); auto it = std::sregex_iterator(input.begin(), input.end(), re); auto end = std::sregex_iterator(); // No match, just return the original string if (it == end) { return input; } std::string result = ""; while (it != end) { std::smatch match = *it; auto itReplacement = replacements.find(match[1].str()); assert(itReplacement != replacements.end()); result += match.prefix().str() + ((itReplacement != replacements.end()) ? itReplacement->second : match[0].str()); ++it; // we've passed the last match. Append the rest of the orignal string if (it == end) { result += match.suffix().str(); } } return result; } bool beginsWith(std::string const& text, std::string const& prefix); void checkAttributes(std::map const& attributes, int line, std::map> const& required, std::map> const& optional); void checkElements(std::vector const& elements, std::set const& values); void checkEmptyElement(tinyxml2::XMLElement const* element); void checkOrderedElements(std::vector const& elements, std::vector const& values); std::string createEnumValueName(std::string const& name, std::string const& prefix, std::string const& postfix, bool bitmask, std::string const& tag); bool endsWith(std::string const& text, std::string const& postfix); void enterProtect(std::ostream &os, std::string const& protect); std::string extractTag(std::string const& name); std::string findTag(std::string const& name, std::set const& tags); std::string generateEnumNameForFlags(std::string const& name); std::map getAttributes(tinyxml2::XMLElement const* element); std::vector getChildElements(tinyxml2::XMLElement const* element); bool isErrorEnum(std::string const& enumName); void leaveProtect(std::ostream &os, std::string const& protect); std::string readArraySize(tinyxml2::XMLNode const* node, std::string& name); std::string startUpperCase(std::string const& input); std::string startLowerCase(std::string const& input); std::string strip(std::string const& value, std::string const& prefix, std::string const& postfix = std::string()); std::string stripErrorEnumPrefix(std::string const& enumName); std::string stripPluralS(std::string const& name); std::vector tokenize(std::string tokenString, char separator); std::string trim(std::string const& input); std::string trimEnd(std::string const& input); std::string toCamelCase(std::string const& value); std::string toUpperCase(std::string const& name); void writeFunctionHeaderName(std::ostream & os, std::string const& name, bool singular, bool unique); void writeReinterpretCast(std::ostream & os, bool leadingConst, bool vulkanType, std::string const& type, bool trailingPointerToConst); void writeStandardOrEnhanced(std::ostream & os, std::string const& standard, std::string const& enhanced); void writeTypesafeCheck(std::ostream & os, std::string const& typesafeCheck); void writeVersionCheck(std::ostream & os, std::string const& version); #if !defined(NDEBUG) void skipFeatureRequire(tinyxml2::XMLElement const* element); void skipImplicitExternSyncParams(tinyxml2::XMLElement const* element); void skipTypeEnum(tinyxml2::XMLElement const* element, std::map const& attributes); void skipTypeInclude(tinyxml2::XMLElement const* element, std::map const& attributes); #endif bool beginsWith(std::string const& text, std::string const& prefix) { return !prefix.empty() && text.substr(0, prefix.length()) == prefix; } // check the validity of an attributes map // attributes : the map of name/value pairs of the encountered attributes // line : the line in the xml file where the attributes are listed // required : the required attributes, with a set of allowed values per attribute // optional : the optional attributes, with a set of allowed values per attribute void checkAttributes(std::map const& attributes, int line, std::map> const& required, std::map> const& optional) { std::stringstream ss; ss << line; std::string lineNumber = ss.str(); // check if all required attributes are included and if there is a set of allowed values, check if the actual value is part of that set for (auto const& r : required) { auto attributesIt = attributes.find(r.first); if (attributesIt == attributes.end()) { assert(false); throw std::runtime_error("Spec error on line " + lineNumber + ": missing attribute <" + r.first + ">"); } if (!r.second.empty() && (r.second.find(attributesIt->second) == r.second.end())) { assert(false); throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected attribute value <" + attributesIt->second + "> in attribute <" + r.first + ">"); } } // check if all not required attributes or optional, and if there is a set of allowed values, check if the actual value is part of that set for (auto const& a : attributes) { if (required.find(a.first) == required.end()) { auto optionalIt = optional.find(a.first); if (optionalIt == optional.end()) { assert(false); throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected attribute <" + a.first + ">"); } if (!optionalIt->second.empty()) { std::vector values = tokenize(a.second, ','); for (auto const& v : values) { if (optionalIt->second.find(v) == optionalIt->second.end()) { assert(false); throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected attribute value <" + v + "> in attribute <" + a.first + ">"); } } } } } } void checkElements(std::vector const& elements, std::set const& values) { for (auto e : elements) { if (values.find(e->Value()) == values.end()) { std::stringstream ss; ss << e->GetLineNum(); std::string lineNumber = ss.str(); std::cerr << "Unknown element in spec on line: " << lineNumber << " " << e->Value() << std::endl; } } } void checkEmptyElement(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); checkElements(getChildElements(element), {}); } void checkOrderedElements(std::vector const& elements, std::vector const& values) { for (size_t i = 0; i < elements.size(); i++) { std::stringstream ss; ss << elements[i]->GetLineNum(); std::string lineNumber = ss.str(); if (values.size() <= i) { assert(false); throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected surplus element <" + elements[i]->Value() + ">"); } if (values[i] != elements[i]->Value()) { assert(false); throw std::runtime_error("Spec error on line " + lineNumber + ": unexpected element <" + elements[i]->Value() + ">, expected <" + values[i] + ">"); } } } std::string createEnumValueName(std::string const& name, std::string const& prefix, std::string const& postfix, bool bitmask, std::string const& tag) { std::string result = "e" + toCamelCase(strip(name, prefix, postfix)); if (bitmask) { size_t pos = result.find("Bit"); if (pos != std::string::npos) { result.erase(pos, 3); } } if (!tag.empty() && (result.substr(result.length() - tag.length()) == toCamelCase(tag))) { result = result.substr(0, result.length() - tag.length()) + tag; } return result; } bool endsWith(std::string const& text, std::string const& postfix) { return !postfix.empty() && (postfix.length() < text.length()) && (text.substr(text.length() - postfix.length()) == postfix); } void enterProtect(std::ostream &os, std::string const& protect) { if (!protect.empty()) { os << "#ifdef " << protect << std::endl; } } std::string extractTag(std::string const& name) { // the name is supposed to look like: VK__ size_t start = name.find('_'); assert((start != std::string::npos) && (name.substr(0, start) == "VK")); size_t end = name.find('_', start + 1); assert(end != std::string::npos); return name.substr(start + 1, end - start - 1); } std::string findTag(std::string const& name, std::set const& tags) { // find the tag in a name, return that tag or an empty string auto tagIt = std::find_if(tags.begin(), tags.end(), [&name](std::string const& t) { size_t pos = name.find(t); return (pos != std::string::npos) && (pos == name.length() - t.length()); }); return tagIt != tags.end() ? *tagIt : ""; } std::string generateEnumNameForFlags(std::string const& name) { // create a string, where the substring "Flags" is replaced by "FlagBits" std::string generatedName = name; size_t pos = generatedName.rfind("Flags"); assert(pos != std::string::npos); generatedName.replace(pos, 5, "FlagBits"); return generatedName; } std::map getAttributes(tinyxml2::XMLElement const* element) { std::map attributes; for (auto attribute = element->FirstAttribute(); attribute; attribute = attribute->Next()) { assert(attributes.find(attribute->Name()) == attributes.end()); attributes[attribute->Name()] = attribute->Value(); } return attributes; } std::vector getChildElements(tinyxml2::XMLElement const* element) { std::vector childElements; for (tinyxml2::XMLElement const* childElement = element->FirstChildElement(); childElement; childElement = childElement->NextSiblingElement()) { childElements.push_back(childElement); } return childElements; } bool isErrorEnum(std::string const& enumName) { return (enumName.substr(0, 6) == "eError"); } void leaveProtect(std::ostream &os, std::string const& protect) { if (!protect.empty()) { os << "#endif /*" << protect << "*/" << std::endl; } } std::string readArraySize(tinyxml2::XMLNode const* node, std::string& name) { std::string arraySize; if (name.back() == ']') { // if the parameter has '[' and ']' in its name, get the stuff inbetween those as the array size and erase that part from the parameter name assert(!node->NextSibling()); size_t pos = name.find('['); assert(pos != std::string::npos); arraySize = name.substr(pos + 1, name.length() - 2 - pos); name.erase(pos); } else { // otherwise look for a sibling of this node node = node->NextSibling(); if (node && node->ToText()) { assert(node->Value()); std::string value = trimEnd(node->Value()); if (value == "[") { // if this node has '[' as its value, the next node holds the array size, and the node after that needs to hold ']', and there should be no more siblings node = node->NextSibling(); assert(node && node->ToElement() && (strcmp(node->Value(), "enum") == 0)); arraySize = node->ToElement()->GetText(); node = node->NextSibling(); assert(node && node->ToText() && (trimEnd(node->Value()) == "]")); } else { // otherwise, the node holds '[' and ']', so get the stuff in between those as the array size assert((value.front() == '[') && (value.back() == ']')); arraySize = value.substr(1, value.length() - 2); } assert(!node->NextSibling() || ((strcmp(node->NextSibling()->Value(), "comment") == 0) && !node->NextSibling()->NextSibling())); } } return arraySize; } std::string startUpperCase(std::string const& input) { return static_cast(toupper(input[0])) + input.substr(1); } std::string startLowerCase(std::string const& input) { return input.empty() ? "" : static_cast(tolower(input[0])) + input.substr(1); } std::string strip(std::string const& value, std::string const& prefix, std::string const& postfix) { std::string strippedValue = value; if (beginsWith(strippedValue, prefix)) { strippedValue.erase(0, prefix.length()); } if (endsWith(strippedValue, postfix)) { strippedValue.erase(strippedValue.length() - postfix.length()); } return strippedValue; } std::string stripErrorEnumPrefix(std::string const& enumName) { assert(isErrorEnum(enumName)); return strip(enumName, "eError"); } std::string stripPluralS(std::string const& name) { std::string strippedName(name); size_t pos = strippedName.rfind('s'); assert(pos != std::string::npos); strippedName.erase(pos, 1); return strippedName; } std::vector tokenize(std::string tokenString, char separator) { std::vector tokens; size_t start = 0, end; do { end = tokenString.find(separator, start); tokens.push_back(tokenString.substr(start, end - start)); start = end + 1; } while (end != std::string::npos); return tokens; } std::string trim(std::string const& input) { std::string result = input; result.erase(result.begin(), std::find_if(result.begin(), result.end(), [](char c) { return !std::isspace(c); })); result.erase(std::find_if(result.rbegin(), result.rend(), [](char c) { return !std::isspace(c); }).base(), result.end()); return result; } std::string trimEnd(std::string const& input) { std::string result = input; result.erase(std::find_if(result.rbegin(), result.rend(), [](char c) { return !std::isspace(c); }).base(), result.end()); return result; } std::string toCamelCase(std::string const& value) { assert(!value.empty() && (isupper(value[0]) || isdigit(value[0]))); std::string result; result.reserve(value.size()); result.push_back(value[0]); for (size_t i = 1; i < value.size(); i++) { if (value[i] != '_') { if ((value[i - 1] == '_') || isdigit(value[i - 1])) { result.push_back(value[i]); } else { result.push_back(tolower(value[i])); } } } return result; } std::string toUpperCase(std::string const& name) { std::string convertedName; for (size_t i = 0; i"; } void writeStandardOrEnhanced(std::ostream & os, std::string const& standard, std::string const& enhanced) { if (standard == enhanced) { // standard and enhanced string are equal -> just use one of them and we're done os << standard; } else { // standard and enhanced string differ -> use both, wrapping the enhanced by !VULKAN_HPP_DISABLE_ENHANCED_MODE // determine the argument list of that standard, and compare it with that of the enhanced // if they are equal -> need to have just one; if they differ -> need to have both size_t standardStart = standard.find('('); size_t standardCount = standard.find(')', standardStart) - standardStart; size_t enhancedStart = enhanced.find('('); bool unchangedInterface = (standard.substr(standardStart, standardCount) == enhanced.substr(enhancedStart, standardCount)); if (unchangedInterface) { os << "#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE" << std::endl; } os << standard << (unchangedInterface ? "#else" : "#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE") << std::endl << enhanced << "#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/" << std::endl; } } void writeTypesafeCheck(std::ostream & os, std::string const& typesafeCheck) { os << "// 32-bit vulkan is not typesafe for handles, so don't allow copy constructors on this platform by default." << std::endl << "// To enable this feature on 32-bit platforms please define VULKAN_HPP_TYPESAFE_CONVERSION" << std::endl << typesafeCheck << std::endl << "# if !defined( VULKAN_HPP_TYPESAFE_CONVERSION )" << std::endl << "# define VULKAN_HPP_TYPESAFE_CONVERSION" << std::endl << "# endif" << std::endl << "#endif" << std::endl; } void writeVersionCheck(std::ostream & os, std::string const& version) { os << "static_assert( VK_HEADER_VERSION == " << version << " , \"Wrong VK_HEADER_VERSION!\" );" << std::endl << std::endl; } #if !defined(NDEBUG) void skipFeatureRequire(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "name",{} } }); checkElements(getChildElements(element), {}); } void skipImplicitExternSyncParams(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); std::vector children = getChildElements(element); checkOrderedElements(children, { "param" }); checkEmptyElement(children[0]); } void skipTypeEnum(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "enum" } } }, { { "alias", {} }, { "name",{} } }); checkElements(getChildElements(element), {}); } void skipTypeInclude(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(getAttributes(element), element->GetLineNum(), { { "category",{ "include" } } }, { { "name",{} } }); std::vector children = getChildElements(element); checkElements(children, { "name" }); for (auto child : children) { checkEmptyElement(child); } } #endif template void VulkanHppGenerator::checkAlias(std::map const& data, std::string const& name, int line) { if (data.find(name) == data.end()) { std::stringstream ss; ss << line; std::string lineNumber = ss.str(); assert(false); throw std::runtime_error("Spec error on line " + lineNumber + ": missing alias <" + name + ">"); } } bool VulkanHppGenerator::containsUnion(std::string const& type, std::map const& structs) { // a simple recursive check if a type is or contains a union std::map::const_iterator sit = structs.find(type); bool found = (sit != structs.end()); if (found) { found = sit->second.isUnion; for (std::vector::const_iterator mit = sit->second.members.begin(); mit != sit->second.members.end() && !found; ++mit) { found = (mit->type == mit->pureType) && containsUnion(mit->type, structs); } } return found; } std::map VulkanHppGenerator::createDefaults() { std::map defaultValues; for (auto dependency : m_dependencies) { assert(defaultValues.find(dependency.name) == defaultValues.end()); switch (dependency.category) { case DependencyData::Category::BITMASK: case DependencyData::Category::HANDLE: case DependencyData::Category::STRUCT: case DependencyData::Category::UNION: // just call the default constructor for bitmasks, handles, structs, and unions (which are mapped to classes) defaultValues[dependency.name] = dependency.name + "()"; break; case DependencyData::Category::COMMAND: // commands should never be asked for defaults break; case DependencyData::Category::ENUM: assert(m_enums.find(dependency.name) != m_enums.end()); setDefault(dependency.name, defaultValues, m_enums.find(dependency.name)->second); break; case DependencyData::Category::FUNC_POINTER: // func_pointers default to nullptr defaultValues[dependency.name] = "nullptr"; break; case DependencyData::Category::REQUIRED: // all required default to "0" case DependencyData::Category::SCALAR: // all scalars default to "0" defaultValues[dependency.name] = "0"; break; default: assert(false); break; } } return defaultValues; } void VulkanHppGenerator::determineEnhancedReturnType(CommandData & commandData) { std::string returnType; // if there is a return parameter of type void or Result, and if it's of type Result it either has just one success code // or two success codes, where the second one is of type eIncomplete and it's a two-step process // -> we can return that parameter if ((commandData.returnParam != ~0) && ((commandData.returnType == "void") || ((commandData.returnType == "Result") && ((commandData.successCodes.size() == 1) || ((commandData.successCodes.size() == 2) && (commandData.successCodes[1] == "eIncomplete") && commandData.twoStep))))) { if (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end()) { // the return parameter is a vector-type parameter if (commandData.params[commandData.returnParam].pureType == "void") { // for a vector of void, we use a vector of uint8_t, instead commandData.enhancedReturnType = "std::vector"; } else { // for the other parameters, we use a vector of the pure type commandData.enhancedReturnType = "std::vector<" + commandData.params[commandData.returnParam].pureType + ",Allocator>"; } } else { // it's a simple parameter -> get the type and just remove the trailing '*' (originally, it's a pointer) assert(commandData.params[commandData.returnParam].type.back() == '*'); assert(commandData.params[commandData.returnParam].type.find("const") == std::string::npos); commandData.enhancedReturnType = commandData.params[commandData.returnParam].type; commandData.enhancedReturnType.pop_back(); } } else if ((commandData.returnType == "Result") && (commandData.successCodes.size() == 1)) { // an original return of type "Result" with just one successCode is changed to void, errors throw an exception commandData.enhancedReturnType = "void"; } else { // the return type just stays the original return type commandData.enhancedReturnType = commandData.returnType; } } void VulkanHppGenerator::determineReducedName(CommandData & commandData) { commandData.reducedName = commandData.fullName; std::string searchName = commandData.params[0].pureType; size_t pos = commandData.fullName.find(searchName); if ((pos == std::string::npos) && isupper(searchName[0])) { searchName[0] = tolower(searchName[0]); pos = commandData.fullName.find(searchName); } if (pos != std::string::npos) { commandData.reducedName.erase(pos, searchName.length()); } else if ((searchName == "commandBuffer") && (commandData.fullName.find("cmd") == 0)) { commandData.reducedName.erase(0, 3); pos = 0; } if ((pos == 0) && isupper(commandData.reducedName[0])) { commandData.reducedName[0] = tolower(commandData.reducedName[0]); } } void VulkanHppGenerator::determineReturnParam(CommandData & commandData) { // for return types of type Result or void, we can replace determine a parameter to return if ((commandData.returnType == "Result") || (commandData.returnType == "void")) { for (size_t i = 0; i < commandData.params.size(); i++) { if ((commandData.params[i].type.find('*') != std::string::npos) && (commandData.params[i].type.find("const") == std::string::npos) && std::find_if(commandData.vectorParams.begin(), commandData.vectorParams.end(), [i](std::pair const& vp) { return vp.second == i; }) == commandData.vectorParams.end() && ((commandData.vectorParams.find(i) == commandData.vectorParams.end()) || commandData.twoStep || (commandData.successCodes.size() == 1))) { // it's a non-const pointer, not a vector-size parameter, if it's a vector parameter, its a two-step process or there's just one success code // -> look for another non-cost pointer argument auto paramIt = std::find_if(commandData.params.begin() + i + 1, commandData.params.end(), [](ParamData const& pd) { return (pd.type.find('*') != std::string::npos) && (pd.type.find("const") == std::string::npos); }); // if there is another such argument, we can't decide which one to return -> return none (~0) // otherwise return the index of the selcted parameter commandData.returnParam = paramIt != commandData.params.end() ? ~0 : i; } } } } void VulkanHppGenerator::determineSkippedParams(CommandData & commandData) { // the size-parameters of vector parameters are not explicitly used in the enhanced API std::for_each(commandData.vectorParams.begin(), commandData.vectorParams.end(), [&commandData](std::pair const& vp) { if (vp.second != ~0) commandData.skippedParams.insert(vp.second); }); // and the return parameter is also skipped if (commandData.returnParam != ~0) { commandData.skippedParams.insert(commandData.returnParam); } } void VulkanHppGenerator::determineTemplateParam(CommandData & commandData) { for (size_t i = 0; i < commandData.params.size(); i++) { // any vector parameter on the pure type void is templatized in the enhanced API if ((commandData.vectorParams.find(i) != commandData.vectorParams.end()) && (commandData.params[i].pureType == "void")) { #if !defined(NDEBUG) for (size_t j = i + 1; j < commandData.params.size(); j++) { assert((commandData.vectorParams.find(j) == commandData.vectorParams.end()) || (commandData.params[j].pureType != "void")); } #endif commandData.templateParam = i; break; } } assert((commandData.templateParam == ~0) || (commandData.vectorParams.find(commandData.templateParam) != commandData.vectorParams.end())); } void VulkanHppGenerator::determineVectorParams(CommandData & commandData) { // look for the parameters whose len equals the name of an other parameter for (auto it = commandData.params.begin(), begin = it, end = commandData.params.end(); it != end; ++it) { if (!it->len.empty()) { auto findLambda = [it](ParamData const& pd) { return pd.name == it->len; }; auto findIt = std::find_if(begin, it, findLambda); // look for a parameter named as the len of this parameter assert((std::count_if(begin, end, findLambda) == 0) || (findIt < it)); // make sure, there is no other parameter like that // add this parameter as a vector parameter, using the len-name parameter as the second value (or ~0 if there is nothing like that) commandData.vectorParams.insert(std::make_pair(std::distance(begin, it), findIt < it ? std::distance(begin, findIt) : ~0)); assert((commandData.vectorParams[std::distance(begin, it)] != ~0) || (it->len == "null-terminated") || (it->len == "pAllocateInfo::descriptorSetCount") || (it->len == "pAllocateInfo::commandBufferCount")); } } } std::string VulkanHppGenerator::generateCall(CommandData const& commandData, bool firstCall, bool singular) { std::ostringstream call; writeCall(call, commandData, firstCall, singular); return call.str(); } std::string const& VulkanHppGenerator::getTypesafeCheck() const { return m_typesafeCheck; } std::string const& VulkanHppGenerator::getVersion() const { return m_version; } std::string const& VulkanHppGenerator::getVulkanLicenseHeader() const { return m_vulkanLicenseHeader; } bool VulkanHppGenerator::isSubStruct(std::pair const& nsd, std::string const& name, StructData const& structData) { if ((nsd.first != name) && (nsd.second.members.size() < structData.members.size()) && (structData.members[0].name != "sType")) { bool equal = true; for (size_t i = 0; i < nsd.second.members.size() && equal; i++) { equal = (nsd.second.members[i].type == structData.members[i].type) && (nsd.second.members[i].name == structData.members[i].name); } if (equal) { return true; } } return false; } void VulkanHppGenerator::linkCommandToHandle(CommandData & commandData) { // first, find the handle named like the type of the first argument // if there is no such handle, look for the unnamed "handle", that gathers all the functions not tied to a specific handle assert(!commandData.params.empty()); std::map::iterator hit = m_handles.find(commandData.params[0].pureType); if (hit == m_handles.end()) { hit = m_handles.find(""); } assert(hit != m_handles.end()); // put the command into the handle's list of commands, and store the handle in the commands className hit->second.commands.push_back(commandData.fullName); commandData.className = hit->first; // add the dependencies of the command to the dependencies of the handle DependencyData const& commandDD = m_dependencies.back(); std::list::iterator handleDD = std::find_if(m_dependencies.begin(), m_dependencies.end(), [hit](DependencyData const& dd) { return dd.name == hit->first; }); assert((handleDD != m_dependencies.end()) || hit->first.empty()); if (handleDD != m_dependencies.end()) { std::copy_if(commandDD.dependencies.begin(), commandDD.dependencies.end(), std::inserter(handleDD->dependencies, handleDD->dependencies.end()), [hit](std::string const& d) { return d != hit->first; }); } } bool VulkanHppGenerator::readCommandParam(tinyxml2::XMLElement const* element, std::set & dependencies, std::vector & params) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "externsync",{} },{ "len",{} },{ "noautovalidity",{ "true" } },{ "optional",{ "false", "true" } } }); checkElements(getChildElements(element), { "name", "type" }); ParamData param; bool isTwoStep = false; auto lenAttribute = attributes.find("len"); if (lenAttribute != attributes.end()) { param.len = lenAttribute->second; auto pit = std::find_if(params.begin(), params.end(), [¶m](ParamData const& pd) { return param.len == pd.name; }); if (pit != params.end()) { isTwoStep = (pit->type.find('*') != std::string::npos); } } // get the type of the parameter, and put it into the list of dependencies tinyxml2::XMLNode const* child = readCommandParamType(element->FirstChild(), param); dependencies.insert(param.pureType); assert(child->ToElement()); tinyxml2::XMLElement const* nameElement = child->ToElement(); checkEmptyElement(nameElement); param.name = child->ToElement()->GetText(); param.arraySize = readArraySize(child, param.name); auto optionalAttribute = attributes.find("optional"); param.optional = (optionalAttribute != attributes.end()) && (optionalAttribute->second == "true"); params.push_back(param); assert(!isTwoStep || (param.type.substr(0, 6) != "const ")); return isTwoStep; } tinyxml2::XMLNode const* VulkanHppGenerator::readCommandParamType(tinyxml2::XMLNode const* node, ParamData& param) { assert(node); if (node->ToText()) { // start type with "const" or "struct", if needed std::string value = trim(node->Value()); assert((value == "const") || (value == "struct") || (value == "const struct")); param.type = value + " "; node = node->NextSibling(); assert(node); } // get the pure type assert(node->ToElement()); tinyxml2::XMLElement const* typeElement = node->ToElement(); checkEmptyElement(typeElement); std::string type = strip(node->ToElement()->GetText(), "Vk"); param.unchangedType = param.type + node->ToElement()->GetText(); param.type += type; param.pureType = type; // end with "*", "**", or "* const*", if needed node = node->NextSibling(); assert(node); if (node->ToText()) { std::string value = trimEnd(node->Value()); assert((value == "*") || (value == "**") || (value == "* const*")); param.type += value; param.unchangedType += value; node = node->NextSibling(); } return node; } void VulkanHppGenerator::readCommands(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "comment",{} } }); std::vector children = getChildElements(element); checkElements(children, { "command" }); for (auto child : children) { readCommandsCommand(child); } } void VulkanHppGenerator::readCommandsCommand(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "alias", {} }, { "cmdbufferlevel",{ "primary", "secondary" } }, { "comment",{} }, { "errorcodes",{} }, { "name", {} }, { "pipeline",{ "compute", "graphics", "transfer" } }, { "queues",{ "compute", "graphics", "sparse_binding", "transfer" } }, { "renderpass",{ "both", "inside", "outside" } }, { "successcodes",{} } }); std::vector children = getChildElements(element); CommandData commandData; auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { // for command aliases, create a copy of the aliased command checkAttributes(attributes, element->GetLineNum(), { { "alias",{} },{ "name",{} } }, {}); // re-check on alias type! checkElements(children, {}); std::string alias = startLowerCase(strip(aliasIt->second, "vk")); checkAlias(m_commands, alias, element->GetLineNum()); auto commandsIt = m_commands.find(alias); assert(commandsIt != m_commands.end()); commandData = commandsIt->second; commandData.fullName = startLowerCase(strip(attributes.find("name")->second, "vk")); commandData.isAlias = true; determineReducedName(commandData); linkCommandToHandle(commandData); // add a DependencyData to this name m_dependencies.push_back(DependencyData(DependencyData::Category::COMMAND, commandData.fullName)); m_dependencies.back().dependencies.insert(alias); } else { checkElements(children, { "implicitexternsyncparams", "param", "proto" }); // read the success codes auto successcodesAttribute = attributes.find("successcodes"); if (successcodesAttribute != attributes.end()) { commandData.successCodes = tokenize(successcodesAttribute->second, ','); for (auto & code : commandData.successCodes) { std::string tag = findTag(code, m_tags); // on each success code: prepend 'e', strip "VK_" and a tag, convert it to camel case, and add the tag again code = std::string("e") + toCamelCase(strip(code, "VK_", tag)) + tag; } } for (auto child : children) { std::string value = child->Value(); if (value == "param") { commandData.twoStep |= readCommandParam(child, m_dependencies.back().dependencies, commandData.params); } else if (value == "proto") { readCommandProto(child, commandData.returnType, commandData.unchangedReturnType, commandData.fullName); } #if !defined(NDEBUG) else { assert(value == "implicitexternsyncparams"); skipImplicitExternSyncParams(child); } #endif } determineReducedName(commandData); linkCommandToHandle(commandData); registerDeleter(commandData); determineVectorParams(commandData); determineReturnParam(commandData); determineTemplateParam(commandData); determineEnhancedReturnType(commandData); determineSkippedParams(commandData); } // insert the commandData into the commands-map, assert(m_commands.find(commandData.fullName) == m_commands.end()); m_commands.insert(std::make_pair(commandData.fullName, commandData)); } void VulkanHppGenerator::readCommandProto(tinyxml2::XMLElement const* element, std::string & returnType, std::string & unchangedReturnType, std::string & fullName) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); std::vector children = getChildElements(element); checkOrderedElements(children, { "type", "name" }); // get return type and name of the command returnType = strip(children[0]->GetText(), "Vk"); unchangedReturnType = children[0]->GetText(); fullName = startLowerCase(strip(children[1]->GetText(), "vk")); // add an empty DependencyData to this name m_dependencies.push_back(DependencyData(DependencyData::Category::COMMAND, fullName)); } void VulkanHppGenerator::readComment(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); checkElements(getChildElements(element), {}); assert(element->GetText()); std::string text = element->GetText(); if (text.find("\nCopyright") == 0) { assert(m_vulkanLicenseHeader.empty()); m_vulkanLicenseHeader = text; // erase the part after the Copyright text size_t pos = m_vulkanLicenseHeader.find("\n\n------------------------------------------------------------------------"); if (pos != std::string::npos) { m_vulkanLicenseHeader.erase(pos); } // replace any '\n' with "\n// " for (size_t pos = m_vulkanLicenseHeader.find('\n'); pos != std::string::npos; pos = m_vulkanLicenseHeader.find('\n', pos + 1)) { m_vulkanLicenseHeader.replace(pos, 1, "\n// "); } // and add a little message on our own m_vulkanLicenseHeader += "\n\n// This header is generated from the Khronos Vulkan XML API Registry."; } m_vulkanLicenseHeader.erase(m_vulkanLicenseHeader.begin(), std::find_if(m_vulkanLicenseHeader.begin(), m_vulkanLicenseHeader.end(), [](char c) { return !std::isspace(c); })); } void VulkanHppGenerator::readDisabledExtensionRequire(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), {}, {}); std::vector children = getChildElements(element); checkElements(children, { "command", "enum", "type" }); for (auto child : children) { checkElements(getChildElements(child), {}); std::string value = child->Value(); if ((value == "command") || (value == "type")) { std::map attributes = getAttributes(child); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {}); // disable a command or a type ! auto nameAttribute = attributes.find("name"); std::string name = (value == "command") ? startLowerCase(strip(nameAttribute->second, "vk")) : strip(nameAttribute->second, "Vk"); // search this name in the dependencies list and remove it std::list::const_iterator depIt = std::find_if(m_dependencies.begin(), m_dependencies.end(), [&name](DependencyData const& dd) { return(dd.name == name); }); assert(depIt != m_dependencies.end()); m_dependencies.erase(depIt); // erase it from all dependency sets for (auto & dep : m_dependencies) { dep.dependencies.erase(name); } if (value == "command") { // first unlink the command from its class auto commandsIt = m_commands.find(name); assert(commandsIt != m_commands.end()); assert(!commandsIt->second.className.empty()); auto handlesIt = m_handles.find(commandsIt->second.className); assert(handlesIt != m_handles.end()); auto it = std::find(handlesIt->second.commands.begin(), handlesIt->second.commands.end(), name); assert(it != handlesIt->second.commands.end()); handlesIt->second.commands.erase(it); // then remove the command m_commands.erase(name); } else { // a type simply needs to be removed from the structs and vkTypes sets assert((m_structs.find(name) != m_structs.end()) && (m_vkTypes.find(name) != m_vkTypes.end())); m_structs.erase(name); m_vkTypes.erase(name); } } else { assert(value == "enum"); std::map attributes = getAttributes(child); checkAttributes(attributes, child->GetLineNum(), { { "name",{} } }, { { "extends",{} },{ "offset",{} },{ "value",{} } }); } } } void VulkanHppGenerator::readEnums(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "comment",{} },{ "type",{ "bitmask", "enum" } } }); std::vector children = getChildElements(element); checkElements(children, { "comment", "enum", "unused" }); std::string name = strip(attributes.find("name")->second, "Vk"); if (name == "API Constants") { for (auto child : children) { assert(strcmp(child->Value(), "enum") == 0); readEnumsConstant(child); } } else { checkAttributes(attributes, element->GetLineNum(), { { "name",{} },{ "type",{ "bitmask", "enum" } } }, { { "comment",{} } }); // re-check with type as required // add an empty DependencyData on this name into the dependencies list m_dependencies.push_back(DependencyData(DependencyData::Category::ENUM, name)); // ad an empty EnumData on this name into the enums map std::map::iterator it = m_enums.insert(std::make_pair(name, EnumData(name))).first; if (name == "Result") { // special handling for VKResult, as its enums just have VK_ in common it->second.prefix = "VK_"; } else { std::string type = attributes.find("type")->second; it->second.bitmask = (type == "bitmask"); if (it->second.bitmask) { // for a bitmask enum, start with "VK", cut off the trailing "FlagBits", and convert that name to upper case // end that with "Bit" size_t pos = name.find("FlagBits"); assert(pos != std::string::npos); it->second.prefix = "VK" + toUpperCase(name.substr(0, pos)) + "_"; } else { // for a non-bitmask enum, start with "VK", and convert the name to upper case it->second.prefix = "VK" + toUpperCase(name) + "_"; } // if the enum name contains a tag move it from the prefix to the postfix to generate correct enum value names. for (std::set::const_iterator tit = m_tags.begin(); tit != m_tags.end(); ++tit) { if ((tit->length() < it->second.prefix.length()) && (it->second.prefix.substr(it->second.prefix.length() - tit->length() - 1) == (*tit + "_"))) { it->second.prefix.erase(it->second.prefix.length() - tit->length() - 1); it->second.postfix = "_" + *tit; break; } else if ((tit->length() < it->second.name.length()) && (it->second.name.substr(it->second.name.length() - tit->length()) == *tit)) { it->second.postfix = "_" + *tit; break; } } } // read the names of the enum values for (auto child : children) { std::string value = child->Value(); if (value == "enum") { readEnumsEnum(child, it->second, ""); } #if !defined(NDEBUG) else { assert((value == "comment") || (value == "unused")); } #endif } // add this enum to the set of Vulkan data types assert(m_vkTypes.find(name) == m_vkTypes.end()); m_vkTypes.insert(name); } } void VulkanHppGenerator::readEnumsEnum(tinyxml2::XMLElement const* element, EnumData & enumData, std::string const& tag) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "bitpos",{} },{ "comment",{} },{ "value",{} } }); assert((attributes.find("bitpos") != attributes.end()) + (attributes.find("value") != attributes.end()) == 1); checkElements(getChildElements(element), {}); enumData.addEnumValue(attributes.find("name")->second, tag, m_nameMap); } void VulkanHppGenerator::readEnumsConstant(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "alias", {}}, { "comment",{} }, { "value",{} } }); checkElements(getChildElements(element), {}); std::string name = attributes.find("name")->second; assert(m_constants.find(name) == m_constants.end()); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { checkAttributes(attributes, element->GetLineNum(), { {"alias", {}}, { "name", {}} }, {}); // re-check on alias type checkAlias(m_constants, aliasIt->second, element->GetLineNum()); m_constants[name] = m_constants.find(aliasIt->second)->second; } else { checkAttributes(attributes, element->GetLineNum(), { { "name",{} }, { "value", {}} }, { {"comment", {} } }); // re-check on non-alias type m_constants[name] = attributes.find("value")->second; } } void VulkanHppGenerator::readExtensionCommand(tinyxml2::XMLElement const* element, std::string const& protect) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {}); checkElements(getChildElements(element), {}); // just add the protect string to the CommandData if (!protect.empty()) { std::string name = startLowerCase(strip(attributes.find("name")->second, "vk")); std::map::iterator cit = m_commands.find(name); assert(cit != m_commands.end()); cit->second.protect = protect; } } void VulkanHppGenerator::readExtensionEnum(tinyxml2::XMLElement const* element, std::string const& tag) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name", {} } }, { { "alias", {} }, { "bitpos", {} }, { "comment", {} }, { "dir", { "-" } }, { "extends", {} }, { "extnumber", {} }, { "offset", {} }, { "value", {} } }); checkElements(getChildElements(element), {}); // TODO process enums which don't extend existing enums auto extendsIt = attributes.find("extends"); if (extendsIt != attributes.end()) { std::string extends = strip(extendsIt->second, "Vk"); auto enumIt = m_enums.find(extends); assert(enumIt != m_enums.end()); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { checkAttributes(attributes, element->GetLineNum(), { { "alias", {} }, { "extends", {} }, { "name", {} } }, {}); std::string alias = createEnumValueName(aliasIt->second, enumIt->second.prefix, enumIt->second.postfix, enumIt->second.bitmask, tag); auto evdIt = std::find_if(enumIt->second.values.begin(), enumIt->second.values.end(), [&alias](EnumValueData const& evd) { return evd.name == alias; }); assert(evdIt != enumIt->second.values.end()); evdIt->alias = createEnumValueName(attributes.find("name")->second, enumIt->second.prefix, enumIt->second.postfix, enumIt->second.bitmask, tag); } else { assert((attributes.find("bitpos") != attributes.end()) + (attributes.find("offset") != attributes.end()) + (attributes.find("value") != attributes.end()) == 1); enumIt->second.addEnumValue(attributes.find("name")->second, tag, m_nameMap); } } } void VulkanHppGenerator::readExtensionRequire(tinyxml2::XMLElement const* element, std::string const& protect, std::string const& tag) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "extension",{} },{ "feature",{} } }); std::vector children = getChildElements(element); checkElements(children, { "command", "comment", "enum", "type" }); for (auto child : children) { std::string value = child->Value(); if (value == "command") { readExtensionCommand(child, protect); } else if (value == "enum") { readExtensionEnum(child, tag); } else if (value == "type") { readExtensionType(child, protect); } #if !defined(NDEBUG) else { assert(value == "comment"); checkEmptyElement(child); } #endif } } void VulkanHppGenerator::readExtensions(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "comment",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "extension" }); for (auto child : children) { readExtensionsExtension(child); } } void VulkanHppGenerator::readExtensionsExtension(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} }, { "number",{} }, { "supported",{ "disabled", "vulkan" } } }, { { "author",{} }, { "comment", {} }, { "contact",{} }, { "platform",{} }, { "protect",{} }, { "requires",{} }, { "requiresCore",{} }, { "type",{ "device", "instance" } } }); std::vector children = getChildElements(element); checkElements(children, { "require" }); if (attributes.find("supported")->second == "disabled") { // kick out all the disabled stuff we've read before !! for (tinyxml2::XMLElement const* child = element->FirstChildElement(); child; child = child->NextSiblingElement()) { assert(strcmp(child->Value(), "require") == 0); readDisabledExtensionRequire(child); } } else { std::string name = attributes.find("name")->second; std::string tag = extractTag(name); assert(m_tags.find(tag) != m_tags.end()); auto protectAttribute = attributes.find("protect"); auto platformAttribute = attributes.find("platform"); std::string protect; if (protectAttribute != attributes.end()) { protect = protectAttribute->second; } else if (platformAttribute != attributes.end()) { auto authorAttribute = attributes.find("author"); assert(authorAttribute != attributes.end()); protect = "VK_USE_PLATFORM_" + toUpperCase(platformAttribute->second) + "_" + authorAttribute->second; } #if !defined(NDEBUG) assert(m_extensions.find(name) == m_extensions.end()); ExtensionData & extension = m_extensions.insert(std::make_pair(name, ExtensionData())).first->second; extension.protect = protect; auto requiresAttribute = attributes.find("requires"); if (requiresAttribute != attributes.end()) { extension.requires = tokenize(requiresAttribute->second, ','); } #endif for (auto child : children) { readExtensionRequire(child, protect, tag); } } } void VulkanHppGenerator::readExtensionType(tinyxml2::XMLElement const* element, std::string const& protect) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, {}); checkElements(getChildElements(element), {}); // add the protect-string to the appropriate type: enum, flag, handle, scalar, or struct if (!protect.empty()) { std::string name = strip(attributes.find("name")->second, "Vk"); std::map::iterator bitmasksIt = m_bitmasks.find(name); if (bitmasksIt != m_bitmasks.end()) { bitmasksIt->second.protect = protect; // if the enum of this flags is auto-generated, protect it as well std::string enumName = generateEnumNameForFlags(name); std::map::iterator enumsIt = m_enums.find(enumName); assert(enumsIt != m_enums.end()); if (enumsIt->second.values.empty()) { enumsIt->second.protect = protect; } } else { std::map::iterator eit = m_enums.find(name); if (eit != m_enums.end()) { eit->second.protect = protect; } else { std::map::iterator hait = m_handles.find(name); if (hait != m_handles.end()) { hait->second.protect = protect; } else { std::map::iterator scit = m_scalars.find(name); if (scit != m_scalars.end()) { scit->second.protect = protect; } else { std::map::iterator stit = m_structs.find(name); if (stit != m_structs.end()) { stit->second.protect = protect; } else { assert(m_defines.find(name) != m_defines.end()); } } } } } } } void VulkanHppGenerator::readFeature(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "api",{ "vulkan" } },{ "comment",{} },{ "name",{} },{ "number",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "require" }); for (auto child : children) { readFeatureRequire(child); } } void VulkanHppGenerator::readFeatureRequire(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "comment",{} } }); std::vector children = getChildElements(element); checkElements(children, { "command", "comment", "enum", "type" }); for (auto child : children) { std::string value = child->Value(); if (value == "enum") { readFeatureRequireEnum(child); } #if !defined(NDEBUG) else { assert((value == "command") || (value == "comment") || (value == "type")); skipFeatureRequire(child); } #endif } } void VulkanHppGenerator::readFeatureRequireEnum(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "bitpos",{} }, { "comment",{} }, { "dir", { "-" } }, { "extends",{} }, { "extnumber", {} }, { "offset", {} }, { "value",{} } }); checkElements(getChildElements(element), {}); auto extendsAttribute = attributes.find("extends"); if (extendsAttribute != attributes.end()) { assert(strncmp(extendsAttribute->second.c_str(), "Vk", 2) == 0); std::string extends = strip(extendsAttribute->second, "Vk"); auto enumIt = m_enums.find(extends); assert(enumIt != m_enums.end()); enumIt->second.addEnumValue(attributes.find("name")->second, "", m_nameMap); } } void VulkanHppGenerator::readTags(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "tag" }); for (auto child : children) { std::string value = child->Value(); assert(value == "tag"); readTag(child); } } void VulkanHppGenerator::readTag(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "author",{} },{ "contact",{} },{ "name",{} } }, {}); checkElements(getChildElements(element), {}); for (auto const& attribute : attributes) { std::string name = attribute.first; if (name == "name") { std::string value = attribute.second; m_tags.insert(value); } else { assert((name == "author") || (name == "contact")); } } } void VulkanHppGenerator::readType(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); auto categoryIt = attributes.find("category"); if (categoryIt != attributes.end()) { if (categoryIt->second == "basetype") { readTypeBasetype(element, attributes); } else if (categoryIt->second == "bitmask") { readTypeBitmask(element, attributes); } else if (categoryIt->second == "define") { readTypeDefine(element, attributes); } else if (categoryIt->second == "funcpointer") { readTypeFuncpointer(element, attributes); } else if (categoryIt->second == "handle") { readTypeHandle(element, attributes); } else if (categoryIt->second == "struct") { readTypeStruct(element, false, attributes); } else if (categoryIt->second == "union") { readTypeStruct(element, true, attributes); } #if !defined(NDEBUG) else if (categoryIt->second == "enum") { skipTypeEnum(element, attributes); } else if (categoryIt->second == "include") { skipTypeInclude(element, attributes); } else #else else if ((categoryIt->second != "enum") && (categoryIt->second != "include")) #endif { std::stringstream ss; ss << element->GetLineNum(); std::string lineNumber = ss.str(); assert(false); throw std::runtime_error("Spec error on line " + lineNumber + ": unknown category <" + categoryIt->second + ">"); } } else { assert(attributes.find("name") != attributes.end()); readTypeName(element, attributes); } } void VulkanHppGenerator::readTypeBasetype(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "basetype" } } }, {}); std::vector children = getChildElements(element); checkOrderedElements(children, { "type", "name" }); checkEmptyElement(children[0]); checkEmptyElement(children[1]); std::string type = children[0]->GetText(); assert((type == "uint32_t") || (type == "uint64_t")); std::string name = strip(children[1]->GetText(), "Vk"); // skip "Flags", if (name != "Flags") { m_dependencies.push_back(DependencyData(DependencyData::Category::SCALAR, name)); m_dependencies.back().dependencies.insert(type); } else { assert(type == "uint32_t"); } } void VulkanHppGenerator::readTypeBitmask(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category", { "bitmask" } } }, { { "alias", {} }, { "name", {}}, { "requires", {} } }); std::vector children = getChildElements(element); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { checkAttributes(attributes, element->GetLineNum(), { { "alias", {} }, { "category", {"bitmask"} }, { "name", {} } }, {}); // re-check on alias type! checkElements(children, {}); std::string alias = strip(aliasIt->second, "Vk"); checkAlias(m_bitmasks, alias, element->GetLineNum()); std::string name = strip(attributes.find("name")->second, "Vk"); auto bitmasksIt = m_bitmasks.find(alias); assert((bitmasksIt != m_bitmasks.end()) && bitmasksIt->second.alias.empty()); bitmasksIt->second.alias = name; } else { checkOrderedElements(children, { "type", "name" }); checkEmptyElement(children[0]); checkEmptyElement(children[1]); assert(strcmp(children[0]->GetText(), "VkFlags") == 0); std::string name = strip(children[1]->GetText(), "Vk"); std::string requires; auto requiresIt = attributes.find("requires"); if (requiresIt != attributes.end()) { requires = strip(requiresIt->second, "Vk"); } else { // Generate FlagBits name, add a DependencyData for that name, and add it to the list of enums and vulkan types requires = generateEnumNameForFlags(name); m_dependencies.push_back(DependencyData(DependencyData::Category::ENUM, requires)); m_enums.insert(std::make_pair(requires, EnumData(requires, true))); m_vkTypes.insert(requires); } // add a DependencyData for the bitmask name, with the required type as its first dependency m_dependencies.push_back(DependencyData(DependencyData::Category::BITMASK, name)); m_dependencies.back().dependencies.insert(requires); m_bitmasks.insert(std::make_pair(name, BitmaskData())); assert(m_vkTypes.find(name) == m_vkTypes.end()); m_vkTypes.insert(name); } } void VulkanHppGenerator::readTypeDefine(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "define" } } }, { { "name",{} } }); auto nameIt = attributes.find("name"); if (nameIt != attributes.end()) { assert(!element->FirstChildElement()); assert(nameIt->second == "VK_DEFINE_NON_DISPATCHABLE_HANDLE"); // filter out the check for the different types of VK_DEFINE_NON_DISPATCHABLE_HANDLE std::string text = element->LastChild()->ToText()->Value(); size_t start = text.find("#if defined(__LP64__)"); size_t end = text.find_first_of("\r\n", start + 1); m_typesafeCheck = text.substr(start, end - start); } else if (element->GetText() && (trim(element->GetText()) == "struct")) { tinyxml2::XMLElement const* child = element->FirstChildElement(); assert(child && (strcmp(child->Value(), "name") == 0) && child->GetText()); m_defines.insert(child->GetText()); m_dependencies.push_back(DependencyData(DependencyData::Category::REQUIRED, child->GetText())); } else { tinyxml2::XMLElement const* child = element->FirstChildElement(); assert(child && !child->FirstAttribute() && (strcmp(child->Value(), "name") == 0) && child->GetText()); std::string text = trim(child->GetText()); if (text == "VK_HEADER_VERSION") { m_version = element->LastChild()->ToText()->Value(); } // ignore all the other defines assert(!child->NextSiblingElement() || (child->NextSiblingElement() && !child->NextSiblingElement()->FirstAttribute() && (strcmp(child->NextSiblingElement()->Value(), "type") == 0) && !child->NextSiblingElement()->NextSiblingElement())); } } void VulkanHppGenerator::readTypeFuncpointer(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "funcpointer" } } }, { { "requires",{} } }); std::vector children = getChildElements(element); checkElements(children, { "name", "type" }); assert(!children.empty()); checkEmptyElement(children[0]); assert((strcmp(children[0]->Value(), "name") == 0) && children[0]->GetText()); m_dependencies.push_back(DependencyData(DependencyData::Category::FUNC_POINTER, children[0]->GetText())); #if !defined(NDEBUG) for (size_t i = 1; i < children.size(); i++) { checkEmptyElement(children[i]); } #endif } void VulkanHppGenerator::readTypeHandle(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ "handle" } } }, { { "alias",{} }, { "name",{} }, { "parent",{} } }); std::vector children = getChildElements(element); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { checkAttributes(attributes, element->GetLineNum(), { { "alias",{} },{ "category",{ "handle" } },{ "name",{} } }, {}); // re-check on alias type! checkElements(children, {}); std::string alias = strip(aliasIt->second, "Vk"); checkAlias(m_handles, alias, element->GetLineNum()); std::string name = strip(attributes.find("name")->second, "Vk"); auto handlesIt = m_handles.find(alias); assert((handlesIt != m_handles.end()) && handlesIt->second.alias.empty()); handlesIt->second.alias = name; } else { checkOrderedElements(children, { "type", "name" }); checkEmptyElement(children[0]); checkEmptyElement(children[1]); #if !defined(NDEBUG) std::string type = children[0]->GetText(); assert((type.find("VK_DEFINE_HANDLE") == 0) || (type.find("VK_DEFINE_NON_DISPATCHABLE_HANDLE") == 0)); #endif std::string name = strip(children[1]->GetText(), "Vk"); m_dependencies.push_back(DependencyData(DependencyData::Category::HANDLE, name)); assert(m_vkTypes.find(name) == m_vkTypes.end()); m_vkTypes.insert(name); assert(m_handles.find(name) == m_handles.end()); m_handles.insert(std::make_pair(name, HandleData())); } } void VulkanHppGenerator::readTypeName(tinyxml2::XMLElement const* element, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "name",{} } }, { { "requires",{} } }); checkElements(getChildElements(element), {}); auto nameIt = attributes.find("name"); assert(nameIt != attributes.end()); m_dependencies.push_back(DependencyData(DependencyData::Category::REQUIRED, nameIt->second)); } void VulkanHppGenerator::readTypes(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "comment", "type" }); for (auto child : children) { std::string value = child->Value(); if (value == "type") { readType(child); } #if !defined(NDEBUG) else { assert(value == "comment"); checkEmptyElement(child); } #endif } } void VulkanHppGenerator::readTypeStruct(tinyxml2::XMLElement const* element, bool isUnion, std::map const& attributes) { checkAttributes(attributes, element->GetLineNum(), { { "category",{ isUnion ? "union" : "struct" } }, { "name",{} } }, { { "alias", {} }, { "comment",{} }, { "returnedonly",{ "true" } }, { "structextends",{} } }); std::vector children = getChildElements(element); checkElements(children, { "comment", "member" }); auto aliasIt = attributes.find("alias"); if (aliasIt != attributes.end()) { checkAttributes(attributes, element->GetLineNum(), { { "alias", {}}, {"category", {"struct"}}, { "name", {}} }, {}); // re-check on alias type! std::string alias = strip(aliasIt->second, "Vk"); checkAlias(m_structs, alias, element->GetLineNum()); std::string name = strip(attributes.find("name")->second, "Vk"); auto structsIt = m_structs.find(alias); assert((structsIt != m_structs.end()) && structsIt->second.alias.empty()); structsIt->second.alias = name; } else { std::string name = strip(attributes.find("name")->second, "Vk"); m_dependencies.push_back(DependencyData(isUnion ? DependencyData::Category::UNION : DependencyData::Category::STRUCT, name)); assert(m_structs.find(name) == m_structs.end()); std::map::iterator it = m_structs.insert(std::make_pair(name, StructData())).first; it->second.returnedOnly = (attributes.find("returnedonly") != attributes.end()); it->second.isUnion = isUnion; auto attributesIt = attributes.find("structextends"); if (attributesIt != attributes.end()) { std::vector structExtends = tokenize(attributesIt->second, ','); for (auto const& s : structExtends) { assert(s.substr(0, 2) == "Vk"); std::string strippedName = s.substr(2); it->second.structExtends.push_back(strippedName); m_extendedStructs.insert(strippedName); } assert(!it->second.structExtends.empty()); } for (auto child : children) { assert(child->Value()); std::string value = child->Value(); if (value == "member") { readTypeStructMember(child, it->second); } #if !defined(NDEBUG) else { assert(value == "comment"); checkEmptyElement(child); } #endif } assert(m_vkTypes.find(name) == m_vkTypes.end()); m_vkTypes.insert(name); for (auto const& s : m_structs) { if (isSubStruct(s, name, it->second)) { it->second.subStruct = s.first; break; // just take the very first candidate as a subStruct, skip any possible others! } } } } void VulkanHppGenerator::readTypeStructMember(tinyxml2::XMLElement const* element, StructData & structData) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), {}, { { "altlen",{} }, { "externsync",{ "true" } }, { "len",{} }, { "noautovalidity",{ "true" } }, { "optional",{ "false", "true" } }, { "values",{} } }); std::vector children = getChildElements(element); checkElements(children, { "comment", "enum", "name", "type" }); for (auto child : children) { checkEmptyElement(child); } structData.members.push_back(MemberData()); MemberData & member = structData.members.back(); auto valuesAttribute = attributes.find("values"); if (valuesAttribute != attributes.end()) { member.values = valuesAttribute->second; } tinyxml2::XMLNode const* child = element->FirstChild(); assert(child); if (child->ToText()) { std::string value = trim(child->Value()); assert((value == "const") || (value == "struct") || value == "const struct"); member.type = value + " "; child = child->NextSibling(); assert(child); } assert(child->ToElement()); tinyxml2::XMLElement const* typeElement = child->ToElement(); assert((strcmp(typeElement->Value(), "type") == 0) && typeElement->GetText()); member.pureType = strip(typeElement->GetText(), "Vk"); member.type += member.pureType; child = typeElement->NextSibling(); assert(child); if (child->ToText()) { std::string value = trimEnd(child->Value()); assert((value == "*") || (value == "**") || (value == "* const*")); member.type += value; child = child->NextSibling(); } m_dependencies.back().dependencies.insert(member.pureType); assert(child->ToElement()); tinyxml2::XMLElement const* nameElement = child->ToElement(); assert((strcmp(nameElement->Value(), "name") == 0) && nameElement->GetText()); member.name = nameElement->GetText(); member.arraySize = readArraySize(nameElement, member.name); } void VulkanHppGenerator::registerDeleter(CommandData const& commandData) { if ((commandData.fullName.substr(0, 7) == "destroy") || (commandData.fullName.substr(0, 4) == "free")) { std::string key; size_t valueIndex; switch (commandData.params.size()) { case 2: case 3: assert(commandData.params.back().pureType == "AllocationCallbacks"); key = (commandData.params.size() == 2) ? "" : commandData.params[0].pureType; valueIndex = commandData.params.size() - 2; break; case 4: key = commandData.params[0].pureType; valueIndex = 3; assert(m_deleters.find(commandData.params[valueIndex].pureType) == m_deleters.end()); m_deleters[commandData.params[valueIndex].pureType].pool = commandData.params[1].pureType; break; default: assert(false); } assert(m_deleterTypes[key].find(commandData.params[valueIndex].pureType) == m_deleterTypes[key].end()); m_deleterTypes[key].insert(commandData.params[valueIndex].pureType); m_deleters[commandData.params[valueIndex].pureType].call = commandData.reducedName; } } void VulkanHppGenerator::setDefault(std::string const& name, std::map & defaultValues, EnumData const& enumData) { defaultValues[name] = name + (enumData.values.empty() ? "()" : ("::" + enumData.values.front().name)); } void VulkanHppGenerator::sortDependencies() { std::set listedTypes = { "VkFlags" }; std::list sortedDependencies; while (!m_dependencies.empty()) { bool found = false; for (std::list::iterator it = m_dependencies.begin(); it != m_dependencies.end(); ++it) { if (std::find_if(it->dependencies.begin(), it->dependencies.end(), [&listedTypes](std::string const& d) { return listedTypes.find(d) == listedTypes.end(); }) == it->dependencies.end()) { sortedDependencies.push_back(*it); listedTypes.insert(it->name); m_dependencies.erase(it); found = true; break; } } if (!found) { // resolve direct circular dependencies for (std::list::iterator it = m_dependencies.begin(); !found && it != m_dependencies.end(); ++it) { for (std::set::const_iterator dit = it->dependencies.begin(); dit != it->dependencies.end(); ++dit) { std::list::const_iterator depIt = std::find_if(m_dependencies.begin(), m_dependencies.end(), [&dit](DependencyData const& dd) { return(dd.name == *dit); }); if (depIt != m_dependencies.end()) { if (depIt->dependencies.find(it->name) != depIt->dependencies.end()) { // we only have just one case, for now! assert((it->category == DependencyData::Category::HANDLE) && (depIt->category == DependencyData::Category::STRUCT) || (it->category == DependencyData::Category::STRUCT) && (depIt->category == DependencyData::Category::STRUCT)); it->forwardDependencies.insert(*dit); it->dependencies.erase(*dit); found = true; break; } } #if !defined(NDEBUG) else { assert(std::find_if(sortedDependencies.begin(), sortedDependencies.end(), [&dit](DependencyData const& dd) { return(dd.name == *dit); }) != sortedDependencies.end()); } #endif } } } assert(found); } m_dependencies.swap(sortedDependencies); } void VulkanHppGenerator::writeArguments(std::ostream & os, CommandData const& commandData, bool firstCall, bool singular, size_t from, size_t to) { assert(from <= to); // get the parameter indices of the counter for vector parameters std::map countIndices; for (std::map::const_iterator it = commandData.vectorParams.begin(); it != commandData.vectorParams.end(); ++it) { countIndices.insert(std::make_pair(it->second, it->first)); } bool encounteredArgument = false; for (size_t i = from; i < to; i++) { if (encounteredArgument) { os << ", "; } std::map::const_iterator it = countIndices.find(i); if (it != countIndices.end()) { writeCallCountParameter(os, commandData, singular, it); } else if ((it = commandData.vectorParams.find(i)) != commandData.vectorParams.end()) { writeCallVectorParameter(os, commandData, firstCall, singular, it); } else if (m_vkTypes.find(commandData.params[i].pureType) != m_vkTypes.end()) { writeCallVulkanTypeParameter(os, commandData.params[i]); } else { writeCallPlainTypeParameter(os, commandData.params[i]); } encounteredArgument = true; } } void VulkanHppGenerator::writeBitmaskToString(std::ostream & os, std::string const& bitmaskName, EnumData const &enumData) { // the helper functions to make strings out of flag values enterProtect(os, enumData.protect); os << " VULKAN_HPP_INLINE std::string to_string(" << bitmaskName << (enumData.values.empty() ? ")" : " value)") << std::endl << " {" << std::endl; if (enumData.values.empty()) { // no flags values in this enum -> return "{}" os << " return \"{}\";" << std::endl; } else { os << " if (!value) return \"{}\";" << std::endl << " std::string result;" << std::endl; // 'or' together all the bits in the value for (auto valuesIt = enumData.values.begin(); valuesIt != enumData.values.end(); ++valuesIt) { os << " if (value & " << enumData.name << "::" << valuesIt->name << ") result += \"" << valuesIt->name.substr(1) << " | \";" << std::endl; } // cut off the last three characters from the result (being " | ") os << " return \"{\" + result.substr(0, result.size() - 3) + \"}\";" << std::endl; } os << " }" << std::endl; leaveProtect(os, enumData.protect); os << std::endl; } void VulkanHppGenerator::writeCall(std::ostream & os, CommandData const& commandData, bool firstCall, bool singular) { // the original function call os << "d.vk" << startUpperCase(commandData.fullName) << "( "; if (!commandData.className.empty()) { // if it's member of a class -> add the first parameter with "m_" as prefix os << "m_" << commandData.params[0].name; if (1 < commandData.params.size()) { os << ", "; } } writeArguments(os, commandData, firstCall, singular, commandData.className.empty() ? 0 : 1, commandData.params.size()); os << " )"; } void VulkanHppGenerator::writeCallCountParameter(std::ostream & os, CommandData const& commandData, bool singular, std::map::const_iterator it) { // this parameter is a count parameter for a vector parameter if ((commandData.returnParam == it->second) && commandData.twoStep) { // the corresponding vector parameter is the return parameter and it's a two-step algorithm // -> use the pointer to a local variable named like the counter parameter without leading 'p' os << "&" << startLowerCase(strip(commandData.params[it->first].name, "p")); } else { // the corresponding vector parameter is not the return parameter, or it's not a two-step algorithm if (singular) { // for the singular version, the count is just 1. os << "1 "; } else { // for the non-singular version, the count is the size of the vector parameter // -> use the vector parameter name without leading 'p' to get the size (in number of elements, not in bytes) os << startLowerCase(strip(commandData.params[it->second].name, "p")) << ".size() "; } if (commandData.templateParam == it->second) { // if the vector parameter is templatized -> multiply by the size of that type to get the size in bytes os << "* sizeof( T ) "; } } } void VulkanHppGenerator::writeCallPlainTypeParameter(std::ostream & os, ParamData const& paramData) { // this parameter is just a plain type if (paramData.type.back() == '*') { // it's a pointer std::string parameterName = startLowerCase(strip(paramData.name, "p")); if (paramData.type.find("const") != std::string::npos) { // it's a const pointer if (paramData.pureType == "char") { // it's a const pointer to char -> it's a string -> get the data via c_str() os << parameterName; if (paramData.optional) { // it's optional -> might use nullptr os << " ? " << parameterName << "->c_str() : nullptr"; } else { os << ".c_str()"; } } else { // it's const pointer to something else -> just use the name assert(!paramData.optional); os << paramData.name; } } else { // it's a non-const pointer, and char is the only type that occurs -> use the address of the parameter assert(paramData.type.find("char") == std::string::npos); os << "&" << parameterName; } } else { // it's a plain parameter -> just use its name os << paramData.name; } } void VulkanHppGenerator::writeCallVectorParameter(std::ostream & os, CommandData const& commandData, bool firstCall, bool singular, std::map::const_iterator it) { // this parameter is a vector parameter assert(commandData.params[it->first].type.back() == '*'); if ((commandData.returnParam == it->first) && commandData.twoStep && firstCall) { // this parameter is the return parameter, and it's the first call of a two-step algorithm -> just just nullptr os << "nullptr"; } else { std::string parameterName = startLowerCase(strip(commandData.params[it->first].name, "p")); std::set::const_iterator vkit = m_vkTypes.find(commandData.params[it->first].pureType); if ((vkit != m_vkTypes.end()) || (it->first == commandData.templateParam)) { // CHECK for !commandData.params[it->first].optional // this parameter is a vulkan type or a templated type -> need to reinterpret cast writeReinterpretCast(os, commandData.params[it->first].type.find("const") == 0, vkit != m_vkTypes.end(), commandData.params[it->first].pureType, commandData.params[it->first].type.rfind("* const") != std::string::npos); os << "( "; if (singular) { // in singular case, strip the plural-S from the name, and use the pointer to that thing os << "&" << stripPluralS(parameterName); } else { // in plural case, get the pointer to the data os << parameterName << ".data()"; } os << " )"; } else if (commandData.params[it->first].pureType == "char") { // the parameter is a vector to char -> it might be optional // besides that, the parameter now is a std::string -> get the pointer via c_str() os << parameterName; if (commandData.params[it->first].optional) { os << " ? " << parameterName << "->c_str() : nullptr"; } else { os << ".c_str()"; } } else { // this parameter is just a vetor -> get the pointer to its data os << parameterName << ".data()"; } } } void VulkanHppGenerator::writeCallVulkanTypeParameter(std::ostream & os, ParamData const& paramData) { // this parameter is a vulkan type if (paramData.type.back() == '*') { // it's a pointer -> needs a reinterpret cast to the vulkan type std::string parameterName = startLowerCase(strip(paramData.name, "p")); writeReinterpretCast(os, paramData.type.find("const") != std::string::npos, true, paramData.pureType, false); os << "( "; if (paramData.optional) { // for an optional parameter, we need also a static_cast from optional type to const-pointer to pure type os << "static_cast( " << parameterName << " )"; } else { // other parameters can just use the pointer os << "&" << parameterName; } os << " )"; } else { // a non-pointer parameter needs a static_cast from vk::-type to vulkan type os << "static_cast( " << paramData.name << " )"; } } void VulkanHppGenerator::writeEnumsToString(std::ostream & os, EnumData const& enumData) { // the helper functions to make strings out of enum values enterProtect(os, enumData.protect); os << " VULKAN_HPP_INLINE std::string to_string(" << enumData.name << (enumData.values.empty() ? ")" : " value)") << std::endl << " {" << std::endl; if (enumData.values.empty()) { // no enum values in this enum -> return "(void)" os << " return \"(void)\";" << std::endl; } else { // otherwise switch over the value and return the a stringized version of that value (without leading 'e') os << " switch (value)" << std::endl << " {" << std::endl; for (auto const& value : enumData.values) { os << " case " << enumData.name << "::" << value.name << ": return \"" << value.name.substr(1) << "\";" << std::endl; } os << " default: return \"invalid\";" << std::endl << " }" << std::endl; } os << " }" << std::endl; leaveProtect(os, enumData.protect); os << std::endl; } // Intended only for `enum class Result`! void VulkanHppGenerator::writeExceptionsForEnum(std::ostream & os, EnumData const& enumData) { std::string templateString = R"( class ${className} : public SystemError { public: ${className}( std::string const& message ) : SystemError( make_error_code( ${enumName}::${enumMemberName} ), message ) {} ${className}( char const * message ) : SystemError( make_error_code( ${enumName}::${enumMemberName} ), message ) {} }; )"; enterProtect(os, enumData.protect); for (size_t i = 0; i < enumData.values.size(); i++) { if (!isErrorEnum(enumData.values[i].name)) { continue; } os << replaceWithMap(templateString, { { "className", stripErrorEnumPrefix(enumData.values[i].name) + "Error" }, { "enumName", enumData.name }, { "enumMemberName", enumData.values[i].name } }); } leaveProtect(os, enumData.protect); os << std::endl; } void VulkanHppGenerator::writeFunction(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool definition, bool enhanced, bool singular, bool unique, bool isStructureChain) { writeFunctionHeaderTemplate(os, indentation, commandData, enhanced, unique, !definition, isStructureChain); os << indentation << (definition ? "VULKAN_HPP_INLINE " : ""); writeFunctionHeaderReturnType(os, indentation, commandData, enhanced, singular, unique, isStructureChain); if (definition && !commandData.className.empty()) { os << commandData.className << "::"; } writeFunctionHeaderName(os, commandData.reducedName, singular, unique); writeFunctionHeaderArguments(os, commandData, enhanced, singular, !definition); os << (definition ? "" : ";") << std::endl; if (definition) { // write the function body os << indentation << "{" << std::endl; if (enhanced) { writeFunctionBodyEnhanced(os, indentation, commandData, singular, unique, isStructureChain); } else { writeFunctionBodyStandard(os, indentation, commandData); } os << indentation << "}" << std::endl; } } void VulkanHppGenerator::writeFunctionBodyEnhanced(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool singular, bool unique, bool isStructureChain) { if (unique && !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end())) // returns a vector of UniqueStuff { std::string const stringTemplate = R"(${i} static_assert( sizeof( ${type} ) <= sizeof( Unique${type} ), "${type} is greater than Unique${type}!" ); ${i} std::vector ${typeVariable}s; ${i} ${typeVariable}s.reserve( ${vectorSize} ); ${i} ${type}* buffer = reinterpret_cast<${type}*>( reinterpret_cast( ${typeVariable}s.data() ) + ${vectorSize} * ( sizeof( Unique${type} ) - sizeof( ${type} ) ) ); ${i} Result result = static_cast(d.vk${command}( m_device, ${arguments}, reinterpret_cast( buffer ) ) ); ${i} ${Deleter}<${DeleterTemplate}> deleter( *this, ${deleterArg} ); ${i} for ( size_t i=0 ; i<${vectorSize} ; i++ ) ${i} { ${i} ${typeVariable}s.push_back( Unique${type}( buffer[i], deleter ) ); ${i} } ${i} return createResultValue( result, ${typeVariable}s, VULKAN_HPP_NAMESPACE_STRING "::${class}::${function}Unique" ); )"; std::string type = (commandData.returnParam != ~0) ? commandData.params[commandData.returnParam].pureType : ""; std::string typeVariable = startLowerCase(type); std::ostringstream arguments; writeArguments(arguments, commandData, true, singular, 1, commandData.params.size() - 1); std::map::const_iterator ddit = m_deleters.find(type); assert(ddit != m_deleters.end()); bool isCreateFunction = (commandData.fullName.substr(0, 6) == "create"); os << replaceWithMap(stringTemplate, std::map { { "i", indentation }, { "type", type }, { "typeVariable", typeVariable }, { "vectorSize", isCreateFunction ? "createInfos.size()" : "allocateInfo." + typeVariable + "Count" }, { "command", startUpperCase(commandData.fullName) }, { "arguments", arguments.str() }, { "Deleter", ddit->second.pool.empty() ? "ObjectDestroy" : "PoolFree" }, { "DeleterTemplate", ddit->second.pool.empty() ? commandData.className : commandData.className + "," + ddit->second.pool }, { "deleterArg", ddit->second.pool.empty() ? "allocator" : "allocateInfo." + startLowerCase(ddit->second.pool) }, { "class", commandData.className }, { "function", commandData.reducedName } }); } else { if (1 < commandData.vectorParams.size()) { writeFunctionBodyEnhancedMultiVectorSizeCheck(os, indentation, commandData); } std::string returnName; if (commandData.returnParam != ~0) { returnName = writeFunctionBodyEnhancedLocalReturnVariable(os, indentation, commandData, singular, isStructureChain); } if (commandData.twoStep) { assert(!singular); writeFunctionBodyEnhancedLocalCountVariable(os, indentation, commandData); // we now might have to check the result, resize the returned vector accordingly, and call the function again std::map::const_iterator returnit = commandData.vectorParams.find(commandData.returnParam); assert(returnit != commandData.vectorParams.end() && (returnit->second != ~0)); std::string sizeName = startLowerCase(strip(commandData.params[returnit->second].name, "p")); if (commandData.returnType == "Result") { if (1 < commandData.successCodes.size()) { writeFunctionBodyEnhancedCallTwoStepIterate(os, indentation, returnName, sizeName, commandData); } else { writeFunctionBodyEnhancedCallTwoStepChecked(os, indentation, returnName, sizeName, commandData); } } else { writeFunctionBodyEnhancedCallTwoStep(os, indentation, returnName, sizeName, commandData); } } else { if (commandData.returnType == "Result") { writeFunctionBodyEnhancedCallResult(os, indentation, commandData, singular); } else { writeFunctionBodyEnhancedCall(os, indentation, commandData, singular); } } if ((commandData.returnType == "Result") || !commandData.successCodes.empty()) { writeFunctionBodyEnhancedReturnResultValue(os, indentation, returnName, commandData, singular, unique); } else if ((commandData.returnParam != ~0) && (commandData.returnType != commandData.enhancedReturnType)) { // for the other returning cases, when the return type is somhow enhanced, just return the local returnVariable os << indentation << " return " << returnName << ";" << std::endl; } } } void VulkanHppGenerator::writeFunctionBodyEnhanced(std::ostream &os, std::string const& templateString, std::string const& indentation, CommandData const& commandData, bool singular) { os << replaceWithMap(templateString, { { "call", generateCall(commandData, true, singular) }, { "i", indentation } }); } void VulkanHppGenerator::writeFunctionBodyTwoStep(std::ostream & os, std::string const &templateString, std::string const& indentation, std::string const& returnName, std::string const& sizeName, CommandData const& commandData) { std::map replacements = { { "sizeName", sizeName }, { "returnName", returnName }, { "call1", generateCall(commandData, true, false) }, { "call2", generateCall(commandData, false, false) }, { "i", indentation } }; os << replaceWithMap(templateString, replacements); } std::string VulkanHppGenerator::writeFunctionBodyEnhancedLocalReturnVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool singular, bool isStructureChain) { std::string returnName = startLowerCase(strip(commandData.params[commandData.returnParam].name, "p")); // there is a returned parameter -> we need a local variable to hold that value if (commandData.returnType != commandData.enhancedReturnType) { // the returned parameter is somehow enhanced by us os << indentation << " "; if (singular) { if (isStructureChain) { std::string const &pureType = commandData.params[commandData.returnParam].pureType; // For StructureChains use the template parameters os << "StructureChain structureChain;" << std::endl; returnName = stripPluralS(returnName); os << indentation << " " << pureType << "& " << returnName << " = structureChain.template get<" << pureType << ">()"; returnName = "structureChain"; } else { // in singular case, just use the return parameters pure type for the return variable returnName = stripPluralS(returnName); os << commandData.params[commandData.returnParam].pureType << " " << returnName; } } else { // in non-singular case, use the enhanced type for the return variable (like vector<...>) if (isStructureChain) { std::string const &returnType = commandData.enhancedReturnType; // For StructureChains use the template parameters os << "StructureChain structureChain;" << std::endl; os << indentation << " " << returnType << "& " << returnName << " = structureChain.template get<" << returnType << ">()"; returnName = "structureChain"; } else { os << commandData.enhancedReturnType << " " << returnName; } std::map::const_iterator it = commandData.vectorParams.find(commandData.returnParam); if (it != commandData.vectorParams.end() && !commandData.twoStep) { // if the return parameter is a vector parameter, and not part of a two-step algorithm, initialize its size std::string size; if (it->second == ~0) { assert(!commandData.params[commandData.returnParam].len.empty()); // the size of the vector is not given by an other parameter, but by some member of a parameter, described as 'parameter::member' // -> replace the '::' by '.' and filter out the leading 'p' to access that value size = startLowerCase(strip(commandData.params[commandData.returnParam].len, "p")); size_t pos = size.find("::"); assert(pos != std::string::npos); size.replace(pos, 2, "."); } else { // the size of the vector is given by an other parameter // that means (as this is not a two-step algorithm) it's size is determined by some other vector parameter! // -> look for it and get it's actual size for (auto const& vectorParam : commandData.vectorParams) { if ((vectorParam.first != commandData.returnParam) && (vectorParam.second == it->second)) { size = startLowerCase(strip(commandData.params[vectorParam.first].name, "p")) + ".size()"; break; } } } assert(!size.empty()); os << "( " << size << " )"; } } os << ";" << std::endl; } else { // the return parameter is not enhanced -> the type is supposed to be a Result and there are more than one success codes! assert((commandData.returnType == "Result") && (1 < commandData.successCodes.size())); os << indentation << " " << commandData.params[commandData.returnParam].pureType << " " << returnName << ";" << std::endl; } return returnName; } void VulkanHppGenerator::writeFunctionBodyEnhancedCall(std::ostream &os, std::string const& indentation, CommandData const& commandData, bool singular) { std::string const templateString = "${i} return ${call};\n"; std::string const templateStringVoid = "${i} ${call};\n"; writeFunctionBodyEnhanced(os, commandData.returnType == "void" ? templateStringVoid : templateString, indentation, commandData, singular); } void VulkanHppGenerator::writeFunctionBodyEnhancedCallResult(std::ostream &os, std::string const& indentation, CommandData const& commandData, bool singular) { std::string const templateString = "${i} Result result = static_cast( ${call} );\n"; writeFunctionBodyEnhanced(os, templateString, indentation, commandData, singular); } void VulkanHppGenerator::writeFunctionBodyEnhancedCallTwoStep(std::ostream & os, std::string const& indentation, std::string const& returnName, std::string const& sizeName, CommandData const& commandData) { std::string const templateString = R"(${i} ${call1}; ${i} ${returnName}.resize( ${sizeName} ); ${i} ${call2}; )"; writeFunctionBodyTwoStep(os, templateString, indentation, returnName, sizeName, commandData); } void VulkanHppGenerator::writeFunctionBodyEnhancedCallTwoStepIterate(std::ostream & os, std::string const& indentation, std::string const& returnName, std::string const& sizeName, CommandData const& commandData) { std::string const templateString = R"(${i} Result result; ${i} do ${i} { ${i} result = static_cast( ${call1} ); ${i} if ( ( result == Result::eSuccess ) && ${sizeName} ) ${i} { ${i} ${returnName}.resize( ${sizeName} ); ${i} result = static_cast( ${call2} ); ${i} } ${i} } while ( result == Result::eIncomplete ); ${i} VULKAN_HPP_ASSERT( ${sizeName} <= ${returnName}.size() ); ${i} ${returnName}.resize( ${sizeName} ); )"; writeFunctionBodyTwoStep(os, templateString, indentation, returnName, sizeName, commandData); } void VulkanHppGenerator::writeFunctionBodyEnhancedCallTwoStepChecked(std::ostream & os, std::string const& indentation, std::string const& returnName, std::string const& sizeName, CommandData const& commandData) { std::string const templateString = R"(${i} Result result = static_cast( ${call1} ); ${i} if ( ( result == Result::eSuccess ) && ${sizeName} ) ${i} { ${i} ${returnName}.resize( ${sizeName} ); ${i} result = static_cast( ${call2} ); ${i} } )"; writeFunctionBodyTwoStep(os, templateString, indentation, returnName, sizeName, commandData); } void VulkanHppGenerator::writeFunctionBodyEnhancedLocalCountVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData) { // local count variable to hold the size of the vector to fill assert(commandData.returnParam != ~0); std::map::const_iterator returnit = commandData.vectorParams.find(commandData.returnParam); assert(returnit != commandData.vectorParams.end() && (returnit->second != ~0)); assert((commandData.returnType == "Result") || (commandData.returnType == "void")); // take the pure type of the size parameter; strip the leading 'p' from its name for its local name os << indentation << " " << commandData.params[returnit->second].pureType << " " << startLowerCase(strip(commandData.params[returnit->second].name, "p")) << ";" << std::endl; } void VulkanHppGenerator::writeFunctionBodyEnhancedMultiVectorSizeCheck(std::ostream & os, std::string const& indentation, CommandData const& commandData) { std::string const templateString = R"#(#ifdef VULKAN_HPP_NO_EXCEPTIONS ${i} VULKAN_HPP_ASSERT( ${firstVectorName}.size() == ${secondVectorName}.size() ); #else ${i} if ( ${firstVectorName}.size() != ${secondVectorName}.size() ) ${i} { ${i} throw LogicError( VULKAN_HPP_NAMESPACE_STRING "::${className}::${reducedName}: ${firstVectorName}.size() != ${secondVectorName}.size()" ); ${i} } #endif // VULKAN_HPP_NO_EXCEPTIONS )#"; // add some error checks if multiple vectors need to have the same size for (std::map::const_iterator it0 = commandData.vectorParams.begin(); it0 != commandData.vectorParams.end(); ++it0) { if (it0->first != commandData.returnParam) { for (std::map::const_iterator it1 = std::next(it0); it1 != commandData.vectorParams.end(); ++it1) { if ((it1->first != commandData.returnParam) && (it0->second == it1->second)) { os << replaceWithMap(templateString, std::map({ { "firstVectorName", startLowerCase(strip(commandData.params[it0->first].name, "p")) }, { "secondVectorName", startLowerCase(strip(commandData.params[it1->first].name, "p")) }, { "className", commandData.className }, { "reducedName", commandData.reducedName }, { "i", indentation } })); } } } } } void VulkanHppGenerator::writeFunctionBodyEnhancedReturnResultValue(std::ostream & os, std::string const& indentation, std::string const& returnName, CommandData const& commandData, bool singular, bool unique) { std::string type = (commandData.returnParam != ~0) ? commandData.params[commandData.returnParam].pureType : ""; std::string returnVectorName = (commandData.returnParam != ~0) ? strip(commandData.params[commandData.returnParam].name, "p", "s") : ""; if (unique) { // the unique version needs a Deleter object for destruction of the newly created stuff // get the DeleterData corresponding to the returned type std::map::const_iterator ddit = m_deleters.find(type); assert(ddit != m_deleters.end() && ddit->second.pool.empty()); // special handling for "createDevice", as Device is created from PhysicalDevice, but destroyed on its own bool noParent = commandData.className.empty() || (commandData.fullName == "createDevice"); os << std::endl << indentation << ((commandData.fullName == "allocateMemory") ? " ObjectFree<" : " ObjectDestroy<") << (noParent ? "NoParent" : commandData.className) << "> deleter( " << (noParent ? "" : "*this, ") << "allocator );" << std::endl; } // if the return type is "Result" or there is at least one success code, create the Result/Value construct to return os << indentation << " return createResultValue( result, "; if (commandData.returnParam != ~0) { // if there's a return parameter, list it in the Result/Value constructor os << returnName << ", "; } // now the function name (with full namespace) as a string os << "VULKAN_HPP_NAMESPACE_STRING\"::" << (commandData.className.empty() ? "" : commandData.className + "::") << (singular ? stripPluralS(commandData.reducedName) : commandData.reducedName) << (unique ? "Unique" : "") << "\""; if (!commandData.twoStep && (1 < commandData.successCodes.size())) { // and for the single-step algorithms with more than one success code list them all os << ", { Result::" << commandData.successCodes[0]; for (size_t i = 1; i < commandData.successCodes.size(); i++) { os << ", Result::" << commandData.successCodes[i]; } os << " }"; } if (unique) { os << ", deleter"; } os << " );" << std::endl; } void VulkanHppGenerator::writeFunctionBodyStandard(std::ostream & os, std::string const& indentation, CommandData const& commandData) { os << indentation << " "; bool castReturn = false; if (commandData.returnType != "void") { // there's something to return... os << "return "; castReturn = (m_vkTypes.find(commandData.returnType) != m_vkTypes.end()); if (castReturn) { // the return-type is a vulkan type -> need to cast to vk::-type os << "static_cast<" << commandData.returnType << ">( "; } } // call the original function os << "d.vk" << startUpperCase(commandData.fullName) << "( "; if (!commandData.className.empty()) { // the command is part of a class -> the first argument is the member variable, starting with "m_" os << "m_" << commandData.params[0].name; } // list all the arguments for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++) { if (0 < i) { os << ", "; } if (m_vkTypes.find(commandData.params[i].pureType) != m_vkTypes.end()) { // the parameter is a vulkan type if (commandData.params[i].type.back() == '*') { // it's a pointer -> need to reinterpret_cast it writeReinterpretCast(os, commandData.params[i].type.find("const") == 0, true, commandData.params[i].pureType, commandData.params[i].type.find("* const") != std::string::npos); } else { // it's a value -> need to static_cast ist os << "static_cast"; } os << "( " << commandData.params[i].name << " )"; } else { // it's a non-vulkan type -> just use it os << commandData.params[i].name; } } os << " )"; if (castReturn) { // if we cast the return -> close the static_cast os << " )"; } os << ";" << std::endl; } void VulkanHppGenerator::writeFunctionHeaderArguments(std::ostream & os, CommandData const& commandData, bool enhanced, bool singular, bool withDefaults) { os << "("; if (enhanced) { writeFunctionHeaderArgumentsEnhanced(os, commandData, singular, withDefaults); } else { writeFunctionHeaderArgumentsStandard(os, commandData, withDefaults); } os << ")"; if (!commandData.className.empty()) { os << " const"; } } void VulkanHppGenerator::writeFunctionHeaderArgumentsEnhanced(std::ostream & os, CommandData const& commandData, bool singular, bool withDefaults) { // check if there's at least one argument left to put in here if (commandData.skippedParams.size() + (commandData.className.empty() ? 0 : 1) < commandData.params.size()) { // determine the last argument, where we might provide some default for size_t lastArgument = ~0; for (size_t i = commandData.params.size() - 1; i < commandData.params.size(); i--) { if (commandData.skippedParams.find(i) == commandData.skippedParams.end()) { lastArgument = i; break; } } os << " "; bool argEncountered = false; for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++) { if (commandData.skippedParams.find(i) == commandData.skippedParams.end()) { if (argEncountered) { os << ", "; } std::string strippedParameterName = startLowerCase(strip(commandData.params[i].name, "p")); std::map::const_iterator it = commandData.vectorParams.find(i); size_t rightStarPos = commandData.params[i].type.rfind('*'); if (it == commandData.vectorParams.end()) { // the argument ist not a vector if (rightStarPos == std::string::npos) { // and its not a pointer -> just use its type and name here os << commandData.params[i].type << " " << commandData.params[i].name; if (!commandData.params[i].arraySize.empty()) { os << "[" << commandData.params[i].arraySize << "]"; } if (withDefaults && (lastArgument == i)) { // check if the very last argument is a flag without any bits -> provide some empty default for it std::map::const_iterator bitmasksIt = m_bitmasks.find(commandData.params[i].pureType); if (bitmasksIt != m_bitmasks.end()) { // get the enum corresponding to this flag, to check if it's empty std::list::const_iterator depIt = std::find_if(m_dependencies.begin(), m_dependencies.end(), [&bitmasksIt](DependencyData const& dd) { return(dd.name == bitmasksIt->first); }); assert((depIt != m_dependencies.end()) && (depIt->dependencies.size() == 1)); std::map::const_iterator enumIt = m_enums.find(*depIt->dependencies.begin()); assert(enumIt != m_enums.end()); if (enumIt->second.values.empty()) { // there are no bits in this flag -> provide the default os << " = " << commandData.params[i].pureType << "()"; } } } } else { // the argument is not a vector, but a pointer assert(commandData.params[i].type[rightStarPos] == '*'); if (commandData.params[i].optional) { // for an optional argument, trim the trailing '*' from the type, and the leading 'p' from the name os << "Optional<" << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << "> " << strippedParameterName; if (withDefaults) { os << " = nullptr"; } } else if (commandData.params[i].pureType == "void") { // for void-pointer, just use type and name os << commandData.params[i].type << " " << commandData.params[i].name; } else if (commandData.params[i].pureType != "char") { // for non-char-pointer, change to reference os << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << " & " << strippedParameterName; } else { // for char-pointer, change to const reference to std::string os << "const std::string & " << strippedParameterName; } } } else { // the argument is a vector // it's optional, if it's marked as optional and there's no size specified bool optional = commandData.params[i].optional && (it->second == ~0); assert((rightStarPos != std::string::npos) && (commandData.params[i].type[rightStarPos] == '*')); if (commandData.params[i].type.find("char") != std::string::npos) { // it's a char-vector -> use a std::string (either optional or a const-reference if (optional) { os << "Optional " << strippedParameterName; if (withDefaults) { os << " = nullptr"; } } else { os << "const std::string & " << strippedParameterName; } } else { // it's a non-char vector (they are never optional) assert(!optional); if (singular) { // in singular case, change from pointer to reference os << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << " & " << stripPluralS(strippedParameterName); } else { // otherwise, use our ArrayProxy bool isConst = (commandData.params[i].type.find("const") != std::string::npos); os << "ArrayProxy<" << ((commandData.templateParam == i) ? (isConst ? "const T" : "T") : trimEnd(commandData.params[i].type.substr(0, rightStarPos))) << "> " << strippedParameterName; } } } argEncountered = true; } } if (argEncountered) { os << ", "; } } os << "Dispatch const &d"; if (withDefaults) { os << " = Dispatch()"; } os << " "; } void VulkanHppGenerator::writeFunctionHeaderArgumentsStandard(std::ostream & os, CommandData const& commandData, bool withDefaults) { // for the standard case, just list all the arguments as we've got them bool argEncountered = false; // determine the last argument, where we might provide some default for size_t lastArgument = commandData.params.size() - 1; for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++) { if (argEncountered) { os << ","; } os << " " << commandData.params[i].type << " " << commandData.params[i].name; if (!commandData.params[i].arraySize.empty()) { os << "[" << commandData.params[i].arraySize << "]"; } if (withDefaults && (lastArgument == i)) { // check if the very last argument is a flag without any bits -> provide some empty default for it std::map::const_iterator flagIt = m_bitmasks.find(commandData.params[i].pureType); if (flagIt != m_bitmasks.end()) { // get the enum corresponding to this flag, to check if it's empty std::list::const_iterator depIt = std::find_if(m_dependencies.begin(), m_dependencies.end(), [&flagIt](DependencyData const& dd) { return(dd.name == flagIt->first); }); assert((depIt != m_dependencies.end()) && (depIt->dependencies.size() == 1)); std::map::const_iterator enumIt = m_enums.find(*depIt->dependencies.begin()); assert(enumIt != m_enums.end()); if (enumIt->second.values.empty()) { // there are no bits in this flag -> provide the default os << " = " << commandData.params[i].pureType << "()"; } } } argEncountered = true; } if (argEncountered) { os << ", "; } os << "Dispatch const &d"; if (withDefaults) { os << " = Dispatch() "; } } void VulkanHppGenerator::writeFunctionHeaderReturnType(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool enhanced, bool singular, bool unique, bool isStructureChain) { std::string templateString; std::string returnType; if (enhanced) { // the enhanced function might return some pretty complex return stuff if (isStructureChain || (!singular && (commandData.enhancedReturnType.find("Allocator") != std::string::npos))) { // for the non-singular case with allocation, we need to prepend with 'typename' to keep compilers happy templateString = "typename "; } if (unique) { // the unique version returns something prefixed with 'Unique'; potentially a vector of that stuff // it's a vector, if it's not the singular version and the return parameter is a vector parameter bool returnsVector = !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end()); templateString += returnsVector ? "ResultValueType>::type " : "ResultValueType::type "; returnType = isStructureChain ? "StructureChain" : commandData.params[commandData.returnParam].pureType; } else if ((commandData.enhancedReturnType != commandData.returnType) && (commandData.returnType != "void")) { // if the enhanced return type differs from the original return type, and it's not void, we return a ResultValueType<...>::type templateString += "ResultValueType<${returnType}>::type "; assert(commandData.returnType == "Result"); // in singular case, we create the ResultValueType from the pure return type, otherwise from the enhanced return type if (isStructureChain) { returnType = "StructureChain"; } else { returnType = singular ? commandData.params[commandData.returnParam].pureType : commandData.enhancedReturnType; } } else if ((commandData.returnParam != ~0) && (1 < commandData.successCodes.size())) { // if there is a return parameter at all, and there are multiple success codes, we return a ResultValue<...> with the pure return type assert(commandData.returnType == "Result"); templateString = "ResultValue<${returnType}> "; returnType = isStructureChain ? "StructureChain" : commandData.params[commandData.returnParam].pureType; } else { // and in every other case, we just return the enhanced return type. templateString = "${returnType} "; returnType = isStructureChain ? "StructureChain" : commandData.enhancedReturnType; } } else { // the non-enhanced function just uses the return type templateString = "${returnType} "; returnType = commandData.returnType; } os << replaceWithMap(templateString, { { "returnType", returnType } }); } void VulkanHppGenerator::writeFunctionHeaderTemplate(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool enhanced, bool unique, bool withDefault, bool isStructureChain) { std::string dispatch = withDefault ? std::string("typename Dispatch = DispatchLoaderStatic") : std::string("typename Dispatch"); if (enhanced && isStructureChain) { os << indentation << "template " << std::endl; } else if (enhanced && (commandData.templateParam != ~0) && ((commandData.templateParam != commandData.returnParam) || (commandData.enhancedReturnType == "Result"))) { // if there's a template parameter, not being the return parameter or where the enhanced return type is 'Result' -> templatize on type 'T' assert(commandData.enhancedReturnType.find("Allocator") == std::string::npos); os << indentation << "template " << std::endl; } else if (enhanced && (commandData.enhancedReturnType.find("Allocator") != std::string::npos)) { // otherwise, if there's an Allocator used in the enhanced return type, we templatize on that Allocator assert((commandData.enhancedReturnType.substr(0, 12) == "std::vector<") && (commandData.enhancedReturnType.find(',') != std::string::npos) && (12 < commandData.enhancedReturnType.find(','))); os << indentation << "template ' os << " = std::allocator<" << (unique ? "Unique" : "") << commandData.enhancedReturnType.substr(12, commandData.enhancedReturnType.find(',') - 12) << ">"; } os << ", " << dispatch; os << "> " << std::endl; } else { os << indentation << "template<" << dispatch << ">" << std::endl; } } void VulkanHppGenerator::writeResultEnum(std::ostream & os) { std::list::const_iterator it = std::find_if(m_dependencies.begin(), m_dependencies.end(), [](DependencyData const& dp) { return dp.name == "Result"; }); assert(it != m_dependencies.end()); writeTypeEnum(os, m_enums.find(it->name)->second); writeEnumsToString(os, m_enums.find(it->name)->second); os << "#ifndef VULKAN_HPP_NO_EXCEPTIONS"; os << exceptionHeader; os << exceptionClassesHeader; writeExceptionsForEnum(os, m_enums.find(it->name)->second); writeThrowExceptions(os, m_enums.find(it->name)->second); os << "#endif" << std::endl; m_dependencies.erase(it); } void VulkanHppGenerator::writeStructConstructor(std::ostream & os, std::string const& name, StructData const& structData, std::map const& defaultValues) { // the constructor with all the elements as arguments, with defaults std::string ctorOpening = " " + name + "( "; size_t indentSize = ctorOpening.size(); os << ctorOpening; bool listedArgument = false; for (size_t i = 0; i < structData.members.size(); i++) { listedArgument = writeStructConstructorArgument(os, listedArgument, indentSize, structData.members[i], defaultValues); } os << " )" << std::endl; // copy over the simple arguments bool firstArgument = true; for (size_t i = 0; i < structData.members.size(); i++) { // skip members 'pNext' and 'sType' are directly set by initializers if ((structData.members[i].name != "pNext") && (structData.members[i].name != "sType") && (structData.members[i].arraySize.empty())) { // here, we can only handle non-array arguments std::string templateString = " ${sep} ${member}( ${value} )\n"; std::string sep = firstArgument ? ":" : ","; std::string member = structData.members[i].name; std::string value = structData.members[i].name + "_"; // the elements are initialized by the corresponding argument (with trailing '_', as mentioned above) os << replaceWithMap(templateString, { { "sep", sep },{ "member", member },{ "value", value } }); firstArgument = false; } } // the body of the constructor, copying over data from argument list into wrapped struct os << " {" << std::endl; for (size_t i = 0; i < structData.members.size(); i++) { if (!structData.members[i].arraySize.empty()) { // here we can handle the arrays, copying over from argument (with trailing '_') to member // size is arraySize times sizeof type std::string member = structData.members[i].name; std::string arraySize = structData.members[i].arraySize; std::string type = structData.members[i].type; os << replaceWithMap(" memcpy( &${member}, ${member}_.data(), ${arraySize} * sizeof( ${type} ) );\n", { { "member", member },{ "arraySize", arraySize },{ "type", type } }); } } os << " }\n\n"; if (!structData.subStruct.empty()) { auto const& subStruct = m_structs.find(structData.subStruct); assert(subStruct != m_structs.end()); std::string subStructArgumentName = startLowerCase(strip(subStruct->first, "vk")); std::string ctorOpening = " explicit " + name + "( "; size_t indentSize = ctorOpening.size(); os << ctorOpening << subStruct->first << " const& " << subStructArgumentName; os << ",\n"; writeIndentation(os, indentSize); for (size_t i = subStruct->second.members.size(); i < structData.members.size(); i++) { writeStructConstructorArgument(os, true, indentSize, structData.members[i], defaultValues); } os << " )" << std::endl; bool firstArgument = true; std::string templateString = " ${sep} ${member}( ${value} )\n"; for (size_t i = 0; i < subStruct->second.members.size(); i++) { assert(structData.members[i].arraySize.empty()); std::string sep = firstArgument ? ":" : ","; std::string member = structData.members[i].name; std::string value = subStructArgumentName + "." + subStruct->second.members[i].name; os << replaceWithMap(templateString, { { "sep", sep },{ "member", member },{ "value", value } }); firstArgument = false; } for (size_t i = subStruct->second.members.size(); i < structData.members.size(); i++) { assert(structData.members[i].arraySize.empty()); std::string member = structData.members[i].name; std::string value = structData.members[i].name + "_"; // the elements are initialized by the corresponding argument (with trailing '_', as mentioned above) os << replaceWithMap(templateString, { { "sep", "," },{ "member", member },{ "value", value } }); } os << " {}" << std::endl << std::endl; } std::string templateString = R"( ${name}( Vk${name} const & rhs ) { memcpy( this, &rhs, sizeof( ${name} ) ); } ${name}& operator=( Vk${name} const & rhs ) { memcpy( this, &rhs, sizeof( ${name} ) ); return *this; } )"; os << replaceWithMap(templateString, { { "name", name } }); } void VulkanHppGenerator::writeIndentation(std::ostream & os, size_t indentLength) { for(size_t i = 0; i < indentLength; i++) { os << " "; } } bool VulkanHppGenerator::writeStructConstructorArgument(std::ostream & os, bool listedArgument, size_t indentLength, MemberData const& memberData, std::map const& defaultValues) { if (listedArgument) { os << ",\n"; writeIndentation(os, indentLength); } // skip members 'pNext' and 'sType', as they are never explicitly set if ((memberData.name != "pNext") && (memberData.name != "sType")) { // find a default value for the given pure type std::map::const_iterator defaultIt = defaultValues.find(memberData.pureType); assert(defaultIt != defaultValues.end()); if (memberData.arraySize.empty()) { // the arguments name get a trailing '_', to distinguish them from the actual struct members // pointer arguments get a nullptr as default os << memberData.type << " " << memberData.name << "_ = " << (memberData.type.back() == '*' ? "nullptr" : defaultIt->second); } else { // array members are provided as const reference to a std::array // the arguments name get a trailing '_', to distinguish them from the actual struct members // list as many default values as there are elements in the array os << "std::array<" << memberData.type << "," << memberData.arraySize << "> const& " << memberData.name << "_ = { { " << defaultIt->second; size_t n = atoi(memberData.arraySize.c_str()); assert(0 < n); for (size_t j = 1; j < n; j++) { os << ", " << defaultIt->second; } os << " } }"; } listedArgument = true; } return listedArgument; } void VulkanHppGenerator::writeStructSetter(std::ostream & os, std::string const& structureName, MemberData const& memberData) { if (memberData.type != "StructureType") // filter out StructureType, which is supposed to be immutable ! { // the setters return a reference to the structure os << " " << structureName << "& set" << startUpperCase(memberData.name) << "( "; if (memberData.arraySize.empty()) { os << memberData.type << " "; } else { os << "std::array<" << memberData.type << "," << memberData.arraySize << "> "; } // add a trailing '_' to the argument to distinguish it from the structure member os << memberData.name << "_ )" << std::endl << " {" << std::endl; // copy over the argument, either by assigning simple data, or by memcpy array data if (memberData.arraySize.empty()) { os << " " << memberData.name << " = " << memberData.name << "_"; } else { os << " memcpy( &" << memberData.name << ", " << memberData.name << "_.data(), " << memberData.arraySize << " * sizeof( " << memberData.type << " ) )"; } os << ";" << std::endl << " return *this;" << std::endl << " }" << std::endl << std::endl; } } void VulkanHppGenerator::writeStructureChainValidation(std::ostream & os) { // write all template functions for the structure pointer chain validation for (auto it = m_dependencies.begin(); it != m_dependencies.end(); ++it) { switch (it->category) { case DependencyData::Category::STRUCT: writeStructureChainValidation(os, *it); break; } } } void VulkanHppGenerator::writeStructureChainValidation(std::ostream & os, DependencyData const& dependencyData) { std::map::const_iterator it = m_structs.find(dependencyData.name); assert(it != m_structs.end()); if (!it->second.structExtends.empty()) { enterProtect(os, it->second.protect); // write out allowed structure chains for (auto extendName : it->second.structExtends) { std::map::const_iterator itExtend = m_structs.find(extendName); if (itExtend == m_structs.end()) { std::stringstream errorString; errorString << extendName << " does not specify a struct in structextends field."; // check if symbol name is an alias to a struct auto itAlias = std::find_if(m_structs.begin(), m_structs.end(), [&extendName](std::pair const &it) -> bool {return it.second.alias == extendName;}); if (itAlias != m_structs.end()) { errorString << " The symbol is an alias and maps to " << itAlias->first << "."; } errorString << std::endl; throw std::runtime_error(errorString.str()); } enterProtect(os, itExtend->second.protect); os << " template <> struct isStructureChainValid<" << extendName << ", " << dependencyData.name << ">{ enum { value = true }; };" << std::endl; leaveProtect(os, itExtend->second.protect); } leaveProtect(os, it->second.protect); } } void VulkanHppGenerator::writeThrowExceptions(std::ostream & os, EnumData const& enumData) { enterProtect(os, enumData.protect); os << R"( VULKAN_HPP_INLINE void throwResultException( Result result, char const * message ) { switch ( result ) { )"; for (size_t i = 0; icategory) { case DependencyData::Category::BITMASK: writeBitmaskToString(os, it->name, m_enums.find(*it->dependencies.begin())->second); break; case DependencyData::Category::ENUM: assert(m_enums.find(it->name) != m_enums.end()); writeEnumsToString(os, m_enums.find(it->name)->second); break; } } } void VulkanHppGenerator::writeTypeBitmask(std::ostream & os, std::string const& bitmaskName, BitmaskData const& bitmaskData, EnumData const& enumData) { enterProtect(os, bitmaskData.protect); // each Flags class is using on the class 'Flags' with the corresponding FlagBits enum as the template parameter os << " using " << bitmaskName << " = Flags<" << enumData.name << ", Vk" << bitmaskName << ">;" << std::endl; std::stringstream allFlags; for (size_t i = 0; i < enumData.values.size(); i++) { if (i != 0) { allFlags << " | "; } allFlags << "VkFlags(" << enumData.name << "::" << enumData.values[i].name << ")"; } if (!enumData.values.empty()) { const std::string templateString = R"( VULKAN_HPP_INLINE ${bitmaskName} operator|( ${enumName} bit0, ${enumName} bit1 ) { return ${bitmaskName}( bit0 ) | bit1; } VULKAN_HPP_INLINE ${bitmaskName} operator~( ${enumName} bits ) { return ~( ${bitmaskName}( bits ) ); } template <> struct FlagTraits<${enumName}> { enum { allFlags = ${allFlags} }; }; )"; os << replaceWithMap(templateString, { { "bitmaskName", bitmaskName },{ "enumName", enumData.name },{ "allFlags", allFlags.str() } }); } if (!bitmaskData.alias.empty()) { os << std::endl << " using " << bitmaskData.alias << " = " << bitmaskName << ";" << std::endl; } leaveProtect(os, bitmaskData.protect); os << std::endl; } void VulkanHppGenerator::writeTypeCommand(std::ostream & os, DependencyData const& dependencyData) { assert(m_commands.find(dependencyData.name) != m_commands.end()); CommandData const& commandData = m_commands.find(dependencyData.name)->second; if (commandData.className.empty()) { if (commandData.fullName == "createInstance") { // special handling for createInstance, as we need to explicitly place the forward declarations and the deleter classes here #if !defined(NDEBUG) auto deleterTypesIt = m_deleterTypes.find(""); assert((deleterTypesIt != m_deleterTypes.end()) && (deleterTypesIt->second.size() == 2)); assert(deleterTypesIt->second.find("Instance") != deleterTypesIt->second.end()); #endif writeUniqueTypes(os, std::make_pair>("", { "Instance" })); writeTypeCommand(os, " ", commandData, false); } else { writeTypeCommand(os, " ", commandData, false); } writeTypeCommand(os, " ", commandData, true); os << std::endl; } } void VulkanHppGenerator::writeTypeCommand(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool definition) { enterProtect(os, commandData.protect); bool isStructureChain = m_extendedStructs.find(commandData.enhancedReturnType) != m_extendedStructs.end(); // first create the standard version of the function std::ostringstream standard; writeFunction(standard, indentation, commandData, definition, false, false, false, false); // then the enhanced version, composed by up to five parts std::ostringstream enhanced; writeFunction(enhanced, indentation, commandData, definition, true, false, false, false); if (isStructureChain) { writeFunction(enhanced, indentation, commandData, definition, true, false, false, true); } // then a singular version, if a sized vector would be returned std::map::const_iterator returnVector = commandData.vectorParams.find(commandData.returnParam); bool singular = (returnVector != commandData.vectorParams.end()) && (returnVector->second != ~0) && (commandData.params[returnVector->second].type.back() != '*'); if (singular) { writeFunction(enhanced, indentation, commandData, definition, true, true, false, false); } // special handling for createDevice and createInstance ! bool specialWriteUnique = (commandData.reducedName == "createDevice") || (commandData.reducedName == "createInstance"); // and then the same for the Unique* versions (a Deleter is available for the commandData's class, and the function starts with 'allocate' or 'create') if (((m_deleters.find(commandData.className) != m_deleters.end()) || specialWriteUnique) && ((commandData.reducedName.substr(0, 8) == "allocate") || (commandData.reducedName.substr(0, 6) == "create"))) { enhanced << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl; writeFunction(enhanced, indentation, commandData, definition, true, false, true, false); if (singular) { writeFunction(enhanced, indentation, commandData, definition, true, true, true, false); } enhanced << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl; } // and write one or both of them writeStandardOrEnhanced(os, standard.str(), enhanced.str()); leaveProtect(os, commandData.protect); os << std::endl; } void VulkanHppGenerator::writeTypeEnum(std::ostream & os, EnumData const& enumData) { // a named enum per enum, listing all its values by setting them to the original Vulkan names enterProtect(os, enumData.protect); os << " enum class " << enumData.name << std::endl << " {" << std::endl; for (size_t i = 0; i list them first if (!dependencyData.forwardDependencies.empty()) { os << " // forward declarations" << std::endl; for (std::set::const_iterator it = dependencyData.forwardDependencies.begin(); it != dependencyData.forwardDependencies.end(); ++it) { assert(m_structs.find(*it) != m_structs.end()); os << " struct " << *it << ";" << std::endl; } os << std::endl; } // then write any forward declaration of Deleters used by this handle std::map>::const_iterator deleterTypesIt = m_deleterTypes.find(dependencyData.name); if (deleterTypesIt != m_deleterTypes.end()) { writeUniqueTypes(os, *deleterTypesIt); } else if (dependencyData.name == "PhysicalDevice") { // special handling for class Device, as it's created from PhysicalDevice, but destroys itself writeUniqueTypes(os, std::make_pair>("", { "Device" })); } const std::string memberName = startLowerCase(dependencyData.name); const std::string templateString = R"( class ${className} { public: VULKAN_HPP_CONSTEXPR ${className}() : m_${memberName}(VK_NULL_HANDLE) {} VULKAN_HPP_CONSTEXPR ${className}( std::nullptr_t ) : m_${memberName}(VK_NULL_HANDLE) {} VULKAN_HPP_TYPESAFE_EXPLICIT ${className}( Vk${className} ${memberName} ) : m_${memberName}( ${memberName} ) {} #if defined(VULKAN_HPP_TYPESAFE_CONVERSION) ${className} & operator=(Vk${className} ${memberName}) { m_${memberName} = ${memberName}; return *this; } #endif ${className} & operator=( std::nullptr_t ) { m_${memberName} = VK_NULL_HANDLE; return *this; } bool operator==( ${className} const & rhs ) const { return m_${memberName} == rhs.m_${memberName}; } bool operator!=(${className} const & rhs ) const { return m_${memberName} != rhs.m_${memberName}; } bool operator<(${className} const & rhs ) const { return m_${memberName} < rhs.m_${memberName}; } ${commands} VULKAN_HPP_TYPESAFE_EXPLICIT operator Vk${className}() const { return m_${memberName}; } explicit operator bool() const { return m_${memberName} != VK_NULL_HANDLE; } bool operator!() const { return m_${memberName} == VK_NULL_HANDLE; } private: Vk${className} m_${memberName}; }; static_assert( sizeof( ${className} ) == sizeof( Vk${className} ), "handle and wrapper have different size!" ); )"; std::ostringstream commands; // now list all the commands that are mapped to members of this class for (size_t i = 0; i < handleData.commands.size(); i++) { std::map::const_iterator cit = m_commands.find(handleData.commands[i]); assert((cit != m_commands.end()) && !cit->second.className.empty()); writeTypeCommand(commands, " ", cit->second, false); // special handling for destroy functions which are not aliased. if (!cit->second.isAlias && (((cit->second.fullName.substr(0, 7) == "destroy") && (cit->second.reducedName != "destroy")) || (cit->second.fullName.substr(0, 4) == "free"))) { CommandData shortenedCommand = cit->second; shortenedCommand.reducedName = (cit->second.fullName.substr(0, 7) == "destroy") ? "destroy" : "free"; writeTypeCommand(commands, " ", shortenedCommand, false); } } os << replaceWithMap(templateString, { { "className", dependencyData.name }, { "memberName", memberName }, { "commands", commands.str() } }); // and finally the commands, that are member functions of this handle for (size_t i = 0; i < handleData.commands.size(); i++) { std::string commandName = handleData.commands[i]; std::map::const_iterator cit = m_commands.find(commandName); assert((cit != m_commands.end()) && !cit->second.className.empty()); std::list::const_iterator dep = std::find_if(m_dependencies.begin(), m_dependencies.end(), [commandName](DependencyData const& dd) { return dd.name == commandName; }); assert(dep != m_dependencies.end() && (dep->name == cit->second.fullName)); writeTypeCommand(os, " ", cit->second, true); // special handling for destroy functions if (!cit->second.isAlias && (((cit->second.fullName.substr(0, 7) == "destroy") && (cit->second.reducedName != "destroy")) || (cit->second.fullName.substr(0, 4) == "free"))) { CommandData shortenedCommand = cit->second; shortenedCommand.reducedName = (cit->second.fullName.substr(0, 7) == "destroy") ? "destroy" : "free"; writeTypeCommand(os, " ", shortenedCommand, true); } } if (!handleData.alias.empty()) { os << " using " << handleData.alias << " = " << dependencyData.name << ";" << std::endl << std::endl; } leaveProtect(os, handleData.protect); } void VulkanHppGenerator::writeTypes(std::ostream & os, std::map const& defaultValues) { assert(m_deleterTypes.find("") != m_deleterTypes.end()); for (std::list::const_iterator it = m_dependencies.begin(); it != m_dependencies.end(); ++it) { switch (it->category) { case DependencyData::Category::BITMASK: assert(m_bitmasks.find(it->name) != m_bitmasks.end()); writeTypeBitmask(os, it->name, m_bitmasks.find(it->name)->second, m_enums.find(generateEnumNameForFlags(it->name))->second); break; case DependencyData::Category::COMMAND: writeTypeCommand(os, *it); break; case DependencyData::Category::ENUM: assert(m_enums.find(it->name) != m_enums.end()); writeTypeEnum(os, m_enums.find(it->name)->second); break; case DependencyData::Category::FUNC_POINTER: case DependencyData::Category::REQUIRED: // skip FUNC_POINTER and REQUIRED, they just needed to be in the dependencies list to resolve dependencies break; case DependencyData::Category::HANDLE: assert(m_handles.find(it->name) != m_handles.end()); writeTypeHandle(os, *it, m_handles.find(it->name)->second); break; case DependencyData::Category::SCALAR: writeTypeScalar(os, *it); break; case DependencyData::Category::STRUCT: writeTypeStruct(os, *it, defaultValues); break; case DependencyData::Category::UNION: assert(m_structs.find(it->name) != m_structs.end()); writeTypeUnion(os, *it, defaultValues); break; default: assert(false); break; } } } void VulkanHppGenerator::writeTypeScalar(std::ostream & os, DependencyData const& dependencyData) { assert(dependencyData.dependencies.size() == 1); os << " using " << dependencyData.name << " = " << *dependencyData.dependencies.begin() << ";" << std::endl << std::endl; } void VulkanHppGenerator::writeTypeStruct(std::ostream & os, DependencyData const& dependencyData, std::map const& defaultValues) { std::map::const_iterator it = m_structs.find(dependencyData.name); assert(it != m_structs.end()); enterProtect(os, it->second.protect); os << " struct " << dependencyData.name << std::endl << " {" << std::endl; // only structs that are not returnedOnly get a constructor! if (!it->second.returnedOnly) { writeStructConstructor(os, dependencyData.name, it->second, defaultValues); } // create the setters if (!it->second.returnedOnly) { for (size_t i = 0; isecond.members.size(); i++) { writeStructSetter(os, dependencyData.name, it->second.members[i]); } } // the cast-operator to the wrapped struct os << " operator const Vk" << dependencyData.name << "&() const" << std::endl << " {" << std::endl << " return *reinterpret_cast(this);" << std::endl << " }" << std::endl << std::endl; // operator==() and operator!=() // only structs without a union as a member can have a meaningfull == and != operation; we filter them out if (!containsUnion(dependencyData.name, m_structs)) { // two structs are compared by comparing each of the elements os << " bool operator==( " << dependencyData.name << " const& rhs ) const" << std::endl << " {" << std::endl << " return "; for (size_t i = 0; i < it->second.members.size(); i++) { if (i != 0) { os << std::endl << " && "; } if (!it->second.members[i].arraySize.empty()) { os << "( memcmp( " << it->second.members[i].name << ", rhs." << it->second.members[i].name << ", " << it->second.members[i].arraySize << " * sizeof( " << it->second.members[i].type << " ) ) == 0 )"; } else { os << "( " << it->second.members[i].name << " == rhs." << it->second.members[i].name << " )"; } } os << ";" << std::endl << " }" << std::endl << std::endl << " bool operator!=( " << dependencyData.name << " const& rhs ) const" << std::endl << " {" << std::endl << " return !operator==( rhs );" << std::endl << " }" << std::endl << std::endl; } // the member variables for (size_t i = 0; i < it->second.members.size(); i++) { if (it->second.members[i].type == "StructureType") { assert((i == 0) && (it->second.members[i].name == "sType")); if (!it->second.members[i].values.empty()) { assert(!it->second.members[i].values.empty()); auto nameIt = m_nameMap.find(it->second.members[i].values); assert(nameIt != m_nameMap.end()); os << " private:" << std::endl << " StructureType sType = " << nameIt->second << ";" << std::endl << std::endl << " public:" << std::endl; } else { os << " StructureType sType;" << std::endl; } } else { os << " " << it->second.members[i].type << " " << it->second.members[i].name; if (it->second.members[i].name == "pNext") { os << " = nullptr"; } else if (!it->second.members[i].arraySize.empty()) { os << "[" << it->second.members[i].arraySize << "]"; } os << ";" << std::endl; } } os << " };" << std::endl << " static_assert( sizeof( " << dependencyData.name << " ) == sizeof( Vk" << dependencyData.name << " ), \"struct and wrapper have different size!\" );" << std::endl; if (!it->second.alias.empty()) { os << std::endl << " using " << it->second.alias << " = " << dependencyData.name << ";" << std::endl; } leaveProtect(os, it->second.protect); os << std::endl; } void VulkanHppGenerator::writeUniqueTypes(std::ostream &os, std::pair> const& deleterTypes) { os << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl; if (!deleterTypes.first.empty()) { os << " class " << deleterTypes.first << ";" << std::endl; } os << std::endl; bool first = true; for (auto const& dt : deleterTypes.second) { auto ddit = m_deleters.find(dt); assert(ddit != m_deleters.end()); os << " template <> class UniqueHandleTraits<" << dt << "> {public: using deleter = " << (ddit->second.pool.empty() ? "Object" : "Pool") << ((ddit->second.call.substr(0, 4) == "free") ? "Free<" : "Destroy<") << (deleterTypes.first.empty() ? "NoParent" : deleterTypes.first) << (ddit->second.pool.empty() ? "" : ", " + ddit->second.pool) << ">; };\n"; os << " using Unique" << dt << " = UniqueHandle<" << dt << ">;" << std::endl; } os << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl << std::endl; } void VulkanHppGenerator::writeTypeUnion(std::ostream & os, DependencyData const& dependencyData, std::map const& defaultValues) { std::map::const_iterator it = m_structs.find(dependencyData.name); assert(it != m_structs.end()); std::ostringstream oss; os << " union " << dependencyData.name << std::endl << " {" << std::endl; for (size_t i = 0; isecond.members.size(); i++) { // one constructor per union element os << " " << dependencyData.name << "( "; if (it->second.members[i].arraySize.empty()) { os << it->second.members[i].type << " "; } else { os << "const std::array<" << it->second.members[i].type << "," << it->second.members[i].arraySize << ">& "; } os << it->second.members[i].name << "_"; // just the very first constructor gets default arguments if (i == 0) { std::map::const_iterator defaultIt = defaultValues.find(it->second.members[i].pureType); assert(defaultIt != defaultValues.end()); if (it->second.members[i].arraySize.empty()) { os << " = " << defaultIt->second; } else { os << " = { {" << defaultIt->second << "} }"; } } os << " )" << std::endl << " {" << std::endl << " "; if (it->second.members[i].arraySize.empty()) { os << it->second.members[i].name << " = " << it->second.members[i].name << "_"; } else { os << "memcpy( &" << it->second.members[i].name << ", " << it->second.members[i].name << "_.data(), " << it->second.members[i].arraySize << " * sizeof( " << it->second.members[i].type << " ) )"; } os << ";" << std::endl << " }" << std::endl << std::endl; } for (size_t i = 0; isecond.members.size(); i++) { // one setter per union element assert(!it->second.returnedOnly); writeStructSetter(os, dependencyData.name, it->second.members[i]); } // the implicit cast operator to the native type os << " operator Vk" << dependencyData.name << " const& () const" << std::endl << " {" << std::endl << " return *reinterpret_cast(this);" << std::endl << " }" << std::endl << std::endl; // the union member variables // if there's at least one Vk... type in this union, check for unrestricted unions support bool needsUnrestrictedUnions = false; for (size_t i = 0; i < it->second.members.size() && !needsUnrestrictedUnions; i++) { needsUnrestrictedUnions = (m_vkTypes.find(it->second.members[i].type) != m_vkTypes.end()); } if (needsUnrestrictedUnions) { os << "#ifdef VULKAN_HPP_HAS_UNRESTRICTED_UNIONS" << std::endl; for (size_t i = 0; i < it->second.members.size(); i++) { os << " " << it->second.members[i].type << " " << it->second.members[i].name; if (!it->second.members[i].arraySize.empty()) { os << "[" << it->second.members[i].arraySize << "]"; } os << ";" << std::endl; } os << "#else" << std::endl; } for (size_t i = 0; i < it->second.members.size(); i++) { os << " "; if (m_vkTypes.find(it->second.members[i].type) != m_vkTypes.end()) { os << "Vk"; } os << it->second.members[i].type << " " << it->second.members[i].name; if (!it->second.members[i].arraySize.empty()) { os << "[" << it->second.members[i].arraySize << "]"; } os << ";" << std::endl; } if (needsUnrestrictedUnions) { os << "#endif // VULKAN_HPP_HAS_UNRESTRICTED_UNIONS" << std::endl; } os << " };" << std::endl << std::endl; } #if !defined(NDEBUG) void VulkanHppGenerator::checkExtensionRequirements() { for (auto const& ext : m_extensions) { for (auto const& req : ext.second.requires) { auto reqExt = m_extensions.find(req); assert(reqExt != m_extensions.end()); assert(reqExt->second.protect.empty() || (reqExt->second.protect == ext.second.protect)); } } } void VulkanHppGenerator::skipVendorID(tinyxml2::XMLElement const* element) { std::map attributes = getAttributes(element); checkAttributes(attributes, element->GetLineNum(), { { "comment",{} },{ "id",{} },{ "name",{} } }, {}); checkElements(getChildElements(element), {}); VendorIDData vendorID; for (auto const& attribute : attributes) { std::string name = attribute.first; if (name == "comment") { vendorID.comment = attribute.second; } else if (name == "id") { vendorID.id = attribute.second; } else { assert(name == "name"); vendorID.name = attribute.second; } } m_vendorIDs.push_back(vendorID); } void VulkanHppGenerator::skipVendorIDs(tinyxml2::XMLElement const* element) { checkAttributes(getAttributes(element), element->GetLineNum(), { { "comment",{} } }, {}); std::vector children = getChildElements(element); checkElements(children, { "vendorid" }); for (auto child : children) { skipVendorID(child); } } #endif void VulkanHppGenerator::EnumData::addEnumValue(std::string const &name, std::string const& tag, std::map & nameMap) { EnumValueData evd; evd.name = createEnumValueName(name, prefix, postfix, bitmask, tag); evd.value = name; auto it = std::find_if(values.begin(), values.end(), [&evd](EnumValueData const& _evd) { return _evd.name == evd.name; }); if (it == values.end()) { values.push_back(evd); assert(nameMap.find(name) == nameMap.end()); nameMap[name] = this->name + "::" + evd.name; } else { assert(it->value == evd.value); } } void VulkanHppGenerator::writeDelegationClassStatic(std::ostream &os) { os << "class DispatchLoaderStatic" << std::endl << "{" << std::endl << "public:\n"; for (auto command : m_commands) { enterProtect(os, command.second.protect); os << " " << command.second.unchangedReturnType << " vk" << startUpperCase(command.second.fullName) << "( "; bool first = true; for (auto param : command.second.params) { if (!first) { os << ", "; } os << param.unchangedType << " " << param.name; if (!param.arraySize.empty()) { os << "[" << param.arraySize << "]"; } first = false; } os << " ) const\n" << " {\n" << " return ::vk" << startUpperCase(command.second.fullName) << "( "; first = true; for (auto param : command.second.params) { if (!first) { os << ", "; } os << param.name; first = false; } os << ");\n"; os << " }\n"; leaveProtect(os, command.second.protect); } os << "};\n"; } void VulkanHppGenerator::writeDelegationClassDynamic(std::ostream &os) { os << " class DispatchLoaderDynamic" << std::endl << " {" << std::endl << " public:" << std::endl; for (auto command : m_commands) { enterProtect(os, command.second.protect); os << " PFN_vk" << startUpperCase(command.second.fullName) << " vk" << startUpperCase(command.second.fullName) << " = 0;" << std::endl; leaveProtect(os, command.second.protect); } // write initialization function to fetch function pointers os << " public:" << std::endl << " DispatchLoaderDynamic(Instance instance = Instance(), Device device = Device())" << std::endl << " {" << std::endl << " if (instance)" << std::endl << " {" << std::endl << " init(instance, device);" << std::endl << " }" << std::endl << " }" << std::endl << std::endl << " void init(Instance instance, Device device = Device())" << std::endl << " {" << std::endl; for (auto command : m_commands) { enterProtect(os, command.second.protect); if (!command.second.params.empty() && m_handles.find(command.second.params[0].type) != m_handles.end() && command.second.params[0].type != "Instance") { os << " vk" << startUpperCase(command.second.fullName) << " = PFN_vk" << startUpperCase(command.second.fullName) << "(device ? device.getProcAddr( \"vk" << startUpperCase(command.second.fullName) << "\") : instance.getProcAddr( \"vk" << startUpperCase(command.second.fullName) << "\"));" << std::endl; } else { os << " vk" << startUpperCase(command.second.fullName) << " = PFN_vk" << startUpperCase(command.second.fullName) << "(instance.getProcAddr( \"vk" << startUpperCase(command.second.fullName) << "\"));" << std::endl; } leaveProtect(os, command.second.protect); } os << " }" << std::endl; os << " };\n"; } int main( int argc, char **argv ) { try { tinyxml2::XMLDocument doc; std::string filename = (argc == 1) ? VK_SPEC : argv[1]; std::cout << "Loading vk.xml from " << filename << std::endl; std::cout << "Writing vulkan.hpp to " << VULKAN_HPP_FILE << std::endl; tinyxml2::XMLError error = doc.LoadFile(filename.c_str()); if (error != tinyxml2::XML_SUCCESS) { std::cout << "VkGenerate: failed to load file " << filename << " . Error code: " << error << std::endl; return -1; } VulkanHppGenerator generator; bool foundLicense = false; tinyxml2::XMLElement const* registryElement = doc.FirstChildElement(); checkAttributes(getAttributes(registryElement), registryElement->GetLineNum(), {}, {}); assert(strcmp(registryElement->Value(), "registry") == 0); assert(!registryElement->NextSiblingElement()); std::vector children = getChildElements(registryElement); checkElements(children, { "commands", "comment", "enums", "extensions", "feature", "tags", "types", "vendorids", "platforms" }); for (auto child : children) { const std::string value = child->Value(); if (value == "commands") { generator.readCommands(child); } else if (value == "comment") { if (!foundLicense) { // get the vulkan license header and skip any leading spaces generator.readComment(child); foundLicense = true; } } else if (value == "enums") { generator.readEnums(child); } else if (value == "extensions") { generator.readExtensions(child); } else if (value == "feature") { generator.readFeature(child); } else if (value == "tags") { generator.readTags(child); } else if (value == "types") { generator.readTypes(child); } else if (value == "vendorids") { #if !defined(NDEBUG) generator.skipVendorIDs(child); #endif } else if (value == "platforms") { // skip this tag } else { std::stringstream lineNumber; lineNumber << child->GetLineNum(); std::cerr << "Unhandled tag " << value << " at line number: " << lineNumber.str() << std::endl; } } generator.sortDependencies(); #if !defined(NDEBUG) generator.checkExtensionRequirements(); #endif std::map defaultValues = generator.createDefaults(); std::ofstream ofs(VULKAN_HPP_FILE); ofs << generator.getVulkanLicenseHeader() << std::endl << R"( #ifndef VULKAN_HPP #define VULKAN_HPP #include #include #include #include #include #include #include #include #include #include #include #ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE # include # include #endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #if !defined(VULKAN_HPP_ASSERT) # include # define VULKAN_HPP_ASSERT assert #endif )"; writeVersionCheck(ofs, generator.getVersion()); writeTypesafeCheck(ofs, generator.getTypesafeCheck()); ofs << versionCheckHeader << inlineHeader << explicitHeader << constExprHeader << std::endl << vkNamespace << flagsHeader << optionalClassHeader << arrayProxyHeader << uniqueHandleHeader << structureChainHeader; // first of all, write out vk::Result and the exception handling stuff generator.writeResultEnum(ofs); ofs << "} // namespace VULKAN_HPP_NAMESPACE" << std::endl << std::endl << "namespace std" << std::endl << "{" << std::endl << " template <>" << std::endl << " struct is_error_code_enum : public true_type" << std::endl << " {};" << std::endl << "}" << std::endl << std::endl << "namespace VULKAN_HPP_NAMESPACE" << std::endl << "{" << std::endl << resultValueHeader << createResultValueHeader << deleterClassString; generator.writeDelegationClassStatic(ofs); generator.writeTypes(ofs, defaultValues); generator.writeStructureChainValidation(ofs); generator.writeToStringFunctions(ofs); generator.writeDelegationClassDynamic(ofs); ofs << "} // namespace VULKAN_HPP_NAMESPACE" << std::endl << std::endl << "#endif" << std::endl; } catch (std::exception const& e) { std::cout << "caught exception: " << e.what() << std::endl; return -1; } catch (...) { std::cout << "caught unknown exception" << std::endl; return -1; } }