Vulkan-Hpp/samples/SecondaryCommandBuffer/SecondaryCommandBuffer.cpp

271 lines
14 KiB
C++

// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// VulkanHpp Samples : SecondaryCommandBuffer
// Draw several cubes using primary and secondary command buffers
#if defined( _MSC_VER )
// no need to ignore any warnings with MSVC
#elif defined( __clang__ )
# pragma clang diagnostic ignored "-Wmissing-braces"
#elif defined( __GNUC__ )
// no need to ignore any warnings with GCC
#else
// unknow compiler... just ignore the warnings for yourselves ;)
#endif
#include "../utils/geometries.hpp"
#include "../utils/math.hpp"
#include "../utils/shaders.hpp"
#include "../utils/utils.hpp"
#include "SPIRV/GlslangToSpv.h"
#include <iostream>
#include <thread>
static char const * AppName = "SecondaryCommandBuffer";
static char const * EngineName = "Vulkan.hpp";
int main( int /*argc*/, char ** /*argv*/ )
{
try
{
vk::Instance instance = vk::su::createInstance( AppName, EngineName, {}, vk::su::getInstanceExtensions() );
#if !defined( NDEBUG )
vk::DebugUtilsMessengerEXT debugUtilsMessenger = instance.createDebugUtilsMessengerEXT( vk::su::makeDebugUtilsMessengerCreateInfoEXT() );
#endif
vk::PhysicalDevice physicalDevice = instance.enumeratePhysicalDevices().front();
vk::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) );
std::pair<uint32_t, uint32_t> graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, surfaceData.surface );
vk::Device device = vk::su::createDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() );
vk::CommandPool commandPool = device.createCommandPool( { {}, graphicsAndPresentQueueFamilyIndex.first } );
vk::CommandBuffer commandBuffer =
device.allocateCommandBuffers( vk::CommandBufferAllocateInfo( commandPool, vk::CommandBufferLevel::ePrimary, 1 ) ).front();
vk::Queue graphicsQueue = device.getQueue( graphicsAndPresentQueueFamilyIndex.first, 0 );
vk::Queue presentQueue = device.getQueue( graphicsAndPresentQueueFamilyIndex.second, 0 );
vk::su::SwapChainData swapChainData( physicalDevice,
device,
surfaceData.surface,
surfaceData.extent,
vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc,
{},
graphicsAndPresentQueueFamilyIndex.first,
graphicsAndPresentQueueFamilyIndex.second );
vk::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent );
vk::su::BufferData uniformBufferData( physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer );
glm::mat4x4 mvpcMatrix = vk::su::createModelViewProjectionClipMatrix( surfaceData.extent );
vk::su::copyToDevice( device, uniformBufferData.deviceMemory, mvpcMatrix );
vk::DescriptorSetLayout descriptorSetLayout =
vk::su::createDescriptorSetLayout( device,
{ { vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex },
{ vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment } } );
vk::PipelineLayout pipelineLayout = device.createPipelineLayout( vk::PipelineLayoutCreateInfo( vk::PipelineLayoutCreateFlags(), descriptorSetLayout ) );
vk::RenderPass renderPass = vk::su::createRenderPass( device,
vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface ) ).format,
depthBufferData.format,
vk::AttachmentLoadOp::eClear,
vk::ImageLayout::eColorAttachmentOptimal );
glslang::InitializeProcess();
vk::ShaderModule vertexShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T );
vk::ShaderModule fragmentShaderModule = vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C );
glslang::FinalizeProcess();
std::vector<vk::Framebuffer> framebuffers =
vk::su::createFramebuffers( device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent );
vk::su::BufferData vertexBufferData( physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer );
vk::su::copyToDevice( device, vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) );
vk::PipelineCache pipelineCache = device.createPipelineCache( vk::PipelineCacheCreateInfo() );
vk::Pipeline graphicsPipeline = vk::su::createGraphicsPipeline( device,
pipelineCache,
std::make_pair( vertexShaderModule, nullptr ),
std::make_pair( fragmentShaderModule, nullptr ),
sizeof( texturedCubeData[0] ),
{ { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } },
vk::FrontFace::eClockwise,
true,
pipelineLayout,
renderPass );
commandBuffer.begin( vk::CommandBufferBeginInfo() );
vk::su::TextureData greenTextureData( physicalDevice, device );
greenTextureData.setImage( device, commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) );
vk::su::TextureData checkeredTextureData( physicalDevice, device );
checkeredTextureData.setImage( device, commandBuffer, vk::su::CheckerboardImageGenerator() );
// create two identical descriptor sets, each with a different texture but identical UBOs
vk::DescriptorPool descriptorPool =
vk::su::createDescriptorPool( device, { { vk::DescriptorType::eUniformBuffer, 2 }, { vk::DescriptorType::eCombinedImageSampler, 2 } } );
std::array<vk::DescriptorSetLayout, 2> layouts = { descriptorSetLayout, descriptorSetLayout };
vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo( descriptorPool, layouts );
std::vector<vk::DescriptorSet> descriptorSets = device.allocateDescriptorSets( descriptorSetAllocateInfo );
assert( descriptorSets.size() == 2 );
vk::su::updateDescriptorSets(
device, descriptorSets[0], { { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, VK_WHOLE_SIZE, {} } }, greenTextureData );
vk::su::updateDescriptorSets(
device, descriptorSets[1], { { vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, VK_WHOLE_SIZE, {} } }, checkeredTextureData );
/* VULKAN_KEY_START */
// create four secondary command buffers, for each quadrant of the screen
std::vector<vk::CommandBuffer> secondaryCommandBuffers =
device.allocateCommandBuffers( vk::CommandBufferAllocateInfo( commandPool, vk::CommandBufferLevel::eSecondary, 4 ) );
// Get the index of the next available swapchain image:
vk::Semaphore imageAcquiredSemaphore = device.createSemaphore( vk::SemaphoreCreateInfo() );
vk::ResultValue<uint32_t> currentBuffer = device.acquireNextImageKHR( swapChainData.swapChain, vk::su::FenceTimeout, imageAcquiredSemaphore, nullptr );
assert( currentBuffer.result == vk::Result::eSuccess );
assert( currentBuffer.value < framebuffers.size() );
vk::su::setImageLayout( commandBuffer,
swapChainData.images[currentBuffer.value],
swapChainData.colorFormat,
vk::ImageLayout::eUndefined,
vk::ImageLayout::eColorAttachmentOptimal );
const vk::DeviceSize offset = 0;
vk::Viewport viewport( 0.0f, 0.0f, 200.0f, 200.0f, 0.0f, 1.0f );
vk::Rect2D scissor( vk::Offset2D( 0, 0 ), vk::Extent2D( surfaceData.extent ) );
// now we record four separate command buffers, one for each quadrant of the screen
vk::CommandBufferInheritanceInfo commandBufferInheritanceInfo( renderPass, 0, framebuffers[currentBuffer.value] );
vk::CommandBufferBeginInfo secondaryBeginInfo( vk::CommandBufferUsageFlagBits::eOneTimeSubmit | vk::CommandBufferUsageFlagBits::eRenderPassContinue,
&commandBufferInheritanceInfo );
for ( int i = 0; i < 4; i++ )
{
viewport.x = 25.0f + 250.0f * ( i % 2 );
viewport.y = 25.0f + 250.0f * ( i / 2 );
secondaryCommandBuffers[i].begin( secondaryBeginInfo );
secondaryCommandBuffers[i].bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline );
secondaryCommandBuffers[i].bindDescriptorSets( vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, descriptorSets[i == 0 || i == 3], nullptr );
secondaryCommandBuffers[i].bindVertexBuffers( 0, vertexBufferData.buffer, offset );
secondaryCommandBuffers[i].setViewport( 0, viewport );
secondaryCommandBuffers[i].setScissor( 0, scissor );
secondaryCommandBuffers[i].draw( 12 * 3, 1, 0, 0 );
secondaryCommandBuffers[i].end();
}
std::array<vk::ClearValue, 2> clearValues;
clearValues[0].color = vk::ClearColorValue( 0.2f, 0.2f, 0.2f, 0.2f );
clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 );
vk::RenderPassBeginInfo renderPassBeginInfo(
renderPass, framebuffers[currentBuffer.value], vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ), clearValues );
// specifying VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS means this render pass may ONLY call
// vkCmdExecuteCommands
commandBuffer.beginRenderPass( renderPassBeginInfo, vk::SubpassContents::eSecondaryCommandBuffers );
commandBuffer.executeCommands( secondaryCommandBuffers );
commandBuffer.endRenderPass();
vk::ImageMemoryBarrier prePresentBarrier( vk::AccessFlagBits::eColorAttachmentWrite,
vk::AccessFlagBits::eMemoryRead,
vk::ImageLayout::eColorAttachmentOptimal,
vk::ImageLayout::ePresentSrcKHR,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
swapChainData.images[currentBuffer.value],
vk::ImageSubresourceRange( vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 ) );
commandBuffer.pipelineBarrier(
vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eBottomOfPipe, vk::DependencyFlags(), nullptr, nullptr, prePresentBarrier );
commandBuffer.end();
vk::Fence drawFence = device.createFence( vk::FenceCreateInfo() );
vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput );
vk::SubmitInfo submitInfo( imageAcquiredSemaphore, waitDestinationStageMask, commandBuffer );
graphicsQueue.submit( submitInfo, drawFence );
while ( vk::Result::eTimeout == device.waitForFences( drawFence, VK_TRUE, vk::su::FenceTimeout ) )
;
vk::Result result = presentQueue.presentKHR( vk::PresentInfoKHR( {}, swapChainData.swapChain, currentBuffer.value ) );
switch ( result )
{
case vk::Result::eSuccess: break;
case vk::Result::eSuboptimalKHR: std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n"; break;
default: assert( false ); // an unexpected result is returned !
}
std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) );
/* VULKAN_KEY_END */
device.waitIdle();
device.destroyFence( drawFence );
device.destroySemaphore( imageAcquiredSemaphore );
device.destroyPipeline( graphicsPipeline );
device.destroyPipelineCache( pipelineCache );
device.freeDescriptorSets( descriptorPool, descriptorSets );
device.destroyDescriptorPool( descriptorPool );
vertexBufferData.clear( device );
for ( auto framebuffer : framebuffers )
{
device.destroyFramebuffer( framebuffer );
}
device.destroyShaderModule( fragmentShaderModule );
device.destroyShaderModule( vertexShaderModule );
device.destroyRenderPass( renderPass );
device.destroyPipelineLayout( pipelineLayout );
device.destroyDescriptorSetLayout( descriptorSetLayout );
uniformBufferData.clear( device );
checkeredTextureData.clear( device );
greenTextureData.clear( device );
depthBufferData.clear( device );
swapChainData.clear( device );
device.freeCommandBuffers( commandPool, commandBuffer );
device.destroyCommandPool( commandPool );
device.destroy();
instance.destroySurfaceKHR( surfaceData.surface );
#if !defined( NDEBUG )
instance.destroyDebugUtilsMessengerEXT( debugUtilsMessenger );
#endif
instance.destroy();
}
catch ( vk::SystemError & err )
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit( -1 );
}
catch ( std::exception & err )
{
std::cout << "std::exception: " << err.what() << std::endl;
exit( -1 );
}
catch ( ... )
{
std::cout << "unknown error\n";
exit( -1 );
}
return 0;
}