Vulkan-Hpp/samples/SecondaryCommandBuffer/SecondaryCommandBuffer.cpp

190 lines
11 KiB
C++

// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// VulkanHpp Samples : SecondaryCommandBuffer
// Draw several cubes using primary and secondary command buffers
#include "../utils/geometries.hpp"
#include "../utils/math.hpp"
#include "../utils/shaders.hpp"
#include "../utils/utils.hpp"
#include "vulkan/vulkan.hpp"
#include "SPIRV/GlslangToSpv.h"
#include <iostream>
static char const* AppName = "SecondaryCommandBuffer";
static char const* EngineName = "Vulkan.hpp";
int main(int /*argc*/, char ** /*argv*/)
{
try
{
vk::UniqueInstance instance = vk::su::createInstance(AppName, EngineName, {}, vk::su::getInstanceExtensions());
#if !defined(NDEBUG)
vk::UniqueDebugReportCallbackEXT debugReportCallback = vk::su::createDebugReportCallback(instance);
#endif
vk::PhysicalDevice physicalDevice = instance->enumeratePhysicalDevices().front();
vk::su::SurfaceData surfaceData(instance, AppName, AppName, vk::Extent2D(500, 500));
std::pair<uint32_t, uint32_t> graphicsAndPresentQueueFamilyIndex = vk::su::findGraphicsAndPresentQueueFamilyIndex(physicalDevice, *surfaceData.surface);
vk::UniqueDevice device = vk::su::createDevice(physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions());
vk::UniqueCommandPool commandPool = vk::su::createCommandPool(device, graphicsAndPresentQueueFamilyIndex.first);
vk::UniqueCommandBuffer commandBuffer = std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::ePrimary, 1)).front());
vk::Queue graphicsQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.first, 0);
vk::Queue presentQueue = device->getQueue(graphicsAndPresentQueueFamilyIndex.second, 0);
vk::su::SwapChainData swapChainData(physicalDevice, device, *surfaceData.surface, surfaceData.extent, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc,
vk::UniqueSwapchainKHR(), graphicsAndPresentQueueFamilyIndex.first, graphicsAndPresentQueueFamilyIndex.second);
vk::su::DepthBufferData depthBufferData(physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent);
vk::su::BufferData uniformBufferData(physicalDevice, device, sizeof(glm::mat4x4), vk::BufferUsageFlagBits::eUniformBuffer);
vk::su::copyToDevice(device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix(surfaceData.extent));
vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout(device,
{ {vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex}, {vk::DescriptorType::eCombinedImageSampler, 1, vk::ShaderStageFlagBits::eFragment} });
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), 1, &descriptorSetLayout.get()));
vk::UniqueRenderPass renderPass = vk::su::createRenderPass(device, vk::su::pickSurfaceFormat(physicalDevice.getSurfaceFormatsKHR(surfaceData.surface.get())).format, depthBufferData.format,
vk::AttachmentLoadOp::eClear, vk::ImageLayout::eColorAttachmentOptimal);
glslang::InitializeProcess();
vk::UniqueShaderModule vertexShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T);
vk::UniqueShaderModule fragmentShaderModule = vk::su::createShaderModule(device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText_T_C);
glslang::FinalizeProcess();
std::vector<vk::UniqueFramebuffer> framebuffers = vk::su::createFramebuffers(device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent);
vk::su::BufferData vertexBufferData(physicalDevice, device, sizeof(texturedCubeData), vk::BufferUsageFlagBits::eVertexBuffer);
vk::su::copyToDevice(device, vertexBufferData.deviceMemory, texturedCubeData, sizeof(texturedCubeData) / sizeof(texturedCubeData[0]));
vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo());
vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline(device, pipelineCache, std::make_pair(*vertexShaderModule, nullptr), std::make_pair(*fragmentShaderModule, nullptr),
sizeof(texturedCubeData[0]), { { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32Sfloat, 16 } },
vk::FrontFace::eClockwise, true, pipelineLayout, renderPass);
commandBuffer->begin(vk::CommandBufferBeginInfo());
vk::su::TextureData greenTextureData(physicalDevice, device);
greenTextureData.setImage(device, commandBuffer, vk::su::MonochromeImageGenerator({ 118, 185, 0 }));
vk::su::TextureData checkeredTextureData(physicalDevice, device);
checkeredTextureData.setImage(device, commandBuffer, vk::su::CheckerboardImageGenerator());
// create two identical descriptor sets, each with a different texture but identical UBOs
vk::UniqueDescriptorPool descriptorPool = vk::su::createDescriptorPool(device, { {vk::DescriptorType::eUniformBuffer, 2}, {vk::DescriptorType::eCombinedImageSampler, 2} });
vk::DescriptorSetLayout layouts[] = { descriptorSetLayout.get(), descriptorSetLayout.get() };
std::vector<vk::UniqueDescriptorSet> descriptorSets = device->allocateDescriptorSetsUnique(vk::DescriptorSetAllocateInfo(descriptorPool.get(), 2, layouts));
assert(descriptorSets.size() == 2);
vk::su::updateDescriptorSets(device, descriptorSets[0], {{vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, vk::UniqueBufferView()}}, greenTextureData);
vk::su::updateDescriptorSets(device, descriptorSets[1], {{vk::DescriptorType::eUniformBuffer, uniformBufferData.buffer, vk::UniqueBufferView()}}, checkeredTextureData);
/* VULKAN_KEY_START */
// create four secondary command buffers, for each quadrant of the screen
std::vector<vk::UniqueCommandBuffer> secondaryCommandBuffers = device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::eSecondary, 4));
// Get the index of the next available swapchain image:
vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique(vk::SemaphoreCreateInfo());
vk::ResultValue<uint32_t> currentBuffer = device->acquireNextImageKHR(swapChainData.swapChain.get(), vk::su::FenceTimeout, imageAcquiredSemaphore.get(), nullptr);
assert(currentBuffer.result == vk::Result::eSuccess);
assert(currentBuffer.value < framebuffers.size());
vk::su::setImageLayout(commandBuffer, swapChainData.images[currentBuffer.value], swapChainData.colorFormat, vk::ImageLayout::eUndefined, vk::ImageLayout::eColorAttachmentOptimal);
const vk::DeviceSize offset = 0;
vk::Viewport viewport(0.0f, 0.0f, 200.0f, 200.0f, 0.0f, 1.0f);
vk::Rect2D scissor(vk::Offset2D(0, 0), vk::Extent2D(surfaceData.extent));
// now we record four separate command buffers, one for each quadrant of the screen
vk::CommandBufferInheritanceInfo commandBufferInheritanceInfo(renderPass.get(), 0, framebuffers[currentBuffer.value].get());
vk::CommandBufferBeginInfo secondaryBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit | vk::CommandBufferUsageFlagBits::eRenderPassContinue, &commandBufferInheritanceInfo);
for (int i = 0; i < 4; i++)
{
viewport.x = 25.0f + 250.0f * (i % 2);
viewport.y = 25.0f + 250.0f * (i / 2);
secondaryCommandBuffers[i]->begin(secondaryBeginInfo);
secondaryCommandBuffers[i]->bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline.get());
secondaryCommandBuffers[i]->bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSets[i == 0 || i == 3].get(), nullptr);
secondaryCommandBuffers[i]->bindVertexBuffers(0, vertexBufferData.buffer.get(), offset);
secondaryCommandBuffers[i]->setViewport(0, viewport);
secondaryCommandBuffers[i]->setScissor(0, scissor);
secondaryCommandBuffers[i]->draw(12 * 3, 1, 0, 0);
secondaryCommandBuffers[i]->end();
}
vk::ClearValue clearValues[2];
clearValues[0].color = vk::ClearColorValue(std::array<float, 4>({ 0.2f, 0.2f, 0.2f, 0.2f }));
clearValues[1].depthStencil = vk::ClearDepthStencilValue(1.0f, 0);
vk::RenderPassBeginInfo renderPassBeginInfo(renderPass.get(), framebuffers[currentBuffer.value].get(), vk::Rect2D(vk::Offset2D(0, 0), surfaceData.extent), 2, clearValues);
// specifying VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS means this render pass may ONLY call vkCmdExecuteCommands
commandBuffer->beginRenderPass(renderPassBeginInfo, vk::SubpassContents::eSecondaryCommandBuffers);
commandBuffer->executeCommands(vk::uniqueToRaw(secondaryCommandBuffers));
commandBuffer->endRenderPass();
vk::ImageMemoryBarrier prePresentBarrier(vk::AccessFlagBits::eColorAttachmentWrite, vk::AccessFlagBits::eMemoryRead, vk::ImageLayout::eColorAttachmentOptimal, vk::ImageLayout::ePresentSrcKHR,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, swapChainData.images[currentBuffer.value], vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
commandBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eBottomOfPipe, vk::DependencyFlags(), nullptr, nullptr, prePresentBarrier);
commandBuffer->end();
vk::UniqueFence drawFence = device->createFenceUnique(vk::FenceCreateInfo());
vk::PipelineStageFlags waitDestinationStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput);
vk::SubmitInfo submitInfo(1, &imageAcquiredSemaphore.get(), &waitDestinationStageMask, 1, &commandBuffer.get());
graphicsQueue.submit(submitInfo, drawFence.get());
while (vk::Result::eTimeout == device->waitForFences(drawFence.get(), VK_TRUE, vk::su::FenceTimeout))
;
presentQueue.presentKHR(vk::PresentInfoKHR(0, nullptr, 1, &swapChainData.swapChain.get(), &currentBuffer.value));
Sleep(1000);
/* VULKAN_KEY_END */
device->waitIdle();
#if defined(VK_USE_PLATFORM_WIN32_KHR)
DestroyWindow(surfaceData.window);
#else
#pragma error "unhandled platform"
#endif
}
catch (vk::SystemError err)
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit(-1);
}
catch (std::runtime_error err)
{
std::cout << "std::runtime_error: " << err.what() << std::endl;
exit(-1);
}
catch (...)
{
std::cout << "unknown error\n";
exit(-1);
}
return 0;
}