// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // VulkanHpp Samples : SecondaryCommandBuffer // Draw several cubes using primary and secondary command buffers #if defined( _MSC_VER ) // no need to ignore any warnings with MSVC #elif defined( __clang__ ) # pragma clang diagnostic ignored "-Wmissing-braces" #elif defined( __GNUC__ ) // no need to ignore any warnings with GCC #else // unknow compiler... just ignore the warnings for yourselves ;) #endif #include "../utils/geometries.hpp" #include "../utils/math.hpp" #include "../utils/shaders.hpp" #include "../utils/utils.hpp" #include "SPIRV/GlslangToSpv.h" #include #include static char const * AppName = "SecondaryCommandBuffer"; static char const * EngineName = "Vulkan.hpp"; int main( int /*argc*/, char ** /*argv*/ ) { try { vk::Instance instance = vk::su::createInstance( AppName, EngineName, {}, vk::su::getInstanceExtensions() ); #if !defined( NDEBUG ) vk::DebugUtilsMessengerEXT debugUtilsMessenger = instance.createDebugUtilsMessengerEXT( vk::su::makeDebugUtilsMessengerCreateInfoEXT() ); #endif vk::PhysicalDevice physicalDevice = instance.enumeratePhysicalDevices().front(); vk::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) ); std::pair graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, surfaceData.surface ); vk::Device device = vk::su::createDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() ); vk::CommandPool commandPool = vk::su::createCommandPool( device, graphicsAndPresentQueueFamilyIndex.first ); vk::CommandBuffer commandBuffer = device.allocateCommandBuffers( vk::CommandBufferAllocateInfo( commandPool, vk::CommandBufferLevel::ePrimary, 1 ) ).front(); vk::Queue graphicsQueue = device.getQueue( graphicsAndPresentQueueFamilyIndex.first, 0 ); vk::Queue presentQueue = device.getQueue( graphicsAndPresentQueueFamilyIndex.second, 0 ); vk::su::SwapChainData swapChainData( physicalDevice, device, surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc, {}, graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second ); vk::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent ); vk::su::BufferData uniformBufferData( physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer ); glm::mat4x4 mvpcMatrix = vk::su::createModelViewProjectionClipMatrix( surfaceData.extent ); vk::su::copyToDevice( device, uniformBufferData.deviceMemory, mvpcMatrix ); vk::DescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout( device, { { vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex }, { vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment } } ); vk::PipelineLayout pipelineLayout = device.createPipelineLayout( vk::PipelineLayoutCreateInfo( vk::PipelineLayoutCreateFlags(), descriptorSetLayout ) ); vk::RenderPass renderPass = vk::su::createRenderPass( device, vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface ) ).format, depthBufferData.format, vk::AttachmentLoadOp::eClear, vk::ImageLayout::eColorAttachmentOptimal ); glslang::InitializeProcess(); vk::ShaderModule vertexShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T ); vk::ShaderModule fragmentShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C ); glslang::FinalizeProcess(); std::vector framebuffers = vk::su::createFramebuffers( device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent ); vk::su::BufferData vertexBufferData( physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer ); vk::su::copyToDevice( device, vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) ); vk::PipelineCache pipelineCache = device.createPipelineCache( vk::PipelineCacheCreateInfo() ); vk::Pipeline graphicsPipeline = vk::su::createGraphicsPipeline( device, pipelineCache, std::make_pair( vertexShaderModule, nullptr ), std::make_pair( fragmentShaderModule, nullptr ), sizeof( texturedCubeData[0] ), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } }, vk::FrontFace::eClockwise, true, pipelineLayout, renderPass ); commandBuffer.begin( vk::CommandBufferBeginInfo() ); vk::su::TextureData greenTextureData( physicalDevice, device ); greenTextureData.setImage( device, commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) ); vk::su::TextureData checkeredTextureData( physicalDevice, device ); checkeredTextureData.setImage( device, commandBuffer, vk::su::CheckerboardImageGenerator() ); // create two identical descriptor sets, each with a different texture but identical UBOs vk::DescriptorPool descriptorPool = vk::su::createDescriptorPool( device, { { vk::DescriptorType::eUniformBuffer, 2 }, { vk::DescriptorType::eCombinedImageSampler, 2 } } ); std::array layouts = { descriptorSetLayout, descriptorSetLayout }; vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo( descriptorPool, layouts ); std::vector descriptorSets = device.allocateDescriptorSets( descriptorSetAllocateInfo ); assert( descriptorSets.size() == 2 ); vk::su::updateDescriptorSets( device, descriptorSets[0], { { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, VK_WHOLE_SIZE, {} } }, greenTextureData ); vk::su::updateDescriptorSets( device, descriptorSets[1], { { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, VK_WHOLE_SIZE, {} } }, checkeredTextureData ); /* VULKAN_KEY_START */ // create four secondary command buffers, for each quadrant of the screen std::vector secondaryCommandBuffers = device.allocateCommandBuffers( vk::CommandBufferAllocateInfo( commandPool, vk::CommandBufferLevel::eSecondary, 4 ) ); // Get the index of the next available swapchain image: vk::Semaphore imageAcquiredSemaphore = device.createSemaphore( vk::SemaphoreCreateInfo() ); vk::ResultValue currentBuffer = device.acquireNextImageKHR( swapChainData.swapChain, vk::su::FenceTimeout, imageAcquiredSemaphore, nullptr ); assert( currentBuffer.result == vk::Result::eSuccess ); assert( currentBuffer.value < framebuffers.size() ); vk::su::setImageLayout( commandBuffer, swapChainData.images[currentBuffer.value], swapChainData.colorFormat, vk::ImageLayout::eUndefined, vk::ImageLayout::eColorAttachmentOptimal ); const vk::DeviceSize offset = 0; vk::Viewport viewport( 0.0f, 0.0f, 200.0f, 200.0f, 0.0f, 1.0f ); vk::Rect2D scissor( vk::Offset2D( 0, 0 ), vk::Extent2D( surfaceData.extent ) ); // now we record four separate command buffers, one for each quadrant of the screen vk::CommandBufferInheritanceInfo commandBufferInheritanceInfo( renderPass, 0, framebuffers[currentBuffer.value] ); vk::CommandBufferBeginInfo secondaryBeginInfo( vk::CommandBufferUsageFlagBits::eOneTimeSubmit | vk::CommandBufferUsageFlagBits::eRenderPassContinue, &commandBufferInheritanceInfo ); for ( int i = 0; i < 4; i++ ) { viewport.x = 25.0f + 250.0f * ( i % 2 ); viewport.y = 25.0f + 250.0f * ( i / 2 ); secondaryCommandBuffers[i].begin( secondaryBeginInfo ); secondaryCommandBuffers[i].bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline ); secondaryCommandBuffers[i].bindDescriptorSets( vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, descriptorSets[i == 0 || i == 3], nullptr ); secondaryCommandBuffers[i].bindVertexBuffers( 0, vertexBufferData.buffer, offset ); secondaryCommandBuffers[i].setViewport( 0, viewport ); secondaryCommandBuffers[i].setScissor( 0, scissor ); secondaryCommandBuffers[i].draw( 12 * 3, 1, 0, 0 ); secondaryCommandBuffers[i].end(); } std::array clearValues; clearValues[0].color = vk::ClearColorValue( std::array( { { 0.2f, 0.2f, 0.2f, 0.2f } } ) ); clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 ); vk::RenderPassBeginInfo renderPassBeginInfo( renderPass, framebuffers[currentBuffer.value], vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ), clearValues ); // specifying VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS means this render pass may ONLY call // vkCmdExecuteCommands commandBuffer.beginRenderPass( renderPassBeginInfo, vk::SubpassContents::eSecondaryCommandBuffers ); commandBuffer.executeCommands( secondaryCommandBuffers ); commandBuffer.endRenderPass(); vk::ImageMemoryBarrier prePresentBarrier( vk::AccessFlagBits::eColorAttachmentWrite, vk::AccessFlagBits::eMemoryRead, vk::ImageLayout::eColorAttachmentOptimal, vk::ImageLayout::ePresentSrcKHR, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, swapChainData.images[currentBuffer.value], vk::ImageSubresourceRange( vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 ) ); commandBuffer.pipelineBarrier( vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eBottomOfPipe, vk::DependencyFlags(), nullptr, nullptr, prePresentBarrier ); commandBuffer.end(); vk::Fence drawFence = device.createFence( vk::FenceCreateInfo() ); vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput ); vk::SubmitInfo submitInfo( imageAcquiredSemaphore, waitDestinationStageMask, commandBuffer ); graphicsQueue.submit( submitInfo, drawFence ); while ( vk::Result::eTimeout == device.waitForFences( drawFence, VK_TRUE, vk::su::FenceTimeout ) ) ; vk::Result result = presentQueue.presentKHR( vk::PresentInfoKHR( {}, swapChainData.swapChain, currentBuffer.value ) ); switch ( result ) { case vk::Result::eSuccess: break; case vk::Result::eSuboptimalKHR: std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n"; break; default: assert( false ); // an unexpected result is returned ! } std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) ); /* VULKAN_KEY_END */ device.waitIdle(); device.destroyFence( drawFence ); device.destroySemaphore( imageAcquiredSemaphore ); device.destroyPipeline( graphicsPipeline ); device.destroyPipelineCache( pipelineCache ); device.freeDescriptorSets( descriptorPool, descriptorSets ); device.destroyDescriptorPool( descriptorPool ); vertexBufferData.clear( device ); for ( auto framebuffer : framebuffers ) { device.destroyFramebuffer( framebuffer ); } device.destroyShaderModule( fragmentShaderModule ); device.destroyShaderModule( vertexShaderModule ); device.destroyRenderPass( renderPass ); device.destroyPipelineLayout( pipelineLayout ); device.destroyDescriptorSetLayout( descriptorSetLayout ); uniformBufferData.clear( device ); checkeredTextureData.clear( device ); greenTextureData.clear( device ); depthBufferData.clear( device ); swapChainData.clear( device ); device.freeCommandBuffers( commandPool, commandBuffer ); device.destroyCommandPool( commandPool ); device.destroy(); instance.destroySurfaceKHR( surfaceData.surface ); #if !defined( NDEBUG ) instance.destroyDebugUtilsMessengerEXT( debugUtilsMessenger ); #endif instance.destroy(); } catch ( vk::SystemError & err ) { std::cout << "vk::SystemError: " << err.what() << std::endl; exit( -1 ); } catch ( std::exception & err ) { std::cout << "std::exception: " << err.what() << std::endl; exit( -1 ); } catch ( ... ) { std::cout << "unknown error\n"; exit( -1 ); } return 0; }