// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "utils.hpp" #include "vulkan/vulkan.hpp" PFN_vkCreateDebugReportCallbackEXT pfnVkCreateDebugReportCallbackEXT; PFN_vkDestroyDebugReportCallbackEXT pfnVkDestroyDebugReportCallbackEXT; VKAPI_ATTR VkResult VKAPI_CALL vkCreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugReportCallbackEXT* pCallback) { return pfnVkCreateDebugReportCallbackEXT(instance, pCreateInfo, pAllocator, pCallback); } VKAPI_ATTR void VKAPI_CALL vkDestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT callback, const VkAllocationCallbacks* pAllocator) { pfnVkDestroyDebugReportCallbackEXT(instance, callback, pAllocator); } namespace vk { namespace su { vk::UniqueDeviceMemory allocateMemory(vk::UniqueDevice &device, vk::PhysicalDeviceMemoryProperties const& memoryProperties, vk::MemoryRequirements const& memoryRequirements, vk::MemoryPropertyFlags memoryPropertyFlags) { uint32_t memoryTypeBits = memoryRequirements.memoryTypeBits; uint32_t memoryTypeIndex = static_cast(~0); for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { if ((memoryTypeBits & 1) == 1) { if ((memoryProperties.memoryTypes[i].propertyFlags & memoryPropertyFlags) == memoryPropertyFlags) { memoryTypeIndex = i; break; } } memoryTypeBits >>= 1; } assert(memoryTypeIndex != ~0); return device->allocateMemoryUnique(vk::MemoryAllocateInfo(memoryRequirements.size, memoryTypeIndex)); } vk::UniqueCommandPool createCommandPool(vk::UniqueDevice &device, uint32_t queueFamilyIndex) { vk::CommandPoolCreateInfo commandPoolCreateInfo(vk::CommandPoolCreateFlagBits::eResetCommandBuffer, queueFamilyIndex); return device->createCommandPoolUnique(commandPoolCreateInfo); } vk::UniqueDebugReportCallbackEXT createDebugReportCallback(vk::UniqueInstance &instance) { vk::DebugReportFlagsEXT flags(vk::DebugReportFlagBitsEXT::eWarning | vk::DebugReportFlagBitsEXT::ePerformanceWarning | vk::DebugReportFlagBitsEXT::eError); return instance->createDebugReportCallbackEXTUnique(vk::DebugReportCallbackCreateInfoEXT(flags, &vk::su::debugReportCallback)); } vk::UniqueDescriptorPool createDescriptorPool(vk::UniqueDevice &device, vk::DescriptorType descriptorType, bool textured) { std::vector poolSizes; poolSizes.push_back(vk::DescriptorPoolSize(descriptorType, 1)); if (textured) { poolSizes.push_back(vk::DescriptorPoolSize(vk::DescriptorType::eCombinedImageSampler, 1)); } vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 1, checked_cast(poolSizes.size()), poolSizes.data()); return device->createDescriptorPoolUnique(descriptorPoolCreateInfo); } vk::UniqueDescriptorSetLayout createDescriptorSetLayout(vk::UniqueDevice &device, vk::DescriptorType descriptorType, bool textured) { std::vector bindings; bindings.push_back(vk::DescriptorSetLayoutBinding(0, descriptorType, 1, vk::ShaderStageFlagBits::eVertex)); if (textured) { bindings.push_back(vk::DescriptorSetLayoutBinding(1, vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment)); } vk::DescriptorSetLayoutBinding descriptorSetLayoutBinding(0, vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex); return device->createDescriptorSetLayoutUnique(vk::DescriptorSetLayoutCreateInfo({}, checked_cast(bindings.size()), bindings.data())); } vk::UniqueDevice createDevice(vk::PhysicalDevice physicalDevice, uint32_t queueFamilyIndex, std::vector const& extensions) { std::vector enabledExtensions; enabledExtensions.reserve(extensions.size()); for (auto const& ext : extensions) { enabledExtensions.push_back(ext.data()); } // create a UniqueDevice float queuePriority = 0.0f; vk::DeviceQueueCreateInfo deviceQueueCreateInfo(vk::DeviceQueueCreateFlags(), queueFamilyIndex, 1, &queuePriority); vk::DeviceCreateInfo deviceCreateInfo(vk::DeviceCreateFlags(), 1, &deviceQueueCreateInfo, 0, nullptr, checked_cast(enabledExtensions.size()), enabledExtensions.data()); return physicalDevice.createDeviceUnique(deviceCreateInfo); } std::vector createFramebuffers(vk::UniqueDevice &device, vk::UniqueRenderPass &renderPass, std::vector const& imageViews, vk::UniqueImageView &depthImageView, vk::Extent2D const& extent) { vk::ImageView attachments[2]; attachments[1] = depthImageView.get(); std::vector framebuffers; framebuffers.reserve(imageViews.size()); for (auto const& view : imageViews) { attachments[0] = view.get(); framebuffers.push_back(device->createFramebufferUnique(vk::FramebufferCreateInfo(vk::FramebufferCreateFlags(), renderPass.get(), 2, attachments, extent.width, extent.height, 1))); } return framebuffers; } vk::UniquePipeline createGraphicsPipeline(vk::UniqueDevice &device, vk::UniquePipelineCache &pipelineCache, vk::UniqueShaderModule &vertexShaderModule, vk::UniqueShaderModule &fragmentShaderModule, uint32_t vertexStride, vk::UniquePipelineLayout &pipelineLayout, vk::UniqueRenderPass &renderPass) { vk::PipelineShaderStageCreateInfo pipelineShaderStageCreateInfos[2] = { vk::PipelineShaderStageCreateInfo(vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eVertex, vertexShaderModule.get(), "main"), vk::PipelineShaderStageCreateInfo(vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eFragment, fragmentShaderModule.get(), "main") }; vk::VertexInputBindingDescription vertexInputBindingDescription(0, vertexStride); vk::VertexInputAttributeDescription vertexInputAttributeDescriptions[2] = { vk::VertexInputAttributeDescription(0, 0, vk::Format::eR32G32B32A32Sfloat, 0), vk::VertexInputAttributeDescription(1, 0, vk::Format::eR32G32B32A32Sfloat, 16) }; vk::PipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo(vk::PipelineVertexInputStateCreateFlags(), 1, &vertexInputBindingDescription, 2, vertexInputAttributeDescriptions); vk::PipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateCreateInfo(vk::PipelineInputAssemblyStateCreateFlags(), vk::PrimitiveTopology::eTriangleList); vk::PipelineViewportStateCreateInfo pipelineViewportStateCreateInfo(vk::PipelineViewportStateCreateFlags(), 1, nullptr, 1, nullptr); vk::PipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo(vk::PipelineRasterizationStateCreateFlags(), false, false, vk::PolygonMode::eFill, vk::CullModeFlagBits::eBack, vk::FrontFace::eClockwise, false, 0.0f, 0.0f, 0.0f, 1.0f); vk::PipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo; vk::StencilOpState stencilOpState(vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::CompareOp::eAlways); vk::PipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo(vk::PipelineDepthStencilStateCreateFlags(), true, true, vk::CompareOp::eLessOrEqual, false, false, stencilOpState, stencilOpState); vk::ColorComponentFlags colorComponentFlags(vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG | vk::ColorComponentFlagBits::eB | vk::ColorComponentFlagBits::eA); vk::PipelineColorBlendAttachmentState pipelineColorBlendAttachmentState(false, vk::BlendFactor::eZero, vk::BlendFactor::eZero, vk::BlendOp::eAdd, vk::BlendFactor::eZero, vk::BlendFactor::eZero, vk::BlendOp::eAdd, colorComponentFlags); vk::PipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo(vk::PipelineColorBlendStateCreateFlags(), false, vk::LogicOp::eNoOp, 1, &pipelineColorBlendAttachmentState, { { (1.0f, 1.0f, 1.0f, 1.0f) } }); vk::DynamicState dynamicStates[2] = { vk::DynamicState::eViewport, vk::DynamicState::eScissor }; vk::PipelineDynamicStateCreateInfo pipelineDynamicStateCreateInfo(vk::PipelineDynamicStateCreateFlags(), 2, dynamicStates); vk::GraphicsPipelineCreateInfo graphicsPipelineCreateInfo(vk::PipelineCreateFlags(), 2, pipelineShaderStageCreateInfos, &pipelineVertexInputStateCreateInfo, &pipelineInputAssemblyStateCreateInfo, nullptr, &pipelineViewportStateCreateInfo, &pipelineRasterizationStateCreateInfo, &pipelineMultisampleStateCreateInfo, &pipelineDepthStencilStateCreateInfo, &pipelineColorBlendStateCreateInfo, &pipelineDynamicStateCreateInfo, pipelineLayout.get(), renderPass.get()); return device->createGraphicsPipelineUnique(pipelineCache.get(), graphicsPipelineCreateInfo); } vk::UniqueInstance createInstance(std::string const& appName, std::string const& engineName, std::vector const& extensions, uint32_t apiVersion) { std::vector enabledLayers; #if !defined(NDEBUG) // Enable standard validation layer to find as much errors as possible! enabledLayers.push_back("VK_LAYER_LUNARG_standard_validation"); #endif std::vector enabledExtensions; enabledExtensions.reserve(extensions.size()); for (auto const& ext : extensions) { enabledExtensions.push_back(ext.data()); } #if !defined(NDEBUG) if (std::find(extensions.begin(), extensions.end(), VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == extensions.end()) { enabledExtensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME); } #endif // create a UniqueInstance vk::ApplicationInfo applicationInfo(appName.c_str(), 1, engineName.c_str(), 1, apiVersion); vk::UniqueInstance instance = vk::createInstanceUnique(vk::InstanceCreateInfo({}, &applicationInfo, checked_cast(enabledLayers.size()), enabledLayers.data(), checked_cast(enabledExtensions.size()), enabledExtensions.data())); #if !defined(NDEBUG) static bool initialized = false; if (!initialized) { pfnVkCreateDebugReportCallbackEXT = reinterpret_cast(instance->getProcAddr("vkCreateDebugReportCallbackEXT")); pfnVkDestroyDebugReportCallbackEXT = reinterpret_cast(instance->getProcAddr("vkDestroyDebugReportCallbackEXT")); assert(pfnVkCreateDebugReportCallbackEXT && pfnVkDestroyDebugReportCallbackEXT); initialized = true; } #endif return instance; } vk::UniqueRenderPass createRenderPass(vk::UniqueDevice &device, vk::Format colorFormat, vk::Format depthFormat) { vk::AttachmentDescription attachmentDescriptions[2] = { vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), colorFormat, vk::SampleCountFlagBits::e1, vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare, vk::ImageLayout::eUndefined, vk::ImageLayout::ePresentSrcKHR), vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), depthFormat, vk::SampleCountFlagBits::e1, vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eLoad, vk::AttachmentStoreOp::eStore, vk::ImageLayout::eUndefined, vk::ImageLayout::eDepthStencilAttachmentOptimal) }; vk::AttachmentReference colorAttachment(0, vk::ImageLayout::eColorAttachmentOptimal); vk::AttachmentReference depthAttachment(1, vk::ImageLayout::eDepthStencilAttachmentOptimal); vk::SubpassDescription subpassDescription(vk::SubpassDescriptionFlags(), vk::PipelineBindPoint::eGraphics, 0, nullptr, 1, &colorAttachment, nullptr, &depthAttachment); return device->createRenderPassUnique(vk::RenderPassCreateInfo(vk::RenderPassCreateFlags(), 2, attachmentDescriptions, 1, &subpassDescription)); } VkBool32 debugReportCallback(VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT /*objectType*/, uint64_t /*object*/, size_t /*location*/, int32_t /*messageCode*/, const char* /*pLayerPrefix*/, const char* pMessage, void* /*pUserData*/) { switch (flags) { case VK_DEBUG_REPORT_INFORMATION_BIT_EXT: std::cerr << "INFORMATION: "; break; case VK_DEBUG_REPORT_WARNING_BIT_EXT: std::cerr << "WARNING: "; break; case VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT: std::cerr << "PERFORMANCE WARNING: "; break; case VK_DEBUG_REPORT_ERROR_BIT_EXT: std::cerr << "ERROR: "; break; case VK_DEBUG_REPORT_DEBUG_BIT_EXT: std::cerr << "DEBUG: "; break; default: std::cerr << "unknown flag (" << flags << "): "; break; } std::cerr << pMessage << std::endl; return VK_TRUE; } uint32_t findGraphicsQueueFamilyIndex(std::vector const& queueFamilyProperties) { // get the first index into queueFamiliyProperties which supports graphics size_t graphicsQueueFamilyIndex = std::distance(queueFamilyProperties.begin(), std::find_if(queueFamilyProperties.begin(), queueFamilyProperties.end(), [](vk::QueueFamilyProperties const& qfp) { return qfp.queueFlags & vk::QueueFlagBits::eGraphics; })); assert(graphicsQueueFamilyIndex < queueFamilyProperties.size()); return checked_cast(graphicsQueueFamilyIndex); } std::pair findGraphicsAndPresentQueueFamilyIndex(vk::PhysicalDevice physicalDevice, vk::UniqueSurfaceKHR & surface) { std::vector queueFamilyProperties = physicalDevice.getQueueFamilyProperties(); assert(queueFamilyProperties.size() < std::numeric_limits::max()); uint32_t graphicsQueueFamilyIndex = findGraphicsQueueFamilyIndex(queueFamilyProperties); if (physicalDevice.getSurfaceSupportKHR(graphicsQueueFamilyIndex, surface.get())) { return std::make_pair(graphicsQueueFamilyIndex, graphicsQueueFamilyIndex); // the first graphicsQueueFamilyIndex does also support presents } // the graphicsQueueFamilyIndex doesn't support present -> look for an other family index that supports both graphics and present for (size_t i = 0; i < queueFamilyProperties.size(); i++) { if ((queueFamilyProperties[i].queueFlags & vk::QueueFlagBits::eGraphics) && physicalDevice.getSurfaceSupportKHR(static_cast(i), surface.get())) { return std::make_pair(static_cast(i), static_cast(i)); } } // there's nothing like a single family index that supports both graphics and present -> look for an other family index that supports present for (size_t i = 0; i < queueFamilyProperties.size(); i++) { if (physicalDevice.getSurfaceSupportKHR(static_cast(i), surface.get())) { return std::make_pair(graphicsQueueFamilyIndex, static_cast(i)); } } throw std::runtime_error("Could not find queues for both graphics or present -> terminating"); } uint32_t findMemoryType(vk::PhysicalDeviceMemoryProperties const& memoryProperties, uint32_t typeBits, vk::MemoryPropertyFlags requirementsMask) { uint32_t typeIndex = uint32_t(~0); for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) { if ((typeBits & 1) && ((memoryProperties.memoryTypes[i].propertyFlags & requirementsMask) == requirementsMask)) { typeIndex = i; break; } typeBits >>= 1; } assert(typeIndex != ~0); return typeIndex; } std::vector getDeviceExtensions() { return{ VK_KHR_SWAPCHAIN_EXTENSION_NAME }; } std::vector getInstanceExtensions() { std::vector extensions; extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME); #if defined(VK_USE_PLATFORM_ANDROID_KHR) extensions.push_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_IOS_MVK) extensions.push_back(VK_MVK_IOS_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_MACOS_MVK) extensions.push_back(VK_MVK_MACOS_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_MIR_KHR) extensions.push_back(VK_KHR_MIR_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_VI_NN) extensions.push_back(VK_NN_VI_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_WAYLAND_KHR) extensions.push_back(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_WIN32_KHR) extensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_XCB_KHR) extensions.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_XLIB_KHR) extensions.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME); #elif defined(VK_USE_PLATFORM_XLIB_XRANDR_EXT) extensions.push_back(VK_EXT_ACQUIRE_XLIB_DISPLAY_EXTENSION_NAME); #endif return extensions; } vk::Format pickColorFormat(std::vector const& formats) { assert(!formats.empty()); return (formats[0].format == vk::Format::eUndefined) ? vk::Format::eB8G8R8A8Unorm : formats[0].format; } void setImageLayout(vk::UniqueCommandBuffer &commandBuffer, vk::Image image, vk::ImageAspectFlags aspectFlags, vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout, vk::PipelineStageFlags sourceStageMask, vk::PipelineStageFlags destinationStageMask) { vk::AccessFlags sourceAccessMask; switch (oldImageLayout) { case vk::ImageLayout::eColorAttachmentOptimal: sourceAccessMask = vk::AccessFlagBits::eColorAttachmentWrite; break; case vk::ImageLayout::eTransferDstOptimal: sourceAccessMask = vk::AccessFlagBits::eTransferWrite; break; case vk::ImageLayout::ePreinitialized: sourceAccessMask = vk::AccessFlagBits::eHostWrite; break; default: break; } vk::AccessFlags destinationAccessMask; switch (newImageLayout) { case vk::ImageLayout::eTransferDstOptimal: destinationAccessMask = vk::AccessFlagBits::eTransferWrite; break; case vk::ImageLayout::eTransferSrcOptimal: destinationAccessMask = vk::AccessFlagBits::eTransferRead; break; case vk::ImageLayout::eShaderReadOnlyOptimal: destinationAccessMask = vk::AccessFlagBits::eShaderRead; break; case vk::ImageLayout::eColorAttachmentOptimal: destinationAccessMask = vk::AccessFlagBits::eColorAttachmentWrite; break; case vk::ImageLayout::eDepthStencilAttachmentOptimal: destinationAccessMask = vk::AccessFlagBits::eDepthStencilAttachmentWrite; break; default: break; } vk::ImageSubresourceRange imageSubresourceRange(aspectFlags, 0, 1, 0, 1); vk::ImageMemoryBarrier imageMemoryBarrier(sourceAccessMask, destinationAccessMask, oldImageLayout, newImageLayout, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, image, imageSubresourceRange); return commandBuffer->pipelineBarrier(sourceStageMask, destinationStageMask, {}, nullptr, nullptr, imageMemoryBarrier); } void submitAndWait(vk::UniqueDevice &device, vk::Queue queue, vk::UniqueCommandBuffer &commandBuffer) { vk::UniqueFence fence = device->createFenceUnique(vk::FenceCreateInfo()); vk::PipelineStageFlags pipelineStageFlags = vk::PipelineStageFlagBits::eColorAttachmentOutput; queue.submit(vk::SubmitInfo(0, nullptr, &pipelineStageFlags, 1, &commandBuffer.get()), fence.get()); while (vk::Result::eTimeout == device->waitForFences(fence.get(), VK_TRUE, vk::su::FenceTimeout)) ; } void updateDescriptorSets(vk::UniqueDevice &device, vk::UniqueDescriptorSet &descriptorSet, vk::DescriptorType descriptorType, vk::DescriptorBufferInfo const* descriptorBufferInfo, vk::DescriptorImageInfo const* descriptorImageInfo) { std::vector writeDescriptorSets; writeDescriptorSets.push_back(vk::WriteDescriptorSet(descriptorSet.get(), 0, 0, 1, descriptorType, nullptr, descriptorBufferInfo, nullptr)); if (descriptorImageInfo) { writeDescriptorSets.push_back(vk::WriteDescriptorSet(descriptorSet.get(), 1, 0, 1, vk::DescriptorType::eCombinedImageSampler, descriptorImageInfo, nullptr, nullptr)); } device->updateDescriptorSets(writeDescriptorSets, nullptr); } BufferData::BufferData(vk::PhysicalDevice &physicalDevice, vk::UniqueDevice &device, vk::DeviceSize size, vk::BufferUsageFlags usage) { buffer = device->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(), size, usage)); deviceMemory = vk::su::allocateMemory(device, physicalDevice.getMemoryProperties(), device->getBufferMemoryRequirements(buffer.get()) , vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent); device->bindBufferMemory(buffer.get(), deviceMemory.get(), 0); } DepthBufferData::DepthBufferData(vk::PhysicalDevice &physicalDevice, vk::UniqueDevice & device, vk::Format format, vk::Extent2D const& extent) : ImageData(physicalDevice, device, format, extent, vk::ImageTiling::eOptimal, vk::ImageUsageFlagBits::eDepthStencilAttachment, vk::ImageLayout::eUndefined, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::ImageAspectFlagBits::eDepth) {} ImageData::ImageData(vk::PhysicalDevice &physicalDevice, vk::UniqueDevice & device, vk::Format format_, vk::Extent2D const& extent, vk::ImageTiling tiling, vk::ImageUsageFlags usage, vk::ImageLayout initialLayout, vk::MemoryPropertyFlags memoryProperties, vk::ImageAspectFlags aspectMask) : format(format_) { vk::ImageCreateInfo imageCreateInfo(vk::ImageCreateFlags(), vk::ImageType::e2D, format, vk::Extent3D(extent, 1), 1, 1, vk::SampleCountFlagBits::e1, tiling, usage, vk::SharingMode::eExclusive, 0, nullptr, initialLayout); image = device->createImageUnique(imageCreateInfo); deviceMemory = vk::su::allocateMemory(device, physicalDevice.getMemoryProperties(), device->getImageMemoryRequirements(image.get()), memoryProperties); device->bindImageMemory(image.get(), deviceMemory.get(), 0); vk::ComponentMapping componentMapping(ComponentSwizzle::eR, ComponentSwizzle::eG, ComponentSwizzle::eB, ComponentSwizzle::eA); vk::ImageViewCreateInfo imageViewCreateInfo(vk::ImageViewCreateFlags(), image.get(), vk::ImageViewType::e2D, format, componentMapping, vk::ImageSubresourceRange(aspectMask, 0, 1, 0, 1)); imageView = device->createImageViewUnique(imageViewCreateInfo); } SurfaceData::SurfaceData(vk::UniqueInstance &instance, std::string const& className, std::string const& windowName, vk::Extent2D const& extent_) : extent(extent_) { #if defined(VK_USE_PLATFORM_WIN32_KHR) window = vk::su::initializeWindow(className.c_str(), windowName.c_str(), extent.width, extent.height); surface = instance->createWin32SurfaceKHRUnique(vk::Win32SurfaceCreateInfoKHR(vk::Win32SurfaceCreateFlagsKHR(), GetModuleHandle(nullptr), window)); #else #pragma error "unhandled platform" #endif } SwapChainData::SwapChainData(vk::PhysicalDevice &physicalDevice, vk::UniqueDevice &device, vk::UniqueSurfaceKHR &surface, vk::Extent2D const& extent, vk::ImageUsageFlags usage, uint32_t graphicsQueueFamilyIndex, uint32_t presentQueueFamilyIndex) { colorFormat = vk::su::pickColorFormat(physicalDevice.getSurfaceFormatsKHR(surface.get())); vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface.get()); VkExtent2D swapchainExtent; if (surfaceCapabilities.currentExtent.width == std::numeric_limits::max()) { // If the surface size is undefined, the size is set to the size of the images requested. swapchainExtent.width = clamp(extent.width, surfaceCapabilities.minImageExtent.width, surfaceCapabilities.maxImageExtent.width); swapchainExtent.height = clamp(extent.height, surfaceCapabilities.minImageExtent.height, surfaceCapabilities.maxImageExtent.height); } else { // If the surface size is defined, the swap chain size must match swapchainExtent = surfaceCapabilities.currentExtent; } vk::SurfaceTransformFlagBitsKHR preTransform = (surfaceCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity) ? vk::SurfaceTransformFlagBitsKHR::eIdentity : surfaceCapabilities.currentTransform; vk::CompositeAlphaFlagBitsKHR compositeAlpha = (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePreMultiplied) ? vk::CompositeAlphaFlagBitsKHR::ePreMultiplied : (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePostMultiplied) ? vk::CompositeAlphaFlagBitsKHR::ePostMultiplied : (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::eInherit) ? vk::CompositeAlphaFlagBitsKHR::eInherit : vk::CompositeAlphaFlagBitsKHR::eOpaque; vk::SwapchainCreateInfoKHR swapChainCreateInfo({}, surface.get(), surfaceCapabilities.minImageCount, colorFormat, vk::ColorSpaceKHR::eSrgbNonlinear, swapchainExtent, 1, usage, vk::SharingMode::eExclusive, 0, nullptr, preTransform, compositeAlpha, vk::PresentModeKHR::eFifo, true, nullptr); uint32_t queueFamilyIndices[2] = { graphicsQueueFamilyIndex, presentQueueFamilyIndex }; if (graphicsQueueFamilyIndex != presentQueueFamilyIndex) { // If the graphics and present queues are from different queue families, we either have to explicitly transfer ownership of images between // the queues, or we have to create the swapchain with imageSharingMode as vk::SharingMode::eConcurrent swapChainCreateInfo.imageSharingMode = vk::SharingMode::eConcurrent; swapChainCreateInfo.queueFamilyIndexCount = 2; swapChainCreateInfo.pQueueFamilyIndices = queueFamilyIndices; } swapChain = device->createSwapchainKHRUnique(swapChainCreateInfo); images = device->getSwapchainImagesKHR(swapChain.get()); imageViews.reserve(images.size()); vk::ComponentMapping componentMapping(vk::ComponentSwizzle::eR, vk::ComponentSwizzle::eG, vk::ComponentSwizzle::eB, vk::ComponentSwizzle::eA); vk::ImageSubresourceRange subResourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1); for (auto image : images) { vk::ImageViewCreateInfo imageViewCreateInfo(vk::ImageViewCreateFlags(), image, vk::ImageViewType::e2D, colorFormat, componentMapping, subResourceRange); imageViews.push_back(device->createImageViewUnique(imageViewCreateInfo)); } } TextureData::TextureData(vk::PhysicalDevice &physicalDevice, vk::UniqueDevice &device) : format(vk::Format::eR8G8B8A8Unorm) , extent(256, 256) { vk::PhysicalDeviceMemoryProperties memoryProperties = physicalDevice.getMemoryProperties(); vk::FormatProperties formatProperties = physicalDevice.getFormatProperties(format); needsStaging = (formatProperties.linearTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage) != vk::FormatFeatureFlagBits::eSampledImage; vk::ImageTiling imageTiling; vk::ImageUsageFlags usageFlags(vk::ImageUsageFlagBits::eSampled); vk::ImageLayout initialLayout; if (needsStaging) { bufferData = std::make_unique(physicalDevice, device, extent.width * extent.height * 4, vk::BufferUsageFlagBits::eTransferSrc); imageTiling = vk::ImageTiling::eOptimal; usageFlags |= vk::ImageUsageFlagBits::eTransferDst; initialLayout = vk::ImageLayout::eUndefined; } else { imageTiling = vk::ImageTiling::eLinear; initialLayout = vk::ImageLayout::ePreinitialized; } imageData = std::make_unique(physicalDevice, device, format, extent, imageTiling, usageFlags, initialLayout , vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible, vk::ImageAspectFlagBits::eColor); textureSampler = device->createSamplerUnique(vk::SamplerCreateInfo(vk::SamplerCreateFlags(), vk::Filter::eNearest, vk::Filter::eNearest, vk::SamplerMipmapMode::eNearest, vk::SamplerAddressMode::eClampToEdge, vk::SamplerAddressMode::eClampToEdge, vk::SamplerAddressMode::eClampToEdge, 0.0f, false, 1.0f, false, vk::CompareOp::eNever, 0.0f, 0.0f , vk::BorderColor::eFloatOpaqueWhite)); } void TextureData::setCheckerboardTexture(vk::UniqueDevice &device, vk::UniqueCommandBuffer &commandBuffer) { void* data = needsStaging ? device->mapMemory(bufferData->deviceMemory.get(), 0, device->getBufferMemoryRequirements(bufferData->buffer.get()).size) : device->mapMemory(imageData->deviceMemory.get(), 0, device->getImageMemoryRequirements(imageData->image.get()).size); // Checkerboard of 16x16 pixel squares unsigned char *pImageMemory = static_cast(data); for (uint32_t row = 0; row < extent.height; row++) { for (uint32_t col = 0; col < extent.width; col++) { unsigned char rgb = (((row & 0x10) == 0) ^ ((col & 0x10) == 0)) * 255; pImageMemory[0] = rgb; pImageMemory[1] = rgb; pImageMemory[2] = rgb; pImageMemory[3] = 255; pImageMemory += 4; } } device->unmapMemory(needsStaging ? bufferData->deviceMemory.get() : imageData->deviceMemory.get()); if (needsStaging) { // Since we're going to blit to the texture image, set its layout to eTransferDstOptimal vk::su::setImageLayout(commandBuffer, imageData->image.get(), vk::ImageAspectFlagBits::eColor, vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferDstOptimal, vk::PipelineStageFlagBits::eTopOfPipe, vk::PipelineStageFlagBits::eTransfer); vk::BufferImageCopy copyRegion(0, extent.width, extent.height, vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), vk::Offset3D(0, 0, 0), vk::Extent3D(extent, 1)); commandBuffer->copyBufferToImage(bufferData->buffer.get(), imageData->image.get(), vk::ImageLayout::eTransferDstOptimal, copyRegion); // Set the layout for the texture image from eTransferDstOptimal to SHADER_READ_ONLY vk::su::setImageLayout(commandBuffer, imageData->image.get(), vk::ImageAspectFlagBits::eColor, vk::ImageLayout::eTransferDstOptimal, vk::ImageLayout::eShaderReadOnlyOptimal, vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eFragmentShader); } else { // If we can use the linear tiled image as a texture, just do it vk::su::setImageLayout(commandBuffer, imageData->image.get(), vk::ImageAspectFlagBits::eColor, vk::ImageLayout::ePreinitialized, vk::ImageLayout::eShaderReadOnlyOptimal, vk::PipelineStageFlagBits::eHost, vk::PipelineStageFlagBits::eFragmentShader); } } #if defined(VK_USE_PLATFORM_WIN32_KHR) LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CLOSE: PostQuitMessage(0); break; default: break; } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } HWND initializeWindow(std::string const& className, std::string const& windowName, LONG width, LONG height) { WNDCLASSEX windowClass; memset(&windowClass, 0, sizeof(WNDCLASSEX)); HINSTANCE instance = GetModuleHandle(nullptr); windowClass.cbSize = sizeof(WNDCLASSEX); windowClass.style = CS_HREDRAW | CS_VREDRAW; windowClass.lpfnWndProc = WindowProc; windowClass.hInstance = instance; windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION); windowClass.hCursor = LoadCursor(NULL, IDC_ARROW); windowClass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH); windowClass.lpszClassName = className.c_str(); windowClass.hIconSm = LoadIcon(NULL, IDI_WINLOGO); if (!RegisterClassEx(&windowClass)) { throw std::runtime_error("Failed to register WNDCLASSEX -> terminating"); } RECT windowRect = { 0, 0, width, height }; AdjustWindowRect(&windowRect, WS_OVERLAPPEDWINDOW, FALSE); HWND window = CreateWindowEx(0, className.c_str(), windowName.c_str(), WS_OVERLAPPEDWINDOW | WS_VISIBLE | WS_SYSMENU, 100, 100, windowRect.right - windowRect.left, windowRect.bottom - windowRect.top, nullptr, nullptr, instance, nullptr); if (!window) { throw std::runtime_error("Failed to create window -> terminating"); } return window; } #else #pragma error "unhandled platform" #endif } }