Vulkan-Hpp/RAII_Samples/MultipleSets/MultipleSets.cpp
2021-02-22 16:19:12 +01:00

305 lines
13 KiB
C++

// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// VulkanHpp Samples : MultipleSets
// Use multiple descriptor sets to draw a textured cube.
#if defined( _MSC_VER )
// no need to ignore any warnings with MSVC
#elif defined( __clang__ )
# pragma clang diagnostic ignored "-Wmissing-braces"
#elif defined( __GNUC__ )
# if ( 9 <= __GNUC__ )
# pragma GCC diagnostic ignored "-Winit-list-lifetime"
# endif
#else
// unknow compiler... just ignore the warnings for yourselves ;)
#endif
#include "../../samples/utils/geometries.hpp"
#include "../../samples/utils/math.hpp"
#include "../utils/shaders.hpp"
#include "../utils/utils.hpp"
#include "SPIRV/GlslangToSpv.h"
#include "vulkan/vulkan_raii.hpp"
#include <iostream>
#include <thread>
static char const * AppName = "MultipleSets";
static char const * EngineName = "Vulkan.hpp";
const std::string vertexShaderText = R"(
#version 400
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (std140, set = 0, binding = 0) uniform buffer
{
mat4 mvp;
} uniformBuffer;
layout (set = 1, binding = 0) uniform sampler2D surface;
layout (location = 0) in vec4 pos;
layout (location = 1) in vec2 inTexCoord;
layout (location = 0) out vec4 outColor;
layout (location = 1) out vec2 outTexCoord;
void main()
{
outColor = texture(surface, vec2(0.0f));
outTexCoord = inTexCoord;
gl_Position = uniformBuffer.mvp * pos;
}
)";
const std::string fragmentShaderText = R"(
#version 400
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (location = 0) in vec4 inColor;
layout (location = 1) in vec2 inTexCoord;
layout (location = 0) out vec4 outColor;
void main()
{
outColor = inColor;
// create a border to see the cube more easily
if ((inTexCoord.x < 0.01f) || (0.99f < inTexCoord.x) || (inTexCoord.y < 0.01f) || (0.99f < inTexCoord.y))
{
outColor *= vec4(0.1f, 0.1f, 0.1f, 1.0f);
}
}
)";
int main( int /*argc*/, char ** /*argv*/ )
{
try
{
std::unique_ptr<vk::raii::Context> context = vk::raii::su::make_unique<vk::raii::Context>();
std::unique_ptr<vk::raii::Instance> instance =
vk::raii::su::makeUniqueInstance( *context, AppName, EngineName, {}, vk::su::getInstanceExtensions() );
#if !defined( NDEBUG )
std::unique_ptr<vk::raii::DebugUtilsMessengerEXT> debugUtilsMessenger =
vk::raii::su::makeUniqueDebugUtilsMessengerEXT( *instance );
#endif
std::unique_ptr<vk::raii::PhysicalDevice> physicalDevice = vk::raii::su::makeUniquePhysicalDevice( *instance );
vk::raii::su::SurfaceData surfaceData( *instance, AppName, vk::Extent2D( 500, 500 ) );
std::pair<uint32_t, uint32_t> graphicsAndPresentQueueFamilyIndex =
vk::raii::su::findGraphicsAndPresentQueueFamilyIndex( *physicalDevice, *surfaceData.surface );
std::unique_ptr<vk::raii::Device> device = vk::raii::su::makeUniqueDevice(
*physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() );
std::unique_ptr<vk::raii::CommandPool> commandPool =
vk::raii::su::makeUniqueCommandPool( *device, graphicsAndPresentQueueFamilyIndex.first );
std::unique_ptr<vk::raii::CommandBuffer> commandBuffer =
vk::raii::su::makeUniqueCommandBuffer( *device, *commandPool );
std::unique_ptr<vk::raii::Queue> graphicsQueue =
vk::raii::su::make_unique<vk::raii::Queue>( *device, graphicsAndPresentQueueFamilyIndex.first, 0 );
std::unique_ptr<vk::raii::Queue> presentQueue =
vk::raii::su::make_unique<vk::raii::Queue>( *device, graphicsAndPresentQueueFamilyIndex.second, 0 );
vk::raii::su::SwapChainData swapChainData( *physicalDevice,
*device,
*surfaceData.surface,
surfaceData.extent,
vk::ImageUsageFlagBits::eColorAttachment |
vk::ImageUsageFlagBits::eTransferSrc,
{},
graphicsAndPresentQueueFamilyIndex.first,
graphicsAndPresentQueueFamilyIndex.second );
vk::raii::su::DepthBufferData depthBufferData(
*physicalDevice, *device, vk::Format::eD16Unorm, surfaceData.extent );
vk::raii::su::TextureData textureData( *physicalDevice, *device );
commandBuffer->begin( vk::CommandBufferBeginInfo() );
textureData.setImage( *commandBuffer, vk::su::MonochromeImageGenerator( { 118, 185, 0 } ) );
vk::raii::su::BufferData uniformBufferData(
*physicalDevice, *device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer );
glm::mat4x4 mvpcMatrix = vk::su::createModelViewProjectionClipMatrix( surfaceData.extent );
vk::raii::su::copyToDevice( *uniformBufferData.deviceMemory, mvpcMatrix );
vk::Format colorFormat =
vk::su::pickSurfaceFormat( physicalDevice->getSurfaceFormatsKHR( **surfaceData.surface ) ).format;
std::unique_ptr<vk::raii::RenderPass> renderPass =
vk::raii::su::makeUniqueRenderPass( *device, colorFormat, depthBufferData.format );
glslang::InitializeProcess();
std::unique_ptr<vk::raii::ShaderModule> vertexShaderModule =
vk::raii::su::makeUniqueShaderModule( *device, vk::ShaderStageFlagBits::eVertex, vertexShaderText );
std::unique_ptr<vk::raii::ShaderModule> fragmentShaderModule =
vk::raii::su::makeUniqueShaderModule( *device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText );
glslang::FinalizeProcess();
std::vector<std::unique_ptr<vk::raii::Framebuffer>> framebuffers = vk::raii::su::makeUniqueFramebuffers(
*device, *renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent );
vk::raii::su::BufferData vertexBufferData(
*physicalDevice, *device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer );
vk::raii::su::copyToDevice(
*vertexBufferData.deviceMemory, texturedCubeData, sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) );
/* VULKAN_KEY_START */
// Create first layout to contain uniform buffer data
vk::DescriptorSetLayoutBinding uniformBinding(
0, vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex );
vk::DescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo( {}, uniformBinding );
std::unique_ptr<vk::raii::DescriptorSetLayout> uniformLayout =
vk::raii::su::make_unique<vk::raii::DescriptorSetLayout>( *device, descriptorSetLayoutCreateInfo );
// Create second layout containing combined sampler/image data
vk::DescriptorSetLayoutBinding sampler2DBinding(
0, vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eVertex );
descriptorSetLayoutCreateInfo.pBindings = &sampler2DBinding;
std::unique_ptr<vk::raii::DescriptorSetLayout> samplerLayout =
vk::raii::su::make_unique<vk::raii::DescriptorSetLayout>( *device, descriptorSetLayoutCreateInfo );
// Create pipeline layout with multiple descriptor sets
std::array<vk::DescriptorSetLayout, 2> descriptorSetLayouts = { **uniformLayout, **samplerLayout };
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo( {}, descriptorSetLayouts );
std::unique_ptr<vk::raii::PipelineLayout> pipelineLayout =
vk::raii::su::make_unique<vk::raii::PipelineLayout>( *device, pipelineLayoutCreateInfo );
// Create a single pool to contain data for our two descriptor sets
std::array<vk::DescriptorPoolSize, 2> poolSizes = { vk::DescriptorPoolSize( vk::DescriptorType::eUniformBuffer, 1 ),
vk::DescriptorPoolSize(
vk::DescriptorType::eCombinedImageSampler, 1 ) };
vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo(
vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 2, poolSizes );
std::unique_ptr<vk::raii::DescriptorPool> descriptorPool =
vk::raii::su::make_unique<vk::raii::DescriptorPool>( *device, descriptorPoolCreateInfo );
// Populate descriptor sets
vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo( **descriptorPool, descriptorSetLayouts );
vk::raii::DescriptorSets descriptorSets( *device, descriptorSetAllocateInfo );
// Populate with info about our uniform buffer
vk::DescriptorBufferInfo uniformBufferInfo( **uniformBufferData.buffer, 0, sizeof( glm::mat4x4 ) );
vk::DescriptorImageInfo textureImageInfo(
**textureData.sampler, **textureData.imageData->imageView, vk::ImageLayout::eShaderReadOnlyOptimal );
std::array<vk::WriteDescriptorSet, 2> writeDescriptorSets = {
{ vk::WriteDescriptorSet( *descriptorSets[0], 0, 0, vk::DescriptorType::eUniformBuffer, {}, uniformBufferInfo ),
vk::WriteDescriptorSet(
*descriptorSets[1], 0, 0, vk::DescriptorType::eCombinedImageSampler, textureImageInfo ) }
};
device->updateDescriptorSets( writeDescriptorSets, nullptr );
/* VULKAN_KEY_END */
std::unique_ptr<vk::raii::PipelineCache> pipelineCache =
vk::raii::su::make_unique<vk::raii::PipelineCache>( *device, vk::PipelineCacheCreateInfo() );
std::unique_ptr<vk::raii::Pipeline> graphicsPipeline = vk::raii::su::makeUniqueGraphicsPipeline(
*device,
*pipelineCache,
*vertexShaderModule,
nullptr,
*fragmentShaderModule,
nullptr,
sizeof( texturedCubeData[0] ),
{ { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } },
vk::FrontFace::eClockwise,
true,
*pipelineLayout,
*renderPass );
// Get the index of the next available swapchain image:
std::unique_ptr<vk::raii::Semaphore> imageAcquiredSemaphore =
vk::raii::su::make_unique<vk::raii::Semaphore>( *device, vk::SemaphoreCreateInfo() );
vk::Result result;
uint32_t imageIndex;
std::tie( result, imageIndex ) =
swapChainData.swapChain->acquireNextImage( vk::su::FenceTimeout, **imageAcquiredSemaphore );
assert( result == vk::Result::eSuccess );
assert( imageIndex < swapChainData.images.size() );
std::array<vk::ClearValue, 2> clearValues;
clearValues[0].color = vk::ClearColorValue( std::array<float, 4>( { { 0.2f, 0.2f, 0.2f, 0.2f } } ) );
clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 );
vk::RenderPassBeginInfo renderPassBeginInfo(
**renderPass, **framebuffers[imageIndex], vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ), clearValues );
commandBuffer->beginRenderPass( renderPassBeginInfo, vk::SubpassContents::eInline );
commandBuffer->bindPipeline( vk::PipelineBindPoint::eGraphics, **graphicsPipeline );
commandBuffer->bindDescriptorSets(
vk::PipelineBindPoint::eGraphics, **pipelineLayout, 0, { *descriptorSets[0], *descriptorSets[1] }, nullptr );
vk::Buffer buffer = **vertexBufferData.buffer;
commandBuffer->bindVertexBuffers( 0, buffer, { 0 } );
commandBuffer->setViewport( 0,
vk::Viewport( 0.0f,
0.0f,
static_cast<float>( surfaceData.extent.width ),
static_cast<float>( surfaceData.extent.height ),
0.0f,
1.0f ) );
commandBuffer->setScissor( 0, vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ) );
commandBuffer->draw( 12 * 3, 1, 0, 0 );
commandBuffer->endRenderPass();
commandBuffer->end();
std::unique_ptr<vk::raii::Fence> drawFence = vk::raii::su::make_unique<vk::raii::Fence>( *device, vk::FenceCreateInfo() );
vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput );
vk::SubmitInfo submitInfo( **imageAcquiredSemaphore, waitDestinationStageMask, **commandBuffer );
graphicsQueue->submit( submitInfo, **drawFence );
while ( vk::Result::eTimeout == device->waitForFences( { **drawFence }, VK_TRUE, vk::su::FenceTimeout ) )
;
vk::PresentInfoKHR presentInfoKHR( nullptr, **swapChainData.swapChain, imageIndex );
result = presentQueue->presentKHR( presentInfoKHR );
switch ( result )
{
case vk::Result::eSuccess: break;
case vk::Result::eSuboptimalKHR:
std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n";
break;
default: assert( false ); // an unexpected result is returned !
}
std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) );
device->waitIdle();
}
catch ( vk::SystemError & err )
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit( -1 );
}
catch ( std::exception & err )
{
std::cout << "std::exception: " << err.what() << std::endl;
exit( -1 );
}
catch ( ... )
{
std::cout << "unknown error\n";
exit( -1 );
}
return 0;
}