Vulkan-Hpp/VulkanHppGenerator.cpp

4397 lines
154 KiB
C++

// Copyright(c) 2015-2016, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cassert>
#include <algorithm>
#include <fstream>
#include <functional>
#include <iostream>
#include <iterator>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <exception>
#include <regex>
#include <iterator>
#include <tinyxml2.h>
const std::string exceptionHeader = R"(
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# define noexcept _NOEXCEPT
#endif
class ErrorCategoryImpl : public std::error_category
{
public:
virtual const char* name() const noexcept override { return "vk::Result"; }
virtual std::string message(int ev) const override { return to_string(static_cast<Result>(ev)); }
};
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# undef noexcept
#endif
VULKAN_HPP_INLINE const std::error_category& errorCategory()
{
static ErrorCategoryImpl instance;
return instance;
}
VULKAN_HPP_INLINE std::error_code make_error_code(Result e)
{
return std::error_code(static_cast<int>(e), errorCategory());
}
VULKAN_HPP_INLINE std::error_condition make_error_condition(Result e)
{
return std::error_condition(static_cast<int>(e), errorCategory());
}
)";
const std::string exceptionClassesHeader = R"(
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# define noexcept _NOEXCEPT
#endif
class Error
{
public:
virtual ~Error() = default;
virtual const char* what() const noexcept = 0;
};
class LogicError : public Error, public std::logic_error
{
public:
explicit LogicError( const std::string& what )
: Error(), std::logic_error(what) {}
explicit LogicError( char const * what )
: Error(), std::logic_error(what) {}
virtual ~LogicError() = default;
virtual const char* what() const noexcept { return std::logic_error::what(); }
};
class SystemError : public Error, public std::system_error
{
public:
SystemError( std::error_code ec )
: Error(), std::system_error(ec) {}
SystemError( std::error_code ec, std::string const& what )
: Error(), std::system_error(ec, what) {}
SystemError( std::error_code ec, char const * what )
: Error(), std::system_error(ec, what) {}
SystemError( int ev, std::error_category const& ecat )
: Error(), std::system_error(ev, ecat) {}
SystemError( int ev, std::error_category const& ecat, std::string const& what)
: Error(), std::system_error(ev, ecat, what) {}
SystemError( int ev, std::error_category const& ecat, char const * what)
: Error(), std::system_error(ev, ecat, what) {}
virtual ~SystemError() = default;
virtual const char* what() const noexcept { return std::system_error::what(); }
};
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# undef noexcept
#endif
)";
const std::string flagsHeader = R"(
template <typename FlagBitsType> struct FlagTraits
{
enum { allFlags = 0 };
};
template <typename BitType, typename MaskType = VkFlags>
class Flags
{
public:
Flags()
: m_mask(0)
{
}
Flags(BitType bit)
: m_mask(static_cast<MaskType>(bit))
{
}
Flags(Flags<BitType> const& rhs)
: m_mask(rhs.m_mask)
{
}
Flags<BitType> & operator=(Flags<BitType> const& rhs)
{
m_mask = rhs.m_mask;
return *this;
}
Flags<BitType> & operator|=(Flags<BitType> const& rhs)
{
m_mask |= rhs.m_mask;
return *this;
}
Flags<BitType> & operator&=(Flags<BitType> const& rhs)
{
m_mask &= rhs.m_mask;
return *this;
}
Flags<BitType> & operator^=(Flags<BitType> const& rhs)
{
m_mask ^= rhs.m_mask;
return *this;
}
Flags<BitType> operator|(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result |= rhs;
return result;
}
Flags<BitType> operator&(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result &= rhs;
return result;
}
Flags<BitType> operator^(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result ^= rhs;
return result;
}
bool operator!() const
{
return !m_mask;
}
Flags<BitType> operator~() const
{
Flags<BitType> result(*this);
result.m_mask ^= FlagTraits<BitType>::allFlags;
return result;
}
bool operator==(Flags<BitType> const& rhs) const
{
return m_mask == rhs.m_mask;
}
bool operator!=(Flags<BitType> const& rhs) const
{
return m_mask != rhs.m_mask;
}
explicit operator bool() const
{
return !!m_mask;
}
explicit operator MaskType() const
{
return m_mask;
}
private:
MaskType m_mask;
};
template <typename BitType>
Flags<BitType> operator|(BitType bit, Flags<BitType> const& flags)
{
return flags | bit;
}
template <typename BitType>
Flags<BitType> operator&(BitType bit, Flags<BitType> const& flags)
{
return flags & bit;
}
template <typename BitType>
Flags<BitType> operator^(BitType bit, Flags<BitType> const& flags)
{
return flags ^ bit;
}
)";
const std::string optionalClassHeader = R"(
template <typename RefType>
class Optional
{
public:
Optional(RefType & reference) { m_ptr = &reference; }
Optional(RefType * ptr) { m_ptr = ptr; }
Optional(std::nullptr_t) { m_ptr = nullptr; }
operator RefType*() const { return m_ptr; }
RefType const* operator->() const { return m_ptr; }
explicit operator bool() const { return !!m_ptr; }
private:
RefType *m_ptr;
};
)";
const std::string arrayProxyHeader = R"(
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
class ArrayProxy
{
public:
ArrayProxy(std::nullptr_t)
: m_count(0)
, m_ptr(nullptr)
{}
ArrayProxy(T & ptr)
: m_count(1)
, m_ptr(&ptr)
{}
ArrayProxy(uint32_t count, T * ptr)
: m_count(count)
, m_ptr(ptr)
{}
template <size_t N>
ArrayProxy(std::array<typename std::remove_const<T>::type, N> & data)
: m_count(N)
, m_ptr(data.data())
{}
template <size_t N>
ArrayProxy(std::array<typename std::remove_const<T>::type, N> const& data)
: m_count(N)
, m_ptr(data.data())
{}
template <class Allocator = std::allocator<typename std::remove_const<T>::type>>
ArrayProxy(std::vector<typename std::remove_const<T>::type, Allocator> & data)
: m_count(static_cast<uint32_t>(data.size()))
, m_ptr(data.data())
{}
template <class Allocator = std::allocator<typename std::remove_const<T>::type>>
ArrayProxy(std::vector<typename std::remove_const<T>::type, Allocator> const& data)
: m_count(static_cast<uint32_t>(data.size()))
, m_ptr(data.data())
{}
ArrayProxy(std::initializer_list<T> const& data)
: m_count(static_cast<uint32_t>(data.end() - data.begin()))
, m_ptr(data.begin())
{}
const T * begin() const
{
return m_ptr;
}
const T * end() const
{
return m_ptr + m_count;
}
const T & front() const
{
assert(m_count && m_ptr);
return *m_ptr;
}
const T & back() const
{
assert(m_count && m_ptr);
return *(m_ptr + m_count - 1);
}
bool empty() const
{
return (m_count == 0);
}
uint32_t size() const
{
return m_count;
}
T * data() const
{
return m_ptr;
}
private:
uint32_t m_count;
T * m_ptr;
};
#endif
)";
const std::string structureChainHeader = R"(
template <typename X, typename Y> constexpr bool isStructureChainValid() { return false; }
template <class Element>
class StructureChainElement
{
public:
explicit operator Element&() { return value; }
explicit operator const Element&() const { return value; }
private:
Element value;
};
template<typename ...StructureElements>
class StructureChain : private StructureChainElement<StructureElements>...
{
public:
StructureChain()
{
link<StructureElements...>();
}
StructureChain(StructureChain const &rhs)
{
linkAndCopy<StructureElements...>(rhs);
}
StructureChain& operator=(StructureChain const &rhs)
{
linkAndCopy(rhs);
return this;
}
template<typename ClassType> ClassType& get() { return static_cast<ClassType&>(*this);}
private:
template<typename X>
void link()
{
}
template<typename X, typename Y, typename ...Z>
void link()
{
static_assert(isStructureChainValid<X,Y>(), "The structure chain is not valid!");
X& x = static_cast<X&>(*this);
Y& y = static_cast<Y&>(*this);
x.pNext = &y;
link<Y, Z...>();
}
template<typename X>
void linkAndCopy(StructureChain const &rhs)
{
static_cast<X&>(*this) = static_cast<X const &>(rhs);
}
template<typename X, typename Y, typename ...Z>
void linkAndCopy(StructureChain const &rhs)
{
static_assert(isStructureChainValid<X,Y>(), "The structure chain is not valid!");
X& x = static_cast<X&>(*this);
Y& y = static_cast<Y&>(*this);
x = static_cast<X const &>(rhs);
x.pNext = &y;
linkAndCopy<Y, Z...>(rhs);
}
};
)";
const std::string versionCheckHeader = R"(
#if !defined(VULKAN_HPP_HAS_UNRESTRICTED_UNIONS)
# if defined(__clang__)
# if __has_feature(cxx_unrestricted_unions)
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# elif defined(__GNUC__)
# define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
# if 40600 <= GCC_VERSION
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# elif defined(_MSC_VER)
# if 1900 <= _MSC_VER
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# endif
#endif
)";
const std::string inlineHeader = R"(
#if !defined(VULKAN_HPP_INLINE)
# if defined(__clang___)
# if __has_attribute(always_inline)
# define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__
# else
# define VULKAN_HPP_INLINE inline
# endif
# elif defined(__GNUC__)
# define VULKAN_HPP_INLINE __attribute__((always_inline)) __inline__
# elif defined(_MSC_VER)
# define VULKAN_HPP_INLINE __forceinline
# else
# define VULKAN_HPP_INLINE inline
# endif
#endif
)";
const std::string explicitHeader = R"(
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
# define VULKAN_HPP_TYPESAFE_EXPLICIT
#else
# define VULKAN_HPP_TYPESAFE_EXPLICIT explicit
#endif
)";
const std::string resultValueHeader = R"(
template <typename T>
struct ResultValue
{
ResultValue( Result r, T & v )
: result( r )
, value( v )
{}
Result result;
T value;
operator std::tuple<Result&, T&>() { return std::tuple<Result&, T&>(result, value); }
};
template <typename T>
struct ResultValueType
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
typedef ResultValue<T> type;
#else
typedef T type;
#endif
};
template <>
struct ResultValueType<void>
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
typedef Result type;
#else
typedef void type;
#endif
};
)";
const std::string createResultValueHeader = R"(
VULKAN_HPP_INLINE ResultValueType<void>::type createResultValue( Result result, char const * message )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( result == Result::eSuccess );
return result;
#else
if ( result != Result::eSuccess )
{
throwResultException( result, message );
}
#endif
}
template <typename T>
VULKAN_HPP_INLINE typename ResultValueType<T>::type createResultValue( Result result, T & data, char const * message )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( result == Result::eSuccess );
return ResultValue<T>( result, data );
#else
if ( result != Result::eSuccess )
{
throwResultException( result, message );
}
return data;
#endif
}
VULKAN_HPP_INLINE Result createResultValue( Result result, char const * message, std::initializer_list<Result> successCodes )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() );
#else
if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() )
{
throwResultException( result, message );
}
#endif
return result;
}
template <typename T>
VULKAN_HPP_INLINE ResultValue<T> createResultValue( Result result, T & data, char const * message, std::initializer_list<Result> successCodes )
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert( std::find( successCodes.begin(), successCodes.end(), result ) != successCodes.end() );
#else
if ( std::find( successCodes.begin(), successCodes.end(), result ) == successCodes.end() )
{
throwResultException( result, message );
}
#endif
return ResultValue<T>( result, data );
}
)";
const std::string uniqueHandleHeader = R"(
#if defined(VULKAN_HPP_NO_EXCEPTIONS) && !defined(VULKAN_HPP_NO_SMART_HANDLE)
# define VULKAN_HPP_NO_SMART_HANDLE
#endif
#ifndef VULKAN_HPP_NO_SMART_HANDLE
template <typename Type, typename Deleter>
class UniqueHandle
{
public:
explicit UniqueHandle( Type const& value = Type(), Deleter const& deleter = Deleter() )
: m_value( value )
, m_deleter( deleter )
{}
UniqueHandle( UniqueHandle const& ) = delete;
UniqueHandle( UniqueHandle && other )
: m_value( other.release() )
, m_deleter( std::move( other.m_deleter ) )
{}
~UniqueHandle()
{
destroy();
}
UniqueHandle & operator=( UniqueHandle const& ) = delete;
UniqueHandle & operator=( UniqueHandle && other )
{
reset( other.release() );
m_deleter = std::move( other.m_deleter );
return *this;
}
explicit operator bool() const
{
return m_value.operator bool();
}
Type const* operator->() const
{
return &m_value;
}
Type const& operator*() const
{
return m_value;
}
Type get() const
{
return m_value;
}
Deleter & getDeleter()
{
return m_deleter;
}
Deleter const& getDeleter() const
{
return m_deleter;
}
void reset( Type const& value = Type() )
{
if ( m_value != value )
{
destroy();
m_value = value;
}
}
Type release()
{
Type value = m_value;
m_value = nullptr;
return value;
}
void swap( UniqueHandle<Type, Deleter> & rhs )
{
std::swap(m_value, rhs.m_value);
std::swap(m_deleter, rhs.m_deleter);
}
private:
void destroy()
{
if ( m_value )
{
m_deleter( m_value );
}
}
private:
Type m_value;
Deleter m_deleter;
};
template <typename Type, typename Deleter>
VULKAN_HPP_INLINE void swap( UniqueHandle<Type,Deleter> & lhs, UniqueHandle<Type,Deleter> & rhs )
{
lhs.swap( rhs );
}
#endif
)";
std::string replaceWithMap(std::string const &input, std::map<std::string, std::string> replacements)
{
// This will match ${someVariable} and contain someVariable in match group 1
std::regex re(R"(\$\{([^\}]+)\})");
auto it = std::sregex_iterator(input.begin(), input.end(), re);
auto end = std::sregex_iterator();
// No match, just return the original string
if (it == end)
{
return input;
}
std::string result = "";
while (it != end)
{
std::smatch match = *it;
auto itReplacement = replacements.find(match[1].str());
assert(itReplacement != replacements.end());
result += match.prefix().str() + ((itReplacement != replacements.end()) ? itReplacement->second : match[0].str());
++it;
// we've passed the last match. Append the rest of the orignal string
if (it == end)
{
result += match.suffix().str();
}
}
return result;
}
struct ParamData
{
std::string type;
std::string name;
std::string arraySize;
std::string pureType;
std::string len;
bool optional;
};
struct CommandData
{
CommandData(std::string const& t, std::string const& fn)
: returnType(t)
, fullName(fn)
, returnParam(~0)
, templateParam(~0)
, twoStep(false)
{}
std::string className;
std::string enhancedReturnType;
std::string fullName;
std::vector<ParamData> params;
std::string protect;
std::string reducedName;
size_t returnParam;
std::string returnType;
std::set<size_t> skippedParams;
std::vector<std::string> successCodes;
size_t templateParam;
bool twoStep;
std::map<size_t, size_t> vectorParams;
};
struct DependencyData
{
enum class Category
{
COMMAND,
ENUM,
FLAGS,
FUNC_POINTER,
HANDLE,
REQUIRED,
SCALAR,
STRUCT,
UNION
};
DependencyData(Category c, std::string const& n)
: category(c)
, name(n)
{}
Category category;
std::string name;
std::set<std::string> dependencies;
std::set<std::string> forwardDependencies;
};
struct NameValue
{
std::string name;
std::string value;
};
struct EnumData
{
EnumData(std::string const& n, bool b = false)
: name(n)
, bitmask(b)
{}
void addEnumMember(std::string const& name, std::string const& tag);
std::string name;
std::string prefix;
std::string postfix;
std::vector<NameValue> members;
std::string protect;
bool bitmask;
};
struct FlagData
{
std::string protect;
};
struct HandleData
{
std::vector<std::string> commands;
std::string protect;
};
struct ScalarData
{
std::string protect;
};
struct MemberData
{
std::string type;
std::string name;
std::string arraySize;
std::string pureType;
};
struct StructData
{
StructData()
: returnedOnly(false)
{}
bool returnedOnly;
bool isUnion;
std::vector<MemberData> members;
std::string protect;
std::vector<std::string> structExtends;
};
struct DeleterData
{
std::string pool;
std::string call;
};
struct VkData
{
std::map<std::string, CommandData> commands;
std::list<DependencyData> dependencies;
std::map<std::string, std::set<std::string>> deleterTypes; // map from parent type to set of child types
std::map<std::string, DeleterData> deleterData; // map from child types to corresponding deleter data
std::map<std::string, EnumData> enums;
std::map<std::string, FlagData> flags;
std::map<std::string, HandleData> handles;
std::map<std::string, ScalarData> scalars;
std::map<std::string, StructData> structs;
std::set<std::string> extendedStructs; // structs which are referenced by the structextends tag
std::set<std::string> tags;
std::string typesafeCheck;
std::string version;
std::set<std::string> vkTypes;
std::string vulkanLicenseHeader;
};
void createDefaults( VkData const& vkData, std::map<std::string,std::string> & defaultValues );
void determineEnhancedReturnType(CommandData & commandData);
void determineReducedName(CommandData & commandData);
void determineReturnParam(CommandData & commandData);
void determineSkippedParams(CommandData & commandData);
void determineTemplateParam(CommandData & commandData);
void determineVectorParams(CommandData & commandData);
void enterProtect(std::ostream &os, std::string const& protect);
std::string extractTag(std::string const& name);
std::string findTag(std::string const& name, std::set<std::string> const& tags);
std::string generateEnumNameForFlags(std::string const& name);
bool hasPointerParam(std::vector<ParamData> const& params);
void leaveProtect(std::ostream &os, std::string const& protect);
void linkCommandToHandle(VkData & vkData, CommandData & commandData);
std::string readArraySize(tinyxml2::XMLNode * node, std::string& name);
bool readCommandParam( tinyxml2::XMLElement * element, std::set<std::string> & dependencies, std::vector<ParamData> & params );
void readCommandParams(tinyxml2::XMLElement* element, std::set<std::string> & dependencies, CommandData & commandData);
tinyxml2::XMLNode* readCommandParamType(tinyxml2::XMLNode* node, ParamData& param);
CommandData& readCommandProto(tinyxml2::XMLElement * element, VkData & vkData);
void readCommands( tinyxml2::XMLElement * element, VkData & vkData );
void readCommandsCommand(tinyxml2::XMLElement * element, VkData & vkData);
std::vector<std::string> readCommandSuccessCodes(tinyxml2::XMLElement* element, std::set<std::string> const& tags);
void readComment(tinyxml2::XMLElement * element, std::string & header);
void readEnums( tinyxml2::XMLElement * element, VkData & vkData );
void readEnumsEnum( tinyxml2::XMLElement * element, EnumData & enumData );
void readDisabledExtensionRequire(tinyxml2::XMLElement * element, VkData & vkData);
void readExtensionCommand(tinyxml2::XMLElement * element, std::map<std::string, CommandData> & commands, std::string const& protect);
void readExtensionEnum(tinyxml2::XMLElement * element, std::map<std::string, EnumData> & enums, std::string const& tag);
void readExtensionRequire(tinyxml2::XMLElement * element, VkData & vkData, std::string const& protect, std::string const& tag);
void readExtensions( tinyxml2::XMLElement * element, VkData & vkData );
void readExtensionsExtension(tinyxml2::XMLElement * element, VkData & vkData);
void readExtensionType(tinyxml2::XMLElement * element, VkData & vkData, std::string const& protect);
tinyxml2::XMLNode* readType(tinyxml2::XMLNode* element, std::string & type, std::string & pureType);
void readTypeBasetype( tinyxml2::XMLElement * element, std::list<DependencyData> & dependencies );
void readTypeBitmask( tinyxml2::XMLElement * element, VkData & vkData);
void readTypeDefine( tinyxml2::XMLElement * element, VkData & vkData );
void readTypeFuncpointer( tinyxml2::XMLElement * element, std::list<DependencyData> & dependencies );
void readTypeHandle(tinyxml2::XMLElement * element, VkData & vkData);
void readTypeStruct( tinyxml2::XMLElement * element, VkData & vkData, bool isUnion );
void readTypeStructMember( tinyxml2::XMLElement * element, VkData & vkData, StructData & structData );
void readTags(tinyxml2::XMLElement * element, std::set<std::string> & tags);
void readTypes(tinyxml2::XMLElement * element, VkData & vkData);
std::string reduceName(std::string const& name, bool singular = false);
void registerDeleter(VkData & vkData, CommandData const& commandData);
std::string startLowerCase(std::string const& input);
std::string startUpperCase(std::string const& input);
void sortDependencies( std::list<DependencyData> & dependencies );
std::string strip(std::string const& value, std::string const& prefix, std::string const& postfix = std::string());
std::string stripPluralS(std::string const& name);
std::string toCamelCase(std::string const& value);
std::string toUpperCase(std::string const& name);
std::string trimEnd(std::string const& input);
void writeCall(std::ostream & os, CommandData const& commandData, std::set<std::string> const& vkTypes, bool firstCall, bool singular);
std::string generateCall(CommandData const& commandData, std::set<std::string> const& vkTypes, bool firstCall, bool singular);
void writeCallCountParameter(std::ostream & os, CommandData const& commandData, bool singular, std::map<size_t, size_t>::const_iterator it);
void writeCallParameter(std::ostream & os, ParamData const& paramData, std::set<std::string> const& vkTypes);
void writeCallPlainTypeParameter(std::ostream & os, ParamData const& paramData);
void writeCallVectorParameter(std::ostream & os, CommandData const& commandData, std::set<std::string> const& vkTypes, bool firstCall, bool singular, std::map<size_t, size_t>::const_iterator it);
void writeCallVulkanTypeParameter(std::ostream & os, ParamData const& paramData);
void writeDeleterClasses(std::ostream & os, std::pair<std::string, std::set<std::string>> const& deleterTypes, std::map<std::string, DeleterData> const& deleterData);
void writeDeleterForwardDeclarations(std::ostream &os, std::pair<std::string, std::set<std::string>> const& deleterTypes, std::map<std::string, DeleterData> const& deleterData);
void writeEnumsToString(std::ostream & os, EnumData const& enumData);
void writeFlagsToString(std::ostream & os, std::string const& flagsName, EnumData const &enumData);
void writeFunction(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool definition, bool enhanced, bool singular, bool unique, bool isStructureChain);
void writeFunctionBodyEnhanced(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool singular, bool isStructureChain);
void writeFunctionBodyEnhancedCall(std::ostream &os, std::string const& indentation, std::set<std::string> const& vkTypes, CommandData const& commandData, bool singular);
void writeFunctionBodyEnhancedCallResult(std::ostream &os, std::string const& indentation, std::set<std::string> const& vkTypes, CommandData const& commandData, bool singular);
void writeFunctionBodyEnhancedCallTwoStep(std::ostream & os, std::string const& indentation, std::set<std::string> const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData);
void writeFunctionBodyEnhancedCallTwoStepChecked(std::ostream & os, std::string const& indentation, std::set<std::string> const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData);
void writeFunctionBodyEnhancedCallTwoStepIterate(std::ostream & os, std::string const& indentation, std::set<std::string> const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData);
void writeFunctionBodyEnhancedLocalCountVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData);
std::string writeFunctionBodyEnhancedLocalReturnVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool singular, bool isStructureChain);
void writeFunctionBodyEnhancedMultiVectorSizeCheck(std::ostream & os, std::string const& indentation, CommandData const& commandData);
void writeFunctionBodyEnhancedReturnResultValue(std::ostream & os, std::string const& indentation, std::string const& returnName, CommandData const& commandData, bool singular);
void writeFunctionBodyStandard(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData);
void writeFunctionBodyUnique(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool singular);
void writeFunctionHeaderArguments(std::ostream & os, VkData const& vkData, CommandData const& commandData, bool enhanced, bool singular, bool withDefaults);
void writeFunctionHeaderArgumentsEnhanced(std::ostream & os, VkData const& vkData, CommandData const& commandData, bool singular, bool withDefaults);
void writeFunctionHeaderArgumentsStandard(std::ostream & os, CommandData const& commandData);
void writeFunctionHeaderName(std::ostream & os, std::string const& name, bool singular, bool unique);
void writeFunctionHeaderReturnType(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool enhanced, bool singular, bool unique, bool isStructureChain);
void writeFunctionHeaderTemplate(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool withDefault, bool isStructureChain);
void writeReinterpretCast(std::ostream & os, bool leadingConst, bool vulkanType, std::string const& type, bool trailingPointerToConst);
void writeStandardOrEnhanced(std::ostream & os, std::string const& standard, std::string const& enhanced);
void writeStructConstructor( std::ostream & os, std::string const& name, StructData const& structData, std::set<std::string> const& vkTypes, std::map<std::string,std::string> const& defaultValues );
void writeStructSetter( std::ostream & os, std::string const& structureName, MemberData const& memberData, std::set<std::string> const& vkTypes, std::map<std::string,StructData> const& structs );
void writeTypeCommand(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData);
void writeTypeCommand(std::ostream &os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool definition);
void writeTypeEnum(std::ostream & os, EnumData const& enumData);
bool isErrorEnum(std::string const& enumName);
std::string stripErrorEnumPrefix(std::string const& enumName);
void writeExceptionsForEnum(std::ostream & os, EnumData const& enumData);
void writeThrowExceptions(std::ostream& os, EnumData const& enumData);
void writeTypeFlags(std::ostream & os, std::string const& flagsName, FlagData const& flagData, EnumData const& enumData);
void writeTypeHandle(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, HandleData const& handle, std::list<DependencyData> const& dependencies);
void writeTypeScalar( std::ostream & os, DependencyData const& dependencyData );
void writeTypeStruct( std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, std::map<std::string,std::string> const& defaultValues );
void writeTypeUnion( std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, std::map<std::string,std::string> const& defaultValues );
void writeTypes(std::ostream & os, VkData const& vkData, std::map<std::string, std::string> const& defaultValues);
void writeVersionCheck(std::ostream & os, std::string const& version);
void writeTypesafeCheck(std::ostream & os, std::string const& typesafeCheck);
void EnumData::addEnumMember(std::string const &name, std::string const& tag)
{
NameValue nv;
nv.name = "e" + toCamelCase(strip(name, prefix, postfix));
nv.value = name;
if (bitmask)
{
size_t pos = nv.name.find("Bit");
if (pos != std::string::npos)
{
nv.name.erase(pos, 3);
}
}
if (!tag.empty() && (nv.name.substr(nv.name.length() - tag.length()) == toCamelCase(tag)))
{
nv.name = nv.name.substr(0, nv.name.length() - tag.length()) + tag;
}
members.push_back(nv);
}
void createDefaults( VkData const& vkData, std::map<std::string,std::string> & defaultValues )
{
for (auto dependency : vkData.dependencies)
{
assert( defaultValues.find( dependency.name ) == defaultValues.end() );
switch( dependency.category )
{
case DependencyData::Category::COMMAND : // commands should never be asked for defaults
break;
case DependencyData::Category::ENUM :
{
assert(vkData.enums.find(dependency.name) != vkData.enums.end());
EnumData const & enumData = vkData.enums.find(dependency.name)->second;
if (!enumData.members.empty())
{
defaultValues[dependency.name] = dependency.name + "::" + vkData.enums.find(dependency.name)->second.members.front().name;
}
else
{
defaultValues[dependency.name] = dependency.name + "()";
}
}
break;
case DependencyData::Category::FLAGS :
case DependencyData::Category::HANDLE:
case DependencyData::Category::STRUCT:
case DependencyData::Category::UNION : // just call the default constructor for flags, structs, and structs (which are mapped to classes)
defaultValues[dependency.name] = dependency.name + "()";
break;
case DependencyData::Category::FUNC_POINTER : // func_pointers default to nullptr
defaultValues[dependency.name] = "nullptr";
break;
case DependencyData::Category::REQUIRED : // all required default to "0"
case DependencyData::Category::SCALAR : // all scalars default to "0"
defaultValues[dependency.name] = "0";
break;
default :
assert( false );
break;
}
}
}
void determineReducedName(CommandData & commandData)
{
commandData.reducedName = commandData.fullName;
std::string searchName = commandData.params[0].pureType;
size_t pos = commandData.fullName.find(searchName);
if ((pos == std::string::npos) && isupper(searchName[0]))
{
searchName[0] = tolower(searchName[0]);
pos = commandData.fullName.find(searchName);
}
if (pos != std::string::npos)
{
commandData.reducedName.erase(pos, searchName.length());
}
else if ((searchName == "commandBuffer") && (commandData.fullName.find("cmd") == 0))
{
commandData.reducedName.erase(0, 3);
pos = 0;
}
if ((pos == 0) && isupper(commandData.reducedName[0]))
{
commandData.reducedName[0] = tolower(commandData.reducedName[0]);
}
}
void determineEnhancedReturnType(CommandData & commandData)
{
std::string returnType;
// if there is a return parameter of type void or Result, and if it's of type Result it either has just one success code
// or two success codes, where the second one is of type eIncomplete and it's a two-step process
// -> we can return that parameter
if ((commandData.returnParam != ~0)
&& ((commandData.returnType == "void")
|| ((commandData.returnType == "Result")
&& ((commandData.successCodes.size() == 1)
|| ((commandData.successCodes.size() == 2)
&& (commandData.successCodes[1] == "eIncomplete")
&& commandData.twoStep)))))
{
if (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end())
{
// the return parameter is a vector-type parameter
if (commandData.params[commandData.returnParam].pureType == "void")
{
// for a vector of void, we use a vector of uint8_t, instead
commandData.enhancedReturnType = "std::vector<uint8_t,Allocator>";
}
else
{
// for the other parameters, we use a vector of the pure type
commandData.enhancedReturnType = "std::vector<" + commandData.params[commandData.returnParam].pureType + ",Allocator>";
}
}
else
{
// it's a simple parameter -> get the type and just remove the trailing '*' (originally, it's a pointer)
assert(commandData.params[commandData.returnParam].type.back() == '*');
assert(commandData.params[commandData.returnParam].type.find("const") == std::string::npos);
commandData.enhancedReturnType = commandData.params[commandData.returnParam].type;
commandData.enhancedReturnType.pop_back();
}
}
else if ((commandData.returnType == "Result") && (commandData.successCodes.size() == 1))
{
// an original return of type "Result" with just one successCode is changed to void, errors throw an exception
commandData.enhancedReturnType = "void";
}
else
{
// the return type just stays the original return type
commandData.enhancedReturnType = commandData.returnType;
}
}
void determineReturnParam(CommandData & commandData)
{
// for return types of type Result or void, we can replace determine a parameter to return
if ((commandData.returnType == "Result") || (commandData.returnType == "void"))
{
for (size_t i = 0; i < commandData.params.size(); i++)
{
if ((commandData.params[i].type.find('*') != std::string::npos)
&& (commandData.params[i].type.find("const") == std::string::npos)
&& std::find_if(commandData.vectorParams.begin(), commandData.vectorParams.end(), [i](std::pair<size_t, size_t> const& vp) { return vp.second == i; }) == commandData.vectorParams.end()
&& ((commandData.vectorParams.find(i) == commandData.vectorParams.end()) || commandData.twoStep || (commandData.successCodes.size() == 1)))
{
// it's a non-const pointer, not a vector-size parameter, if it's a vector parameter, its a two-step process or there's just one success code
// -> look for another non-cost pointer argument
auto paramIt = std::find_if(commandData.params.begin() + i + 1, commandData.params.end(), [](ParamData const& pd)
{
return (pd.type.find('*') != std::string::npos) && (pd.type.find("const") == std::string::npos);
});
// if there is another such argument, we can't decide which one to return -> return none (~0)
// otherwise return the index of the selcted parameter
commandData.returnParam = paramIt != commandData.params.end() ? ~0 : i;
}
}
}
}
void determineSkippedParams(CommandData & commandData)
{
// the size-parameters of vector parameters are not explicitly used in the enhanced API
std::for_each(commandData.vectorParams.begin(), commandData.vectorParams.end(), [&commandData](std::pair<size_t, size_t> const& vp) { if (vp.second != ~0) commandData.skippedParams.insert(vp.second); });
// and the return parameter is also skipped
if (commandData.returnParam != ~0)
{
commandData.skippedParams.insert(commandData.returnParam);
}
}
void determineTemplateParam(CommandData & commandData)
{
for (size_t i = 0; i < commandData.params.size(); i++)
{
// any vector parameter on the pure type void is templatized in the enhanced API
if ((commandData.vectorParams.find(i) != commandData.vectorParams.end()) && (commandData.params[i].pureType == "void"))
{
#if !defined(NDEBUG)
for (size_t j = i + 1; j < commandData.params.size(); j++)
{
assert((commandData.vectorParams.find(j) == commandData.vectorParams.end()) || (commandData.params[j].pureType != "void"));
}
#endif
commandData.templateParam = i;
break;
}
}
assert((commandData.templateParam == ~0) || (commandData.vectorParams.find(commandData.templateParam) != commandData.vectorParams.end()));
}
void determineVectorParams(CommandData & commandData)
{
// look for the parameters whose len equals the name of an other parameter
for (auto it = commandData.params.begin(), begin = it, end = commandData.params.end(); it != end; ++it)
{
if (!it->len.empty())
{
auto findLambda = [it](ParamData const& pd) { return pd.name == it->len; };
auto findIt = std::find_if(begin, it, findLambda); // look for a parameter named as the len of this parameter
assert((std::count_if(begin, end, findLambda) == 0) || (findIt < it)); // make sure, there is no other parameter like that
// add this parameter as a vector parameter, using the len-name parameter as the second value (or ~0 if there is nothing like that)
commandData.vectorParams.insert(std::make_pair(std::distance(begin, it), findIt < it ? std::distance(begin, findIt) : ~0));
assert((commandData.vectorParams[std::distance(begin, it)] != ~0)
|| (it->len == "null-terminated")
|| (it->len == "pAllocateInfo::descriptorSetCount")
|| (it->len == "pAllocateInfo::commandBufferCount"));
}
}
}
void enterProtect(std::ostream &os, std::string const& protect)
{
if (!protect.empty())
{
os << "#ifdef " << protect << std::endl;
}
}
std::string extractTag(std::string const& name)
{
// the name is supposed to look like: VK_<tag>_<other>
size_t start = name.find('_');
assert((start != std::string::npos) && (name.substr(0, start) == "VK"));
size_t end = name.find('_', start + 1);
assert(end != std::string::npos);
return name.substr(start + 1, end - start - 1);
}
std::string findTag(std::string const& name, std::set<std::string> const& tags)
{
// find the tag in a name, return that tag or an empty string
auto tagIt = std::find_if(tags.begin(), tags.end(), [&name](std::string const& t)
{
size_t pos = name.find(t);
return (pos != std::string::npos) && (pos == name.length() - t.length());
});
return tagIt != tags.end() ? *tagIt : "";
}
std::string generateEnumNameForFlags(std::string const& name)
{
// create a string, where the substring "Flags" is replaced by "FlagBits"
std::string generatedName = name;
size_t pos = generatedName.rfind("Flags");
assert(pos != std::string::npos);
generatedName.replace(pos, 5, "FlagBits");
return generatedName;
}
bool hasPointerParam(std::vector<ParamData> const& params)
{
// check if any of the parameters is a pointer
auto it = std::find_if(params.begin(), params.end(), [](ParamData const& pd)
{
return (pd.type.find('*') != std::string::npos);
});
return it != params.end();
}
void leaveProtect(std::ostream &os, std::string const& protect)
{
if (!protect.empty())
{
os << "#endif /*" << protect << "*/" << std::endl;
}
}
void linkCommandToHandle(VkData & vkData, CommandData & commandData)
{
// first, find the handle named like the type of the first argument
// if there is no such handle, look for the unnamed "handle", that gathers all the functions not tied to a specific handle
assert(!commandData.params.empty());
std::map<std::string, HandleData>::iterator hit = vkData.handles.find(commandData.params[0].pureType);
if (hit == vkData.handles.end())
{
hit = vkData.handles.find("");
}
assert(hit != vkData.handles.end());
// put the command into the handle's list of commands, and store the handle in the commands className
hit->second.commands.push_back(commandData.fullName);
commandData.className = hit->first;
// add the dependencies of the command to the dependencies of the handle
DependencyData const& commandDD = vkData.dependencies.back();
std::list<DependencyData>::iterator handleDD = std::find_if(vkData.dependencies.begin(), vkData.dependencies.end(), [hit](DependencyData const& dd) { return dd.name == hit->first; });
assert((handleDD != vkData.dependencies.end()) || hit->first.empty());
if (handleDD != vkData.dependencies.end())
{
std::copy_if(commandDD.dependencies.begin(), commandDD.dependencies.end(), std::inserter(handleDD->dependencies, handleDD->dependencies.end()), [hit](std::string const& d) { return d != hit->first; });
}
}
std::string readArraySize(tinyxml2::XMLNode * node, std::string& name)
{
std::string arraySize;
if (name.back() == ']')
{
// if the parameter has '[' and ']' in its name, get the stuff inbetween those as the array size and erase that part from the parameter name
assert(!node->NextSibling());
size_t pos = name.find('[');
assert(pos != std::string::npos);
arraySize = name.substr(pos + 1, name.length() - 2 - pos);
name.erase(pos);
}
else
{
// otherwise look for a sibling of this node
node = node->NextSibling();
if (node && node->ToText())
{
std::string value = node->Value();
if (value == "[")
{
// if this node has '[' as its value, the next node holds the array size, and the node after that needs to hold ']', and there should be no more siblings
node = node->NextSibling();
assert(node && node->ToElement() && (strcmp(node->Value(), "enum") == 0));
arraySize = node->ToElement()->GetText();
node = node->NextSibling();
assert(node && node->ToText() && (strcmp(node->Value(), "]") == 0));
}
else
{
// otherwise, the node holds '[' and ']', so get the stuff in between those as the array size
assert((value.front() == '[') && (value.back() == ']'));
arraySize = value.substr(1, value.length() - 2);
}
assert(!node->NextSibling() || ((strcmp(node->NextSibling()->Value(), "comment") == 0) && !node->NextSibling()->NextSibling()));
}
}
return arraySize;
}
bool readCommandParam( tinyxml2::XMLElement * element, std::set<std::string> & dependencies, std::vector<ParamData> & params )
{
ParamData param;
if (element->Attribute("len"))
{
param.len = element->Attribute("len");
}
// get the type of the parameter, and put it into the list of dependencies
tinyxml2::XMLNode * child = readCommandParamType(element->FirstChild(), param);
dependencies.insert(param.pureType);
assert( child->ToElement() && ( strcmp( child->Value(), "name" ) == 0 ) );
param.name = child->ToElement()->GetText();
param.arraySize = readArraySize(child, param.name);
param.optional = element->Attribute("optional") && (strcmp(element->Attribute("optional"), "true") == 0);
params.push_back(param);
// an optional parameter with "false,true" value is supposed to be part of a two-step algorithm: first get the size, than use it
return element->Attribute("optional") && (strcmp(element->Attribute("optional"), "false,true") == 0);
}
void readCommandParams(tinyxml2::XMLElement* element, std::set<std::string> & dependencies, CommandData & commandData)
{
// iterate over the siblings of the element and read the command parameters
assert(element);
while (element = element->NextSiblingElement())
{
std::string value = element->Value();
if (value == "param")
{
commandData.twoStep |= readCommandParam(element, dependencies, commandData.params);
}
else
{
// ignore these values!
assert((value == "implicitexternsyncparams") || (value == "validity"));
}
}
}
tinyxml2::XMLNode* readCommandParamType(tinyxml2::XMLNode* node, ParamData& param)
{
assert(node);
if (node->ToText())
{
// start type with "const" or "struct", if needed
std::string value = trimEnd(node->Value());
assert((value == "const") || (value == "struct"));
param.type = value + " ";
node = node->NextSibling();
assert(node);
}
// get the pure type
assert(node->ToElement() && (strcmp(node->Value(), "type") == 0) && node->ToElement()->GetText());
std::string type = strip(node->ToElement()->GetText(), "Vk");
param.type += type;
param.pureType = type;
// end with "*", "**", or "* const*", if needed
node = node->NextSibling();
assert(node);
if (node->ToText())
{
std::string value = trimEnd(node->Value());
assert((value == "*") || (value == "**") || (value == "* const*"));
param.type += value;
node = node->NextSibling();
}
return node;
}
CommandData& readCommandProto(tinyxml2::XMLElement * element, VkData & vkData)
{
tinyxml2::XMLElement * typeElement = element->FirstChildElement();
assert( typeElement && ( strcmp( typeElement->Value(), "type" ) == 0 ) );
tinyxml2::XMLElement * nameElement = typeElement->NextSiblingElement();
assert( nameElement && ( strcmp( nameElement->Value(), "name" ) == 0 ) );
assert( !nameElement->NextSiblingElement() );
// get return type and name of the command
std::string type = strip( typeElement->GetText(), "Vk" );
std::string name = startLowerCase(strip(nameElement->GetText(), "vk"));
// add an empty DependencyData to this name
vkData.dependencies.push_back( DependencyData( DependencyData::Category::COMMAND, name ) );
// insert an empty CommandData into the commands-map, and return the newly created CommandData
assert( vkData.commands.find( name ) == vkData.commands.end() );
return vkData.commands.insert( std::make_pair( name, CommandData(type, name) ) ).first->second;
}
void readCommands(tinyxml2::XMLElement * element, VkData & vkData)
{
for (tinyxml2::XMLElement* child = element->FirstChildElement(); child; child = child->NextSiblingElement())
{
assert(strcmp(child->Value(), "command") == 0);
readCommandsCommand(child, vkData);
}
}
void readCommandsCommand(tinyxml2::XMLElement * element, VkData & vkData)
{
tinyxml2::XMLElement * child = element->FirstChildElement();
assert( child && ( strcmp( child->Value(), "proto" ) == 0 ) );
CommandData& commandData = readCommandProto(child, vkData);
commandData.successCodes = readCommandSuccessCodes(element, vkData.tags);
readCommandParams(child, vkData.dependencies.back().dependencies, commandData);
determineReducedName(commandData);
linkCommandToHandle(vkData, commandData);
registerDeleter(vkData, commandData);
determineVectorParams(commandData);
determineReturnParam(commandData);
determineTemplateParam(commandData);
determineEnhancedReturnType(commandData);
determineSkippedParams(commandData);
}
std::vector<std::string> readCommandSuccessCodes(tinyxml2::XMLElement* element, std::set<std::string> const& tags)
{
std::vector<std::string> results;
if (element->Attribute("successcodes"))
{
std::string successCodes = element->Attribute("successcodes");
// tokenize the successCodes string, using ',' as the separator
size_t start = 0, end;
do
{
end = successCodes.find(',', start);
std::string code = successCodes.substr(start, end - start);
std::string tag = findTag(code, tags);
// on each success code: prepend 'e', strip "VK_" and a tag, convert it to camel case, and add the tag again
results.push_back(std::string("e") + toCamelCase(strip(code, "VK_", tag)) + tag);
start = end + 1;
} while (end != std::string::npos);
}
return results;
}
void readComment(tinyxml2::XMLElement * element, std::string & header)
{
assert(element->GetText());
std::string text = element->GetText();
if (text.find("\nCopyright") == 0)
{
assert(header.empty());
header = text;
// erase the part after the Copyright text
size_t pos = header.find("\n\n-----");
assert(pos != std::string::npos);
header.erase(pos);
// replace any '\n' with "\n// "
for (size_t pos = header.find('\n'); pos != std::string::npos; pos = header.find('\n', pos + 1))
{
header.replace(pos, 1, "\n// ");
}
// and add a little message on our own
header += "\n\n// This header is generated from the Khronos Vulkan XML API Registry.";
}
}
void readEnums( tinyxml2::XMLElement * element, VkData & vkData )
{
if (!element->Attribute("name"))
{
throw std::runtime_error(std::string("spec error: enums element is missing the name attribute"));
}
std::string name = strip(element->Attribute("name"), "Vk");
if ( name != "API Constants" ) // skip the "API Constants"
{
// add an empty DependencyData on this name into the dependencies list
vkData.dependencies.push_back( DependencyData( DependencyData::Category::ENUM, name ) );
// ad an empty EnumData on this name into the enums map
std::map<std::string,EnumData>::iterator it = vkData.enums.insert( std::make_pair( name, EnumData(name) ) ).first;
if (name == "Result")
{
// special handling for VKResult, as its enums just have VK_ in common
it->second.prefix = "VK_";
}
else
{
if (!element->Attribute("type"))
{
throw std::runtime_error(std::string("spec error: enums name=\"" + name + "\" is missing the type attribute"));
}
std::string type = element->Attribute("type");
if (type != "bitmask" && type != "enum")
{
throw std::runtime_error(std::string("spec error: enums name=\"" + name + "\" has unknown type " + type));
}
it->second.bitmask = (type == "bitmask");
if (it->second.bitmask)
{
// for a bitmask enum, start with "VK", cut off the trailing "FlagBits", and convert that name to upper case
// end that with "Bit"
size_t pos = name.find("FlagBits");
assert(pos != std::string::npos);
it->second.prefix = "VK" + toUpperCase(name.substr(0, pos)) + "_";
}
else
{
// for a non-bitmask enum, start with "VK", and convert the name to upper case
it->second.prefix = "VK" + toUpperCase(name) + "_";
}
// if the enum name contains a tag move it from the prefix to the postfix to generate correct enum value names.
for (std::set<std::string>::const_iterator tit = vkData.tags.begin(); tit != vkData.tags.end(); ++tit)
{
if ((tit->length() < it->second.prefix.length()) && (it->second.prefix.substr(it->second.prefix.length() - tit->length() - 1) == (*tit + "_")))
{
it->second.prefix.erase(it->second.prefix.length() - tit->length() - 1);
it->second.postfix = "_" + *tit;
break;
}
else if ((tit->length() < it->second.name.length()) && (it->second.name.substr(it->second.name.length() - tit->length()) == *tit))
{
it->second.postfix = "_" + *tit;
break;
}
}
}
readEnumsEnum( element, it->second );
// add this enum to the set of Vulkan data types
assert( vkData.vkTypes.find( name ) == vkData.vkTypes.end() );
vkData.vkTypes.insert( name );
}
}
void readEnumsEnum( tinyxml2::XMLElement * element, EnumData & enumData )
{
// read the names of the enum values
tinyxml2::XMLElement * child = element->FirstChildElement();
while (child)
{
if ( child->Attribute( "name" ) )
{
enumData.addEnumMember(child->Attribute("name"), "");
}
child = child->NextSiblingElement();
}
}
void readDisabledExtensionRequire(tinyxml2::XMLElement * element, VkData & vkData)
{
for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement())
{
std::string value = child->Value();
if ((value == "command") || (value == "type"))
{
// disable a command or a type !
assert(child->Attribute("name"));
std::string name = (value == "command") ? startLowerCase(strip(child->Attribute("name"), "vk")) : strip(child->Attribute("name"), "Vk");
// search this name in the dependencies list and remove it
std::list<DependencyData>::const_iterator depIt = std::find_if(vkData.dependencies.begin(), vkData.dependencies.end(), [&name](DependencyData const& dd) { return(dd.name == name); });
assert(depIt != vkData.dependencies.end());
vkData.dependencies.erase(depIt);
// erase it from all dependency sets
for (auto & dep : vkData.dependencies)
{
dep.dependencies.erase(name);
}
if (value == "command")
{
// first unlink the command from its class
auto commandsIt = vkData.commands.find(name);
assert(commandsIt != vkData.commands.end());
assert(!commandsIt->second.className.empty());
auto handlesIt = vkData.handles.find(commandsIt->second.className);
assert(handlesIt != vkData.handles.end());
auto it = std::find(handlesIt->second.commands.begin(), handlesIt->second.commands.end(), name);
assert(it != handlesIt->second.commands.end());
handlesIt->second.commands.erase(it);
// then remove the command
vkData.commands.erase(name);
}
else
{
// a type simply needs to be removed from the structs and vkTypes sets
assert((vkData.structs.find(name) != vkData.structs.end()) && (vkData.vkTypes.find(name) != vkData.vkTypes.end()));
vkData.structs.erase(name);
vkData.vkTypes.erase(name);
}
}
else
{
// nothing to do for enums, no other values ever encountered
assert(value == "enum");
}
}
}
void readExtensionCommand(tinyxml2::XMLElement * element, std::map<std::string, CommandData> & commands, std::string const& protect)
{
// just add the protect string to the CommandData
if (!protect.empty())
{
assert(element->Attribute("name"));
std::string name = startLowerCase(strip(element->Attribute("name"), "vk"));
std::map<std::string, CommandData>::iterator cit = commands.find(name);
assert(cit != commands.end());
cit->second.protect = protect;
}
}
void readExtensionEnum(tinyxml2::XMLElement * element, std::map<std::string, EnumData> & enums, std::string const& tag)
{
// TODO process enums which don't extend existing enums
if (element->Attribute("extends"))
{
assert(element->Attribute("name"));
assert(enums.find(strip(element->Attribute("extends"), "Vk")) != enums.end());
assert(!!element->Attribute("bitpos") + !!element->Attribute("offset") + !!element->Attribute("value") == 1);
auto enumIt = enums.find(strip(element->Attribute("extends"), "Vk"));
assert(enumIt != enums.end());
enumIt->second.addEnumMember(element->Attribute("name"), tag);
}
}
void readExtensionRequire(tinyxml2::XMLElement * element, VkData & vkData, std::string const& protect, std::string const& tag)
{
for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement())
{
std::string value = child->Value();
if ( value == "command" )
{
readExtensionCommand(child, vkData.commands, protect);
}
else if (value == "type")
{
readExtensionType(child, vkData, protect);
}
else if ( value == "enum")
{
readExtensionEnum(child, vkData.enums, tag);
}
else
{
assert(value=="usage");
}
}
}
void readExtensions(tinyxml2::XMLElement * element, VkData & vkData)
{
for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement())
{
assert( strcmp( child->Value(), "extension" ) == 0 );
readExtensionsExtension( child, vkData );
}
}
void readExtensionsExtension(tinyxml2::XMLElement * element, VkData & vkData)
{
assert( element->Attribute( "name" ) );
std::string tag = extractTag(element->Attribute("name"));
assert(vkData.tags.find(tag) != vkData.tags.end());
tinyxml2::XMLElement * child = element->FirstChildElement();
assert(child && (strcmp(child->Value(), "require") == 0) && !child->NextSiblingElement());
if (strcmp(element->Attribute("supported"), "disabled") == 0)
{
// kick out all the disabled stuff we've read before !!
readDisabledExtensionRequire(child, vkData);
}
else
{
std::string protect;
if (element->Attribute("protect"))
{
protect = element->Attribute("protect");
}
readExtensionRequire(child, vkData, protect, tag);
}
}
void readExtensionType(tinyxml2::XMLElement * element, VkData & vkData, std::string const& protect)
{
// add the protect-string to the appropriate type: enum, flag, handle, scalar, or struct
if (!protect.empty())
{
assert(element->Attribute("name"));
std::string name = strip(element->Attribute("name"), "Vk");
std::map<std::string, EnumData>::iterator eit = vkData.enums.find(name);
if (eit != vkData.enums.end())
{
eit->second.protect = protect;
}
else
{
std::map<std::string, FlagData>::iterator fit = vkData.flags.find(name);
if (fit != vkData.flags.end())
{
fit->second.protect = protect;
// if the enum of this flags is auto-generated, protect it as well
std::string enumName = generateEnumNameForFlags(name);
std::map<std::string, EnumData>::iterator eit = vkData.enums.find(enumName);
assert(eit != vkData.enums.end());
if (eit->second.members.empty())
{
eit->second.protect = protect;
}
}
else
{
std::map<std::string, HandleData>::iterator hait = vkData.handles.find(name);
if (hait != vkData.handles.end())
{
hait->second.protect = protect;
}
else
{
std::map<std::string, ScalarData>::iterator scit = vkData.scalars.find(name);
if (scit != vkData.scalars.end())
{
scit->second.protect = protect;
}
else
{
std::map<std::string, StructData>::iterator stit = vkData.structs.find(name);
assert(stit != vkData.structs.end() && stit->second.protect.empty());
stit->second.protect = protect;
}
}
}
}
}
}
tinyxml2::XMLNode* readType(tinyxml2::XMLNode* element, std::string & type, std::string & pureType)
{
assert(element);
if (element->ToText())
{
std::string value = trimEnd(element->Value());
assert((value == "const") || (value == "struct"));
type = value + " ";
element = element->NextSibling();
assert(element);
}
assert(element->ToElement());
assert((strcmp(element->Value(), "type") == 0) && element->ToElement() && element->ToElement()->GetText());
pureType = strip(element->ToElement()->GetText(), "Vk");
type += pureType;
element = element->NextSibling();
assert(element);
if (element->ToText())
{
std::string value = trimEnd(element->Value());
assert((value == "*") || (value == "**") || (value == "* const*"));
type += value;
element = element->NextSibling();
}
return element;
}
void readTypeBasetype( tinyxml2::XMLElement * element, std::list<DependencyData> & dependencies )
{
tinyxml2::XMLElement * typeElement = element->FirstChildElement();
assert( typeElement && ( strcmp( typeElement->Value(), "type" ) == 0 ) && typeElement->GetText() );
std::string type = typeElement->GetText();
assert( ( type == "uint32_t" ) || ( type == "uint64_t" ) );
tinyxml2::XMLElement * nameElement = typeElement->NextSiblingElement();
assert( nameElement && ( strcmp( nameElement->Value(), "name" ) == 0 ) && nameElement->GetText() );
std::string name = strip( nameElement->GetText(), "Vk" );
// skip "Flags",
if ( name != "Flags" )
{
dependencies.push_back( DependencyData( DependencyData::Category::SCALAR, name ) );
dependencies.back().dependencies.insert( type );
}
else
{
assert( type == "uint32_t" );
}
}
void readTypeBitmask(tinyxml2::XMLElement * element, VkData & vkData)
{
tinyxml2::XMLElement * typeElement = element->FirstChildElement();
assert( typeElement && ( strcmp( typeElement->Value(), "type" ) == 0 ) && typeElement->GetText() && ( strcmp( typeElement->GetText(), "VkFlags" ) == 0 ) );
std::string type = typeElement->GetText();
tinyxml2::XMLElement * nameElement = typeElement->NextSiblingElement();
assert( nameElement && ( strcmp( nameElement->Value(), "name" ) == 0 ) && nameElement->GetText() );
std::string name = strip( nameElement->GetText(), "Vk" );
assert( !nameElement->NextSiblingElement() );
std::string requires;
if (element->Attribute("requires"))
{
requires = strip(element->Attribute("requires"), "Vk");
}
else
{
// Generate FlagBits name, add a DependencyData for that name, and add it to the list of enums and vulkan types
requires = generateEnumNameForFlags(name);
vkData.dependencies.push_back(DependencyData(DependencyData::Category::ENUM, requires));
vkData.enums.insert(std::make_pair(requires, EnumData(requires, true)));
vkData.vkTypes.insert(requires);
}
// add a DependencyData for the bitmask name, with the required type as its first dependency
vkData.dependencies.push_back( DependencyData( DependencyData::Category::FLAGS, name ) );
vkData.dependencies.back().dependencies.insert( requires );
vkData.flags.insert(std::make_pair(name, FlagData()));
assert( vkData.vkTypes.find( name ) == vkData.vkTypes.end() );
vkData.vkTypes.insert( name );
}
void readTypeDefine( tinyxml2::XMLElement * element, VkData & vkData )
{
tinyxml2::XMLElement * child = element->FirstChildElement();
if (child && (strcmp(child->GetText(), "VK_HEADER_VERSION") == 0))
{
vkData.version = element->LastChild()->ToText()->Value();
}
else if (element->Attribute("name") && strcmp(element->Attribute("name"), "VK_DEFINE_NON_DISPATCHABLE_HANDLE") == 0)
{
// filter out the check for the different types of VK_DEFINE_NON_DISPATCHABLE_HANDLE
std::string text = element->LastChild()->ToText()->Value();
size_t start = text.find("#if defined(__LP64__)");
size_t end = text.find_first_of("\r\n", start + 1);
vkData.typesafeCheck = text.substr(start, end - start);
}
// ignore all the other defines
}
void readTypeFuncpointer( tinyxml2::XMLElement * element, std::list<DependencyData> & dependencies )
{
tinyxml2::XMLElement * child = element->FirstChildElement();
assert( child && ( strcmp( child->Value(), "name" ) == 0 ) && child->GetText() );
dependencies.push_back( DependencyData( DependencyData::Category::FUNC_POINTER, child->GetText() ) );
}
void readTypeHandle(tinyxml2::XMLElement * element, VkData & vkData)
{
tinyxml2::XMLElement * typeElement = element->FirstChildElement();
assert( typeElement && ( strcmp( typeElement->Value(), "type" ) == 0 ) && typeElement->GetText() );
#if !defined(NDEBUG)
std::string type = typeElement->GetText();
assert((type.find("VK_DEFINE_HANDLE") == 0) || (type.find("VK_DEFINE_NON_DISPATCHABLE_HANDLE") == 0));
#endif
tinyxml2::XMLElement * nameElement = typeElement->NextSiblingElement();
assert( nameElement && ( strcmp( nameElement->Value(), "name" ) == 0 ) && nameElement->GetText() );
std::string name = strip( nameElement->GetText(), "Vk" );
vkData.dependencies.push_back( DependencyData( DependencyData::Category::HANDLE, name ) );
assert(vkData.vkTypes.find(name) == vkData.vkTypes.end());
vkData.vkTypes.insert(name);
assert(vkData.handles.find(name) == vkData.handles.end());
vkData.handles[name];
}
void readTypeStruct( tinyxml2::XMLElement * element, VkData & vkData, bool isUnion )
{
assert( !element->Attribute( "returnedonly" ) || ( strcmp( element->Attribute( "returnedonly" ), "true" ) == 0 ) );
assert( element->Attribute( "name" ) );
std::string name = strip( element->Attribute( "name" ), "Vk" );
if ( name == "Rect3D" )
{
// for whatever reason, VkRect3D is listed in vk.xml, but does not appear in vulkan.h!!
return;
}
vkData.dependencies.push_back( DependencyData( isUnion ? DependencyData::Category::UNION : DependencyData::Category::STRUCT, name ) );
assert( vkData.structs.find( name ) == vkData.structs.end() );
std::map<std::string,StructData>::iterator it = vkData.structs.insert( std::make_pair( name, StructData() ) ).first;
it->second.returnedOnly = !!element->Attribute( "returnedonly" );
it->second.isUnion = isUnion;
if (element->Attribute("structextends"))
{
std::string structextends = element->Attribute("structextends");
std::vector<std::string> structs;
size_t endPos = -1;
do
{
size_t startPos = endPos + 1;
endPos = structextends.find(',', startPos);
assert(structextends.substr(startPos, 2) == "Vk");
std::string structExtendName = structextends.substr(startPos + 2, endPos - startPos - 2);
it->second.structExtends.push_back(structExtendName);
vkData.extendedStructs.insert(structExtendName);
} while (endPos != std::string::npos);
assert(!it->second.structExtends.empty());
}
for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement())
{
assert( child->Value() );
std::string value = child->Value();
assert((value == "comment") || (value == "member"));
if (value == "member")
{
readTypeStructMember(child, vkData, it->second);
}
}
assert( vkData.vkTypes.find( name ) == vkData.vkTypes.end() );
vkData.vkTypes.insert( name );
}
void readTypeStructMember(tinyxml2::XMLElement * element, VkData & vkData, StructData & structData)
{
structData.members.push_back(MemberData());
MemberData & member = structData.members.back();
tinyxml2::XMLNode* child = readType(element->FirstChild(), member.type, member.pureType);
vkData.dependencies.back().dependencies.insert(member.pureType);
assert((child->ToElement() && strcmp(child->Value(), "name") == 0));
member.name = child->ToElement()->GetText();
member.arraySize = readArraySize(child, member.name);
}
void readTags(tinyxml2::XMLElement * element, std::set<std::string> & tags)
{
tags.insert("EXT");
tags.insert("KHR");
for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement())
{
assert(child->Attribute("name"));
tags.insert(child->Attribute("name"));
}
}
void readTypes(tinyxml2::XMLElement * element, VkData & vkData)
{
for (tinyxml2::XMLElement * child = element->FirstChildElement(); child; child = child->NextSiblingElement())
{
assert(child->Value());
std::string value = child->Value();
assert((value == "comment") || (value == "type"));
if (value == "type")
{
if (child->Attribute("category"))
{
std::string category = child->Attribute("category");
if (category == "basetype")
{
readTypeBasetype(child, vkData.dependencies);
}
else if (category == "bitmask")
{
readTypeBitmask(child, vkData);
}
else if (category == "define")
{
readTypeDefine(child, vkData);
}
else if (category == "funcpointer")
{
readTypeFuncpointer(child, vkData.dependencies);
}
else if (category == "handle")
{
readTypeHandle(child, vkData);
}
else if (category == "struct")
{
readTypeStruct(child, vkData, false);
}
else if (category == "union")
{
readTypeStruct(child, vkData, true);
}
else
{
assert((category == "enum") || (category == "include"));
}
}
else
{
assert(child->Attribute("name"));
vkData.dependencies.push_back(DependencyData(DependencyData::Category::REQUIRED, child->Attribute("name")));
}
}
}
}
std::string reduceName(std::string const& name, bool singular)
{
std::string reducedName;
if ((name[0] == 'p') && (1 < name.length()) && (isupper(name[1]) || name[1] == 'p'))
{
reducedName = strip(name, "p");
reducedName[0] = tolower(reducedName[0]);
}
else
{
reducedName = name;
}
if (singular)
{
size_t pos = reducedName.rfind('s');
assert(pos != std::string::npos);
reducedName.erase(pos, 1);
}
return reducedName;
}
void registerDeleter(VkData & vkData, CommandData const& commandData)
{
if ((commandData.fullName.substr(0, 7) == "destroy") || (commandData.fullName.substr(0, 4) == "free"))
{
std::string key;
size_t valueIndex;
switch (commandData.params.size())
{
case 2:
case 3:
assert(commandData.params.back().pureType == "AllocationCallbacks");
key = (commandData.params.size() == 2) ? "" : commandData.params[0].pureType;
valueIndex = commandData.params.size() - 2;
break;
case 4:
key = commandData.params[0].pureType;
valueIndex = 3;
assert(vkData.deleterData.find(commandData.params[valueIndex].pureType) == vkData.deleterData.end());
vkData.deleterData[commandData.params[valueIndex].pureType].pool = commandData.params[1].pureType;
break;
default:
assert(false);
}
if (commandData.fullName == "destroyDevice")
{
key = "PhysicalDevice";
}
assert(vkData.deleterTypes[key].find(commandData.params[valueIndex].pureType) == vkData.deleterTypes[key].end());
vkData.deleterTypes[key].insert(commandData.params[valueIndex].pureType);
vkData.deleterData[commandData.params[valueIndex].pureType].call = commandData.reducedName;
}
}
void sortDependencies( std::list<DependencyData> & dependencies )
{
std::set<std::string> listedTypes = { "VkFlags" };
std::list<DependencyData> sortedDependencies;
while ( !dependencies.empty() )
{
bool found = false;
for ( std::list<DependencyData>::iterator it = dependencies.begin() ; it != dependencies.end() ; ++it )
{
if (std::find_if(it->dependencies.begin(), it->dependencies.end(), [&listedTypes](std::string const& d) { return listedTypes.find(d) == listedTypes.end(); }) == it->dependencies.end())
{
sortedDependencies.push_back( *it );
listedTypes.insert( it->name );
dependencies.erase( it );
found = true;
break;
}
}
if (!found)
{
// resolve direct circular dependencies
for (std::list<DependencyData>::iterator it = dependencies.begin(); !found && it != dependencies.end(); ++it)
{
for (std::set<std::string>::const_iterator dit = it->dependencies.begin(); dit != it->dependencies.end(); ++dit)
{
std::list<DependencyData>::const_iterator depIt = std::find_if(dependencies.begin(), dependencies.end(), [&dit](DependencyData const& dd) { return(dd.name == *dit); });
if (depIt != dependencies.end())
{
if (depIt->dependencies.find(it->name) != depIt->dependencies.end())
{
// we only have just one case, for now!
assert((it->category == DependencyData::Category::HANDLE) && (depIt->category == DependencyData::Category::STRUCT));
it->forwardDependencies.insert(*dit);
it->dependencies.erase(*dit);
found = true;
break;
}
}
#if !defined(NDEBUG)
else
{
assert(std::find_if(sortedDependencies.begin(), sortedDependencies.end(), [&dit](DependencyData const& dd) { return(dd.name == *dit); }) != sortedDependencies.end());
}
#endif
}
}
}
assert( found );
}
dependencies.swap(sortedDependencies);
}
std::string startLowerCase(std::string const& input)
{
return static_cast<char>(tolower(input[0])) + input.substr(1);
}
std::string startUpperCase(std::string const& input)
{
return static_cast<char>(toupper(input[0])) + input.substr(1);
}
std::string strip(std::string const& value, std::string const& prefix, std::string const& postfix)
{
std::string strippedValue = value;
if (strippedValue.substr(0, prefix.length()) == prefix)
{
strippedValue.erase(0, prefix.length());
}
if (!postfix.empty() && (strippedValue.substr(strippedValue.length() - postfix.length()) == postfix))
{
strippedValue.erase(strippedValue.length() - postfix.length());
}
return strippedValue;
}
std::string stripPluralS(std::string const& name)
{
std::string strippedName(name);
size_t pos = strippedName.rfind('s');
assert(pos != std::string::npos);
strippedName.erase(pos, 1);
return strippedName;
}
std::string toCamelCase(std::string const& value)
{
assert(!value.empty() && (isupper(value[0]) || isdigit(value[0])));
std::string result;
result.reserve(value.size());
result.push_back(value[0]);
for (size_t i = 1; i < value.size(); i++)
{
if (value[i] != '_')
{
if ((value[i - 1] == '_') || isdigit(value[i-1]))
{
result.push_back(value[i]);
}
else
{
result.push_back(tolower(value[i]));
}
}
}
return result;
}
std::string toUpperCase(std::string const& name)
{
assert(isupper(name.front()));
std::string convertedName;
for (size_t i = 0; i<name.length(); i++)
{
if (isupper(name[i]) && ((i == 0) || islower(name[i - 1]) || isdigit(name[i-1])))
{
convertedName.push_back('_');
}
convertedName.push_back(toupper(name[i]));
}
return convertedName;
}
// trim from end
std::string trimEnd(std::string const& input)
{
std::string result = input;
result.erase(std::find_if(result.rbegin(), result.rend(), [](char c) { return !std::isspace(c); }).base(), result.end());
return result;
}
std::string generateCall(CommandData const& commandData, std::set<std::string> const& vkTypes, bool firstCall, bool singular)
{
std::ostringstream call;
writeCall(call, commandData, vkTypes, firstCall, singular);
return call.str();
}
void writeCall(std::ostream & os, CommandData const& commandData, std::set<std::string> const& vkTypes, bool firstCall, bool singular)
{
// get the parameter indices of the counter for vector parameters
std::map<size_t,size_t> countIndices;
for (std::map<size_t, size_t>::const_iterator it = commandData.vectorParams.begin(); it != commandData.vectorParams.end(); ++it)
{
countIndices.insert(std::make_pair(it->second, it->first));
}
// the original function call
os << "vk" << startUpperCase(commandData.fullName) << "( ";
if (!commandData.className.empty())
{
// if it's member of a class -> add the first parameter with "m_" as prefix
os << "m_" << commandData.params[0].name;
}
for (size_t i=commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++)
{
if (0 < i)
{
os << ", ";
}
std::map<size_t, size_t>::const_iterator it = countIndices.find(i);
if (it != countIndices.end())
{
writeCallCountParameter(os, commandData, singular, it);
}
else if ((it = commandData.vectorParams.find(i)) != commandData.vectorParams.end())
{
writeCallVectorParameter(os, commandData, vkTypes, firstCall, singular, it);
}
else
{
if (vkTypes.find(commandData.params[i].pureType) != vkTypes.end())
{
writeCallVulkanTypeParameter(os, commandData.params[i]);
}
else
{
writeCallPlainTypeParameter(os, commandData.params[i]);
}
}
}
os << " )";
}
void writeCallCountParameter(std::ostream & os, CommandData const& commandData, bool singular, std::map<size_t, size_t>::const_iterator it)
{
// this parameter is a count parameter for a vector parameter
if ((commandData.returnParam == it->second) && commandData.twoStep)
{
// the corresponding vector parameter is the return parameter and it's a two-step algorithm
// -> use the pointer to a local variable named like the counter parameter without leading 'p'
os << "&" << startLowerCase(strip(commandData.params[it->first].name, "p"));
}
else
{
// the corresponding vector parameter is not the return parameter, or it's not a two-step algorithm
if (singular)
{
// for the singular version, the count is just 1.
os << "1 ";
}
else
{
// for the non-singular version, the count is the size of the vector parameter
// -> use the vector parameter name without leading 'p' to get the size (in number of elements, not in bytes)
os << startLowerCase(strip(commandData.params[it->second].name, "p")) << ".size() ";
}
if (commandData.templateParam == it->second)
{
// if the vector parameter is templatized -> multiply by the size of that type to get the size in bytes
os << "* sizeof( T ) ";
}
}
}
void writeCallPlainTypeParameter(std::ostream & os, ParamData const& paramData)
{
// this parameter is just a plain type
if (paramData.type.back() == '*')
{
// it's a pointer
std::string parameterName = startLowerCase(strip(paramData.name, "p"));
if (paramData.type.find("const") != std::string::npos)
{
// it's a const pointer
if (paramData.pureType == "char")
{
// it's a const pointer to char -> it's a string -> get the data via c_str()
os << parameterName;
if (paramData.optional)
{
// it's optional -> might use nullptr
os << " ? " << parameterName << "->c_str() : nullptr";
}
else
{
os << ".c_str()";
}
}
else
{
// it's const pointer to void (only other type that occurs) -> just use the name
assert((paramData.pureType == "void") && !paramData.optional);
os << paramData.name;
}
}
else
{
// it's a non-const pointer, and char is the only type that occurs -> use the address of the parameter
assert(paramData.type.find("char") == std::string::npos);
os << "&" << parameterName;
}
}
else
{
// it's a plain parameter -> just use its name
os << paramData.name;
}
}
void writeCallVectorParameter(std::ostream & os, CommandData const& commandData, std::set<std::string> const& vkTypes, bool firstCall, bool singular, std::map<size_t, size_t>::const_iterator it)
{
// this parameter is a vector parameter
assert(commandData.params[it->first].type.back() == '*');
if ((commandData.returnParam == it->first) && commandData.twoStep && firstCall)
{
// this parameter is the return parameter, and it's the first call of a two-step algorithm -> just just nullptr
os << "nullptr";
}
else
{
std::string parameterName = startLowerCase(strip(commandData.params[it->first].name, "p"));
std::set<std::string>::const_iterator vkit = vkTypes.find(commandData.params[it->first].pureType);
if ((vkit != vkTypes.end()) || (it->first == commandData.templateParam))
{
// CHECK for !commandData.params[it->first].optional
// this parameter is a vulkan type or a templated type -> need to reinterpret cast
writeReinterpretCast(os, commandData.params[it->first].type.find("const") == 0, vkit != vkTypes.end(), commandData.params[it->first].pureType,
commandData.params[it->first].type.rfind("* const") != std::string::npos);
os << "( ";
if (singular)
{
// in singular case, strip the plural-S from the name, and use the pointer to that thing
os << "&" << stripPluralS(parameterName);
}
else
{
// in plural case, get the pointer to the data
os << parameterName << ".data()";
}
os << " )";
}
else if (commandData.params[it->first].pureType == "char")
{
// the parameter is a vector to char -> it might be optional
// besides that, the parameter now is a std::string -> get the pointer via c_str()
os << parameterName;
if (commandData.params[it->first].optional)
{
os << " ? " << parameterName << "->c_str() : nullptr";
}
else
{
os << ".c_str()";
}
}
else
{
// this parameter is just a vetor -> get the pointer to its data
os << parameterName << ".data()";
}
}
}
void writeCallVulkanTypeParameter(std::ostream & os, ParamData const& paramData)
{
// this parameter is a vulkan type
if (paramData.type.back() == '*')
{
// it's a pointer -> needs a reinterpret cast to the vulkan type
std::string parameterName = startLowerCase(strip(paramData.name, "p"));
writeReinterpretCast(os, paramData.type.find("const") != std::string::npos, true, paramData.pureType, false);
os << "( ";
if (paramData.optional)
{
// for an optional parameter, we need also a static_cast from optional type to const-pointer to pure type
os << "static_cast<const " << paramData.pureType << "*>( " << parameterName << " )";
}
else
{
// other parameters can just use the pointer
os << "&" << parameterName;
}
os << " )";
}
else
{
// a non-pointer parameter needs a static_cast from vk::-type to vulkan type
os << "static_cast<Vk" << paramData.pureType << ">( " << paramData.name << " )";
}
}
void writeFunction(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool definition, bool enhanced, bool singular, bool unique, bool isStructureChain)
{
if (enhanced && (!singular || isStructureChain))
{
writeFunctionHeaderTemplate(os, indentation, commandData, !definition, isStructureChain);
}
os << indentation << (definition ? "VULKAN_HPP_INLINE " : "");
writeFunctionHeaderReturnType(os, indentation, commandData, enhanced, singular, unique, isStructureChain);
if (definition && !commandData.className.empty())
{
os << commandData.className << "::";
}
writeFunctionHeaderName(os, commandData.reducedName, singular, unique);
writeFunctionHeaderArguments(os, vkData, commandData, enhanced, singular, !definition);
os << (definition ? "" : ";") << std::endl;
if (definition)
{
// write the function body
os << indentation << "{" << std::endl;
if (enhanced)
{
if (unique)
{
writeFunctionBodyUnique(os, indentation, vkData, commandData, singular);
}
else
{
writeFunctionBodyEnhanced(os, indentation, vkData, commandData, singular, isStructureChain);
}
}
else
{
writeFunctionBodyStandard(os, indentation, vkData, commandData);
}
os << indentation << "}" << std::endl;
}
}
void writeFunctionBodyEnhanced(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool singular, bool isStructureChain)
{
if (1 < commandData.vectorParams.size())
{
writeFunctionBodyEnhancedMultiVectorSizeCheck(os, indentation, commandData);
}
std::string returnName;
if (commandData.returnParam != ~0)
{
returnName = writeFunctionBodyEnhancedLocalReturnVariable(os, indentation, commandData, singular, isStructureChain);
}
if (commandData.twoStep)
{
assert(!singular);
writeFunctionBodyEnhancedLocalCountVariable(os, indentation, commandData);
// we now might have to check the result, resize the returned vector accordingly, and call the function again
std::map<size_t, size_t>::const_iterator returnit = commandData.vectorParams.find(commandData.returnParam);
assert(returnit != commandData.vectorParams.end() && (returnit->second != ~0));
std::string sizeName = startLowerCase(strip(commandData.params[returnit->second].name, "p"));
if (commandData.returnType == "Result")
{
if (1 < commandData.successCodes.size())
{
writeFunctionBodyEnhancedCallTwoStepIterate(os, indentation, vkData.vkTypes, returnName, sizeName, commandData);
}
else
{
writeFunctionBodyEnhancedCallTwoStepChecked(os, indentation, vkData.vkTypes, returnName, sizeName, commandData);
}
}
else
{
writeFunctionBodyEnhancedCallTwoStep(os, indentation, vkData.vkTypes, returnName, sizeName, commandData);
}
}
else
{
if (commandData.returnType == "Result")
{
writeFunctionBodyEnhancedCallResult(os, indentation, vkData.vkTypes, commandData, singular);
}
else
{
writeFunctionBodyEnhancedCall(os, indentation, vkData.vkTypes, commandData, singular);
}
}
if ((commandData.returnType == "Result") || !commandData.successCodes.empty())
{
writeFunctionBodyEnhancedReturnResultValue(os, indentation, returnName, commandData, singular);
}
else if ((commandData.returnParam != ~0) && (commandData.returnType != commandData.enhancedReturnType))
{
// for the other returning cases, when the return type is somhow enhanced, just return the local returnVariable
os << indentation << " return " << returnName << ";" << std::endl;
}
}
void writeFunctionBodyEnhanced(std::ostream &os, std::string const& templateString, std::string const& indentation, std::set<std::string> const& vkTypes, CommandData const& commandData, bool singular)
{
os << replaceWithMap(templateString, {
{ "call", generateCall(commandData, vkTypes, true, singular) },
{ "i", indentation }
});
}
void writeFunctionBodyEnhancedCall(std::ostream &os, std::string const& indentation, std::set<std::string> const& vkTypes, CommandData const& commandData, bool singular)
{
std::string const templateString = "${i} return ${call};\n";
std::string const templateStringVoid = "${i} ${call};\n";
writeFunctionBodyEnhanced(os, commandData.returnType == "void" ? templateStringVoid : templateString, indentation, vkTypes, commandData, singular);
}
void writeFunctionBodyEnhancedCallResult(std::ostream &os, std::string const& indentation, std::set<std::string> const& vkTypes, CommandData const& commandData, bool singular)
{
std::string const templateString = "${i} Result result = static_cast<Result>( ${call} );\n";
writeFunctionBodyEnhanced(os, templateString, indentation, vkTypes, commandData, singular);
}
void writeFunctionBodyTwoStep(std::ostream & os, std::string const &templateString, std::string const& indentation, std::set<std::string> const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData)
{
std::map<std::string, std::string> replacements = {
{ "sizeName", sizeName },
{ "returnName", returnName },
{ "call1", generateCall(commandData, vkTypes, true, false) },
{ "call2", generateCall(commandData, vkTypes, false, false) },
{ "i", indentation }
};
os << replaceWithMap(templateString, replacements);
}
void writeFunctionBodyEnhancedCallTwoStep(std::ostream & os, std::string const& indentation, std::set<std::string> const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData)
{
std::string const templateString =
R"(${i} ${call1};
${i} ${returnName}.resize( ${sizeName} );
${i} ${call2};
)";
writeFunctionBodyTwoStep(os, templateString, indentation, vkTypes, returnName, sizeName, commandData);
}
void writeFunctionBodyEnhancedCallTwoStepChecked(std::ostream & os, std::string const& indentation, std::set<std::string> const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData)
{
std::string const templateString =
R"(${i} Result result = static_cast<Result>( ${call1} );
${i} if ( ( result == Result::eSuccess ) && ${sizeName} )
${i} {
${i} ${returnName}.resize( ${sizeName} );
${i} result = static_cast<Result>( ${call2} );
${i} }
)";
writeFunctionBodyTwoStep(os, templateString, indentation, vkTypes, returnName, sizeName, commandData);
}
void writeFunctionBodyEnhancedCallTwoStepIterate(std::ostream & os, std::string const& indentation, std::set<std::string> const& vkTypes, std::string const& returnName, std::string const& sizeName, CommandData const& commandData)
{
std::string const templateString =
R"(${i} Result result;
${i} do
${i} {
${i} result = static_cast<Result>( ${call1} );
${i} if ( ( result == Result::eSuccess ) && ${sizeName} )
${i} {
${i} ${returnName}.resize( ${sizeName} );
${i} result = static_cast<Result>( ${call2} );
${i} }
${i} } while ( result == Result::eIncomplete );
${i} assert( ${sizeName} <= ${returnName}.size() );
${i} ${returnName}.resize( ${sizeName} );
)";
writeFunctionBodyTwoStep(os, templateString, indentation, vkTypes, returnName, sizeName, commandData);
}
void writeFunctionBodyEnhancedLocalCountVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData)
{
// local count variable to hold the size of the vector to fill
assert(commandData.returnParam != ~0);
std::map<size_t, size_t>::const_iterator returnit = commandData.vectorParams.find(commandData.returnParam);
assert(returnit != commandData.vectorParams.end() && (returnit->second != ~0));
assert((commandData.returnType == "Result") || (commandData.returnType == "void"));
// take the pure type of the size parameter; strip the leading 'p' from its name for its local name
os << indentation << " " << commandData.params[returnit->second].pureType << " " << startLowerCase(strip(commandData.params[returnit->second].name, "p")) << ";" << std::endl;
}
std::string writeFunctionBodyEnhancedLocalReturnVariable(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool singular, bool isStructureChain)
{
std::string returnName = startLowerCase(strip(commandData.params[commandData.returnParam].name, "p"));
// there is a returned parameter -> we need a local variable to hold that value
if (commandData.returnType != commandData.enhancedReturnType)
{
// the returned parameter is somehow enhanced by us
os << indentation << " ";
if (singular)
{
if (isStructureChain)
{
std::string const &pureType = commandData.params[commandData.returnParam].pureType;
// For StructureChains use the template parameters
os << "StructureChain<T...> structureChain;" << std::endl;
returnName = stripPluralS(returnName);
os << indentation << " " << pureType << "& " << returnName << " = structureChain.template get<" << pureType << ">()";
returnName = "structureChain";
}
else
{
// in singular case, just use the return parameters pure type for the return variable
returnName = stripPluralS(returnName);
os << commandData.params[commandData.returnParam].pureType << " " << returnName;
}
}
else
{
// in non-singular case, use the enhanced type for the return variable (like vector<...>)
if (isStructureChain)
{
std::string const &returnType = commandData.enhancedReturnType;
// For StructureChains use the template parameters
os << "StructureChain<T...> structureChain;" << std::endl;
os << indentation << " " << returnType << "& " << returnName << " = structureChain.template get<" << returnType << ">()";
returnName = "structureChain";
}
else
{
os << commandData.enhancedReturnType << " " << returnName;
}
std::map<size_t, size_t>::const_iterator it = commandData.vectorParams.find(commandData.returnParam);
if (it != commandData.vectorParams.end() && !commandData.twoStep)
{
// if the return parameter is a vector parameter, and not part of a two-step algorithm, initialize its size
std::string size;
if (it->second == ~0)
{
assert(!commandData.params[commandData.returnParam].len.empty());
// the size of the vector is not given by an other parameter, but by some member of a parameter, described as 'parameter::member'
// -> replace the '::' by '.' and filter out the leading 'p' to access that value
size = startLowerCase(strip(commandData.params[commandData.returnParam].len, "p"));
size_t pos = size.find("::");
assert(pos != std::string::npos);
size.replace(pos, 2, ".");
}
else
{
// the size of the vector is given by an other parameter
// that means (as this is not a two-step algorithm) it's size is determined by some other vector parameter!
// -> look for it and get it's actual size
for (auto const& vectorParam : commandData.vectorParams)
{
if ((vectorParam.first != commandData.returnParam) && (vectorParam.second == it->second))
{
size = startLowerCase(strip(commandData.params[vectorParam.first].name, "p")) + ".size()";
break;
}
}
}
assert(!size.empty());
os << "( " << size << " )";
}
}
os << ";" << std::endl;
}
else
{
// the return parameter is not enhanced -> the type is supposed to be a Result and there are more than one success codes!
assert((commandData.returnType == "Result") && (1 < commandData.successCodes.size()));
os << indentation << " " << commandData.params[commandData.returnParam].pureType << " " << returnName << ";" << std::endl;
}
return returnName;
}
void writeFunctionBodyEnhancedMultiVectorSizeCheck(std::ostream & os, std::string const& indentation, CommandData const& commandData)
{
std::string const templateString =
R"#(#ifdef VULKAN_HPP_NO_EXCEPTIONS
${i} assert( ${firstVectorName}.size() == ${secondVectorName}.size() );
#else
${i} if ( ${firstVectorName}.size() != ${secondVectorName}.size() )
${i} {
${i} throw LogicError( "vk::${className}::${reducedName}: ${firstVectorName}.size() != ${secondVectorName}.size()" );
${i} }
#endif // VULKAN_HPP_NO_EXCEPTIONS
)#";
// add some error checks if multiple vectors need to have the same size
for (std::map<size_t, size_t>::const_iterator it0 = commandData.vectorParams.begin(); it0 != commandData.vectorParams.end(); ++it0)
{
if (it0->first != commandData.returnParam)
{
for (std::map<size_t, size_t>::const_iterator it1 = std::next(it0); it1 != commandData.vectorParams.end(); ++it1)
{
if ((it1->first != commandData.returnParam) && (it0->second == it1->second))
{
os << replaceWithMap(templateString, std::map<std::string, std::string>( {
{ "firstVectorName", startLowerCase(strip(commandData.params[it0->first].name, "p")) },
{ "secondVectorName", startLowerCase(strip(commandData.params[it1->first].name, "p")) },
{ "className", commandData.className },
{ "reducedName", commandData.reducedName},
{ "i", indentation}
}));
}
}
}
}
}
void writeFunctionBodyEnhancedReturnResultValue(std::ostream & os, std::string const& indentation, std::string const& returnName, CommandData const& commandData, bool singular)
{
// if the return type is "Result" or there is at least one success code, create the Result/Value construct to return
os << indentation << " return createResultValue( result, ";
if (commandData.returnParam != ~0)
{
// if there's a return parameter, list it in the Result/Value constructor
os << returnName << ", ";
}
// now the function name (with full namespace) as a string
os << "\"vk::" << (commandData.className.empty() ? "" : commandData.className + "::") << (singular ? stripPluralS(commandData.reducedName) : commandData.reducedName) << "\"";
if (!commandData.twoStep && (1 < commandData.successCodes.size()))
{
// and for the single-step algorithms with more than one success code list them all
os << ", { Result::" << commandData.successCodes[0];
for (size_t i = 1; i < commandData.successCodes.size(); i++)
{
os << ", Result::" << commandData.successCodes[i];
}
os << " }";
}
os << " );" << std::endl;
}
void writeFunctionBodyStandard(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData)
{
os << indentation << " ";
bool castReturn = false;
if (commandData.returnType != "void")
{
// there's something to return...
os << "return ";
castReturn = (vkData.vkTypes.find(commandData.returnType) != vkData.vkTypes.end());
if (castReturn)
{
// the return-type is a vulkan type -> need to cast to vk::-type
os << "static_cast<" << commandData.returnType << ">( ";
}
}
// call the original function
os << "vk" << startUpperCase(commandData.fullName) << "( ";
if (!commandData.className.empty())
{
// the command is part of a class -> the first argument is the member variable, starting with "m_"
os << "m_" << commandData.params[0].name;
}
// list all the arguments
for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++)
{
if (0 < i)
{
os << ", ";
}
if (vkData.vkTypes.find(commandData.params[i].pureType) != vkData.vkTypes.end())
{
// the parameter is a vulkan type
if (commandData.params[i].type.back() == '*')
{
// it's a pointer -> need to reinterpret_cast it
writeReinterpretCast(os, commandData.params[i].type.find("const") == 0, true, commandData.params[i].pureType, commandData.params[i].type.find("* const") != std::string::npos);
}
else
{
// it's a value -> need to static_cast ist
os << "static_cast<Vk" << commandData.params[i].pureType << ">";
}
os << "( " << commandData.params[i].name << " )";
}
else
{
// it's a non-vulkan type -> just use it
os << commandData.params[i].name;
}
}
os << " )";
if (castReturn)
{
// if we cast the return -> close the static_cast
os << " )";
}
os << ";" << std::endl;
}
void writeFunctionBodyUnique(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool singular)
{
// the unique version needs a Deleter object for destruction of the newly created stuff
std::string type = commandData.params[commandData.returnParam].pureType;
std::string typeValue = startLowerCase(type);
os << indentation << " " << type << "Deleter deleter( ";
if (vkData.deleterData.find(commandData.className) != vkData.deleterData.end())
{
// if the Deleter is specific to the command's class, add '*this' to the deleter
os << "*this, ";
}
// get the DeleterData corresponding to the returned type
std::map<std::string, DeleterData>::const_iterator ddit = vkData.deleterData.find(type);
assert(ddit != vkData.deleterData.end());
if (ddit->second.pool.empty())
{
// if this type isn't pooled, use the allocator (provided as a function argument)
os << "allocator";
}
else
{
// otherwise use the pool, which always is a member of the second argument
os << startLowerCase(strip(commandData.params[1].name, "p")) << "." << startLowerCase(ddit->second.pool);
}
os << " );" << std::endl;
bool returnsVector = !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end());
if (returnsVector)
{
// if a vector of data is returned, use a local variable to hold the returned data from the non-unique function call
os << indentation << " std::vector<" << type << ",Allocator> " << typeValue << "s = ";
}
else
{
// otherwise create a Unique stuff out of the returned data from the non-unique function call
os << indentation << " return Unique" << type << "( ";
}
// the call to the non-unique function
os << (singular ? stripPluralS(commandData.fullName) : commandData.fullName) << "( ";
bool argEncountered = false;
for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++)
{
if (commandData.skippedParams.find(i) == commandData.skippedParams.end())
{
if (argEncountered)
{
os << ", ";
}
argEncountered = true;
// strip off the leading 'p' for pointer arguments
std::string argumentName = (commandData.params[i].type.back() == '*') ? startLowerCase(strip(commandData.params[i].name, "p")) : commandData.params[i].name;
if (singular && (commandData.vectorParams.find(i) != commandData.vectorParams.end()))
{
// and strip off the plural 's' if appropriate
argumentName = stripPluralS(argumentName);
}
os << argumentName;
}
}
os << " )";
if (returnsVector)
{
std::string const stringTemplate = R"(;
${i} std::vector<Unique${type}> unique${type}s;
${i} unique${type}s.reserve( ${typeValue}s.size() );
${i} for ( auto ${typeValue} : ${typeValue}s )
${i} {
${i} unique${type}s.push_back( Unique${type}( ${typeValue}, deleter ) );
${i} }
${i} return unique${type}s;
)";
os << replaceWithMap(stringTemplate, std::map<std::string, std::string>{
{ "i", indentation },
{ "type", type },
{ "typeValue", typeValue }
});
}
else
{
// for non-vector returns, just add the deleter (local variable) to the Unique-stuff constructor
os << ", deleter );" << std::endl;
}
}
void writeFunctionHeaderArguments(std::ostream & os, VkData const& vkData, CommandData const& commandData, bool enhanced, bool singular, bool withDefaults)
{
os << "(";
if (enhanced)
{
writeFunctionHeaderArgumentsEnhanced(os, vkData, commandData, singular, withDefaults);
}
else
{
writeFunctionHeaderArgumentsStandard(os, commandData);
}
os << ")";
if (!commandData.className.empty())
{
os << " const";
}
}
void writeFunctionHeaderArgumentsEnhanced(std::ostream & os, VkData const& vkData, CommandData const& commandData, bool singular, bool withDefaults)
{
// check if there's at least one argument left to put in here
if (commandData.skippedParams.size() + (commandData.className.empty() ? 0 : 1) < commandData.params.size())
{
// determine the last argument, where we might provide some default for
size_t lastArgument = ~0;
for (size_t i = commandData.params.size() - 1; i < commandData.params.size(); i--)
{
if (commandData.skippedParams.find(i) == commandData.skippedParams.end())
{
lastArgument = i;
break;
}
}
os << " ";
bool argEncountered = false;
for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++)
{
if (commandData.skippedParams.find(i) == commandData.skippedParams.end())
{
if (argEncountered)
{
os << ", ";
}
std::string strippedParameterName = startLowerCase(strip(commandData.params[i].name, "p"));
std::map<size_t, size_t>::const_iterator it = commandData.vectorParams.find(i);
size_t rightStarPos = commandData.params[i].type.rfind('*');
if (it == commandData.vectorParams.end())
{
// the argument ist not a vector
if (rightStarPos == std::string::npos)
{
// and its not a pointer -> just use its type and name here
os << commandData.params[i].type << " " << commandData.params[i].name;
if (!commandData.params[i].arraySize.empty())
{
os << "[" << commandData.params[i].arraySize << "]";
}
if (withDefaults && (lastArgument == i))
{
// check if the very last argument is a flag without any bits -> provide some empty default for it
std::map<std::string, FlagData>::const_iterator flagIt = vkData.flags.find(commandData.params[i].pureType);
if (flagIt != vkData.flags.end())
{
// get the enum corresponding to this flag, to check if it's empty
std::list<DependencyData>::const_iterator depIt = std::find_if(vkData.dependencies.begin(), vkData.dependencies.end(), [&flagIt](DependencyData const& dd) { return(dd.name == flagIt->first); });
assert((depIt != vkData.dependencies.end()) && (depIt->dependencies.size() == 1));
std::map<std::string, EnumData>::const_iterator enumIt = vkData.enums.find(*depIt->dependencies.begin());
assert(enumIt != vkData.enums.end());
if (enumIt->second.members.empty())
{
// there are no bits in this flag -> provide the default
os << " = " << commandData.params[i].pureType << "()";
}
}
}
}
else
{
// the argument is not a vector, but a pointer
assert(commandData.params[i].type[rightStarPos] == '*');
if (commandData.params[i].optional)
{
// for an optional argument, trim the trailing '*' from the type, and the leading 'p' from the name
os << "Optional<" << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << "> " << strippedParameterName;
if (withDefaults)
{
os << " = nullptr";
}
}
else if (commandData.params[i].pureType == "void")
{
// for void-pointer, just use type and name
os << commandData.params[i].type << " " << commandData.params[i].name;
}
else if (commandData.params[i].pureType != "char")
{
// for non-char-pointer, change to reference
os << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << " & " << strippedParameterName;
}
else
{
// for char-pointer, change to const reference to std::string
os << "const std::string & " << strippedParameterName;
}
}
}
else
{
// the argument is a vector
// it's optional, if it's marked as optional and there's no size specified
bool optional = commandData.params[i].optional && (it->second == ~0);
assert((rightStarPos != std::string::npos) && (commandData.params[i].type[rightStarPos] == '*'));
if (commandData.params[i].type.find("char") != std::string::npos)
{
// it's a char-vector -> use a std::string (either optional or a const-reference
if (optional)
{
os << "Optional<const std::string> " << strippedParameterName;
if (withDefaults)
{
os << " = nullptr";
}
}
else
{
os << "const std::string & " << strippedParameterName;
}
}
else
{
// it's a non-char vector (they are never optional)
assert(!optional);
if (singular)
{
// in singular case, change from pointer to reference
os << trimEnd(commandData.params[i].type.substr(0, rightStarPos)) << " & " << stripPluralS(strippedParameterName);
}
else
{
// otherwise, use our ArrayProxy
bool isConst = (commandData.params[i].type.find("const") != std::string::npos);
os << "ArrayProxy<" << ((commandData.templateParam == i) ? (isConst ? "const T" : "T") : trimEnd(commandData.params[i].type.substr(0, rightStarPos))) << "> " << strippedParameterName;
}
}
}
argEncountered = true;
}
}
os << " ";
}
}
void writeFunctionHeaderArgumentsStandard(std::ostream & os, CommandData const& commandData)
{
// for the standard case, just list all the arguments as we've got them
bool argEncountered = false;
for (size_t i = commandData.className.empty() ? 0 : 1; i < commandData.params.size(); i++)
{
if (argEncountered)
{
os << ",";
}
os << " " << commandData.params[i].type << " " << commandData.params[i].name;
if (!commandData.params[i].arraySize.empty())
{
os << "[" << commandData.params[i].arraySize << "]";
}
argEncountered = true;
}
if (argEncountered)
{
os << " ";
}
}
void writeFunctionHeaderName(std::ostream & os, std::string const& name, bool singular, bool unique)
{
os << (singular ? stripPluralS(name) : name);
if (unique)
{
os << "Unique";
}
}
void writeFunctionHeaderReturnType(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool enhanced, bool singular, bool unique, bool isStructureChain)
{
std::string templateString;
std::string returnType;
if (enhanced)
{
// the enhanced function might return some pretty complex return stuff
if (unique)
{
// the unique version returns something prefixed with 'Unique'; potentially a vector of that stuff
// it's a vector, if it's not the singular version and the return parameter is a vector parameter
bool returnsVector = !singular && (commandData.vectorParams.find(commandData.returnParam) != commandData.vectorParams.end());
templateString = returnsVector ? "std::vector<Unique${returnType}> " : "Unique${returnType} ";
returnType = isStructureChain ? "StructureChain<T...>" : commandData.params[commandData.returnParam].pureType;
}
else if ((commandData.enhancedReturnType != commandData.returnType) && (commandData.returnType != "void"))
{
// if the enhanced return type differs from the original return type, and it's not void, we return a ResultValueType<...>::type
if (isStructureChain || (!singular && (commandData.enhancedReturnType.find("Allocator") != std::string::npos)))
{
// for the non-singular case with allocation, we need to prepend with 'typename' to keep compilers happy
templateString = "typename ";
}
templateString += "ResultValueType<${returnType}>::type ";
assert(commandData.returnType == "Result");
// in singular case, we create the ResultValueType from the pure return type, otherwise from the enhanced return type
if (isStructureChain)
{
returnType = "StructureChain<T...>";
}
else
{
returnType = singular ? commandData.params[commandData.returnParam].pureType : commandData.enhancedReturnType;
}
}
else if ((commandData.returnParam != ~0) && (1 < commandData.successCodes.size()))
{
// if there is a return parameter at all, and there are multiple success codes, we return a ResultValue<...> with the pure return type
assert(commandData.returnType == "Result");
templateString = "ResultValue<${returnType}> ";
returnType = isStructureChain ? "StructureChain<T...>" : commandData.params[commandData.returnParam].pureType;
}
else
{
// and in every other case, we just return the enhanced return type.
templateString = "${returnType} ";
returnType = isStructureChain ? "StructureChain<T...>" : commandData.enhancedReturnType;
}
}
else
{
// the non-enhanced function just uses the return type
templateString = "${returnType} ";
returnType = commandData.returnType;
}
os << replaceWithMap(templateString, { { "returnType", returnType } });
}
void writeFunctionHeaderTemplate(std::ostream & os, std::string const& indentation, CommandData const& commandData, bool withDefault, bool isStructureChain)
{
if (isStructureChain)
{
os << indentation << "template <typename ...T>" << std::endl;
}
else if ((commandData.templateParam != ~0) && ((commandData.templateParam != commandData.returnParam) || (commandData.enhancedReturnType == "Result")))
{
// if there's a template parameter, not being the return parameter or where the enhanced return type is 'Result' -> templatize on type 'T'
assert(commandData.enhancedReturnType.find("Allocator") == std::string::npos);
os << indentation << "template <typename T>" << std::endl;
}
else if ((commandData.enhancedReturnType.find("Allocator") != std::string::npos))
{
// otherwise, if there's an Allocator used in the enhanced return type, we templatize on that Allocator
assert((commandData.enhancedReturnType.substr(0, 12) == "std::vector<") && (commandData.enhancedReturnType.find(',') != std::string::npos) && (12 < commandData.enhancedReturnType.find(',')));
os << indentation << "template <typename Allocator";
if (withDefault)
{
// for the default type get the type from the enhancedReturnType, which is of the form 'std::vector<Type,Allocator>'
os << " = std::allocator<" << commandData.enhancedReturnType.substr(12, commandData.enhancedReturnType.find(',') - 12) << ">";
}
os << "> " << std::endl;
}
}
void writeReinterpretCast(std::ostream & os, bool leadingConst, bool vulkanType, std::string const& type, bool trailingPointerToConst)
{
os << "reinterpret_cast<";
if (leadingConst)
{
os << "const ";
}
if (vulkanType)
{
os << "Vk";
}
os << type;
if (trailingPointerToConst)
{
os << "* const";
}
os << "*>";
}
void writeStandardOrEnhanced(std::ostream & os, std::string const& standard, std::string const& enhanced)
{
if (standard == enhanced)
{
// standard and enhanced string are equal -> just use one of them and we're done
os << standard;
}
else
{
// standard and enhanced string differ -> use both, wrapping the enhanced by !VULKAN_HPP_DISABLE_ENHANCED_MODE
// determine the argument list of that standard, and compare it with that of the enhanced
// if they are equal -> need to have just one; if they differ -> need to have both
size_t standardStart = standard.find('(');
size_t standardCount = standard.find(')', standardStart) - standardStart;
size_t enhancedStart = enhanced.find('(');
bool unchangedInterface = (standard.substr(standardStart, standardCount) == enhanced.substr(enhancedStart, standardCount));
if (unchangedInterface)
{
os << "#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE" << std::endl;
}
os << standard
<< (unchangedInterface ? "#else" : "#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE") << std::endl
<< enhanced
<< "#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/" << std::endl;
}
}
void writeStructConstructor( std::ostream & os, std::string const& name, StructData const& structData, std::set<std::string> const& vkTypes, std::map<std::string,std::string> const& defaultValues )
{
// the constructor with all the elements as arguments, with defaults
os << " " << name << "( ";
bool listedArgument = false;
for (size_t i = 0; i<structData.members.size(); i++)
{
if (listedArgument)
{
os << ", ";
}
// skip members 'pNext' and 'sType', as they are never explicitly set
if ((structData.members[i].name != "pNext") && (structData.members[i].name != "sType"))
{
// find a default value for the given pure type
std::map<std::string, std::string>::const_iterator defaultIt = defaultValues.find(structData.members[i].pureType);
assert(defaultIt != defaultValues.end());
if (structData.members[i].arraySize.empty())
{
// the arguments name get a trailing '_', to distinguish them from the actual struct members
// pointer arguments get a nullptr as default
os << structData.members[i].type << " " << structData.members[i].name << "_ = " << (structData.members[i].type.back() == '*' ? "nullptr" : defaultIt->second);
}
else
{
// array members are provided as const reference to a std::array
// the arguments name get a trailing '_', to distinguish them from the actual struct members
// list as many default values as there are elements in the array
os << "std::array<" << structData.members[i].type << "," << structData.members[i].arraySize << "> const& " << structData.members[i].name << "_ = { { " << defaultIt->second;
size_t n = atoi(structData.members[i].arraySize.c_str());
assert(0 < n);
for (size_t j = 1; j < n; j++)
{
os << ", " << defaultIt->second;
}
os << " } }";
}
listedArgument = true;
}
}
os << " )" << std::endl;
// copy over the simple arguments
bool firstArgument = true;
for (size_t i = 0; i < structData.members.size(); i++)
{
if (structData.members[i].arraySize.empty())
{
// here, we can only handle non-array arguments
std::string templateString = " ${sep} ${member}( ${value} )\n";
std::string sep = firstArgument ? ":" : ",";
std::string member = structData.members[i].name;
std::string value;
// 'pNext' and 'sType' don't get an argument, use nullptr and the correct StructureType enum value to initialize them
if (structData.members[i].name == "pNext")
{
value = "nullptr";
}
else if (structData.members[i].name == "sType")
{
value = std::string("StructureType::e") + name;
}
else
{
// the other elements are initialized by the corresponding argument (with trailing '_', as mentioned above)
value = structData.members[i].name + "_";
}
os << replaceWithMap(templateString, { {"sep", sep}, {"member", member}, {"value", value} });
firstArgument = false;
}
}
// the body of the constructor, copying over data from argument list into wrapped struct
os << " {" << std::endl;
for ( size_t i=0 ; i<structData.members.size() ; i++ )
{
if (!structData.members[i].arraySize.empty())
{
// here we can handle the arrays, copying over from argument (with trailing '_') to member
// size is arraySize times sizeof type
std::string member = structData.members[i].name;
std::string arraySize = structData.members[i].arraySize;
std::string type = structData.members[i].type;
os << replaceWithMap(" memcpy( &${member}, ${member}_.data(), ${arraySize} * sizeof( ${type} ) );\n",
{ {"member", member}, {"arraySize", arraySize }, {"type", type} });
}
}
os << " }" << std::endl
<< std::endl;
std::string templateString =
R"( ${name}( Vk${name} const & rhs )
{
memcpy( this, &rhs, sizeof( ${name} ) );
}
${name}& operator=( Vk${name} const & rhs )
{
memcpy( this, &rhs, sizeof( ${name} ) );
return *this;
}
)";
os << replaceWithMap(templateString, { {"name", name } } );
}
void writeStructSetter( std::ostream & os, std::string const& structureName, MemberData const& memberData, std::set<std::string> const& vkTypes )
{
if (memberData.type != "StructureType") // filter out StructureType, which is supposed to be immutable !
{
// the setters return a reference to the structure
os << " " << structureName << "& set" << startUpperCase(memberData.name) << "( ";
if (memberData.arraySize.empty())
{
os << memberData.type << " ";
}
else
{
os << "std::array<" << memberData.type << "," << memberData.arraySize << "> ";
}
// add a trailing '_' to the argument to distinguish it from the structure member
os << memberData.name << "_ )" << std::endl
<< " {" << std::endl;
// copy over the argument, either by assigning simple data, or by memcpy array data
if (memberData.arraySize.empty())
{
os << " " << memberData.name << " = " << memberData.name << "_";
}
else
{
os << " memcpy( &" << memberData.name << ", " << memberData.name << "_.data(), " << memberData.arraySize << " * sizeof( " << memberData.type << " ) )";
}
os << ";" << std::endl
<< " return *this;" << std::endl
<< " }" << std::endl
<< std::endl;
}
}
void writeTypeCommand(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData)
{
assert(vkData.commands.find(dependencyData.name) != vkData.commands.end());
CommandData const& commandData = vkData.commands.find(dependencyData.name)->second;
if (commandData.className.empty())
{
if (commandData.fullName == "createInstance")
{
// special handling for createInstance, as we need to explicitly place the forward declarations and the deleter classes here
auto deleterTypesIt = vkData.deleterTypes.find("");
assert((deleterTypesIt != vkData.deleterTypes.end()) && (deleterTypesIt->second.size() == 1));
writeDeleterForwardDeclarations(os, *deleterTypesIt, vkData.deleterData);
writeTypeCommand(os, " ", vkData, commandData, false);
writeDeleterClasses(os, *deleterTypesIt, vkData.deleterData);
}
else
{
writeTypeCommand(os, " ", vkData, commandData, false);
}
writeTypeCommand(os, " ", vkData, commandData, true);
os << std::endl;
}
}
void writeTypeCommand(std::ostream & os, std::string const& indentation, VkData const& vkData, CommandData const& commandData, bool definition)
{
enterProtect(os, commandData.protect);
bool isStructureChain = vkData.extendedStructs.find(commandData.enhancedReturnType) != vkData.extendedStructs.end();
// first create the standard version of the function
std::ostringstream standard;
writeFunction(standard, indentation, vkData, commandData, definition, false, false, false, false);
// then the enhanced version, composed by up to five parts
std::ostringstream enhanced;
writeFunction(enhanced, indentation, vkData, commandData, definition, true, false, false, false);
if (isStructureChain)
{
writeFunction(enhanced, indentation, vkData, commandData, definition, true, false, false, true);
}
// then a singular version, if a sized vector would be returned
std::map<size_t, size_t>::const_iterator returnVector = commandData.vectorParams.find(commandData.returnParam);
bool singular = (returnVector != commandData.vectorParams.end()) && (returnVector->second != ~0) && (commandData.params[returnVector->second].type.back() != '*');
if (singular)
{
writeFunction(enhanced, indentation, vkData, commandData, definition, true, true, false, false);
}
// special handling for createDevice and createInstance !
bool specialWriteUnique = (commandData.reducedName == "createDevice") || (commandData.reducedName == "createInstance");
// and then the same for the Unique* versions (a Deleter is available for the commandData's class, and the function starts with 'allocate' or 'create')
if (((vkData.deleterData.find(commandData.className) != vkData.deleterData.end()) || specialWriteUnique) && ((commandData.reducedName.substr(0, 8) == "allocate") || (commandData.reducedName.substr(0, 6) == "create")))
{
enhanced << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl;
writeFunction(enhanced, indentation, vkData, commandData, definition, true, false, true, false);
if (singular)
{
writeFunction(enhanced, indentation, vkData, commandData, definition, true, true, true, false);
}
enhanced << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl;
}
// and write one or both of them
writeStandardOrEnhanced(os, standard.str(), enhanced.str());
leaveProtect(os, commandData.protect);
os << std::endl;
}
void writeTypeEnum( std::ostream & os, EnumData const& enumData )
{
// a named enum per enum, listing all its values by setting them to the original Vulkan names
enterProtect(os, enumData.protect);
os << " enum class " << enumData.name << std::endl
<< " {" << std::endl;
for ( size_t i=0 ; i<enumData.members.size() ; i++ )
{
os << " " << enumData.members[i].name << " = " << enumData.members[i].value;
if ( i < enumData.members.size() - 1 )
{
os << ",";
}
os << std::endl;
}
os << " };" << std::endl;
leaveProtect(os, enumData.protect);
os << std::endl;
}
bool isErrorEnum(std::string const& enumName)
{
return (enumName.substr(0, 6) == "eError");
}
std::string stripErrorEnumPrefix(std::string const& enumName)
{
assert(isErrorEnum(enumName));
return strip(enumName, "eError");
}
// Intended only for `enum class Result`!
void writeExceptionsForEnum( std::ostream & os, EnumData const& enumData)
{
std::string templateString =
R"( class ${className} : public SystemError
{
public:
${className}( std::string const& message )
: SystemError( make_error_code( ${enumName}::${enumMemberName} ), message ) {}
${className}( char const * message )
: SystemError( make_error_code( ${enumName}::${enumMemberName} ), message ) {}
};
)";
enterProtect(os, enumData.protect);
for (size_t i = 0; i < enumData.members.size(); i++)
{
if (!isErrorEnum(enumData.members[i].name))
{
continue;
}
os << replaceWithMap(templateString,
{ { "className", stripErrorEnumPrefix(enumData.members[i].name) + "Error"},
{ "enumName", enumData.name},
{ "enumMemberName", enumData.members[i].name}
});
}
leaveProtect(os, enumData.protect);
os << std::endl;
}
void writeThrowExceptions( std::ostream & os, EnumData const& enumData)
{
enterProtect(os, enumData.protect);
os <<
R"( VULKAN_HPP_INLINE void throwResultException( Result result, char const * message )
{
assert ( static_cast<long long int>(result) < 0 );
switch ( result )
{
)";
for ( size_t i=0 ; i<enumData.members.size() ; i++ )
{
if (!isErrorEnum(enumData.members[i].name))
{
continue;
}
const std::string strippedExceptionName = stripErrorEnumPrefix(enumData.members[i].name);
os << " case " << enumData.name << "::" << enumData.members[i].name << ": "
<< "throw " << strippedExceptionName << "Error ( message );" << std::endl;
}
os <<
R"( default: throw SystemError( make_error_code( result ) );
}
}
)";
leaveProtect(os, enumData.protect);
}
void writeDeleterClasses(std::ostream & os, std::pair<std::string, std::set<std::string>> const& deleterTypes, std::map<std::string, DeleterData> const& deleterData)
{
// A Deleter class for each of the Unique* classes... but only if smart handles are not switched off
os << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl;
bool first = true;
// get type and name of the parent (holder) type
std::string parentType = deleterTypes.first;
std::string parentName = parentType.empty() ? "" : startLowerCase(parentType);
// iterate over the deleter types parented by this type
for (auto const& deleterType : deleterTypes.second)
{
std::string deleterName = startLowerCase(deleterType);
bool standardDeleter = !parentType.empty() && (deleterType != "Device"); // this detects the 'standard' case for a deleter
if (!first)
{
os << std::endl;
}
first = false;
os << " class " << deleterType << "Deleter" << std::endl
<< " {" << std::endl
<< " public:" << std::endl
<< " " << deleterType << "Deleter( ";
if (standardDeleter)
{
// the standard deleter gets a parent type in the constructor
os << parentType << " " << parentName << " = " << parentType << "(), ";
}
// if this Deleter is pooled, make such a pool the last argument, otherwise an Optional allocator
auto const& dd = deleterData.find(deleterType);
assert(dd != deleterData.end());
std::string poolName = (dd->second.pool.empty() ? "" : startLowerCase(dd->second.pool));
if (poolName.empty())
{
os << "Optional<const AllocationCallbacks> allocator = nullptr )" << std::endl;
}
else
{
assert(!dd->second.pool.empty());
os << dd->second.pool << " " << poolName << " = " << dd->second.pool << "() )" << std::endl;
}
// now the initializer list of the Deleter constructor
os << " : ";
if (standardDeleter)
{
// the standard deleter has a parent type as a member
os << "m_" << parentName << "( " << parentName << " )" << std::endl
<< " , ";
}
if (poolName.empty())
{
// non-pooled deleter have an allocator as a member
os << "m_allocator( allocator )" << std::endl;
}
else
{
// pooled deleter have a pool as a member
os << "m_" << poolName << "( " << poolName << " )" << std::endl;
}
// besides that, the constructor is empty
os << " {}" << std::endl
<< std::endl;
// the operator() calls the delete/destroy function
os << " void operator()( " << deleterType << " " << deleterName << " )" << std::endl
<< " {" << std::endl;
// the delete/destroy function is either part of the parent member of the deleter argument
if (standardDeleter)
{
os << " m_" << parentName << ".";
}
else
{
os << " " << deleterName << ".";
}
os << dd->second.call << "( ";
if (!poolName.empty())
{
// pooled Deleter gets the pool as the first argument
os << "m_" << poolName << ", ";
}
if (standardDeleter)
{
// the standard deleter gets the deleter argument as an argument
os << deleterName;
}
// the non-pooled deleter get the allocate as an argument (potentially after the deleterName
if (poolName.empty())
{
if (standardDeleter)
{
os << ", ";
}
os << "m_allocator";
}
os << " );" << std::endl
<< " }" << std::endl
<< std::endl;
// now the members of the Deleter class
os << " private:" << std::endl;
if (standardDeleter)
{
// the parentType for the standard deleter
os << " " << parentType << " m_" << parentName << ";" << std::endl;
}
// the allocator for the non-pooled deleters, the pool for the pooled ones
if (poolName.empty())
{
os << " Optional<const AllocationCallbacks> m_allocator;" << std::endl;
}
else
{
os << " " << dd->second.pool << " m_" << poolName << ";" << std::endl;
}
os << " };" << std::endl;
}
os << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl
<< std::endl;
}
void writeDeleterForwardDeclarations(std::ostream &os, std::pair<std::string, std::set<std::string>> const& deleterTypes, std::map<std::string, DeleterData> const& deleterData)
{
// if smart handles are supported, all the Deleter classes need to be forward declared
os << "#ifndef VULKAN_HPP_NO_SMART_HANDLE" << std::endl;
bool first = true;
std::string firstName = deleterTypes.first.empty() ? "" : startLowerCase(deleterTypes.first);
for (auto const& dt : deleterTypes.second)
{
os << " class " << dt << "Deleter;" << std::endl;
os << " using Unique" << dt << " = UniqueHandle<" << dt << ", " << dt << "Deleter>;" << std::endl;
}
os << "#endif /*VULKAN_HPP_NO_SMART_HANDLE*/" << std::endl
<< std::endl;
}
void writeEnumsToString(std::ostream & os, EnumData const& enumData)
{
// the helper functions to make strings out of enum values
enterProtect(os, enumData.protect);
os << " VULKAN_HPP_INLINE std::string to_string(" << enumData.name << (enumData.members.empty() ? ")" : " value)") << std::endl
<< " {" << std::endl;
if (enumData.members.empty())
{
// no enum values in this enum -> return "(void)"
os << " return \"(void)\";" << std::endl;
}
else
{
// otherwise switch over the value and return the a stringized version of that value (without leading 'e')
os << " switch (value)" << std::endl
<< " {" << std::endl;
for (auto const& member : enumData.members)
{
os << " case " << enumData.name << "::" << member.name << ": return \"" << member.name.substr(1) << "\";" << std::endl;
}
os << " default: return \"invalid\";" << std::endl
<< " }" << std::endl;
}
os << " }" << std::endl;
leaveProtect(os, enumData.protect);
os << std::endl;
}
void writeFlagsToString(std::ostream & os, std::string const& flagsName, EnumData const &enumData)
{
// the helper functions to make strings out of flag values
enterProtect(os, enumData.protect);
os << " VULKAN_HPP_INLINE std::string to_string(" << flagsName << (enumData.members.empty() ? ")" : " value)") << std::endl
<< " {" << std::endl;
if (enumData.members.empty())
{
// no flags values in this enum -> return "{}"
os << " return \"{}\";" << std::endl;
}
else
{
os << " if (!value) return \"{}\";" << std::endl
<< " std::string result;" << std::endl;
// 'or' together all the bits in the value
for (auto itMember = enumData.members.begin(); itMember != enumData.members.end(); ++itMember)
{
os << " if (value & " << enumData.name << "::" << itMember->name << ") result += \"" << itMember->name.substr(1) << " | \";" << std::endl;
}
// cut off the last three characters from the result (being " | ")
os << " return \"{\" + result.substr(0, result.size() - 3) + \"}\";" << std::endl;
}
os << " }" << std::endl;
leaveProtect(os, enumData.protect);
os << std::endl;
}
void writeTypeFlags(std::ostream & os, std::string const& flagsName, FlagData const& flagData, EnumData const& enumData)
{
enterProtect(os, flagData.protect);
// each Flags class is using on the class 'Flags' with the corresponding FlagBits enum as the template parameter
os << " using " << flagsName << " = Flags<" << enumData.name << ", Vk" << flagsName << ">;" << std::endl;
std::stringstream allFlags;
for (size_t i = 0; i < enumData.members.size(); i++)
{
if (i != 0)
{
allFlags << " | ";
}
allFlags << "VkFlags(" << enumData.name << "::" << enumData.members[i].name << ")";
}
if (!enumData.members.empty())
{
const std::string templateString = R"(
VULKAN_HPP_INLINE ${flagsName} operator|( ${enumName} bit0, ${enumName} bit1 )
{
return ${flagsName}( bit0 ) | bit1;
}
VULKAN_HPP_INLINE ${flagsName} operator~( ${enumName} bits )
{
return ~( ${flagsName}( bits ) );
}
template <> struct FlagTraits<${enumName}>
{
enum
{
allFlags = ${allFlags}
};
};
)";
os << replaceWithMap(templateString, { { "flagsName", flagsName}, { "enumName", enumData.name }, { "allFlags", allFlags.str() } } );
}
leaveProtect(os, flagData.protect);
os << std::endl;
}
void writeTypeHandle(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, HandleData const& handleData, std::list<DependencyData> const& dependencies)
{
enterProtect(os, handleData.protect);
// check if there are any forward dependenices for this handle -> list them first
if (!dependencyData.forwardDependencies.empty())
{
os << " // forward declarations" << std::endl;
for (std::set<std::string>::const_iterator it = dependencyData.forwardDependencies.begin(); it != dependencyData.forwardDependencies.end(); ++it)
{
assert(vkData.structs.find(*it) != vkData.structs.end());
os << " struct " << *it << ";" << std::endl;
}
os << std::endl;
}
// then write any forward declaration of Deleters used by this handle
std::map<std::string, std::set<std::string>>::const_iterator deleterTypesIt = vkData.deleterTypes.find(dependencyData.name);
if (deleterTypesIt != vkData.deleterTypes.end())
{
writeDeleterForwardDeclarations(os, *deleterTypesIt, vkData.deleterData);
}
const std::string memberName = startLowerCase(dependencyData.name);
const std::string templateString =
R"( class ${className}
{
public:
${className}()
: m_${memberName}(VK_NULL_HANDLE)
{}
${className}( std::nullptr_t )
: m_${memberName}(VK_NULL_HANDLE)
{}
VULKAN_HPP_TYPESAFE_EXPLICIT ${className}( Vk${className} ${memberName} )
: m_${memberName}( ${memberName} )
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
${className} & operator=(Vk${className} ${memberName})
{
m_${memberName} = ${memberName};
return *this;
}
#endif
${className} & operator=( std::nullptr_t )
{
m_${memberName} = VK_NULL_HANDLE;
return *this;
}
bool operator==( ${className} const & rhs ) const
{
return m_${memberName} == rhs.m_${memberName};
}
bool operator!=(${className} const & rhs ) const
{
return m_${memberName} != rhs.m_${memberName};
}
bool operator<(${className} const & rhs ) const
{
return m_${memberName} < rhs.m_${memberName};
}
${commands}
VULKAN_HPP_TYPESAFE_EXPLICIT operator Vk${className}() const
{
return m_${memberName};
}
explicit operator bool() const
{
return m_${memberName} != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_${memberName} == VK_NULL_HANDLE;
}
private:
Vk${className} m_${memberName};
};
static_assert( sizeof( ${className} ) == sizeof( Vk${className} ), "handle and wrapper have different size!" );
)";
std::ostringstream commands;
// now list all the commands that are mapped to members of this class
for (size_t i = 0; i < handleData.commands.size(); i++)
{
std::string commandName = handleData.commands[i];
std::map<std::string, CommandData>::const_iterator cit = vkData.commands.find(commandName);
assert((cit != vkData.commands.end()) && !cit->second.className.empty());
writeTypeCommand(commands, " ", vkData, cit->second, false);
}
os << replaceWithMap(templateString, {
{ "className", dependencyData.name },
{ "memberName", memberName },
{ "commands", commands.str() }
});
// then the actual Deleter classes can be listed
deleterTypesIt = vkData.deleterTypes.find(dependencyData.name);
if (deleterTypesIt != vkData.deleterTypes.end())
{
writeDeleterClasses(os, *deleterTypesIt, vkData.deleterData);
}
// and finally the commands, that are member functions of this handle
for (size_t i = 0; i < handleData.commands.size(); i++)
{
std::string commandName = handleData.commands[i];
std::map<std::string, CommandData>::const_iterator cit = vkData.commands.find(commandName);
assert((cit != vkData.commands.end()) && !cit->second.className.empty());
std::list<DependencyData>::const_iterator dep = std::find_if(dependencies.begin(), dependencies.end(), [commandName](DependencyData const& dd) { return dd.name == commandName; });
assert(dep != dependencies.end() && (dep->name == cit->second.fullName));
writeTypeCommand(os, " ", vkData, cit->second, true);
}
leaveProtect(os, handleData.protect);
}
void writeTypeScalar( std::ostream & os, DependencyData const& dependencyData )
{
assert( dependencyData.dependencies.size() == 1 );
os << " using " << dependencyData.name << " = " << *dependencyData.dependencies.begin() << ";" << std::endl
<< std::endl;
}
bool containsUnion(std::string const& type, std::map<std::string, StructData> const& structs)
{
// a simple recursive check if a type is or contains a union
std::map<std::string, StructData>::const_iterator sit = structs.find(type);
bool found = (sit != structs.end());
if (found)
{
found = sit->second.isUnion;
for (std::vector<MemberData>::const_iterator mit = sit->second.members.begin(); mit != sit->second.members.end() && !found; ++mit)
{
found = (mit->type == mit->pureType) && containsUnion(mit->type, structs);
}
}
return found;
}
void writeTypeStruct( std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, std::map<std::string,std::string> const& defaultValues )
{
std::map<std::string,StructData>::const_iterator it = vkData.structs.find( dependencyData.name );
assert( it != vkData.structs.end() );
enterProtect(os, it->second.protect);
os << " struct " << dependencyData.name << std::endl
<< " {" << std::endl;
// only structs that are not returnedOnly get a constructor!
if ( !it->second.returnedOnly )
{
writeStructConstructor( os, dependencyData.name, it->second, vkData.vkTypes, defaultValues );
}
// create the setters
if (!it->second.returnedOnly)
{
for (size_t i = 0; i<it->second.members.size(); i++)
{
writeStructSetter( os, dependencyData.name, it->second.members[i], vkData.vkTypes );
}
}
// the cast-operator to the wrapped struct
os << " operator const Vk" << dependencyData.name << "&() const" << std::endl
<< " {" << std::endl
<< " return *reinterpret_cast<const Vk" << dependencyData.name << "*>(this);" << std::endl
<< " }" << std::endl
<< std::endl;
// operator==() and operator!=()
// only structs without a union as a member can have a meaningfull == and != operation; we filter them out
if (!containsUnion(dependencyData.name, vkData.structs))
{
// two structs are compared by comparing each of the elements
os << " bool operator==( " << dependencyData.name << " const& rhs ) const" << std::endl
<< " {" << std::endl
<< " return ";
for (size_t i = 0; i < it->second.members.size(); i++)
{
if (i != 0)
{
os << std::endl << " && ";
}
if (!it->second.members[i].arraySize.empty())
{
os << "( memcmp( " << it->second.members[i].name << ", rhs." << it->second.members[i].name << ", " << it->second.members[i].arraySize << " * sizeof( " << it->second.members[i].type << " ) ) == 0 )";
}
else
{
os << "( " << it->second.members[i].name << " == rhs." << it->second.members[i].name << " )";
}
}
os << ";" << std::endl
<< " }" << std::endl
<< std::endl
<< " bool operator!=( " << dependencyData.name << " const& rhs ) const" << std::endl
<< " {" << std::endl
<< " return !operator==( rhs );" << std::endl
<< " }" << std::endl
<< std::endl;
}
// the member variables
for (size_t i = 0; i < it->second.members.size(); i++)
{
if (it->second.members[i].type == "StructureType")
{
assert((i == 0) && (it->second.members[i].name == "sType"));
os << " private:" << std::endl
<< " StructureType sType;" << std::endl
<< std::endl
<< " public:" << std::endl;
}
else
{
os << " " << it->second.members[i].type << " " << it->second.members[i].name;
if (!it->second.members[i].arraySize.empty())
{
os << "[" << it->second.members[i].arraySize << "]";
}
os << ";" << std::endl;
}
}
os << " };" << std::endl
<< " static_assert( sizeof( " << dependencyData.name << " ) == sizeof( Vk" << dependencyData.name << " ), \"struct and wrapper have different size!\" );" << std::endl;
leaveProtect(os, it->second.protect);
os << std::endl;
}
void writeStructureChainValidation(std::ostream & os, VkData const& vkData, DependencyData const& dependencyData)
{
std::map<std::string, StructData>::const_iterator it = vkData.structs.find(dependencyData.name);
assert(it != vkData.structs.end());
if (!it->second.structExtends.empty()) {
enterProtect(os, it->second.protect);
// write out allowed structure chains
for (auto extendName : it->second.structExtends)
{
std::map<std::string, StructData>::const_iterator itExtend = vkData.structs.find(extendName);
assert(itExtend != vkData.structs.end());
enterProtect(os, itExtend->second.protect);
os << " template <> constexpr bool isStructureChainValid<" << extendName << ", " << dependencyData.name << ">() { return true; }" << std::endl;
leaveProtect(os, itExtend->second.protect);
}
leaveProtect(os, it->second.protect);
}
}
void writeTypeUnion( std::ostream & os, VkData const& vkData, DependencyData const& dependencyData, std::map<std::string,std::string> const& defaultValues )
{
std::map<std::string, StructData>::const_iterator it = vkData.structs.find(dependencyData.name);
assert(it != vkData.structs.end());
std::ostringstream oss;
os << " union " << dependencyData.name << std::endl
<< " {" << std::endl;
for ( size_t i=0 ; i<it->second.members.size() ; i++ )
{
// one constructor per union element
os << " " << dependencyData.name << "( ";
if ( it->second.members[i].arraySize.empty() )
{
os << it->second.members[i].type << " ";
}
else
{
os << "const std::array<" << it->second.members[i].type << "," << it->second.members[i].arraySize << ">& ";
}
os << it->second.members[i].name << "_";
// just the very first constructor gets default arguments
if ( i == 0 )
{
std::map<std::string,std::string>::const_iterator defaultIt = defaultValues.find( it->second.members[i].pureType );
assert(defaultIt != defaultValues.end() );
if ( it->second.members[i].arraySize.empty() )
{
os << " = " << defaultIt->second;
}
else
{
os << " = { {" << defaultIt->second << "} }";
}
}
os << " )" << std::endl
<< " {" << std::endl
<< " ";
if ( it->second.members[i].arraySize.empty() )
{
os << it->second.members[i].name << " = " << it->second.members[i].name << "_";
}
else
{
os << "memcpy( &" << it->second.members[i].name << ", " << it->second.members[i].name << "_.data(), " << it->second.members[i].arraySize << " * sizeof( " << it->second.members[i].type << " ) )";
}
os << ";" << std::endl
<< " }" << std::endl
<< std::endl;
}
for (size_t i = 0; i<it->second.members.size(); i++)
{
// one setter per union element
assert(!it->second.returnedOnly);
writeStructSetter(os, dependencyData.name, it->second.members[i], vkData.vkTypes);
}
// the implicit cast operator to the native type
os << " operator Vk" << dependencyData.name << " const& () const" << std::endl
<< " {" << std::endl
<< " return *reinterpret_cast<const Vk" << dependencyData.name << "*>(this);" << std::endl
<< " }" << std::endl
<< std::endl;
// the union member variables
// if there's at least one Vk... type in this union, check for unrestricted unions support
bool needsUnrestrictedUnions = false;
for (size_t i = 0; i < it->second.members.size() && !needsUnrestrictedUnions; i++)
{
needsUnrestrictedUnions = (vkData.vkTypes.find(it->second.members[i].type) != vkData.vkTypes.end());
}
if (needsUnrestrictedUnions)
{
os << "#ifdef VULKAN_HPP_HAS_UNRESTRICTED_UNIONS" << std::endl;
for (size_t i = 0; i < it->second.members.size(); i++)
{
os << " " << it->second.members[i].type << " " << it->second.members[i].name;
if (!it->second.members[i].arraySize.empty())
{
os << "[" << it->second.members[i].arraySize << "]";
}
os << ";" << std::endl;
}
os << "#else" << std::endl;
}
for (size_t i = 0; i < it->second.members.size(); i++)
{
os << " ";
if (vkData.vkTypes.find(it->second.members[i].type) != vkData.vkTypes.end())
{
os << "Vk";
}
os << it->second.members[i].type << " " << it->second.members[i].name;
if (!it->second.members[i].arraySize.empty())
{
os << "[" << it->second.members[i].arraySize << "]";
}
os << ";" << std::endl;
}
if (needsUnrestrictedUnions)
{
os << "#endif // VULKAN_HPP_HAS_UNRESTRICTED_UNIONS" << std::endl;
}
os << " };" << std::endl
<< std::endl;
}
void writeTypes(std::ostream & os, VkData const& vkData, std::map<std::string, std::string> const& defaultValues)
{
for ( std::list<DependencyData>::const_iterator it = vkData.dependencies.begin() ; it != vkData.dependencies.end() ; ++it )
{
switch( it->category )
{
case DependencyData::Category::COMMAND :
writeTypeCommand( os, vkData, *it );
break;
case DependencyData::Category::ENUM :
assert( vkData.enums.find( it->name ) != vkData.enums.end() );
writeTypeEnum( os, vkData.enums.find( it->name )->second );
break;
case DependencyData::Category::FLAGS :
assert(vkData.flags.find(it->name) != vkData.flags.end());
writeTypeFlags( os, it->name, vkData.flags.find( it->name)->second, vkData.enums.find(generateEnumNameForFlags(it->name))->second );
break;
case DependencyData::Category::FUNC_POINTER :
case DependencyData::Category::REQUIRED :
// skip FUNC_POINTER and REQUIRED, they just needed to be in the dependencies list to resolve dependencies
break;
case DependencyData::Category::HANDLE :
assert(vkData.handles.find(it->name) != vkData.handles.end());
writeTypeHandle(os, vkData, *it, vkData.handles.find(it->name)->second, vkData.dependencies);
break;
case DependencyData::Category::SCALAR :
writeTypeScalar( os, *it );
break;
case DependencyData::Category::STRUCT :
writeTypeStruct( os, vkData, *it, defaultValues );
break;
case DependencyData::Category::UNION :
assert( vkData.structs.find( it->name ) != vkData.structs.end() );
writeTypeUnion( os, vkData, *it, defaultValues );
break;
default :
assert( false );
break;
}
}
}
void writeVersionCheck(std::ostream & os, std::string const& version)
{
os << "static_assert( VK_HEADER_VERSION == " << version << " , \"Wrong VK_HEADER_VERSION!\" );" << std::endl
<< std::endl;
}
void writeTypesafeCheck(std::ostream & os, std::string const& typesafeCheck)
{
os << "// 32-bit vulkan is not typesafe for handles, so don't allow copy constructors on this platform by default." << std::endl
<< "// To enable this feature on 32-bit platforms please define VULKAN_HPP_TYPESAFE_CONVERSION" << std::endl
<< typesafeCheck << std::endl
<< "# if !defined( VULKAN_HPP_TYPESAFE_CONVERSION )" << std::endl
<< "# define VULKAN_HPP_TYPESAFE_CONVERSION" << std::endl
<< "# endif" << std::endl
<< "#endif" << std::endl;
}
int main( int argc, char **argv )
{
try {
tinyxml2::XMLDocument doc;
std::string filename = (argc == 1) ? VK_SPEC : argv[1];
std::cout << "Loading vk.xml from " << filename << std::endl;
std::cout << "Writing vulkan.hpp to " << VULKAN_HPP << std::endl;
tinyxml2::XMLError error = doc.LoadFile(filename.c_str());
if (error != tinyxml2::XML_SUCCESS)
{
std::cout << "VkGenerate: failed to load file " << argv[1] << " . Error code: " << error << std::endl;
return -1;
}
tinyxml2::XMLElement * registryElement = doc.FirstChildElement();
assert(strcmp(registryElement->Value(), "registry") == 0);
assert(!registryElement->NextSiblingElement());
VkData vkData;
vkData.handles[""]; // insert the default "handle" without class (for createInstance, and such)
vkData.tags.insert("KHX"); // insert a non-listed tag
for (tinyxml2::XMLElement * child = registryElement->FirstChildElement(); child; child = child->NextSiblingElement())
{
assert(child->Value());
const std::string value = child->Value();
if (value == "commands")
{
readCommands(child, vkData);
}
else if (value == "comment")
{
// get the vulkan license header and skip any leading spaces
readComment(child, vkData.vulkanLicenseHeader);
vkData.vulkanLicenseHeader.erase(vkData.vulkanLicenseHeader.begin(), std::find_if(vkData.vulkanLicenseHeader.begin(), vkData.vulkanLicenseHeader.end(), [](char c) { return !std::isspace(c); }));
}
else if (value == "enums")
{
readEnums(child, vkData);
}
else if (value == "extensions")
{
readExtensions(child, vkData);
}
else if (value == "tags")
{
readTags(child, vkData.tags);
}
else if (value == "types")
{
readTypes(child, vkData);
}
else
{
assert((value == "feature") || (value == "vendorids"));
}
}
sortDependencies(vkData.dependencies);
std::map<std::string, std::string> defaultValues;
createDefaults(vkData, defaultValues);
std::ofstream ofs(VULKAN_HPP);
ofs << vkData.vulkanLicenseHeader << std::endl
<< R"(
#ifndef VULKAN_HPP
#define VULKAN_HPP
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <string>
#include <system_error>
#include <tuple>
#include <type_traits>
#include <vulkan/vulkan.h>
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
# include <memory>
# include <vector>
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
)";
writeVersionCheck(ofs, vkData.version);
writeTypesafeCheck(ofs, vkData.typesafeCheck);
ofs << versionCheckHeader
<< inlineHeader
<< explicitHeader
<< std::endl
<< "namespace vk" << std::endl
<< "{" << std::endl
<< flagsHeader
<< optionalClassHeader
<< arrayProxyHeader
<< uniqueHandleHeader
<< structureChainHeader;
// first of all, write out vk::Result and the exception handling stuff
std::list<DependencyData>::const_iterator it = std::find_if(vkData.dependencies.begin(), vkData.dependencies.end(), [](DependencyData const& dp) { return dp.name == "Result"; });
assert(it != vkData.dependencies.end());
writeTypeEnum(ofs, vkData.enums.find(it->name)->second);
writeEnumsToString(ofs, vkData.enums.find(it->name)->second);
ofs << "#ifndef VULKAN_HPP_NO_EXCEPTIONS";
ofs << exceptionHeader;
ofs << exceptionClassesHeader;
writeExceptionsForEnum(ofs, vkData.enums.find(it->name)->second);
writeThrowExceptions(ofs, vkData.enums.find(it->name)->second);
ofs << "#endif" << std::endl;
vkData.dependencies.erase(it);
ofs << "} // namespace vk" << std::endl
<< std::endl
<< "namespace std" << std::endl
<< "{" << std::endl
<< " template <>" << std::endl
<< " struct is_error_code_enum<vk::Result> : public true_type" << std::endl
<< " {};" << std::endl
<< "}" << std::endl
<< std::endl
<< "namespace vk" << std::endl
<< "{" << std::endl
<< resultValueHeader
<< createResultValueHeader;
assert(vkData.deleterTypes.find("") != vkData.deleterTypes.end());
writeTypes(ofs, vkData, defaultValues);
// write all template functions for the structure pointer chain validation
for (auto it = vkData.dependencies.begin(); it != vkData.dependencies.end(); ++it)
{
switch (it->category)
{
case DependencyData::Category::STRUCT:
writeStructureChainValidation(ofs, vkData, *it);
break;
}
}
// write all the to_string functions for enums and flags
for (auto it = vkData.dependencies.begin(); it != vkData.dependencies.end(); ++it)
{
switch (it->category)
{
case DependencyData::Category::ENUM:
assert(vkData.enums.find(it->name) != vkData.enums.end());
writeEnumsToString(ofs, vkData.enums.find(it->name)->second);
break;
case DependencyData::Category::FLAGS:
writeFlagsToString(ofs, it->name, vkData.enums.find(*it->dependencies.begin())->second);
break;
}
}
ofs << "} // namespace vk" << std::endl
<< std::endl
<< "#endif" << std::endl;
}
catch (std::exception const& e)
{
std::cout << "caught exception: " << e.what() << std::endl;
return -1;
}
catch (...)
{
std::cout << "caught unknown exception" << std::endl;
return -1;
}
}