Vulkan-Hpp/samples/utils/utils.cpp
asuessenbach 5fc91db38d Prepare usage of BestPractices validation layer.
Still disabled by default due to yet to be resolved issues.
2021-01-25 13:34:30 +01:00

1187 lines
59 KiB
C++

// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#if defined( _MSC_VER )
// no need to ignore any warnings with MSVC
#elif defined( __clang__ )
# pragma clang diagnostic ignored "-Wmissing-braces"
#elif defined( __GNUC__ )
// no need to ignore any warnings with GCC
#else
// unknow compiler... just ignore the warnings for yourselves ;)
#endif
#include "utils.hpp"
#include "vulkan/vulkan.hpp"
#include <iomanip>
#include <numeric>
#if ( VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1 )
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE
#endif
namespace vk
{
namespace su
{
vk::UniqueDeviceMemory allocateMemory( vk::UniqueDevice const & device,
vk::PhysicalDeviceMemoryProperties const & memoryProperties,
vk::MemoryRequirements const & memoryRequirements,
vk::MemoryPropertyFlags memoryPropertyFlags )
{
uint32_t memoryTypeIndex =
findMemoryType( memoryProperties, memoryRequirements.memoryTypeBits, memoryPropertyFlags );
return device->allocateMemoryUnique( vk::MemoryAllocateInfo( memoryRequirements.size, memoryTypeIndex ) );
}
bool contains( std::vector<vk::ExtensionProperties> const & extensionProperties, std::string const & extensionName )
{
return std::find_if( extensionProperties.begin(),
extensionProperties.end(),
[&extensionName]( vk::ExtensionProperties const & ep ) {
return extensionName == ep.extensionName;
} ) != extensionProperties.end();
}
vk::UniqueCommandPool createCommandPool( vk::UniqueDevice & device, uint32_t queueFamilyIndex )
{
vk::CommandPoolCreateInfo commandPoolCreateInfo( vk::CommandPoolCreateFlagBits::eResetCommandBuffer,
queueFamilyIndex );
return device->createCommandPoolUnique( commandPoolCreateInfo );
}
vk::UniqueDebugUtilsMessengerEXT createDebugUtilsMessenger( vk::UniqueInstance & instance )
{
vk::DebugUtilsMessageSeverityFlagsEXT severityFlags( vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning |
vk::DebugUtilsMessageSeverityFlagBitsEXT::eError );
vk::DebugUtilsMessageTypeFlagsEXT messageTypeFlags( vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral |
vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance |
vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation );
return instance->createDebugUtilsMessengerEXTUnique( vk::DebugUtilsMessengerCreateInfoEXT(
{}, severityFlags, messageTypeFlags, &vk::su::debugUtilsMessengerCallback ) );
}
vk::UniqueDescriptorPool createDescriptorPool( vk::UniqueDevice & device,
std::vector<vk::DescriptorPoolSize> const & poolSizes )
{
assert( !poolSizes.empty() );
uint32_t maxSets =
std::accumulate( poolSizes.begin(), poolSizes.end(), 0, []( uint32_t sum, vk::DescriptorPoolSize const & dps ) {
return sum + dps.descriptorCount;
} );
assert( 0 < maxSets );
vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo(
vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, maxSets, poolSizes );
return device->createDescriptorPoolUnique( descriptorPoolCreateInfo );
}
vk::UniqueDescriptorSetLayout createDescriptorSetLayout(
vk::UniqueDevice const & device,
std::vector<std::tuple<vk::DescriptorType, uint32_t, vk::ShaderStageFlags>> const & bindingData,
vk::DescriptorSetLayoutCreateFlags flags )
{
std::vector<vk::DescriptorSetLayoutBinding> bindings( bindingData.size() );
for ( size_t i = 0; i < bindingData.size(); i++ )
{
bindings[i] = vk::DescriptorSetLayoutBinding( checked_cast<uint32_t>( i ),
std::get<0>( bindingData[i] ),
std::get<1>( bindingData[i] ),
std::get<2>( bindingData[i] ) );
}
return device->createDescriptorSetLayoutUnique( vk::DescriptorSetLayoutCreateInfo( flags, bindings ) );
}
vk::UniqueDevice createDevice( vk::PhysicalDevice physicalDevice,
uint32_t queueFamilyIndex,
std::vector<std::string> const & extensions,
vk::PhysicalDeviceFeatures const * physicalDeviceFeatures,
void const * pNext )
{
std::vector<char const *> enabledExtensions;
enabledExtensions.reserve( extensions.size() );
for ( auto const & ext : extensions )
{
enabledExtensions.push_back( ext.data() );
}
// create a UniqueDevice
float queuePriority = 0.0f;
vk::DeviceQueueCreateInfo deviceQueueCreateInfo(
vk::DeviceQueueCreateFlags(), queueFamilyIndex, 1, &queuePriority );
vk::DeviceCreateInfo deviceCreateInfo(
vk::DeviceCreateFlags(), deviceQueueCreateInfo, {}, enabledExtensions, physicalDeviceFeatures );
deviceCreateInfo.pNext = pNext;
return physicalDevice.createDeviceUnique( deviceCreateInfo );
}
std::vector<vk::UniqueFramebuffer> createFramebuffers( vk::UniqueDevice & device,
vk::UniqueRenderPass & renderPass,
std::vector<vk::UniqueImageView> const & imageViews,
vk::UniqueImageView const & depthImageView,
vk::Extent2D const & extent )
{
vk::ImageView attachments[2];
attachments[1] = depthImageView.get();
vk::FramebufferCreateInfo framebufferCreateInfo( vk::FramebufferCreateFlags(),
*renderPass,
depthImageView ? 2 : 1,
attachments,
extent.width,
extent.height,
1 );
std::vector<vk::UniqueFramebuffer> framebuffers;
framebuffers.reserve( imageViews.size() );
for ( auto const & view : imageViews )
{
attachments[0] = view.get();
framebuffers.push_back( device->createFramebufferUnique( framebufferCreateInfo ) );
}
return framebuffers;
}
vk::UniquePipeline
createGraphicsPipeline( vk::UniqueDevice const & device,
vk::UniquePipelineCache const & pipelineCache,
std::pair<vk::ShaderModule, vk::SpecializationInfo const *> const & vertexShaderData,
std::pair<vk::ShaderModule, vk::SpecializationInfo const *> const & fragmentShaderData,
uint32_t vertexStride,
std::vector<std::pair<vk::Format, uint32_t>> const & vertexInputAttributeFormatOffset,
vk::FrontFace frontFace,
bool depthBuffered,
vk::UniquePipelineLayout const & pipelineLayout,
vk::UniqueRenderPass const & renderPass )
{
std::array<vk::PipelineShaderStageCreateInfo, 2> pipelineShaderStageCreateInfos = {
vk::PipelineShaderStageCreateInfo( vk::PipelineShaderStageCreateFlags(),
vk::ShaderStageFlagBits::eVertex,
vertexShaderData.first,
"main",
vertexShaderData.second ),
vk::PipelineShaderStageCreateInfo( vk::PipelineShaderStageCreateFlags(),
vk::ShaderStageFlagBits::eFragment,
fragmentShaderData.first,
"main",
fragmentShaderData.second )
};
std::vector<vk::VertexInputAttributeDescription> vertexInputAttributeDescriptions;
vk::PipelineVertexInputStateCreateInfo pipelineVertexInputStateCreateInfo;
vk::VertexInputBindingDescription vertexInputBindingDescription( 0, vertexStride );
if ( 0 < vertexStride )
{
vertexInputAttributeDescriptions.reserve( vertexInputAttributeFormatOffset.size() );
for ( uint32_t i = 0; i < vertexInputAttributeFormatOffset.size(); i++ )
{
vertexInputAttributeDescriptions.push_back( vk::VertexInputAttributeDescription(
i, 0, vertexInputAttributeFormatOffset[i].first, vertexInputAttributeFormatOffset[i].second ) );
}
pipelineVertexInputStateCreateInfo.setVertexBindingDescriptions( vertexInputBindingDescription );
pipelineVertexInputStateCreateInfo.setVertexAttributeDescriptions( vertexInputAttributeDescriptions );
}
vk::PipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateCreateInfo(
vk::PipelineInputAssemblyStateCreateFlags(), vk::PrimitiveTopology::eTriangleList );
vk::PipelineViewportStateCreateInfo pipelineViewportStateCreateInfo(
vk::PipelineViewportStateCreateFlags(), 1, nullptr, 1, nullptr );
vk::PipelineRasterizationStateCreateInfo pipelineRasterizationStateCreateInfo(
vk::PipelineRasterizationStateCreateFlags(),
false,
false,
vk::PolygonMode::eFill,
vk::CullModeFlagBits::eBack,
frontFace,
false,
0.0f,
0.0f,
0.0f,
1.0f );
vk::PipelineMultisampleStateCreateInfo pipelineMultisampleStateCreateInfo( {}, vk::SampleCountFlagBits::e1 );
vk::StencilOpState stencilOpState(
vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::StencilOp::eKeep, vk::CompareOp::eAlways );
vk::PipelineDepthStencilStateCreateInfo pipelineDepthStencilStateCreateInfo(
vk::PipelineDepthStencilStateCreateFlags(),
depthBuffered,
depthBuffered,
vk::CompareOp::eLessOrEqual,
false,
false,
stencilOpState,
stencilOpState );
vk::ColorComponentFlags colorComponentFlags( vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG |
vk::ColorComponentFlagBits::eB | vk::ColorComponentFlagBits::eA );
vk::PipelineColorBlendAttachmentState pipelineColorBlendAttachmentState( false,
vk::BlendFactor::eZero,
vk::BlendFactor::eZero,
vk::BlendOp::eAdd,
vk::BlendFactor::eZero,
vk::BlendFactor::eZero,
vk::BlendOp::eAdd,
colorComponentFlags );
vk::PipelineColorBlendStateCreateInfo pipelineColorBlendStateCreateInfo( vk::PipelineColorBlendStateCreateFlags(),
false,
vk::LogicOp::eNoOp,
pipelineColorBlendAttachmentState,
{ { 1.0f, 1.0f, 1.0f, 1.0f } } );
std::array<vk::DynamicState, 2> dynamicStates = { vk::DynamicState::eViewport, vk::DynamicState::eScissor };
vk::PipelineDynamicStateCreateInfo pipelineDynamicStateCreateInfo( vk::PipelineDynamicStateCreateFlags(),
dynamicStates );
vk::GraphicsPipelineCreateInfo graphicsPipelineCreateInfo( vk::PipelineCreateFlags(),
pipelineShaderStageCreateInfos,
&pipelineVertexInputStateCreateInfo,
&pipelineInputAssemblyStateCreateInfo,
nullptr,
&pipelineViewportStateCreateInfo,
&pipelineRasterizationStateCreateInfo,
&pipelineMultisampleStateCreateInfo,
&pipelineDepthStencilStateCreateInfo,
&pipelineColorBlendStateCreateInfo,
&pipelineDynamicStateCreateInfo,
pipelineLayout.get(),
renderPass.get() );
auto result = device->createGraphicsPipelineUnique( pipelineCache.get(), graphicsPipelineCreateInfo );
assert( result.result == vk::Result::eSuccess );
return std::move( result.value );
}
vk::UniqueInstance createInstance( std::string const & appName,
std::string const & engineName,
std::vector<std::string> const & layers,
std::vector<std::string> const & extensions,
uint32_t apiVersion )
{
#if ( VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1 )
static vk::DynamicLoader dl;
PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr =
dl.getProcAddress<PFN_vkGetInstanceProcAddr>( "vkGetInstanceProcAddr" );
VULKAN_HPP_DEFAULT_DISPATCHER.init( vkGetInstanceProcAddr );
#endif
#if !defined( NDEBUG )
std::vector<vk::LayerProperties> layerProperties = vk::enumerateInstanceLayerProperties();
std::vector<vk::ExtensionProperties> extensionProperties = vk::enumerateInstanceExtensionProperties();
#endif
std::vector<char const *> enabledLayers;
enabledLayers.reserve( layers.size() );
for ( auto const & layer : layers )
{
assert(
std::find_if( layerProperties.begin(), layerProperties.end(), [layer]( vk::LayerProperties const & lp ) {
return layer == lp.layerName;
} ) != layerProperties.end() );
enabledLayers.push_back( layer.data() );
}
#if !defined( NDEBUG )
// Enable standard validation layer to find as much errors as possible!
if ( std::find( layers.begin(), layers.end(), "VK_LAYER_KHRONOS_validation" ) == layers.end() &&
std::find_if( layerProperties.begin(), layerProperties.end(), []( vk::LayerProperties const & lp ) {
return ( strcmp( "VK_LAYER_KHRONOS_validation", lp.layerName ) == 0 );
} ) != layerProperties.end() )
{
enabledLayers.push_back( "VK_LAYER_KHRONOS_validation" );
}
#endif
std::vector<char const *> enabledExtensions;
enabledExtensions.reserve( extensions.size() );
for ( auto const & ext : extensions )
{
assert( std::find_if(
extensionProperties.begin(), extensionProperties.end(), [ext]( vk::ExtensionProperties const & ep ) {
return ext == ep.extensionName;
} ) != extensionProperties.end() );
enabledExtensions.push_back( ext.data() );
}
#if !defined( NDEBUG )
if ( std::find( extensions.begin(), extensions.end(), VK_EXT_DEBUG_UTILS_EXTENSION_NAME ) == extensions.end() &&
std::find_if(
extensionProperties.begin(), extensionProperties.end(), []( vk::ExtensionProperties const & ep ) {
return ( strcmp( VK_EXT_DEBUG_UTILS_EXTENSION_NAME, ep.extensionName ) == 0 );
} ) != extensionProperties.end() )
{
enabledExtensions.push_back( VK_EXT_DEBUG_UTILS_EXTENSION_NAME );
}
#endif
// create a UniqueInstance
vk::ApplicationInfo applicationInfo( appName.c_str(), 1, engineName.c_str(), 1, apiVersion );
#if defined( NDEBUG )
// in non-debug mode just use the InstanceCreateInfo for instance creation
vk::StructureChain<vk::InstanceCreateInfo> instanceCreateInfo(
{ {}, &applicationInfo, enabledLayers, enabledExtensions } );
#else
// in debug mode, addionally use the debugUtilsMessengerCallback in instance creation!
vk::DebugUtilsMessageSeverityFlagsEXT severityFlags( vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning |
vk::DebugUtilsMessageSeverityFlagBitsEXT::eError );
vk::DebugUtilsMessageTypeFlagsEXT messageTypeFlags( vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral |
vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance |
vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation );
# if defined( VULKAN_HPP_UTILS_USE_BEST_PRACTICES )
vk::ValidationFeatureEnableEXT validationFeatureEnable = vk::ValidationFeatureEnableEXT::eBestPractices;
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT, vk::ValidationFeaturesEXT>
instanceCreateInfo( { {}, &applicationInfo, enabledLayers, enabledExtensions },
{ {}, severityFlags, messageTypeFlags, &vk::su::debugUtilsMessengerCallback },
{ validationFeatureEnable } );
# else
vk::StructureChain<vk::InstanceCreateInfo, vk::DebugUtilsMessengerCreateInfoEXT> instanceCreateInfo(
{ {}, &applicationInfo, enabledLayers, enabledExtensions },
{ {}, severityFlags, messageTypeFlags, &vk::su::debugUtilsMessengerCallback } );
# endif
#endif
vk::UniqueInstance instance = vk::createInstanceUnique( instanceCreateInfo.get<vk::InstanceCreateInfo>() );
#if ( VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1 )
// initialize function pointers for instance
VULKAN_HPP_DEFAULT_DISPATCHER.init( *instance );
#endif
return instance;
}
vk::UniqueRenderPass createRenderPass( vk::UniqueDevice & device,
vk::Format colorFormat,
vk::Format depthFormat,
vk::AttachmentLoadOp loadOp,
vk::ImageLayout colorFinalLayout )
{
std::vector<vk::AttachmentDescription> attachmentDescriptions;
assert( colorFormat != vk::Format::eUndefined );
attachmentDescriptions.push_back( vk::AttachmentDescription( vk::AttachmentDescriptionFlags(),
colorFormat,
vk::SampleCountFlagBits::e1,
loadOp,
vk::AttachmentStoreOp::eStore,
vk::AttachmentLoadOp::eDontCare,
vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout::eUndefined,
colorFinalLayout ) );
if ( depthFormat != vk::Format::eUndefined )
{
attachmentDescriptions.push_back(
vk::AttachmentDescription( vk::AttachmentDescriptionFlags(),
depthFormat,
vk::SampleCountFlagBits::e1,
loadOp,
vk::AttachmentStoreOp::eDontCare,
vk::AttachmentLoadOp::eDontCare,
vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout::eUndefined,
vk::ImageLayout::eDepthStencilAttachmentOptimal ) );
}
vk::AttachmentReference colorAttachment( 0, vk::ImageLayout::eColorAttachmentOptimal );
vk::AttachmentReference depthAttachment( 1, vk::ImageLayout::eDepthStencilAttachmentOptimal );
vk::SubpassDescription subpassDescription( vk::SubpassDescriptionFlags(),
vk::PipelineBindPoint::eGraphics,
{},
colorAttachment,
{},
( depthFormat != vk::Format::eUndefined ) ? &depthAttachment
: nullptr );
return device->createRenderPassUnique(
vk::RenderPassCreateInfo( vk::RenderPassCreateFlags(), attachmentDescriptions, subpassDescription ) );
}
VKAPI_ATTR VkBool32 VKAPI_CALL
debugUtilsMessengerCallback( VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
VkDebugUtilsMessengerCallbackDataEXT const * pCallbackData,
void * /*pUserData*/ )
{
#if !defined(NDEBUG)
if ( pCallbackData->messageIdNumber == 648835635 )
{
// UNASSIGNED-khronos-Validation-debug-build-warning-message
return VK_FALSE;
}
if ( pCallbackData->messageIdNumber == 767975156 )
{
// UNASSIGNED-BestPractices-vkCreateInstance-specialuse-extension
return VK_FALSE;
}
#endif
std::cerr << vk::to_string( static_cast<vk::DebugUtilsMessageSeverityFlagBitsEXT>( messageSeverity ) ) << ": "
<< vk::to_string( static_cast<vk::DebugUtilsMessageTypeFlagsEXT>( messageTypes ) ) << ":\n";
std::cerr << "\t"
<< "messageIDName = <" << pCallbackData->pMessageIdName << ">\n";
std::cerr << "\t"
<< "messageIdNumber = " << pCallbackData->messageIdNumber << "\n";
std::cerr << "\t"
<< "message = <" << pCallbackData->pMessage << ">\n";
if ( 0 < pCallbackData->queueLabelCount )
{
std::cerr << "\t"
<< "Queue Labels:\n";
for ( uint8_t i = 0; i < pCallbackData->queueLabelCount; i++ )
{
std::cerr << "\t\t"
<< "labelName = <" << pCallbackData->pQueueLabels[i].pLabelName << ">\n";
}
}
if ( 0 < pCallbackData->cmdBufLabelCount )
{
std::cerr << "\t"
<< "CommandBuffer Labels:\n";
for ( uint8_t i = 0; i < pCallbackData->cmdBufLabelCount; i++ )
{
std::cerr << "\t\t"
<< "labelName = <" << pCallbackData->pCmdBufLabels[i].pLabelName << ">\n";
}
}
if ( 0 < pCallbackData->objectCount )
{
std::cerr << "\t"
<< "Objects:\n";
for ( uint8_t i = 0; i < pCallbackData->objectCount; i++ )
{
std::cerr << "\t\t"
<< "Object " << i << "\n";
std::cerr << "\t\t\t"
<< "objectType = "
<< vk::to_string( static_cast<vk::ObjectType>( pCallbackData->pObjects[i].objectType ) ) << "\n";
std::cerr << "\t\t\t"
<< "objectHandle = " << pCallbackData->pObjects[i].objectHandle << "\n";
if ( pCallbackData->pObjects[i].pObjectName )
{
std::cerr << "\t\t\t"
<< "objectName = <" << pCallbackData->pObjects[i].pObjectName << ">\n";
}
}
}
return VK_TRUE;
}
uint32_t findGraphicsQueueFamilyIndex( std::vector<vk::QueueFamilyProperties> const & queueFamilyProperties )
{
// get the first index into queueFamiliyProperties which supports graphics
size_t graphicsQueueFamilyIndex = std::distance(
queueFamilyProperties.begin(),
std::find_if(
queueFamilyProperties.begin(), queueFamilyProperties.end(), []( vk::QueueFamilyProperties const & qfp ) {
return qfp.queueFlags & vk::QueueFlagBits::eGraphics;
} ) );
assert( graphicsQueueFamilyIndex < queueFamilyProperties.size() );
return checked_cast<uint32_t>( graphicsQueueFamilyIndex );
}
std::pair<uint32_t, uint32_t> findGraphicsAndPresentQueueFamilyIndex( vk::PhysicalDevice physicalDevice,
vk::SurfaceKHR const & surface )
{
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
assert( queueFamilyProperties.size() < std::numeric_limits<uint32_t>::max() );
uint32_t graphicsQueueFamilyIndex = findGraphicsQueueFamilyIndex( queueFamilyProperties );
if ( physicalDevice.getSurfaceSupportKHR( graphicsQueueFamilyIndex, surface ) )
{
return std::make_pair(
graphicsQueueFamilyIndex,
graphicsQueueFamilyIndex ); // the first graphicsQueueFamilyIndex does also support presents
}
// the graphicsQueueFamilyIndex doesn't support present -> look for an other family index that supports both
// graphics and present
for ( size_t i = 0; i < queueFamilyProperties.size(); i++ )
{
if ( ( queueFamilyProperties[i].queueFlags & vk::QueueFlagBits::eGraphics ) &&
physicalDevice.getSurfaceSupportKHR( static_cast<uint32_t>( i ), surface ) )
{
return std::make_pair( static_cast<uint32_t>( i ), static_cast<uint32_t>( i ) );
}
}
// there's nothing like a single family index that supports both graphics and present -> look for an other family
// index that supports present
for ( size_t i = 0; i < queueFamilyProperties.size(); i++ )
{
if ( physicalDevice.getSurfaceSupportKHR( static_cast<uint32_t>( i ), surface ) )
{
return std::make_pair( graphicsQueueFamilyIndex, static_cast<uint32_t>( i ) );
}
}
throw std::runtime_error( "Could not find queues for both graphics or present -> terminating" );
}
uint32_t findMemoryType( vk::PhysicalDeviceMemoryProperties const & memoryProperties,
uint32_t typeBits,
vk::MemoryPropertyFlags requirementsMask )
{
uint32_t typeIndex = uint32_t( ~0 );
for ( uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++ )
{
if ( ( typeBits & 1 ) &&
( ( memoryProperties.memoryTypes[i].propertyFlags & requirementsMask ) == requirementsMask ) )
{
typeIndex = i;
break;
}
typeBits >>= 1;
}
assert( typeIndex != uint32_t( ~0 ) );
return typeIndex;
}
std::vector<std::string> getDeviceExtensions()
{
return { VK_KHR_SWAPCHAIN_EXTENSION_NAME };
}
std::vector<std::string> getInstanceExtensions()
{
std::vector<std::string> extensions;
extensions.push_back( VK_KHR_SURFACE_EXTENSION_NAME );
#if defined( VK_USE_PLATFORM_ANDROID_KHR )
extensions.push_back( VK_KHR_ANDROID_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_IOS_MVK )
extensions.push_back( VK_MVK_IOS_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_MACOS_MVK )
extensions.push_back( VK_MVK_MACOS_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_MIR_KHR )
extensions.push_back( VK_KHR_MIR_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_VI_NN )
extensions.push_back( VK_NN_VI_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_WAYLAND_KHR )
extensions.push_back( VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_WIN32_KHR )
extensions.push_back( VK_KHR_WIN32_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_XCB_KHR )
extensions.push_back( VK_KHR_XCB_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_XLIB_KHR )
extensions.push_back( VK_KHR_XLIB_SURFACE_EXTENSION_NAME );
#elif defined( VK_USE_PLATFORM_XLIB_XRANDR_EXT )
extensions.push_back( VK_EXT_ACQUIRE_XLIB_DISPLAY_EXTENSION_NAME );
#endif
return extensions;
}
vk::Format pickDepthFormat( vk::PhysicalDevice const & physicalDevice )
{
std::vector<vk::Format> candidates = { vk::Format::eD32Sfloat,
vk::Format::eD32SfloatS8Uint,
vk::Format::eD24UnormS8Uint };
for ( vk::Format format : candidates )
{
vk::FormatProperties props = physicalDevice.getFormatProperties( format );
if ( props.optimalTilingFeatures & vk::FormatFeatureFlagBits::eDepthStencilAttachment )
{
return format;
}
}
throw std::runtime_error( "failed to find supported format!" );
}
vk::PresentModeKHR pickPresentMode( std::vector<vk::PresentModeKHR> const & presentModes )
{
vk::PresentModeKHR pickedMode = vk::PresentModeKHR::eFifo;
for ( const auto & presentMode : presentModes )
{
if ( presentMode == vk::PresentModeKHR::eMailbox )
{
pickedMode = presentMode;
break;
}
if ( presentMode == vk::PresentModeKHR::eImmediate )
{
pickedMode = presentMode;
}
}
return pickedMode;
}
vk::SurfaceFormatKHR pickSurfaceFormat( std::vector<vk::SurfaceFormatKHR> const & formats )
{
assert( !formats.empty() );
vk::SurfaceFormatKHR pickedFormat = formats[0];
if ( formats.size() == 1 )
{
if ( formats[0].format == vk::Format::eUndefined )
{
pickedFormat.format = vk::Format::eB8G8R8A8Unorm;
pickedFormat.colorSpace = vk::ColorSpaceKHR::eSrgbNonlinear;
}
}
else
{
// request several formats, the first found will be used
vk::Format requestedFormats[] = {
vk::Format::eB8G8R8A8Unorm, vk::Format::eR8G8B8A8Unorm, vk::Format::eB8G8R8Unorm, vk::Format::eR8G8B8Unorm
};
vk::ColorSpaceKHR requestedColorSpace = vk::ColorSpaceKHR::eSrgbNonlinear;
for ( size_t i = 0; i < sizeof( requestedFormats ) / sizeof( requestedFormats[0] ); i++ )
{
vk::Format requestedFormat = requestedFormats[i];
auto it = std::find_if(
formats.begin(), formats.end(), [requestedFormat, requestedColorSpace]( vk::SurfaceFormatKHR const & f ) {
return ( f.format == requestedFormat ) && ( f.colorSpace == requestedColorSpace );
} );
if ( it != formats.end() )
{
pickedFormat = *it;
break;
}
}
}
assert( pickedFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear );
return pickedFormat;
}
void setImageLayout( vk::UniqueCommandBuffer const & commandBuffer,
vk::Image image,
vk::Format format,
vk::ImageLayout oldImageLayout,
vk::ImageLayout newImageLayout )
{
vk::AccessFlags sourceAccessMask;
switch ( oldImageLayout )
{
case vk::ImageLayout::eTransferDstOptimal: sourceAccessMask = vk::AccessFlagBits::eTransferWrite; break;
case vk::ImageLayout::ePreinitialized: sourceAccessMask = vk::AccessFlagBits::eHostWrite; break;
case vk::ImageLayout::eGeneral: // sourceAccessMask is empty
case vk::ImageLayout::eUndefined: break;
default: assert( false ); break;
}
vk::PipelineStageFlags sourceStage;
switch ( oldImageLayout )
{
case vk::ImageLayout::eGeneral:
case vk::ImageLayout::ePreinitialized: sourceStage = vk::PipelineStageFlagBits::eHost; break;
case vk::ImageLayout::eTransferDstOptimal: sourceStage = vk::PipelineStageFlagBits::eTransfer; break;
case vk::ImageLayout::eUndefined: sourceStage = vk::PipelineStageFlagBits::eTopOfPipe; break;
default: assert( false ); break;
}
vk::AccessFlags destinationAccessMask;
switch ( newImageLayout )
{
case vk::ImageLayout::eColorAttachmentOptimal:
destinationAccessMask = vk::AccessFlagBits::eColorAttachmentWrite;
break;
case vk::ImageLayout::eDepthStencilAttachmentOptimal:
destinationAccessMask =
vk::AccessFlagBits::eDepthStencilAttachmentRead | vk::AccessFlagBits::eDepthStencilAttachmentWrite;
break;
case vk::ImageLayout::eGeneral: // empty destinationAccessMask
case vk::ImageLayout::ePresentSrcKHR: break;
case vk::ImageLayout::eShaderReadOnlyOptimal: destinationAccessMask = vk::AccessFlagBits::eShaderRead; break;
case vk::ImageLayout::eTransferSrcOptimal: destinationAccessMask = vk::AccessFlagBits::eTransferRead; break;
case vk::ImageLayout::eTransferDstOptimal: destinationAccessMask = vk::AccessFlagBits::eTransferWrite; break;
default: assert( false ); break;
}
vk::PipelineStageFlags destinationStage;
switch ( newImageLayout )
{
case vk::ImageLayout::eColorAttachmentOptimal:
destinationStage = vk::PipelineStageFlagBits::eColorAttachmentOutput;
break;
case vk::ImageLayout::eDepthStencilAttachmentOptimal:
destinationStage = vk::PipelineStageFlagBits::eEarlyFragmentTests;
break;
case vk::ImageLayout::eGeneral: destinationStage = vk::PipelineStageFlagBits::eHost; break;
case vk::ImageLayout::ePresentSrcKHR: destinationStage = vk::PipelineStageFlagBits::eBottomOfPipe; break;
case vk::ImageLayout::eShaderReadOnlyOptimal:
destinationStage = vk::PipelineStageFlagBits::eFragmentShader;
break;
case vk::ImageLayout::eTransferDstOptimal:
case vk::ImageLayout::eTransferSrcOptimal: destinationStage = vk::PipelineStageFlagBits::eTransfer; break;
default: assert( false ); break;
}
vk::ImageAspectFlags aspectMask;
if ( newImageLayout == vk::ImageLayout::eDepthStencilAttachmentOptimal )
{
aspectMask = vk::ImageAspectFlagBits::eDepth;
if ( format == vk::Format::eD32SfloatS8Uint || format == vk::Format::eD24UnormS8Uint )
{
aspectMask |= vk::ImageAspectFlagBits::eStencil;
}
}
else
{
aspectMask = vk::ImageAspectFlagBits::eColor;
}
vk::ImageSubresourceRange imageSubresourceRange( aspectMask, 0, 1, 0, 1 );
vk::ImageMemoryBarrier imageMemoryBarrier( sourceAccessMask,
destinationAccessMask,
oldImageLayout,
newImageLayout,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
image,
imageSubresourceRange );
return commandBuffer->pipelineBarrier( sourceStage, destinationStage, {}, nullptr, nullptr, imageMemoryBarrier );
}
void submitAndWait( vk::UniqueDevice & device, vk::Queue queue, vk::UniqueCommandBuffer & commandBuffer )
{
vk::UniqueFence fence = device->createFenceUnique( vk::FenceCreateInfo() );
queue.submit( vk::SubmitInfo( {}, {}, *commandBuffer ), fence.get() );
while ( vk::Result::eTimeout == device->waitForFences( fence.get(), VK_TRUE, vk::su::FenceTimeout ) )
;
}
void updateDescriptorSets(
vk::UniqueDevice const & device,
vk::UniqueDescriptorSet const & descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::UniqueBuffer const &, vk::UniqueBufferView const &>> const &
bufferData,
vk::su::TextureData const & textureData,
uint32_t bindingOffset )
{
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.reserve( bufferData.size() );
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.reserve( bufferData.size() + 1 );
uint32_t dstBinding = bindingOffset;
for ( auto const & bd : bufferData )
{
bufferInfos.push_back( vk::DescriptorBufferInfo( *std::get<1>( bd ), 0, VK_WHOLE_SIZE ) );
writeDescriptorSets.push_back( vk::WriteDescriptorSet( *descriptorSet,
dstBinding++,
0,
1,
std::get<0>( bd ),
nullptr,
&bufferInfos.back(),
std::get<2>( bd ) ? &*std::get<2>( bd ) : nullptr ) );
}
vk::DescriptorImageInfo imageInfo(
*textureData.textureSampler, *textureData.imageData->imageView, vk::ImageLayout::eShaderReadOnlyOptimal );
writeDescriptorSets.push_back( vk::WriteDescriptorSet(
*descriptorSet, dstBinding, 0, vk::DescriptorType::eCombinedImageSampler, imageInfo, {}, nullptr ) );
device->updateDescriptorSets( writeDescriptorSets, nullptr );
}
void updateDescriptorSets(
vk::UniqueDevice const & device,
vk::UniqueDescriptorSet const & descriptorSet,
std::vector<std::tuple<vk::DescriptorType, vk::UniqueBuffer const &, vk::UniqueBufferView const &>> const &
bufferData,
std::vector<vk::su::TextureData> const & textureData,
uint32_t bindingOffset )
{
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.reserve( bufferData.size() );
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.reserve( bufferData.size() + ( textureData.empty() ? 0 : 1 ) );
uint32_t dstBinding = bindingOffset;
for ( auto const & bd : bufferData )
{
bufferInfos.push_back( vk::DescriptorBufferInfo( *std::get<1>( bd ), 0, VK_WHOLE_SIZE ) );
writeDescriptorSets.push_back( vk::WriteDescriptorSet( *descriptorSet,
dstBinding++,
0,
1,
std::get<0>( bd ),
nullptr,
&bufferInfos.back(),
std::get<2>( bd ) ? &*std::get<2>( bd ) : nullptr ) );
}
std::vector<vk::DescriptorImageInfo> imageInfos;
if ( !textureData.empty() )
{
imageInfos.reserve( textureData.size() );
for ( auto const & td : textureData )
{
imageInfos.push_back( vk::DescriptorImageInfo(
*td.textureSampler, *td.imageData->imageView, vk::ImageLayout::eShaderReadOnlyOptimal ) );
}
writeDescriptorSets.push_back( vk::WriteDescriptorSet( *descriptorSet,
dstBinding,
0,
checked_cast<uint32_t>( imageInfos.size() ),
vk::DescriptorType::eCombinedImageSampler,
imageInfos.data(),
nullptr,
nullptr ) );
}
device->updateDescriptorSets( writeDescriptorSets, nullptr );
}
BufferData::BufferData( vk::PhysicalDevice const & physicalDevice,
vk::UniqueDevice const & device,
vk::DeviceSize size,
vk::BufferUsageFlags usage,
vk::MemoryPropertyFlags propertyFlags )
#if !defined( NDEBUG )
: m_size( size ), m_usage( usage ), m_propertyFlags( propertyFlags )
#endif
{
buffer = device->createBufferUnique( vk::BufferCreateInfo( vk::BufferCreateFlags(), size, usage ) );
deviceMemory = vk::su::allocateMemory( device,
physicalDevice.getMemoryProperties(),
device->getBufferMemoryRequirements( buffer.get() ),
propertyFlags );
device->bindBufferMemory( buffer.get(), deviceMemory.get(), 0 );
}
DepthBufferData::DepthBufferData( vk::PhysicalDevice & physicalDevice,
vk::UniqueDevice & device,
vk::Format format,
vk::Extent2D const & extent )
: ImageData( physicalDevice,
device,
format,
extent,
vk::ImageTiling::eOptimal,
vk::ImageUsageFlagBits::eDepthStencilAttachment,
vk::ImageLayout::eUndefined,
vk::MemoryPropertyFlagBits::eDeviceLocal,
vk::ImageAspectFlagBits::eDepth )
{}
ImageData::ImageData( vk::PhysicalDevice const & physicalDevice,
vk::UniqueDevice const & device,
vk::Format format_,
vk::Extent2D const & extent,
vk::ImageTiling tiling,
vk::ImageUsageFlags usage,
vk::ImageLayout initialLayout,
vk::MemoryPropertyFlags memoryProperties,
vk::ImageAspectFlags aspectMask )
: format( format_ )
{
vk::ImageCreateInfo imageCreateInfo( vk::ImageCreateFlags(),
vk::ImageType::e2D,
format,
vk::Extent3D( extent, 1 ),
1,
1,
vk::SampleCountFlagBits::e1,
tiling,
usage | vk::ImageUsageFlagBits::eSampled,
vk::SharingMode::eExclusive,
{},
initialLayout );
image = device->createImageUnique( imageCreateInfo );
deviceMemory = vk::su::allocateMemory( device,
physicalDevice.getMemoryProperties(),
device->getImageMemoryRequirements( image.get() ),
memoryProperties );
device->bindImageMemory( image.get(), deviceMemory.get(), 0 );
vk::ComponentMapping componentMapping(
ComponentSwizzle::eR, ComponentSwizzle::eG, ComponentSwizzle::eB, ComponentSwizzle::eA );
vk::ImageViewCreateInfo imageViewCreateInfo( vk::ImageViewCreateFlags(),
image.get(),
vk::ImageViewType::e2D,
format,
componentMapping,
vk::ImageSubresourceRange( aspectMask, 0, 1, 0, 1 ) );
imageView = device->createImageViewUnique( imageViewCreateInfo );
}
SurfaceData::SurfaceData( vk::UniqueInstance & instance,
std::string const & windowName,
vk::Extent2D const & extent_ )
: extent( extent_ ), window( vk::su::createWindow( windowName, extent ) )
{
VkSurfaceKHR _surface;
VkResult err = glfwCreateWindowSurface( VkInstance( instance.get() ), window.handle, nullptr, &_surface );
if ( err != VK_SUCCESS )
throw std::runtime_error( "Failed to create window!" );
vk::ObjectDestroy<vk::Instance, VULKAN_HPP_DEFAULT_DISPATCHER_TYPE> _deleter( instance.get() );
surface = vk::UniqueSurfaceKHR( vk::SurfaceKHR( _surface ), _deleter );
}
SwapChainData::SwapChainData( vk::PhysicalDevice const & physicalDevice,
vk::UniqueDevice const & device,
vk::SurfaceKHR const & surface,
vk::Extent2D const & extent,
vk::ImageUsageFlags usage,
vk::UniqueSwapchainKHR const & oldSwapChain,
uint32_t graphicsQueueFamilyIndex,
uint32_t presentQueueFamilyIndex )
{
vk::SurfaceFormatKHR surfaceFormat = vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surface ) );
colorFormat = surfaceFormat.format;
vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR( surface );
VkExtent2D swapchainExtent;
if ( surfaceCapabilities.currentExtent.width == std::numeric_limits<uint32_t>::max() )
{
// If the surface size is undefined, the size is set to the size of the images requested.
swapchainExtent.width =
clamp( extent.width, surfaceCapabilities.minImageExtent.width, surfaceCapabilities.maxImageExtent.width );
swapchainExtent.height =
clamp( extent.height, surfaceCapabilities.minImageExtent.height, surfaceCapabilities.maxImageExtent.height );
}
else
{
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfaceCapabilities.currentExtent;
}
vk::SurfaceTransformFlagBitsKHR preTransform =
( surfaceCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity )
? vk::SurfaceTransformFlagBitsKHR::eIdentity
: surfaceCapabilities.currentTransform;
vk::CompositeAlphaFlagBitsKHR compositeAlpha =
( surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePreMultiplied )
? vk::CompositeAlphaFlagBitsKHR::ePreMultiplied
: ( surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePostMultiplied )
? vk::CompositeAlphaFlagBitsKHR::ePostMultiplied
: ( surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::eInherit )
? vk::CompositeAlphaFlagBitsKHR::eInherit
: vk::CompositeAlphaFlagBitsKHR::eOpaque;
vk::PresentModeKHR presentMode = vk::su::pickPresentMode( physicalDevice.getSurfacePresentModesKHR( surface ) );
vk::SwapchainCreateInfoKHR swapChainCreateInfo( {},
surface,
surfaceCapabilities.minImageCount,
colorFormat,
surfaceFormat.colorSpace,
swapchainExtent,
1,
usage,
vk::SharingMode::eExclusive,
{},
preTransform,
compositeAlpha,
presentMode,
true,
*oldSwapChain );
if ( graphicsQueueFamilyIndex != presentQueueFamilyIndex )
{
uint32_t queueFamilyIndices[2] = { graphicsQueueFamilyIndex, presentQueueFamilyIndex };
// If the graphics and present queues are from different queue families, we either have to explicitly transfer
// ownership of images between the queues, or we have to create the swapchain with imageSharingMode as
// vk::SharingMode::eConcurrent
swapChainCreateInfo.imageSharingMode = vk::SharingMode::eConcurrent;
swapChainCreateInfo.queueFamilyIndexCount = 2;
swapChainCreateInfo.pQueueFamilyIndices = queueFamilyIndices;
}
swapChain = device->createSwapchainKHRUnique( swapChainCreateInfo );
images = device->getSwapchainImagesKHR( swapChain.get() );
imageViews.reserve( images.size() );
vk::ComponentMapping componentMapping(
vk::ComponentSwizzle::eR, vk::ComponentSwizzle::eG, vk::ComponentSwizzle::eB, vk::ComponentSwizzle::eA );
vk::ImageSubresourceRange subResourceRange( vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 );
for ( auto image : images )
{
vk::ImageViewCreateInfo imageViewCreateInfo(
vk::ImageViewCreateFlags(), image, vk::ImageViewType::e2D, colorFormat, componentMapping, subResourceRange );
imageViews.push_back( device->createImageViewUnique( imageViewCreateInfo ) );
}
}
CheckerboardImageGenerator::CheckerboardImageGenerator( std::array<uint8_t, 3> const & rgb0,
std::array<uint8_t, 3> const & rgb1 )
: m_rgb0( rgb0 ), m_rgb1( rgb1 )
{}
void CheckerboardImageGenerator::operator()( void * data, vk::Extent2D & extent ) const
{
// Checkerboard of 16x16 pixel squares
uint8_t * pImageMemory = static_cast<uint8_t *>( data );
for ( uint32_t row = 0; row < extent.height; row++ )
{
for ( uint32_t col = 0; col < extent.width; col++ )
{
std::array<uint8_t, 3> const & rgb = ( ( ( row & 0x10 ) == 0 ) ^ ( ( col & 0x10 ) == 0 ) ) ? m_rgb1 : m_rgb0;
pImageMemory[0] = rgb[0];
pImageMemory[1] = rgb[1];
pImageMemory[2] = rgb[2];
pImageMemory[3] = 255;
pImageMemory += 4;
}
}
}
MonochromeImageGenerator::MonochromeImageGenerator( std::array<unsigned char, 3> const & rgb ) : m_rgb( rgb ) {}
void MonochromeImageGenerator::operator()( void * data, vk::Extent2D const & extent ) const
{
// fill in with the monochrome color
unsigned char * pImageMemory = static_cast<unsigned char *>( data );
for ( uint32_t row = 0; row < extent.height; row++ )
{
for ( uint32_t col = 0; col < extent.width; col++ )
{
pImageMemory[0] = m_rgb[0];
pImageMemory[1] = m_rgb[1];
pImageMemory[2] = m_rgb[2];
pImageMemory[3] = 255;
pImageMemory += 4;
}
}
}
PixelsImageGenerator::PixelsImageGenerator( vk::Extent2D const & extent,
size_t channels,
unsigned char const * pixels )
: m_extent( extent ), m_channels( channels ), m_pixels( pixels )
{
assert( m_channels == 4 );
}
void PixelsImageGenerator::operator()( void * data, vk::Extent2D const & extent ) const
{
assert( extent == m_extent );
memcpy( data, m_pixels, extent.width * extent.height * m_channels );
}
TextureData::TextureData( vk::PhysicalDevice const & physicalDevice,
vk::UniqueDevice const & device,
vk::Extent2D const & extent_,
vk::ImageUsageFlags usageFlags,
vk::FormatFeatureFlags formatFeatureFlags,
bool anisotropyEnable,
bool forceStaging )
: format( vk::Format::eR8G8B8A8Unorm ), extent( extent_ )
{
vk::FormatProperties formatProperties = physicalDevice.getFormatProperties( format );
formatFeatureFlags |= vk::FormatFeatureFlagBits::eSampledImage;
needsStaging =
forceStaging || ( ( formatProperties.linearTilingFeatures & formatFeatureFlags ) != formatFeatureFlags );
vk::ImageTiling imageTiling;
vk::ImageLayout initialLayout;
vk::MemoryPropertyFlags requirements;
if ( needsStaging )
{
assert( ( formatProperties.optimalTilingFeatures & formatFeatureFlags ) == formatFeatureFlags );
stagingBufferData = std::unique_ptr<BufferData>( new BufferData(
physicalDevice, device, extent.width * extent.height * 4, vk::BufferUsageFlagBits::eTransferSrc ) );
imageTiling = vk::ImageTiling::eOptimal;
usageFlags |= vk::ImageUsageFlagBits::eTransferDst;
initialLayout = vk::ImageLayout::eUndefined;
}
else
{
imageTiling = vk::ImageTiling::eLinear;
initialLayout = vk::ImageLayout::ePreinitialized;
requirements = vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible;
}
imageData = std::unique_ptr<ImageData>( new ImageData( physicalDevice,
device,
format,
extent,
imageTiling,
usageFlags | vk::ImageUsageFlagBits::eSampled,
initialLayout,
requirements,
vk::ImageAspectFlagBits::eColor ) );
textureSampler = device->createSamplerUnique( vk::SamplerCreateInfo( vk::SamplerCreateFlags(),
vk::Filter::eLinear,
vk::Filter::eLinear,
vk::SamplerMipmapMode::eLinear,
vk::SamplerAddressMode::eRepeat,
vk::SamplerAddressMode::eRepeat,
vk::SamplerAddressMode::eRepeat,
0.0f,
anisotropyEnable,
16.0f,
false,
vk::CompareOp::eNever,
0.0f,
0.0f,
vk::BorderColor::eFloatOpaqueBlack ) );
}
UUID::UUID( uint8_t const data[VK_UUID_SIZE] )
{
memcpy( m_data, data, VK_UUID_SIZE * sizeof( uint8_t ) );
}
WindowData::WindowData( GLFWwindow * wnd, std::string const & name, vk::Extent2D const & extent )
: handle{ wnd }, name{ name }, extent{ extent }
{}
WindowData::WindowData( WindowData && other ) : handle{}, name{}, extent{}
{
std::swap( handle, other.handle );
std::swap( name, other.name );
std::swap( extent, other.extent );
}
WindowData::~WindowData() noexcept
{
glfwDestroyWindow( handle );
}
WindowData createWindow( std::string const & windowName, vk::Extent2D const & extent )
{
struct glfwContext
{
glfwContext()
{
glfwInit();
glfwSetErrorCallback( []( int error, const char * msg ) {
std::cerr << "glfw: "
<< "(" << error << ") " << msg << std::endl;
} );
}
~glfwContext()
{
glfwTerminate();
}
};
static auto glfwCtx = glfwContext();
(void)glfwCtx;
glfwWindowHint( GLFW_CLIENT_API, GLFW_NO_API );
GLFWwindow * window = glfwCreateWindow( extent.width, extent.height, windowName.c_str(), nullptr, nullptr );
return WindowData( window, windowName, extent );
}
} // namespace su
} // namespace vk
std::ostream & operator<<( std::ostream & os, vk::su::UUID const & uuid )
{
os << std::setfill( '0' ) << std::hex;
for ( int j = 0; j < VK_UUID_SIZE; ++j )
{
os << std::setw( 2 ) << static_cast<uint32_t>( uuid.m_data[j] );
if ( j == 3 || j == 5 || j == 7 || j == 9 )
{
std::cout << '-';
}
}
os << std::setfill( ' ' ) << std::dec;
return os;
}