// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : PushConstants // Use push constants in a simple shader, validate the correct value was read. #include "../utils/geometries.hpp" #include "../utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "vulkan/vulkan.hpp" #include "SPIRV/GlslangToSpv.h" #include static char const* AppName = "PushConstants"; static char const* EngineName = "Vulkan.hpp"; const std::string fragmentShaderText = R"( #version 400 #extension GL_ARB_separate_shader_objects : enable #extension GL_ARB_shading_language_420pack : enable layout (push_constant) uniform pushBlock { int iFoo; float fBar; } pushConstantsBlock; layout (location = 0) in vec2 inTexCoords; layout (location = 0) out vec4 outColor; void main() { vec4 green = vec4(0.0f, 1.0f, 0.0f, 1.0f); vec4 red = vec4(1.0f, 0.0f, 0.0f, 1.0f); // Start with passing color vec4 resColor = green; // See if we've read in the correct push constants if ((pushConstantsBlock.iFoo != 2) || (pushConstantsBlock.fBar != 1.0f)) { resColor = red; } // Create a border to see the cube more easily if ((inTexCoords.x < 0.01f) || (0.99f < inTexCoords.x) || (inTexCoords.y < 0.01f) || (0.99f < inTexCoords.y)) { resColor *= vec4(0.1f, 0.1f, 0.1f, 1.0f); } outColor = resColor; } )"; int main(int /*argc*/, char ** /*argv*/) { try { vk::UniqueInstance instance = vk::su::createInstance(AppName, EngineName, {}, vk::su::getInstanceExtensions()); #if !defined(NDEBUG) vk::UniqueDebugUtilsMessengerEXT debugUtilsMessenger = vk::su::createDebugUtilsMessenger(instance); #endif vk::PhysicalDevice physicalDevice = instance->enumeratePhysicalDevices().front(); vk::su::SurfaceData surfaceData(instance, AppName, AppName, vk::Extent2D(500, 500)); std::pair graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex(physicalDevice, *surfaceData.surface); vk::UniqueDevice device = vk::su::createDevice(physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions()); vk::UniqueCommandPool commandPool = vk::su::createCommandPool(device, graphicsAndPresentQueueFamilyIndex.first); vk::UniqueCommandBuffer commandBuffer = std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::ePrimary, 1)).front()); vk::Queue graphicsQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.first, 0); vk::Queue presentQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.second, 0); vk::su::SwapChainData swapChainData(physicalDevice, device, *surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc, vk::UniqueSwapchainKHR(), graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second); vk::su::DepthBufferData depthBufferData(physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent); vk::su::BufferData uniformBufferData(physicalDevice, device, sizeof(glm::mat4x4), vk::BufferUsageFlagBits::eUniformBuffer); vk::su::copyToDevice(device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix(surfaceData.extent)); vk::UniqueRenderPass renderPass = vk::su::createRenderPass(device, vk::su::pickSurfaceFormat(physicalDevice.getSurfaceFormatsKHR(surfaceData.surface.get())).format, depthBufferData.format); glslang::InitializeProcess(); vk::UniqueShaderModule vertexShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T); vk::UniqueShaderModule fragmentShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText); glslang::FinalizeProcess(); std::vector framebuffers = vk::su::createFramebuffers(device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent); vk::su::BufferData vertexBufferData(physicalDevice, device, sizeof(texturedCubeData), vk::BufferUsageFlagBits::eVertexBuffer); vk::su::copyToDevice(device, vertexBufferData.deviceMemory, texturedCubeData, sizeof(texturedCubeData) / sizeof(texturedCubeData[0])); // Create binding and layout for the following, matching contents of shader // binding 0 = uniform buffer (MVP) vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout(device, { {vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex} }); /* VULKAN_KEY_START */ // Set up our push constant range, which mirrors the declaration of vk::PushConstantRange pushConstantRanges(vk::ShaderStageFlagBits::eFragment, 0, 8); vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), 1, &descriptorSetLayout.get(), 1, &pushConstantRanges)); // Create a single pool to contain data for our descriptor set vk::DescriptorPoolSize poolSizes[2] = { vk::DescriptorPoolSize(vk::DescriptorType::eUniformBuffer, 1), vk::DescriptorPoolSize(vk::DescriptorType::eCombinedImageSampler, 1) }; vk::UniqueDescriptorPool descriptorPool = device->createDescriptorPoolUnique(vk::DescriptorPoolCreateInfo(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 1, 2, poolSizes)); // Populate descriptor sets vk::UniqueDescriptorSet descriptorSet = std::move(device->allocateDescriptorSetsUnique(vk::DescriptorSetAllocateInfo(*descriptorPool, 1, &*descriptorSetLayout)).front()); // Populate with info about our uniform buffer for MVP vk::DescriptorBufferInfo bufferInfo(uniformBufferData.buffer.get(), 0, sizeof(glm::mat4x4)); device->updateDescriptorSets(vk::WriteDescriptorSet(*descriptorSet, 0, 0, 1, vk::DescriptorType::eUniformBuffer, nullptr, &bufferInfo), {}); // Create our push constant data, which matches shader expectations std::array pushConstants = { (unsigned)2, (unsigned)0x3F800000 }; // Ensure we have enough room for push constant data assert((sizeof(pushConstants) <= physicalDevice.getProperties().limits.maxPushConstantsSize) && "Too many push constants"); commandBuffer->begin(vk::CommandBufferBeginInfo()); commandBuffer->pushConstants(pipelineLayout.get(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants); /* VULKAN_KEY_END */ vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo()); vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline(device, pipelineCache, std::make_pair(*vertexShaderModule, nullptr), std::make_pair(*fragmentShaderModule, nullptr), sizeof(texturedCubeData[0]), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32B32A32Sfloat, 16 } }, vk::FrontFace::eClockwise, true, pipelineLayout, renderPass); vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique(vk::SemaphoreCreateInfo()); vk::ResultValue currentBuffer = device->acquireNextImageKHR(swapChainData.swapChain.get(), vk::su::FenceTimeout, imageAcquiredSemaphore.get(), nullptr); assert(currentBuffer.result == vk::Result::eSuccess); assert(currentBuffer.value < framebuffers.size()); vk::ClearValue clearValues[2]; clearValues[0].color = vk::ClearColorValue(std::array({ 0.2f, 0.2f, 0.2f, 0.2f })); clearValues[1].depthStencil = vk::ClearDepthStencilValue(1.0f, 0); vk::RenderPassBeginInfo renderPassBeginInfo(renderPass.get(), framebuffers[currentBuffer.value].get(), vk::Rect2D(vk::Offset2D(0, 0), surfaceData.extent), 2, clearValues); commandBuffer->beginRenderPass(renderPassBeginInfo, vk::SubpassContents::eInline); commandBuffer->bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline.get()); commandBuffer->bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSet.get(), nullptr); commandBuffer->bindVertexBuffers(0, *vertexBufferData.buffer, {0}); commandBuffer->setViewport(0, vk::Viewport(0.0f, 0.0f, static_cast(surfaceData.extent.width), static_cast(surfaceData.extent.height), 0.0f, 1.0f)); commandBuffer->setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), surfaceData.extent)); commandBuffer->draw(12 * 3, 1, 0, 0); commandBuffer->endRenderPass(); commandBuffer->end(); vk::UniqueFence drawFence = device->createFenceUnique(vk::FenceCreateInfo()); vk::PipelineStageFlags waitDestinationStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); vk::SubmitInfo submitInfo(1, &imageAcquiredSemaphore.get(), &waitDestinationStageMask, 1, &commandBuffer.get()); graphicsQueue.submit(submitInfo, drawFence.get()); while (vk::Result::eTimeout == device->waitForFences(drawFence.get(), VK_TRUE, vk::su::FenceTimeout)) ; presentQueue.presentKHR(vk::PresentInfoKHR(0, nullptr, 1, &swapChainData.swapChain.get(), ¤tBuffer.value)); Sleep(1000); #if defined(VK_USE_PLATFORM_WIN32_KHR) DestroyWindow(surfaceData.window); #else #pragma error "unhandled platform" #endif } catch (vk::SystemError err) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit(-1); } catch (std::runtime_error err) { std::cout << "std::runtime_error: " << err.what() << std::endl; exit(-1); } catch (...) { std::cout << "unknown error\n"; exit(-1); } return 0; }