Vulkan-Hpp/vulkan/vulkan.hpp

20343 lines
667 KiB
C++

// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
// This header is generated from the Khronos Vulkan XML API Registry.
#ifndef VULKAN_HPP
#define VULKAN_HPP
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <string>
#include <system_error>
#include <type_traits>
#include <vulkan/vulkan.h>
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
# include <memory>
# include <vector>
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
#include <functional>
#endif
static_assert(VK_HEADER_VERSION == 21, "Wrong VK_HEADER_VERSION!");
// 32-bit vulkan is not typesafe for handles, so don't allow copy constructors on this platform by default.
// To enable this feature on 32-bit platforms please define VULKAN_HPP_TYPESAFE_CONVERSION
#if defined(__LP64__) || defined(_WIN64) || defined(__x86_64__) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
#define VULKAN_HPP_TYPESAFE_CONVERSION 1
#endif
#if !defined(VULKAN_HPP_HAS_UNRESTRICTED_UNIONS)
# if defined(__clang__)
# if __has_feature(cxx_unrestricted_unions)
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# elif defined(__GNUC__)
# define GCC_VERSION (__GNUC__ * 1000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
# if 40600 <= GCC_VERSION
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# elif defined(_MSC_VER)
# if 1900 <= _MSC_VER
# define VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
# endif
# endif
#endif
namespace vk
{
template <typename BitType, typename MaskType = VkFlags>
class Flags
{
public:
Flags()
: m_mask(0)
{
}
Flags(BitType bit)
: m_mask(static_cast<MaskType>(bit))
{
}
Flags(Flags<BitType> const& rhs)
: m_mask(rhs.m_mask)
{
}
Flags<BitType> & operator=(Flags<BitType> const& rhs)
{
m_mask = rhs.m_mask;
return *this;
}
Flags<BitType> & operator|=(Flags<BitType> const& rhs)
{
m_mask |= rhs.m_mask;
return *this;
}
Flags<BitType> & operator&=(Flags<BitType> const& rhs)
{
m_mask &= rhs.m_mask;
return *this;
}
Flags<BitType> & operator^=(Flags<BitType> const& rhs)
{
m_mask ^= rhs.m_mask;
return *this;
}
Flags<BitType> operator|(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result |= rhs;
return result;
}
Flags<BitType> operator&(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result &= rhs;
return result;
}
Flags<BitType> operator^(Flags<BitType> const& rhs) const
{
Flags<BitType> result(*this);
result ^= rhs;
return result;
}
bool operator!() const
{
return !m_mask;
}
bool operator==(Flags<BitType> const& rhs) const
{
return m_mask == rhs.m_mask;
}
bool operator!=(Flags<BitType> const& rhs) const
{
return m_mask != rhs.m_mask;
}
explicit operator bool() const
{
return !!m_mask;
}
explicit operator MaskType() const
{
return m_mask;
}
private:
MaskType m_mask;
};
template <typename BitType>
Flags<BitType> operator|(BitType bit, Flags<BitType> const& flags)
{
return flags | bit;
}
template <typename BitType>
Flags<BitType> operator&(BitType bit, Flags<BitType> const& flags)
{
return flags & bit;
}
template <typename BitType>
Flags<BitType> operator^(BitType bit, Flags<BitType> const& flags)
{
return flags ^ bit;
}
template <typename RefType>
class Optional
{
public:
Optional(RefType & reference) { m_ptr = &reference; }
Optional(std::nullptr_t) { m_ptr = nullptr; }
operator RefType*() const { return m_ptr; }
RefType const* operator->() const { return m_ptr; }
explicit operator bool() const { return !!m_ptr; }
private:
RefType *m_ptr;
};
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
class ArrayProxy
{
public:
ArrayProxy(std::nullptr_t)
: m_count(0)
, m_ptr(nullptr)
{}
ArrayProxy(T & ptr)
: m_count(1)
, m_ptr(&ptr)
{}
ArrayProxy(uint32_t count, T * ptr)
: m_count(count)
, m_ptr(ptr)
{}
template <size_t N>
ArrayProxy(std::array<typename std::remove_const<T>::type, N> & data)
: m_count(N)
, m_ptr(data.data())
{}
template <size_t N>
ArrayProxy(std::array<typename std::remove_const<T>::type, N> const& data)
: m_count(N)
, m_ptr(data.data())
{}
template <class Allocator = std::allocator<typename std::remove_const<T>::type>>
ArrayProxy(std::vector<typename std::remove_const<T>::type, Allocator> & data)
: m_count(static_cast<uint32_t>(data.size()))
, m_ptr(data.data())
{}
template <class Allocator = std::allocator<typename std::remove_const<T>::type>>
ArrayProxy(std::vector<typename std::remove_const<T>::type, Allocator> const& data)
: m_count(static_cast<uint32_t>(data.size()))
, m_ptr(data.data())
{}
ArrayProxy(std::initializer_list<T> const& data)
: m_count(static_cast<uint32_t>(data.end() - data.begin()))
, m_ptr(data.begin())
{}
const T * begin() const
{
return m_ptr;
}
const T * end() const
{
return m_ptr + m_count;
}
const T & front() const
{
assert(m_count && m_ptr);
return *m_ptr;
}
const T & back() const
{
assert(m_count && m_ptr);
return *(m_ptr + m_count - 1);
}
bool empty() const
{
return (m_count == 0);
}
uint32_t size() const
{
return m_count;
}
T * data() const
{
return m_ptr;
}
private:
uint32_t m_count;
T * m_ptr;
};
#endif
enum class Result
{
eSuccess = VK_SUCCESS,
eNotReady = VK_NOT_READY,
eTimeout = VK_TIMEOUT,
eEventSet = VK_EVENT_SET,
eEventReset = VK_EVENT_RESET,
eIncomplete = VK_INCOMPLETE,
eErrorOutOfHostMemory = VK_ERROR_OUT_OF_HOST_MEMORY,
eErrorOutOfDeviceMemory = VK_ERROR_OUT_OF_DEVICE_MEMORY,
eErrorInitializationFailed = VK_ERROR_INITIALIZATION_FAILED,
eErrorDeviceLost = VK_ERROR_DEVICE_LOST,
eErrorMemoryMapFailed = VK_ERROR_MEMORY_MAP_FAILED,
eErrorLayerNotPresent = VK_ERROR_LAYER_NOT_PRESENT,
eErrorExtensionNotPresent = VK_ERROR_EXTENSION_NOT_PRESENT,
eErrorFeatureNotPresent = VK_ERROR_FEATURE_NOT_PRESENT,
eErrorIncompatibleDriver = VK_ERROR_INCOMPATIBLE_DRIVER,
eErrorTooManyObjects = VK_ERROR_TOO_MANY_OBJECTS,
eErrorFormatNotSupported = VK_ERROR_FORMAT_NOT_SUPPORTED,
eErrorSurfaceLostKHR = VK_ERROR_SURFACE_LOST_KHR,
eErrorNativeWindowInUseKHR = VK_ERROR_NATIVE_WINDOW_IN_USE_KHR,
eSuboptimalKHR = VK_SUBOPTIMAL_KHR,
eErrorOutOfDateKHR = VK_ERROR_OUT_OF_DATE_KHR,
eErrorIncompatibleDisplayKHR = VK_ERROR_INCOMPATIBLE_DISPLAY_KHR,
eErrorValidationFailedEXT = VK_ERROR_VALIDATION_FAILED_EXT,
eErrorInvalidShaderNV = VK_ERROR_INVALID_SHADER_NV
};
inline std::string to_string(Result value)
{
switch (value)
{
case Result::eSuccess: return "Success";
case Result::eNotReady: return "NotReady";
case Result::eTimeout: return "Timeout";
case Result::eEventSet: return "EventSet";
case Result::eEventReset: return "EventReset";
case Result::eIncomplete: return "Incomplete";
case Result::eErrorOutOfHostMemory: return "ErrorOutOfHostMemory";
case Result::eErrorOutOfDeviceMemory: return "ErrorOutOfDeviceMemory";
case Result::eErrorInitializationFailed: return "ErrorInitializationFailed";
case Result::eErrorDeviceLost: return "ErrorDeviceLost";
case Result::eErrorMemoryMapFailed: return "ErrorMemoryMapFailed";
case Result::eErrorLayerNotPresent: return "ErrorLayerNotPresent";
case Result::eErrorExtensionNotPresent: return "ErrorExtensionNotPresent";
case Result::eErrorFeatureNotPresent: return "ErrorFeatureNotPresent";
case Result::eErrorIncompatibleDriver: return "ErrorIncompatibleDriver";
case Result::eErrorTooManyObjects: return "ErrorTooManyObjects";
case Result::eErrorFormatNotSupported: return "ErrorFormatNotSupported";
case Result::eErrorSurfaceLostKHR: return "ErrorSurfaceLostKHR";
case Result::eErrorNativeWindowInUseKHR: return "ErrorNativeWindowInUseKHR";
case Result::eSuboptimalKHR: return "SuboptimalKHR";
case Result::eErrorOutOfDateKHR: return "ErrorOutOfDateKHR";
case Result::eErrorIncompatibleDisplayKHR: return "ErrorIncompatibleDisplayKHR";
case Result::eErrorValidationFailedEXT: return "ErrorValidationFailedEXT";
case Result::eErrorInvalidShaderNV: return "ErrorInvalidShaderNV";
default: return "invalid";
}
}
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# define noexcept _NOEXCEPT
#endif
class ErrorCategoryImpl : public std::error_category
{
public:
virtual const char* name() const noexcept override { return "vk::Result"; }
virtual std::string message(int ev) const override { return to_string(static_cast<Result>(ev)); }
};
#if defined(_MSC_VER) && (_MSC_VER == 1800)
# undef noexcept
#endif
inline const std::error_category& errorCategory()
{
static ErrorCategoryImpl instance;
return instance;
}
inline std::error_code make_error_code(Result e)
{
return std::error_code(static_cast<int>(e), errorCategory());
}
inline std::error_condition make_error_condition(Result e)
{
return std::error_condition(static_cast<int>(e), errorCategory());
}
} // namespace vk
namespace std
{
template <>
struct is_error_code_enum<vk::Result> : public true_type
{};
}
namespace vk
{
template <typename T>
struct ResultValue
{
ResultValue(Result r, T & v)
: result(r)
, value(v)
{}
Result result;
T value;
};
template <typename T>
struct ResultValueType
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
typedef ResultValue<T> type;
#else
typedef T type;
#endif
};
template <> struct ResultValueType<void>
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
typedef Result type;
#else
typedef void type;
#endif
};
inline ResultValueType<void>::type createResultValue(Result result, char const * message)
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert(result == Result::eSuccess);
return result;
#else
if (result != Result::eSuccess)
{
throw std::system_error(result, message);
}
#endif
}
template <typename T>
inline typename ResultValueType<T>::type createResultValue(Result result, T & data, char const * message)
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert(result == Result::eSuccess);
return ResultValue<T>(result, data);
#else
if (result != Result::eSuccess)
{
throw std::system_error(result, message);
}
return data;
#endif
}
inline Result createResultValue(Result result, char const * message, std::initializer_list<Result> successCodes)
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert(std::find(successCodes.begin(), successCodes.end(), result) != successCodes.end());
#else
if (std::find(successCodes.begin(), successCodes.end(), result) == successCodes.end())
{
throw std::system_error(result, message);
}
#endif
return result;
}
template <typename T>
inline ResultValue<T> createResultValue(Result result, T & data, char const * message, std::initializer_list<Result> successCodes)
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert(std::find(successCodes.begin(), successCodes.end(), result) != successCodes.end());
#else
if (std::find(successCodes.begin(), successCodes.end(), result) == successCodes.end())
{
throw std::system_error(result, message);
}
#endif
return ResultValue<T>(result, data);
}
using SampleMask = uint32_t;
using Bool32 = uint32_t;
using DeviceSize = uint64_t;
enum class FramebufferCreateFlagBits
{
};
using FramebufferCreateFlags = Flags<FramebufferCreateFlagBits, VkFramebufferCreateFlags>;
inline FramebufferCreateFlags operator|(FramebufferCreateFlagBits bit0, FramebufferCreateFlagBits bit1)
{
return FramebufferCreateFlags(bit0) | bit1;
}
enum class QueryPoolCreateFlagBits
{
};
using QueryPoolCreateFlags = Flags<QueryPoolCreateFlagBits, VkQueryPoolCreateFlags>;
inline QueryPoolCreateFlags operator|(QueryPoolCreateFlagBits bit0, QueryPoolCreateFlagBits bit1)
{
return QueryPoolCreateFlags(bit0) | bit1;
}
enum class RenderPassCreateFlagBits
{
};
using RenderPassCreateFlags = Flags<RenderPassCreateFlagBits, VkRenderPassCreateFlags>;
inline RenderPassCreateFlags operator|(RenderPassCreateFlagBits bit0, RenderPassCreateFlagBits bit1)
{
return RenderPassCreateFlags(bit0) | bit1;
}
enum class SamplerCreateFlagBits
{
};
using SamplerCreateFlags = Flags<SamplerCreateFlagBits, VkSamplerCreateFlags>;
inline SamplerCreateFlags operator|(SamplerCreateFlagBits bit0, SamplerCreateFlagBits bit1)
{
return SamplerCreateFlags(bit0) | bit1;
}
enum class PipelineLayoutCreateFlagBits
{
};
using PipelineLayoutCreateFlags = Flags<PipelineLayoutCreateFlagBits, VkPipelineLayoutCreateFlags>;
inline PipelineLayoutCreateFlags operator|(PipelineLayoutCreateFlagBits bit0, PipelineLayoutCreateFlagBits bit1)
{
return PipelineLayoutCreateFlags(bit0) | bit1;
}
enum class PipelineCacheCreateFlagBits
{
};
using PipelineCacheCreateFlags = Flags<PipelineCacheCreateFlagBits, VkPipelineCacheCreateFlags>;
inline PipelineCacheCreateFlags operator|(PipelineCacheCreateFlagBits bit0, PipelineCacheCreateFlagBits bit1)
{
return PipelineCacheCreateFlags(bit0) | bit1;
}
enum class PipelineDepthStencilStateCreateFlagBits
{
};
using PipelineDepthStencilStateCreateFlags = Flags<PipelineDepthStencilStateCreateFlagBits, VkPipelineDepthStencilStateCreateFlags>;
inline PipelineDepthStencilStateCreateFlags operator|(PipelineDepthStencilStateCreateFlagBits bit0, PipelineDepthStencilStateCreateFlagBits bit1)
{
return PipelineDepthStencilStateCreateFlags(bit0) | bit1;
}
enum class PipelineDynamicStateCreateFlagBits
{
};
using PipelineDynamicStateCreateFlags = Flags<PipelineDynamicStateCreateFlagBits, VkPipelineDynamicStateCreateFlags>;
inline PipelineDynamicStateCreateFlags operator|(PipelineDynamicStateCreateFlagBits bit0, PipelineDynamicStateCreateFlagBits bit1)
{
return PipelineDynamicStateCreateFlags(bit0) | bit1;
}
enum class PipelineColorBlendStateCreateFlagBits
{
};
using PipelineColorBlendStateCreateFlags = Flags<PipelineColorBlendStateCreateFlagBits, VkPipelineColorBlendStateCreateFlags>;
inline PipelineColorBlendStateCreateFlags operator|(PipelineColorBlendStateCreateFlagBits bit0, PipelineColorBlendStateCreateFlagBits bit1)
{
return PipelineColorBlendStateCreateFlags(bit0) | bit1;
}
enum class PipelineMultisampleStateCreateFlagBits
{
};
using PipelineMultisampleStateCreateFlags = Flags<PipelineMultisampleStateCreateFlagBits, VkPipelineMultisampleStateCreateFlags>;
inline PipelineMultisampleStateCreateFlags operator|(PipelineMultisampleStateCreateFlagBits bit0, PipelineMultisampleStateCreateFlagBits bit1)
{
return PipelineMultisampleStateCreateFlags(bit0) | bit1;
}
enum class PipelineRasterizationStateCreateFlagBits
{
};
using PipelineRasterizationStateCreateFlags = Flags<PipelineRasterizationStateCreateFlagBits, VkPipelineRasterizationStateCreateFlags>;
inline PipelineRasterizationStateCreateFlags operator|(PipelineRasterizationStateCreateFlagBits bit0, PipelineRasterizationStateCreateFlagBits bit1)
{
return PipelineRasterizationStateCreateFlags(bit0) | bit1;
}
enum class PipelineViewportStateCreateFlagBits
{
};
using PipelineViewportStateCreateFlags = Flags<PipelineViewportStateCreateFlagBits, VkPipelineViewportStateCreateFlags>;
inline PipelineViewportStateCreateFlags operator|(PipelineViewportStateCreateFlagBits bit0, PipelineViewportStateCreateFlagBits bit1)
{
return PipelineViewportStateCreateFlags(bit0) | bit1;
}
enum class PipelineTessellationStateCreateFlagBits
{
};
using PipelineTessellationStateCreateFlags = Flags<PipelineTessellationStateCreateFlagBits, VkPipelineTessellationStateCreateFlags>;
inline PipelineTessellationStateCreateFlags operator|(PipelineTessellationStateCreateFlagBits bit0, PipelineTessellationStateCreateFlagBits bit1)
{
return PipelineTessellationStateCreateFlags(bit0) | bit1;
}
enum class PipelineInputAssemblyStateCreateFlagBits
{
};
using PipelineInputAssemblyStateCreateFlags = Flags<PipelineInputAssemblyStateCreateFlagBits, VkPipelineInputAssemblyStateCreateFlags>;
inline PipelineInputAssemblyStateCreateFlags operator|(PipelineInputAssemblyStateCreateFlagBits bit0, PipelineInputAssemblyStateCreateFlagBits bit1)
{
return PipelineInputAssemblyStateCreateFlags(bit0) | bit1;
}
enum class PipelineVertexInputStateCreateFlagBits
{
};
using PipelineVertexInputStateCreateFlags = Flags<PipelineVertexInputStateCreateFlagBits, VkPipelineVertexInputStateCreateFlags>;
inline PipelineVertexInputStateCreateFlags operator|(PipelineVertexInputStateCreateFlagBits bit0, PipelineVertexInputStateCreateFlagBits bit1)
{
return PipelineVertexInputStateCreateFlags(bit0) | bit1;
}
enum class PipelineShaderStageCreateFlagBits
{
};
using PipelineShaderStageCreateFlags = Flags<PipelineShaderStageCreateFlagBits, VkPipelineShaderStageCreateFlags>;
inline PipelineShaderStageCreateFlags operator|(PipelineShaderStageCreateFlagBits bit0, PipelineShaderStageCreateFlagBits bit1)
{
return PipelineShaderStageCreateFlags(bit0) | bit1;
}
enum class DescriptorSetLayoutCreateFlagBits
{
};
using DescriptorSetLayoutCreateFlags = Flags<DescriptorSetLayoutCreateFlagBits, VkDescriptorSetLayoutCreateFlags>;
inline DescriptorSetLayoutCreateFlags operator|(DescriptorSetLayoutCreateFlagBits bit0, DescriptorSetLayoutCreateFlagBits bit1)
{
return DescriptorSetLayoutCreateFlags(bit0) | bit1;
}
enum class BufferViewCreateFlagBits
{
};
using BufferViewCreateFlags = Flags<BufferViewCreateFlagBits, VkBufferViewCreateFlags>;
inline BufferViewCreateFlags operator|(BufferViewCreateFlagBits bit0, BufferViewCreateFlagBits bit1)
{
return BufferViewCreateFlags(bit0) | bit1;
}
enum class InstanceCreateFlagBits
{
};
using InstanceCreateFlags = Flags<InstanceCreateFlagBits, VkInstanceCreateFlags>;
inline InstanceCreateFlags operator|(InstanceCreateFlagBits bit0, InstanceCreateFlagBits bit1)
{
return InstanceCreateFlags(bit0) | bit1;
}
enum class DeviceCreateFlagBits
{
};
using DeviceCreateFlags = Flags<DeviceCreateFlagBits, VkDeviceCreateFlags>;
inline DeviceCreateFlags operator|(DeviceCreateFlagBits bit0, DeviceCreateFlagBits bit1)
{
return DeviceCreateFlags(bit0) | bit1;
}
enum class DeviceQueueCreateFlagBits
{
};
using DeviceQueueCreateFlags = Flags<DeviceQueueCreateFlagBits, VkDeviceQueueCreateFlags>;
inline DeviceQueueCreateFlags operator|(DeviceQueueCreateFlagBits bit0, DeviceQueueCreateFlagBits bit1)
{
return DeviceQueueCreateFlags(bit0) | bit1;
}
enum class ImageViewCreateFlagBits
{
};
using ImageViewCreateFlags = Flags<ImageViewCreateFlagBits, VkImageViewCreateFlags>;
inline ImageViewCreateFlags operator|(ImageViewCreateFlagBits bit0, ImageViewCreateFlagBits bit1)
{
return ImageViewCreateFlags(bit0) | bit1;
}
enum class SemaphoreCreateFlagBits
{
};
using SemaphoreCreateFlags = Flags<SemaphoreCreateFlagBits, VkSemaphoreCreateFlags>;
inline SemaphoreCreateFlags operator|(SemaphoreCreateFlagBits bit0, SemaphoreCreateFlagBits bit1)
{
return SemaphoreCreateFlags(bit0) | bit1;
}
enum class ShaderModuleCreateFlagBits
{
};
using ShaderModuleCreateFlags = Flags<ShaderModuleCreateFlagBits, VkShaderModuleCreateFlags>;
inline ShaderModuleCreateFlags operator|(ShaderModuleCreateFlagBits bit0, ShaderModuleCreateFlagBits bit1)
{
return ShaderModuleCreateFlags(bit0) | bit1;
}
enum class EventCreateFlagBits
{
};
using EventCreateFlags = Flags<EventCreateFlagBits, VkEventCreateFlags>;
inline EventCreateFlags operator|(EventCreateFlagBits bit0, EventCreateFlagBits bit1)
{
return EventCreateFlags(bit0) | bit1;
}
enum class MemoryMapFlagBits
{
};
using MemoryMapFlags = Flags<MemoryMapFlagBits, VkMemoryMapFlags>;
inline MemoryMapFlags operator|(MemoryMapFlagBits bit0, MemoryMapFlagBits bit1)
{
return MemoryMapFlags(bit0) | bit1;
}
enum class SubpassDescriptionFlagBits
{
};
using SubpassDescriptionFlags = Flags<SubpassDescriptionFlagBits, VkSubpassDescriptionFlags>;
inline SubpassDescriptionFlags operator|(SubpassDescriptionFlagBits bit0, SubpassDescriptionFlagBits bit1)
{
return SubpassDescriptionFlags(bit0) | bit1;
}
enum class DescriptorPoolResetFlagBits
{
};
using DescriptorPoolResetFlags = Flags<DescriptorPoolResetFlagBits, VkDescriptorPoolResetFlags>;
inline DescriptorPoolResetFlags operator|(DescriptorPoolResetFlagBits bit0, DescriptorPoolResetFlagBits bit1)
{
return DescriptorPoolResetFlags(bit0) | bit1;
}
enum class SwapchainCreateFlagBitsKHR
{
};
using SwapchainCreateFlagsKHR = Flags<SwapchainCreateFlagBitsKHR, VkSwapchainCreateFlagsKHR>;
inline SwapchainCreateFlagsKHR operator|(SwapchainCreateFlagBitsKHR bit0, SwapchainCreateFlagBitsKHR bit1)
{
return SwapchainCreateFlagsKHR(bit0) | bit1;
}
enum class DisplayModeCreateFlagBitsKHR
{
};
using DisplayModeCreateFlagsKHR = Flags<DisplayModeCreateFlagBitsKHR, VkDisplayModeCreateFlagsKHR>;
inline DisplayModeCreateFlagsKHR operator|(DisplayModeCreateFlagBitsKHR bit0, DisplayModeCreateFlagBitsKHR bit1)
{
return DisplayModeCreateFlagsKHR(bit0) | bit1;
}
enum class DisplaySurfaceCreateFlagBitsKHR
{
};
using DisplaySurfaceCreateFlagsKHR = Flags<DisplaySurfaceCreateFlagBitsKHR, VkDisplaySurfaceCreateFlagsKHR>;
inline DisplaySurfaceCreateFlagsKHR operator|(DisplaySurfaceCreateFlagBitsKHR bit0, DisplaySurfaceCreateFlagBitsKHR bit1)
{
return DisplaySurfaceCreateFlagsKHR(bit0) | bit1;
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
enum class AndroidSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_ANDROID_KHR
using AndroidSurfaceCreateFlagsKHR = Flags<AndroidSurfaceCreateFlagBitsKHR, VkAndroidSurfaceCreateFlagsKHR>;
inline AndroidSurfaceCreateFlagsKHR operator|(AndroidSurfaceCreateFlagBitsKHR bit0, AndroidSurfaceCreateFlagBitsKHR bit1)
{
return AndroidSurfaceCreateFlagsKHR(bit0) | bit1;
}
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
enum class MirSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
using MirSurfaceCreateFlagsKHR = Flags<MirSurfaceCreateFlagBitsKHR, VkMirSurfaceCreateFlagsKHR>;
inline MirSurfaceCreateFlagsKHR operator|(MirSurfaceCreateFlagBitsKHR bit0, MirSurfaceCreateFlagBitsKHR bit1)
{
return MirSurfaceCreateFlagsKHR(bit0) | bit1;
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
enum class WaylandSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
using WaylandSurfaceCreateFlagsKHR = Flags<WaylandSurfaceCreateFlagBitsKHR, VkWaylandSurfaceCreateFlagsKHR>;
inline WaylandSurfaceCreateFlagsKHR operator|(WaylandSurfaceCreateFlagBitsKHR bit0, WaylandSurfaceCreateFlagBitsKHR bit1)
{
return WaylandSurfaceCreateFlagsKHR(bit0) | bit1;
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
enum class Win32SurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
using Win32SurfaceCreateFlagsKHR = Flags<Win32SurfaceCreateFlagBitsKHR, VkWin32SurfaceCreateFlagsKHR>;
inline Win32SurfaceCreateFlagsKHR operator|(Win32SurfaceCreateFlagBitsKHR bit0, Win32SurfaceCreateFlagBitsKHR bit1)
{
return Win32SurfaceCreateFlagsKHR(bit0) | bit1;
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
enum class XlibSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
using XlibSurfaceCreateFlagsKHR = Flags<XlibSurfaceCreateFlagBitsKHR, VkXlibSurfaceCreateFlagsKHR>;
inline XlibSurfaceCreateFlagsKHR operator|(XlibSurfaceCreateFlagBitsKHR bit0, XlibSurfaceCreateFlagBitsKHR bit1)
{
return XlibSurfaceCreateFlagsKHR(bit0) | bit1;
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
enum class XcbSurfaceCreateFlagBitsKHR
{
};
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
using XcbSurfaceCreateFlagsKHR = Flags<XcbSurfaceCreateFlagBitsKHR, VkXcbSurfaceCreateFlagsKHR>;
inline XcbSurfaceCreateFlagsKHR operator|(XcbSurfaceCreateFlagBitsKHR bit0, XcbSurfaceCreateFlagBitsKHR bit1)
{
return XcbSurfaceCreateFlagsKHR(bit0) | bit1;
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifndef VULKAN_HPP_DISABLE_SCOPED_HANDLING
template<class T, typename... _ARGS>
auto ptrMemberFnc(void(T::*p)(_ARGS...) const) {
return p;
};
class Instance;
class Device;
class DescriptorPool;
class DescriptorSet;
class CommandPool;
class CommandBuffer;
template<typename T>
class Optional;
class AllocationCallbacks;
template<class T>
class scoped_handle {
protected:
T object{ VK_NULL_HANDLE };
std::function<void(T object)> delete_func;
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
bool released = false, auto_release_copies = false;
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
using INS = vk::Instance; using DEV = vk::Device;
public:
scoped_handle(const scoped_handle<T>& s) {
std::cout << "copy constructor" << std::endl;
this->object = s.object;
this->delete_func = s.delete_func;
this->released = s.auto_release_copies;
}
template<typename Fnc, typename alloc>
std::function<void(T, alloc)> bindFnc(void(Fnc::*p)(T, alloc) const, scoped_handle<Fnc>&v) {
using namespace std;
return bind(p, v.get(), placeholders::_1, placeholders::_2);
}
template<typename Fnc, typename alloc>
std::function<void(T, alloc)> bindFnc(void(Fnc::*p)(T, alloc) const, const Fnc& v) {
using namespace std;
return bind(p, v, placeholders::_1, placeholders::_2);
}
scoped_handle(std::function<void(T)> fnc = [](T obj) {}, T obj = T()) {
this->delete_func = fnc;
this->object = obj;
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
scoped_handle(void(INS::*p)(T, Optional<const AllocationCallbacks>) const,
scoped_handle<INS>& i, Optional<const AllocationCallbacks> alloc = nullptr, T obj = T()) {
if (alloc != nullptr) this->delete_func = [p, &i, &alloc, this](T o) {this->bindFnc<INS, Optional<const AllocationCallbacks>>(p, i)(o, alloc); };
else this->delete_func = [p, &i, this](T obj) {this->bindFnc<INS, Optional<const AllocationCallbacks>>(p, i)(obj, nullptr); };
this->object = obj;
}
scoped_handle(void(INS::*p)(T, Optional<const AllocationCallbacks>) const,
const INS& i, Optional<const AllocationCallbacks> alloc = nullptr, T obj = T()) {
if (alloc != nullptr) this->delete_func = [p, &i, &alloc, this](T o) {this->bindFnc<INS, Optional<const AllocationCallbacks>>(p, i)(o, alloc); };
else this->delete_func = [p, &i, this](T obj) {this->bindFnc<INS, Optional<const AllocationCallbacks>>(p, i)(obj, nullptr); };
this->object = obj;
}
scoped_handle(void(DEV::*p)(T, Optional<const AllocationCallbacks>) const, scoped_handle<DEV>& d, Optional<const AllocationCallbacks> alloc = nullptr, T obj = T())
{
if (alloc != nullptr)this->delete_func = [p, &d, &alloc, this](T o) {this->bindFnc<DEV, Optional<const AllocationCallbacks>>(p, d)(o, alloc); };
else this->delete_func = [p, &d, this](T o) {this->bindFnc<DEV, Optional<const AllocationCallbacks>>(p, d)(o, nullptr); };
this->object = obj;
}
scoped_handle(void(DEV::*p)(T, Optional<const AllocationCallbacks>) const, const DEV& d, Optional<const AllocationCallbacks> alloc = nullptr, T obj = T())
{
if (alloc != nullptr)this->delete_func = [p, d, &alloc, this](T o) {this->bindFnc<DEV, Optional<const AllocationCallbacks>>(p, d)(o, alloc); };
else this->delete_func = [p, &d, this](T o) {this->bindFnc<DEV, Optional<const AllocationCallbacks>>(p, d)(o, nullptr); };
this->object = obj;
}
#endif
scoped_handle(void(INS::*p)(T,const AllocationCallbacks*) const,
scoped_handle<INS>& i, const AllocationCallbacks* alloc = nullptr, T obj = T()) {
if (alloc != nullptr) this->delete_func = [p, &i, &alloc, this](T o) {this->bindFnc<INS, const AllocationCallbacks*>(p, i)(o, alloc); };
else this->delete_func = [p, &i, this](T obj) {this->bindFnc<INS, const AllocationCallbacks*>(p, i)(obj, nullptr); };
this->object = obj;
}
scoped_handle(void(INS::*p)(T, const AllocationCallbacks*) const,
const INS& i, const AllocationCallbacks* alloc = nullptr, T obj = T()) {
if (alloc != nullptr) this->delete_func = [p, &i, &alloc, this](T o) {this->bindFnc<INS, const AllocationCallbacks*>(p, i)(o, alloc); };
else this->delete_func = [p, &i, this](T obj) {this->bindFnc<INS, const AllocationCallbacks*>(p, i)(obj, nullptr); };
this->object = obj;
}
scoped_handle(void(DEV::*p)(T, const AllocationCallbacks*) const, scoped_handle<DEV>& d, const AllocationCallbacks* alloc = nullptr, T obj = T())
{
if (alloc != nullptr)this->delete_func = [p, &d, &alloc, this](T o) {this->bindFnc<DEV, const AllocationCallbacks*>(p, d)(o, alloc); };
else this->delete_func = [p, &d, this](T o) {this->bindFnc<DEV, const AllocationCallbacks*>(p, d)(o, nullptr); };
this->object = obj;
}
scoped_handle(void(DEV::*p)(T, const AllocationCallbacks*) const, const DEV& d, const AllocationCallbacks* alloc = nullptr, T obj = T())
{
if (alloc != nullptr)this->delete_func = [p, &d, &alloc, this](T o) {this->bindFnc<DEV, AllocationCallbacks*>(p, d)(o, alloc); };
else this->delete_func = [p, &d, this](T o) {this->bindFnc<DEV, AllocationCallbacks*>(p, d)(o, nullptr); };
this->object = obj;
}
operator T() const {
return object;
}
void operator= (T obj) {
destroy();
this->object = obj;
}
T& get() {
return object;
}
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroy() {
if (this->object)
this->delete_func(this->object);
this->object = VK_NULL_HANDLE;
}
#else
void release() {
released = true;
auto_release_copies = true;
}
void doAutoReleaseCopies(bool state) {
auto_release_copies = state;
}
bool isAutoReleasingCopies() {
return auto_release_copies;
}
void destroy() {
if (this->object && released) {
std::cout << "Deleting object of type " << typeid(object).name() << std::endl;
this->delete_func(this->object);
}
this->object = VK_NULL_HANDLE;
}
#endif
bool isEmpty() {
return this->object;
}
T* operator &() {
return &object;
}
~scoped_handle() {
destroy();
}
};
#endif
class DeviceMemory
{
public:
DeviceMemory()
: m_deviceMemory(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DeviceMemory(VkDeviceMemory deviceMemory)
: m_deviceMemory(deviceMemory)
{}
DeviceMemory& operator=(VkDeviceMemory deviceMemory)
{
m_deviceMemory = deviceMemory;
return *this;
}
#endif
bool operator==(DeviceMemory const &rhs) const
{
return m_deviceMemory == rhs.m_deviceMemory;
}
bool operator!=(DeviceMemory const &rhs) const
{
return m_deviceMemory != rhs.m_deviceMemory;
}
bool operator<(DeviceMemory const &rhs) const
{
return m_deviceMemory < rhs.m_deviceMemory;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkDeviceMemory() const
{
return m_deviceMemory;
}
explicit operator bool() const
{
return m_deviceMemory != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_deviceMemory == VK_NULL_HANDLE;
}
private:
VkDeviceMemory m_deviceMemory;
};
static_assert(sizeof(DeviceMemory) == sizeof(VkDeviceMemory), "handle and wrapper have different size!");
class CommandPool
{
public:
CommandPool()
: m_commandPool(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
CommandPool(VkCommandPool commandPool)
: m_commandPool(commandPool)
{}
CommandPool& operator=(VkCommandPool commandPool)
{
m_commandPool = commandPool;
return *this;
}
#endif
bool operator==(CommandPool const &rhs) const
{
return m_commandPool == rhs.m_commandPool;
}
bool operator!=(CommandPool const &rhs) const
{
return m_commandPool != rhs.m_commandPool;
}
bool operator<(CommandPool const &rhs) const
{
return m_commandPool < rhs.m_commandPool;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkCommandPool() const
{
return m_commandPool;
}
explicit operator bool() const
{
return m_commandPool != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_commandPool == VK_NULL_HANDLE;
}
private:
VkCommandPool m_commandPool;
};
static_assert(sizeof(CommandPool) == sizeof(VkCommandPool), "handle and wrapper have different size!");
class Buffer
{
public:
Buffer()
: m_buffer(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Buffer(VkBuffer buffer)
: m_buffer(buffer)
{}
Buffer& operator=(VkBuffer buffer)
{
m_buffer = buffer;
return *this;
}
#endif
bool operator==(Buffer const &rhs) const
{
return m_buffer == rhs.m_buffer;
}
bool operator!=(Buffer const &rhs) const
{
return m_buffer != rhs.m_buffer;
}
bool operator<(Buffer const &rhs) const
{
return m_buffer < rhs.m_buffer;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkBuffer() const
{
return m_buffer;
}
explicit operator bool() const
{
return m_buffer != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_buffer == VK_NULL_HANDLE;
}
private:
VkBuffer m_buffer;
};
static_assert(sizeof(Buffer) == sizeof(VkBuffer), "handle and wrapper have different size!");
class BufferView
{
public:
BufferView()
: m_bufferView(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
BufferView(VkBufferView bufferView)
: m_bufferView(bufferView)
{}
BufferView& operator=(VkBufferView bufferView)
{
m_bufferView = bufferView;
return *this;
}
#endif
bool operator==(BufferView const &rhs) const
{
return m_bufferView == rhs.m_bufferView;
}
bool operator!=(BufferView const &rhs) const
{
return m_bufferView != rhs.m_bufferView;
}
bool operator<(BufferView const &rhs) const
{
return m_bufferView < rhs.m_bufferView;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkBufferView() const
{
return m_bufferView;
}
explicit operator bool() const
{
return m_bufferView != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_bufferView == VK_NULL_HANDLE;
}
private:
VkBufferView m_bufferView;
};
static_assert(sizeof(BufferView) == sizeof(VkBufferView), "handle and wrapper have different size!");
class Image
{
public:
Image()
: m_image(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Image(VkImage image)
: m_image(image)
{}
Image& operator=(VkImage image)
{
m_image = image;
return *this;
}
#endif
bool operator==(Image const &rhs) const
{
return m_image == rhs.m_image;
}
bool operator!=(Image const &rhs) const
{
return m_image != rhs.m_image;
}
bool operator<(Image const &rhs) const
{
return m_image < rhs.m_image;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkImage() const
{
return m_image;
}
explicit operator bool() const
{
return m_image != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_image == VK_NULL_HANDLE;
}
private:
VkImage m_image;
};
static_assert(sizeof(Image) == sizeof(VkImage), "handle and wrapper have different size!");
class ImageView
{
public:
ImageView()
: m_imageView(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
ImageView(VkImageView imageView)
: m_imageView(imageView)
{}
ImageView& operator=(VkImageView imageView)
{
m_imageView = imageView;
return *this;
}
#endif
bool operator==(ImageView const &rhs) const
{
return m_imageView == rhs.m_imageView;
}
bool operator!=(ImageView const &rhs) const
{
return m_imageView != rhs.m_imageView;
}
bool operator<(ImageView const &rhs) const
{
return m_imageView < rhs.m_imageView;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkImageView() const
{
return m_imageView;
}
explicit operator bool() const
{
return m_imageView != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_imageView == VK_NULL_HANDLE;
}
private:
VkImageView m_imageView;
};
static_assert(sizeof(ImageView) == sizeof(VkImageView), "handle and wrapper have different size!");
class ShaderModule
{
public:
ShaderModule()
: m_shaderModule(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
ShaderModule(VkShaderModule shaderModule)
: m_shaderModule(shaderModule)
{}
ShaderModule& operator=(VkShaderModule shaderModule)
{
m_shaderModule = shaderModule;
return *this;
}
#endif
bool operator==(ShaderModule const &rhs) const
{
return m_shaderModule == rhs.m_shaderModule;
}
bool operator!=(ShaderModule const &rhs) const
{
return m_shaderModule != rhs.m_shaderModule;
}
bool operator<(ShaderModule const &rhs) const
{
return m_shaderModule < rhs.m_shaderModule;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkShaderModule() const
{
return m_shaderModule;
}
explicit operator bool() const
{
return m_shaderModule != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_shaderModule == VK_NULL_HANDLE;
}
private:
VkShaderModule m_shaderModule;
};
static_assert(sizeof(ShaderModule) == sizeof(VkShaderModule), "handle and wrapper have different size!");
class Pipeline
{
public:
Pipeline()
: m_pipeline(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Pipeline(VkPipeline pipeline)
: m_pipeline(pipeline)
{}
Pipeline& operator=(VkPipeline pipeline)
{
m_pipeline = pipeline;
return *this;
}
#endif
bool operator==(Pipeline const &rhs) const
{
return m_pipeline == rhs.m_pipeline;
}
bool operator!=(Pipeline const &rhs) const
{
return m_pipeline != rhs.m_pipeline;
}
bool operator<(Pipeline const &rhs) const
{
return m_pipeline < rhs.m_pipeline;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkPipeline() const
{
return m_pipeline;
}
explicit operator bool() const
{
return m_pipeline != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_pipeline == VK_NULL_HANDLE;
}
private:
VkPipeline m_pipeline;
};
static_assert(sizeof(Pipeline) == sizeof(VkPipeline), "handle and wrapper have different size!");
class PipelineLayout
{
public:
PipelineLayout()
: m_pipelineLayout(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
PipelineLayout(VkPipelineLayout pipelineLayout)
: m_pipelineLayout(pipelineLayout)
{}
PipelineLayout& operator=(VkPipelineLayout pipelineLayout)
{
m_pipelineLayout = pipelineLayout;
return *this;
}
#endif
bool operator==(PipelineLayout const &rhs) const
{
return m_pipelineLayout == rhs.m_pipelineLayout;
}
bool operator!=(PipelineLayout const &rhs) const
{
return m_pipelineLayout != rhs.m_pipelineLayout;
}
bool operator<(PipelineLayout const &rhs) const
{
return m_pipelineLayout < rhs.m_pipelineLayout;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkPipelineLayout() const
{
return m_pipelineLayout;
}
explicit operator bool() const
{
return m_pipelineLayout != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_pipelineLayout == VK_NULL_HANDLE;
}
private:
VkPipelineLayout m_pipelineLayout;
};
static_assert(sizeof(PipelineLayout) == sizeof(VkPipelineLayout), "handle and wrapper have different size!");
class Sampler
{
public:
Sampler()
: m_sampler(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Sampler(VkSampler sampler)
: m_sampler(sampler)
{}
Sampler& operator=(VkSampler sampler)
{
m_sampler = sampler;
return *this;
}
#endif
bool operator==(Sampler const &rhs) const
{
return m_sampler == rhs.m_sampler;
}
bool operator!=(Sampler const &rhs) const
{
return m_sampler != rhs.m_sampler;
}
bool operator<(Sampler const &rhs) const
{
return m_sampler < rhs.m_sampler;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkSampler() const
{
return m_sampler;
}
explicit operator bool() const
{
return m_sampler != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_sampler == VK_NULL_HANDLE;
}
private:
VkSampler m_sampler;
};
static_assert(sizeof(Sampler) == sizeof(VkSampler), "handle and wrapper have different size!");
class DescriptorSet
{
public:
DescriptorSet()
: m_descriptorSet(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DescriptorSet(VkDescriptorSet descriptorSet)
: m_descriptorSet(descriptorSet)
{}
DescriptorSet& operator=(VkDescriptorSet descriptorSet)
{
m_descriptorSet = descriptorSet;
return *this;
}
#endif
bool operator==(DescriptorSet const &rhs) const
{
return m_descriptorSet == rhs.m_descriptorSet;
}
bool operator!=(DescriptorSet const &rhs) const
{
return m_descriptorSet != rhs.m_descriptorSet;
}
bool operator<(DescriptorSet const &rhs) const
{
return m_descriptorSet < rhs.m_descriptorSet;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkDescriptorSet() const
{
return m_descriptorSet;
}
explicit operator bool() const
{
return m_descriptorSet != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_descriptorSet == VK_NULL_HANDLE;
}
private:
VkDescriptorSet m_descriptorSet;
};
static_assert(sizeof(DescriptorSet) == sizeof(VkDescriptorSet), "handle and wrapper have different size!");
class DescriptorSetLayout
{
public:
DescriptorSetLayout()
: m_descriptorSetLayout(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DescriptorSetLayout(VkDescriptorSetLayout descriptorSetLayout)
: m_descriptorSetLayout(descriptorSetLayout)
{}
DescriptorSetLayout& operator=(VkDescriptorSetLayout descriptorSetLayout)
{
m_descriptorSetLayout = descriptorSetLayout;
return *this;
}
#endif
bool operator==(DescriptorSetLayout const &rhs) const
{
return m_descriptorSetLayout == rhs.m_descriptorSetLayout;
}
bool operator!=(DescriptorSetLayout const &rhs) const
{
return m_descriptorSetLayout != rhs.m_descriptorSetLayout;
}
bool operator<(DescriptorSetLayout const &rhs) const
{
return m_descriptorSetLayout < rhs.m_descriptorSetLayout;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkDescriptorSetLayout() const
{
return m_descriptorSetLayout;
}
explicit operator bool() const
{
return m_descriptorSetLayout != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_descriptorSetLayout == VK_NULL_HANDLE;
}
private:
VkDescriptorSetLayout m_descriptorSetLayout;
};
static_assert(sizeof(DescriptorSetLayout) == sizeof(VkDescriptorSetLayout), "handle and wrapper have different size!");
class DescriptorPool
{
public:
DescriptorPool()
: m_descriptorPool(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DescriptorPool(VkDescriptorPool descriptorPool)
: m_descriptorPool(descriptorPool)
{}
DescriptorPool& operator=(VkDescriptorPool descriptorPool)
{
m_descriptorPool = descriptorPool;
return *this;
}
#endif
bool operator==(DescriptorPool const &rhs) const
{
return m_descriptorPool == rhs.m_descriptorPool;
}
bool operator!=(DescriptorPool const &rhs) const
{
return m_descriptorPool != rhs.m_descriptorPool;
}
bool operator<(DescriptorPool const &rhs) const
{
return m_descriptorPool < rhs.m_descriptorPool;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkDescriptorPool() const
{
return m_descriptorPool;
}
explicit operator bool() const
{
return m_descriptorPool != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_descriptorPool == VK_NULL_HANDLE;
}
private:
VkDescriptorPool m_descriptorPool;
};
static_assert(sizeof(DescriptorPool) == sizeof(VkDescriptorPool), "handle and wrapper have different size!");
class Fence
{
public:
Fence()
: m_fence(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Fence(VkFence fence)
: m_fence(fence)
{}
Fence& operator=(VkFence fence)
{
m_fence = fence;
return *this;
}
#endif
bool operator==(Fence const &rhs) const
{
return m_fence == rhs.m_fence;
}
bool operator!=(Fence const &rhs) const
{
return m_fence != rhs.m_fence;
}
bool operator<(Fence const &rhs) const
{
return m_fence < rhs.m_fence;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkFence() const
{
return m_fence;
}
explicit operator bool() const
{
return m_fence != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_fence == VK_NULL_HANDLE;
}
private:
VkFence m_fence;
};
static_assert(sizeof(Fence) == sizeof(VkFence), "handle and wrapper have different size!");
class Semaphore
{
public:
Semaphore()
: m_semaphore(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Semaphore(VkSemaphore semaphore)
: m_semaphore(semaphore)
{}
Semaphore& operator=(VkSemaphore semaphore)
{
m_semaphore = semaphore;
return *this;
}
#endif
bool operator==(Semaphore const &rhs) const
{
return m_semaphore == rhs.m_semaphore;
}
bool operator!=(Semaphore const &rhs) const
{
return m_semaphore != rhs.m_semaphore;
}
bool operator<(Semaphore const &rhs) const
{
return m_semaphore < rhs.m_semaphore;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkSemaphore() const
{
return m_semaphore;
}
explicit operator bool() const
{
return m_semaphore != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_semaphore == VK_NULL_HANDLE;
}
private:
VkSemaphore m_semaphore;
};
static_assert(sizeof(Semaphore) == sizeof(VkSemaphore), "handle and wrapper have different size!");
class Event
{
public:
Event()
: m_event(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Event(VkEvent event)
: m_event(event)
{}
Event& operator=(VkEvent event)
{
m_event = event;
return *this;
}
#endif
bool operator==(Event const &rhs) const
{
return m_event == rhs.m_event;
}
bool operator!=(Event const &rhs) const
{
return m_event != rhs.m_event;
}
bool operator<(Event const &rhs) const
{
return m_event < rhs.m_event;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkEvent() const
{
return m_event;
}
explicit operator bool() const
{
return m_event != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_event == VK_NULL_HANDLE;
}
private:
VkEvent m_event;
};
static_assert(sizeof(Event) == sizeof(VkEvent), "handle and wrapper have different size!");
class QueryPool
{
public:
QueryPool()
: m_queryPool(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
QueryPool(VkQueryPool queryPool)
: m_queryPool(queryPool)
{}
QueryPool& operator=(VkQueryPool queryPool)
{
m_queryPool = queryPool;
return *this;
}
#endif
bool operator==(QueryPool const &rhs) const
{
return m_queryPool == rhs.m_queryPool;
}
bool operator!=(QueryPool const &rhs) const
{
return m_queryPool != rhs.m_queryPool;
}
bool operator<(QueryPool const &rhs) const
{
return m_queryPool < rhs.m_queryPool;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkQueryPool() const
{
return m_queryPool;
}
explicit operator bool() const
{
return m_queryPool != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_queryPool == VK_NULL_HANDLE;
}
private:
VkQueryPool m_queryPool;
};
static_assert(sizeof(QueryPool) == sizeof(VkQueryPool), "handle and wrapper have different size!");
class Framebuffer
{
public:
Framebuffer()
: m_framebuffer(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Framebuffer(VkFramebuffer framebuffer)
: m_framebuffer(framebuffer)
{}
Framebuffer& operator=(VkFramebuffer framebuffer)
{
m_framebuffer = framebuffer;
return *this;
}
#endif
bool operator==(Framebuffer const &rhs) const
{
return m_framebuffer == rhs.m_framebuffer;
}
bool operator!=(Framebuffer const &rhs) const
{
return m_framebuffer != rhs.m_framebuffer;
}
bool operator<(Framebuffer const &rhs) const
{
return m_framebuffer < rhs.m_framebuffer;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkFramebuffer() const
{
return m_framebuffer;
}
explicit operator bool() const
{
return m_framebuffer != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_framebuffer == VK_NULL_HANDLE;
}
private:
VkFramebuffer m_framebuffer;
};
static_assert(sizeof(Framebuffer) == sizeof(VkFramebuffer), "handle and wrapper have different size!");
class RenderPass
{
public:
RenderPass()
: m_renderPass(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
RenderPass(VkRenderPass renderPass)
: m_renderPass(renderPass)
{}
RenderPass& operator=(VkRenderPass renderPass)
{
m_renderPass = renderPass;
return *this;
}
#endif
bool operator==(RenderPass const &rhs) const
{
return m_renderPass == rhs.m_renderPass;
}
bool operator!=(RenderPass const &rhs) const
{
return m_renderPass != rhs.m_renderPass;
}
bool operator<(RenderPass const &rhs) const
{
return m_renderPass < rhs.m_renderPass;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkRenderPass() const
{
return m_renderPass;
}
explicit operator bool() const
{
return m_renderPass != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_renderPass == VK_NULL_HANDLE;
}
private:
VkRenderPass m_renderPass;
};
static_assert(sizeof(RenderPass) == sizeof(VkRenderPass), "handle and wrapper have different size!");
class PipelineCache
{
public:
PipelineCache()
: m_pipelineCache(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
PipelineCache(VkPipelineCache pipelineCache)
: m_pipelineCache(pipelineCache)
{}
PipelineCache& operator=(VkPipelineCache pipelineCache)
{
m_pipelineCache = pipelineCache;
return *this;
}
#endif
bool operator==(PipelineCache const &rhs) const
{
return m_pipelineCache == rhs.m_pipelineCache;
}
bool operator!=(PipelineCache const &rhs) const
{
return m_pipelineCache != rhs.m_pipelineCache;
}
bool operator<(PipelineCache const &rhs) const
{
return m_pipelineCache < rhs.m_pipelineCache;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkPipelineCache() const
{
return m_pipelineCache;
}
explicit operator bool() const
{
return m_pipelineCache != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_pipelineCache == VK_NULL_HANDLE;
}
private:
VkPipelineCache m_pipelineCache;
};
static_assert(sizeof(PipelineCache) == sizeof(VkPipelineCache), "handle and wrapper have different size!");
class DisplayKHR
{
public:
DisplayKHR()
: m_displayKHR(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DisplayKHR(VkDisplayKHR displayKHR)
: m_displayKHR(displayKHR)
{}
DisplayKHR& operator=(VkDisplayKHR displayKHR)
{
m_displayKHR = displayKHR;
return *this;
}
#endif
bool operator==(DisplayKHR const &rhs) const
{
return m_displayKHR == rhs.m_displayKHR;
}
bool operator!=(DisplayKHR const &rhs) const
{
return m_displayKHR != rhs.m_displayKHR;
}
bool operator<(DisplayKHR const &rhs) const
{
return m_displayKHR < rhs.m_displayKHR;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkDisplayKHR() const
{
return m_displayKHR;
}
explicit operator bool() const
{
return m_displayKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_displayKHR == VK_NULL_HANDLE;
}
private:
VkDisplayKHR m_displayKHR;
};
static_assert(sizeof(DisplayKHR) == sizeof(VkDisplayKHR), "handle and wrapper have different size!");
class DisplayModeKHR
{
public:
DisplayModeKHR()
: m_displayModeKHR(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DisplayModeKHR(VkDisplayModeKHR displayModeKHR)
: m_displayModeKHR(displayModeKHR)
{}
DisplayModeKHR& operator=(VkDisplayModeKHR displayModeKHR)
{
m_displayModeKHR = displayModeKHR;
return *this;
}
#endif
bool operator==(DisplayModeKHR const &rhs) const
{
return m_displayModeKHR == rhs.m_displayModeKHR;
}
bool operator!=(DisplayModeKHR const &rhs) const
{
return m_displayModeKHR != rhs.m_displayModeKHR;
}
bool operator<(DisplayModeKHR const &rhs) const
{
return m_displayModeKHR < rhs.m_displayModeKHR;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkDisplayModeKHR() const
{
return m_displayModeKHR;
}
explicit operator bool() const
{
return m_displayModeKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_displayModeKHR == VK_NULL_HANDLE;
}
private:
VkDisplayModeKHR m_displayModeKHR;
};
static_assert(sizeof(DisplayModeKHR) == sizeof(VkDisplayModeKHR), "handle and wrapper have different size!");
class SurfaceKHR
{
public:
SurfaceKHR()
: m_surfaceKHR(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
SurfaceKHR(VkSurfaceKHR surfaceKHR)
: m_surfaceKHR(surfaceKHR)
{}
SurfaceKHR& operator=(VkSurfaceKHR surfaceKHR)
{
m_surfaceKHR = surfaceKHR;
return *this;
}
#endif
bool operator==(SurfaceKHR const &rhs) const
{
return m_surfaceKHR == rhs.m_surfaceKHR;
}
bool operator!=(SurfaceKHR const &rhs) const
{
return m_surfaceKHR != rhs.m_surfaceKHR;
}
bool operator<(SurfaceKHR const &rhs) const
{
return m_surfaceKHR < rhs.m_surfaceKHR;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkSurfaceKHR() const
{
return m_surfaceKHR;
}
explicit operator bool() const
{
return m_surfaceKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_surfaceKHR == VK_NULL_HANDLE;
}
private:
VkSurfaceKHR m_surfaceKHR;
};
static_assert(sizeof(SurfaceKHR) == sizeof(VkSurfaceKHR), "handle and wrapper have different size!");
class SwapchainKHR
{
public:
SwapchainKHR()
: m_swapchainKHR(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
SwapchainKHR(VkSwapchainKHR swapchainKHR)
: m_swapchainKHR(swapchainKHR)
{}
SwapchainKHR& operator=(VkSwapchainKHR swapchainKHR)
{
m_swapchainKHR = swapchainKHR;
return *this;
}
#endif
bool operator==(SwapchainKHR const &rhs) const
{
return m_swapchainKHR == rhs.m_swapchainKHR;
}
bool operator!=(SwapchainKHR const &rhs) const
{
return m_swapchainKHR != rhs.m_swapchainKHR;
}
bool operator<(SwapchainKHR const &rhs) const
{
return m_swapchainKHR < rhs.m_swapchainKHR;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkSwapchainKHR() const
{
return m_swapchainKHR;
}
explicit operator bool() const
{
return m_swapchainKHR != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_swapchainKHR == VK_NULL_HANDLE;
}
private:
VkSwapchainKHR m_swapchainKHR;
};
static_assert(sizeof(SwapchainKHR) == sizeof(VkSwapchainKHR), "handle and wrapper have different size!");
class DebugReportCallbackEXT
{
public:
DebugReportCallbackEXT()
: m_debugReportCallbackEXT(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
DebugReportCallbackEXT(VkDebugReportCallbackEXT debugReportCallbackEXT)
: m_debugReportCallbackEXT(debugReportCallbackEXT)
{}
DebugReportCallbackEXT& operator=(VkDebugReportCallbackEXT debugReportCallbackEXT)
{
m_debugReportCallbackEXT = debugReportCallbackEXT;
return *this;
}
#endif
bool operator==(DebugReportCallbackEXT const &rhs) const
{
return m_debugReportCallbackEXT == rhs.m_debugReportCallbackEXT;
}
bool operator!=(DebugReportCallbackEXT const &rhs) const
{
return m_debugReportCallbackEXT != rhs.m_debugReportCallbackEXT;
}
bool operator<(DebugReportCallbackEXT const &rhs) const
{
return m_debugReportCallbackEXT < rhs.m_debugReportCallbackEXT;
}
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkDebugReportCallbackEXT() const
{
return m_debugReportCallbackEXT;
}
explicit operator bool() const
{
return m_debugReportCallbackEXT != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_debugReportCallbackEXT == VK_NULL_HANDLE;
}
private:
VkDebugReportCallbackEXT m_debugReportCallbackEXT;
};
static_assert(sizeof(DebugReportCallbackEXT) == sizeof(VkDebugReportCallbackEXT), "handle and wrapper have different size!");
struct Offset2D
{
Offset2D(int32_t x_ = 0, int32_t y_ = 0)
: x(x_)
, y(y_)
{
}
Offset2D(VkOffset2D const & rhs)
{
memcpy(this, &rhs, sizeof(Offset2D));
}
Offset2D& operator=(VkOffset2D const & rhs)
{
memcpy(this, &rhs, sizeof(Offset2D));
return *this;
}
Offset2D& setX(int32_t x_)
{
x = x_;
return *this;
}
Offset2D& setY(int32_t y_)
{
y = y_;
return *this;
}
operator const VkOffset2D&() const
{
return *reinterpret_cast<const VkOffset2D*>(this);
}
bool operator==(Offset2D const& rhs) const
{
return (x == rhs.x)
&& (y == rhs.y);
}
bool operator!=(Offset2D const& rhs) const
{
return !operator==(rhs);
}
int32_t x;
int32_t y;
};
static_assert(sizeof(Offset2D) == sizeof(VkOffset2D), "struct and wrapper have different size!");
struct Offset3D
{
Offset3D(int32_t x_ = 0, int32_t y_ = 0, int32_t z_ = 0)
: x(x_)
, y(y_)
, z(z_)
{
}
Offset3D(VkOffset3D const & rhs)
{
memcpy(this, &rhs, sizeof(Offset3D));
}
Offset3D& operator=(VkOffset3D const & rhs)
{
memcpy(this, &rhs, sizeof(Offset3D));
return *this;
}
Offset3D& setX(int32_t x_)
{
x = x_;
return *this;
}
Offset3D& setY(int32_t y_)
{
y = y_;
return *this;
}
Offset3D& setZ(int32_t z_)
{
z = z_;
return *this;
}
operator const VkOffset3D&() const
{
return *reinterpret_cast<const VkOffset3D*>(this);
}
bool operator==(Offset3D const& rhs) const
{
return (x == rhs.x)
&& (y == rhs.y)
&& (z == rhs.z);
}
bool operator!=(Offset3D const& rhs) const
{
return !operator==(rhs);
}
int32_t x;
int32_t y;
int32_t z;
};
static_assert(sizeof(Offset3D) == sizeof(VkOffset3D), "struct and wrapper have different size!");
struct Extent2D
{
Extent2D(uint32_t width_ = 0, uint32_t height_ = 0)
: width(width_)
, height(height_)
{
}
Extent2D(VkExtent2D const & rhs)
{
memcpy(this, &rhs, sizeof(Extent2D));
}
Extent2D& operator=(VkExtent2D const & rhs)
{
memcpy(this, &rhs, sizeof(Extent2D));
return *this;
}
Extent2D& setWidth(uint32_t width_)
{
width = width_;
return *this;
}
Extent2D& setHeight(uint32_t height_)
{
height = height_;
return *this;
}
operator const VkExtent2D&() const
{
return *reinterpret_cast<const VkExtent2D*>(this);
}
bool operator==(Extent2D const& rhs) const
{
return (width == rhs.width)
&& (height == rhs.height);
}
bool operator!=(Extent2D const& rhs) const
{
return !operator==(rhs);
}
uint32_t width;
uint32_t height;
};
static_assert(sizeof(Extent2D) == sizeof(VkExtent2D), "struct and wrapper have different size!");
struct Extent3D
{
Extent3D(uint32_t width_ = 0, uint32_t height_ = 0, uint32_t depth_ = 0)
: width(width_)
, height(height_)
, depth(depth_)
{
}
Extent3D(VkExtent3D const & rhs)
{
memcpy(this, &rhs, sizeof(Extent3D));
}
Extent3D& operator=(VkExtent3D const & rhs)
{
memcpy(this, &rhs, sizeof(Extent3D));
return *this;
}
Extent3D& setWidth(uint32_t width_)
{
width = width_;
return *this;
}
Extent3D& setHeight(uint32_t height_)
{
height = height_;
return *this;
}
Extent3D& setDepth(uint32_t depth_)
{
depth = depth_;
return *this;
}
operator const VkExtent3D&() const
{
return *reinterpret_cast<const VkExtent3D*>(this);
}
bool operator==(Extent3D const& rhs) const
{
return (width == rhs.width)
&& (height == rhs.height)
&& (depth == rhs.depth);
}
bool operator!=(Extent3D const& rhs) const
{
return !operator==(rhs);
}
uint32_t width;
uint32_t height;
uint32_t depth;
};
static_assert(sizeof(Extent3D) == sizeof(VkExtent3D), "struct and wrapper have different size!");
struct Viewport
{
Viewport(float x_ = 0, float y_ = 0, float width_ = 0, float height_ = 0, float minDepth_ = 0, float maxDepth_ = 0)
: x(x_)
, y(y_)
, width(width_)
, height(height_)
, minDepth(minDepth_)
, maxDepth(maxDepth_)
{
}
Viewport(VkViewport const & rhs)
{
memcpy(this, &rhs, sizeof(Viewport));
}
Viewport& operator=(VkViewport const & rhs)
{
memcpy(this, &rhs, sizeof(Viewport));
return *this;
}
Viewport& setX(float x_)
{
x = x_;
return *this;
}
Viewport& setY(float y_)
{
y = y_;
return *this;
}
Viewport& setWidth(float width_)
{
width = width_;
return *this;
}
Viewport& setHeight(float height_)
{
height = height_;
return *this;
}
Viewport& setMinDepth(float minDepth_)
{
minDepth = minDepth_;
return *this;
}
Viewport& setMaxDepth(float maxDepth_)
{
maxDepth = maxDepth_;
return *this;
}
operator const VkViewport&() const
{
return *reinterpret_cast<const VkViewport*>(this);
}
bool operator==(Viewport const& rhs) const
{
return (x == rhs.x)
&& (y == rhs.y)
&& (width == rhs.width)
&& (height == rhs.height)
&& (minDepth == rhs.minDepth)
&& (maxDepth == rhs.maxDepth);
}
bool operator!=(Viewport const& rhs) const
{
return !operator==(rhs);
}
float x;
float y;
float width;
float height;
float minDepth;
float maxDepth;
};
static_assert(sizeof(Viewport) == sizeof(VkViewport), "struct and wrapper have different size!");
struct Rect2D
{
Rect2D(Offset2D offset_ = Offset2D(), Extent2D extent_ = Extent2D())
: offset(offset_)
, extent(extent_)
{
}
Rect2D(VkRect2D const & rhs)
{
memcpy(this, &rhs, sizeof(Rect2D));
}
Rect2D& operator=(VkRect2D const & rhs)
{
memcpy(this, &rhs, sizeof(Rect2D));
return *this;
}
Rect2D& setOffset(Offset2D offset_)
{
offset = offset_;
return *this;
}
Rect2D& setExtent(Extent2D extent_)
{
extent = extent_;
return *this;
}
operator const VkRect2D&() const
{
return *reinterpret_cast<const VkRect2D*>(this);
}
bool operator==(Rect2D const& rhs) const
{
return (offset == rhs.offset)
&& (extent == rhs.extent);
}
bool operator!=(Rect2D const& rhs) const
{
return !operator==(rhs);
}
Offset2D offset;
Extent2D extent;
};
static_assert(sizeof(Rect2D) == sizeof(VkRect2D), "struct and wrapper have different size!");
struct ClearRect
{
ClearRect(Rect2D rect_ = Rect2D(), uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0)
: rect(rect_)
, baseArrayLayer(baseArrayLayer_)
, layerCount(layerCount_)
{
}
ClearRect(VkClearRect const & rhs)
{
memcpy(this, &rhs, sizeof(ClearRect));
}
ClearRect& operator=(VkClearRect const & rhs)
{
memcpy(this, &rhs, sizeof(ClearRect));
return *this;
}
ClearRect& setRect(Rect2D rect_)
{
rect = rect_;
return *this;
}
ClearRect& setBaseArrayLayer(uint32_t baseArrayLayer_)
{
baseArrayLayer = baseArrayLayer_;
return *this;
}
ClearRect& setLayerCount(uint32_t layerCount_)
{
layerCount = layerCount_;
return *this;
}
operator const VkClearRect&() const
{
return *reinterpret_cast<const VkClearRect*>(this);
}
bool operator==(ClearRect const& rhs) const
{
return (rect == rhs.rect)
&& (baseArrayLayer == rhs.baseArrayLayer)
&& (layerCount == rhs.layerCount);
}
bool operator!=(ClearRect const& rhs) const
{
return !operator==(rhs);
}
Rect2D rect;
uint32_t baseArrayLayer;
uint32_t layerCount;
};
static_assert(sizeof(ClearRect) == sizeof(VkClearRect), "struct and wrapper have different size!");
struct ExtensionProperties
{
operator const VkExtensionProperties&() const
{
return *reinterpret_cast<const VkExtensionProperties*>(this);
}
bool operator==(ExtensionProperties const& rhs) const
{
return (memcmp(extensionName, rhs.extensionName, VK_MAX_EXTENSION_NAME_SIZE * sizeof(char)) == 0)
&& (specVersion == rhs.specVersion);
}
bool operator!=(ExtensionProperties const& rhs) const
{
return !operator==(rhs);
}
char extensionName[VK_MAX_EXTENSION_NAME_SIZE];
uint32_t specVersion;
};
static_assert(sizeof(ExtensionProperties) == sizeof(VkExtensionProperties), "struct and wrapper have different size!");
struct LayerProperties
{
operator const VkLayerProperties&() const
{
return *reinterpret_cast<const VkLayerProperties*>(this);
}
bool operator==(LayerProperties const& rhs) const
{
return (memcmp(layerName, rhs.layerName, VK_MAX_EXTENSION_NAME_SIZE * sizeof(char)) == 0)
&& (specVersion == rhs.specVersion)
&& (implementationVersion == rhs.implementationVersion)
&& (memcmp(description, rhs.description, VK_MAX_DESCRIPTION_SIZE * sizeof(char)) == 0);
}
bool operator!=(LayerProperties const& rhs) const
{
return !operator==(rhs);
}
char layerName[VK_MAX_EXTENSION_NAME_SIZE];
uint32_t specVersion;
uint32_t implementationVersion;
char description[VK_MAX_DESCRIPTION_SIZE];
};
static_assert(sizeof(LayerProperties) == sizeof(VkLayerProperties), "struct and wrapper have different size!");
struct AllocationCallbacks
{
AllocationCallbacks(void* pUserData_ = nullptr, PFN_vkAllocationFunction pfnAllocation_ = nullptr, PFN_vkReallocationFunction pfnReallocation_ = nullptr, PFN_vkFreeFunction pfnFree_ = nullptr, PFN_vkInternalAllocationNotification pfnInternalAllocation_ = nullptr, PFN_vkInternalFreeNotification pfnInternalFree_ = nullptr)
: pUserData(pUserData_)
, pfnAllocation(pfnAllocation_)
, pfnReallocation(pfnReallocation_)
, pfnFree(pfnFree_)
, pfnInternalAllocation(pfnInternalAllocation_)
, pfnInternalFree(pfnInternalFree_)
{
}
AllocationCallbacks(VkAllocationCallbacks const & rhs)
{
memcpy(this, &rhs, sizeof(AllocationCallbacks));
}
AllocationCallbacks& operator=(VkAllocationCallbacks const & rhs)
{
memcpy(this, &rhs, sizeof(AllocationCallbacks));
return *this;
}
AllocationCallbacks& setPUserData(void* pUserData_)
{
pUserData = pUserData_;
return *this;
}
AllocationCallbacks& setPfnAllocation(PFN_vkAllocationFunction pfnAllocation_)
{
pfnAllocation = pfnAllocation_;
return *this;
}
AllocationCallbacks& setPfnReallocation(PFN_vkReallocationFunction pfnReallocation_)
{
pfnReallocation = pfnReallocation_;
return *this;
}
AllocationCallbacks& setPfnFree(PFN_vkFreeFunction pfnFree_)
{
pfnFree = pfnFree_;
return *this;
}
AllocationCallbacks& setPfnInternalAllocation(PFN_vkInternalAllocationNotification pfnInternalAllocation_)
{
pfnInternalAllocation = pfnInternalAllocation_;
return *this;
}
AllocationCallbacks& setPfnInternalFree(PFN_vkInternalFreeNotification pfnInternalFree_)
{
pfnInternalFree = pfnInternalFree_;
return *this;
}
operator const VkAllocationCallbacks&() const
{
return *reinterpret_cast<const VkAllocationCallbacks*>(this);
}
bool operator==(AllocationCallbacks const& rhs) const
{
return (pUserData == rhs.pUserData)
&& (pfnAllocation == rhs.pfnAllocation)
&& (pfnReallocation == rhs.pfnReallocation)
&& (pfnFree == rhs.pfnFree)
&& (pfnInternalAllocation == rhs.pfnInternalAllocation)
&& (pfnInternalFree == rhs.pfnInternalFree);
}
bool operator!=(AllocationCallbacks const& rhs) const
{
return !operator==(rhs);
}
void* pUserData;
PFN_vkAllocationFunction pfnAllocation;
PFN_vkReallocationFunction pfnReallocation;
PFN_vkFreeFunction pfnFree;
PFN_vkInternalAllocationNotification pfnInternalAllocation;
PFN_vkInternalFreeNotification pfnInternalFree;
};
static_assert(sizeof(AllocationCallbacks) == sizeof(VkAllocationCallbacks), "struct and wrapper have different size!");
struct MemoryRequirements
{
operator const VkMemoryRequirements&() const
{
return *reinterpret_cast<const VkMemoryRequirements*>(this);
}
bool operator==(MemoryRequirements const& rhs) const
{
return (size == rhs.size)
&& (alignment == rhs.alignment)
&& (memoryTypeBits == rhs.memoryTypeBits);
}
bool operator!=(MemoryRequirements const& rhs) const
{
return !operator==(rhs);
}
DeviceSize size;
DeviceSize alignment;
uint32_t memoryTypeBits;
};
static_assert(sizeof(MemoryRequirements) == sizeof(VkMemoryRequirements), "struct and wrapper have different size!");
struct DescriptorBufferInfo
{
DescriptorBufferInfo(Buffer buffer_ = Buffer(), DeviceSize offset_ = 0, DeviceSize range_ = 0)
: buffer(buffer_)
, offset(offset_)
, range(range_)
{
}
DescriptorBufferInfo(VkDescriptorBufferInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorBufferInfo));
}
DescriptorBufferInfo& operator=(VkDescriptorBufferInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorBufferInfo));
return *this;
}
DescriptorBufferInfo& setBuffer(Buffer buffer_)
{
buffer = buffer_;
return *this;
}
DescriptorBufferInfo& setOffset(DeviceSize offset_)
{
offset = offset_;
return *this;
}
DescriptorBufferInfo& setRange(DeviceSize range_)
{
range = range_;
return *this;
}
operator const VkDescriptorBufferInfo&() const
{
return *reinterpret_cast<const VkDescriptorBufferInfo*>(this);
}
bool operator==(DescriptorBufferInfo const& rhs) const
{
return (buffer == rhs.buffer)
&& (offset == rhs.offset)
&& (range == rhs.range);
}
bool operator!=(DescriptorBufferInfo const& rhs) const
{
return !operator==(rhs);
}
Buffer buffer;
DeviceSize offset;
DeviceSize range;
};
static_assert(sizeof(DescriptorBufferInfo) == sizeof(VkDescriptorBufferInfo), "struct and wrapper have different size!");
struct SubresourceLayout
{
operator const VkSubresourceLayout&() const
{
return *reinterpret_cast<const VkSubresourceLayout*>(this);
}
bool operator==(SubresourceLayout const& rhs) const
{
return (offset == rhs.offset)
&& (size == rhs.size)
&& (rowPitch == rhs.rowPitch)
&& (arrayPitch == rhs.arrayPitch)
&& (depthPitch == rhs.depthPitch);
}
bool operator!=(SubresourceLayout const& rhs) const
{
return !operator==(rhs);
}
DeviceSize offset;
DeviceSize size;
DeviceSize rowPitch;
DeviceSize arrayPitch;
DeviceSize depthPitch;
};
static_assert(sizeof(SubresourceLayout) == sizeof(VkSubresourceLayout), "struct and wrapper have different size!");
struct BufferCopy
{
BufferCopy(DeviceSize srcOffset_ = 0, DeviceSize dstOffset_ = 0, DeviceSize size_ = 0)
: srcOffset(srcOffset_)
, dstOffset(dstOffset_)
, size(size_)
{
}
BufferCopy(VkBufferCopy const & rhs)
{
memcpy(this, &rhs, sizeof(BufferCopy));
}
BufferCopy& operator=(VkBufferCopy const & rhs)
{
memcpy(this, &rhs, sizeof(BufferCopy));
return *this;
}
BufferCopy& setSrcOffset(DeviceSize srcOffset_)
{
srcOffset = srcOffset_;
return *this;
}
BufferCopy& setDstOffset(DeviceSize dstOffset_)
{
dstOffset = dstOffset_;
return *this;
}
BufferCopy& setSize(DeviceSize size_)
{
size = size_;
return *this;
}
operator const VkBufferCopy&() const
{
return *reinterpret_cast<const VkBufferCopy*>(this);
}
bool operator==(BufferCopy const& rhs) const
{
return (srcOffset == rhs.srcOffset)
&& (dstOffset == rhs.dstOffset)
&& (size == rhs.size);
}
bool operator!=(BufferCopy const& rhs) const
{
return !operator==(rhs);
}
DeviceSize srcOffset;
DeviceSize dstOffset;
DeviceSize size;
};
static_assert(sizeof(BufferCopy) == sizeof(VkBufferCopy), "struct and wrapper have different size!");
struct SpecializationMapEntry
{
SpecializationMapEntry(uint32_t constantID_ = 0, uint32_t offset_ = 0, size_t size_ = 0)
: constantID(constantID_)
, offset(offset_)
, size(size_)
{
}
SpecializationMapEntry(VkSpecializationMapEntry const & rhs)
{
memcpy(this, &rhs, sizeof(SpecializationMapEntry));
}
SpecializationMapEntry& operator=(VkSpecializationMapEntry const & rhs)
{
memcpy(this, &rhs, sizeof(SpecializationMapEntry));
return *this;
}
SpecializationMapEntry& setConstantID(uint32_t constantID_)
{
constantID = constantID_;
return *this;
}
SpecializationMapEntry& setOffset(uint32_t offset_)
{
offset = offset_;
return *this;
}
SpecializationMapEntry& setSize(size_t size_)
{
size = size_;
return *this;
}
operator const VkSpecializationMapEntry&() const
{
return *reinterpret_cast<const VkSpecializationMapEntry*>(this);
}
bool operator==(SpecializationMapEntry const& rhs) const
{
return (constantID == rhs.constantID)
&& (offset == rhs.offset)
&& (size == rhs.size);
}
bool operator!=(SpecializationMapEntry const& rhs) const
{
return !operator==(rhs);
}
uint32_t constantID;
uint32_t offset;
size_t size;
};
static_assert(sizeof(SpecializationMapEntry) == sizeof(VkSpecializationMapEntry), "struct and wrapper have different size!");
struct SpecializationInfo
{
SpecializationInfo(uint32_t mapEntryCount_ = 0, const SpecializationMapEntry* pMapEntries_ = nullptr, size_t dataSize_ = 0, const void* pData_ = nullptr)
: mapEntryCount(mapEntryCount_)
, pMapEntries(pMapEntries_)
, dataSize(dataSize_)
, pData(pData_)
{
}
SpecializationInfo(VkSpecializationInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SpecializationInfo));
}
SpecializationInfo& operator=(VkSpecializationInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SpecializationInfo));
return *this;
}
SpecializationInfo& setMapEntryCount(uint32_t mapEntryCount_)
{
mapEntryCount = mapEntryCount_;
return *this;
}
SpecializationInfo& setPMapEntries(const SpecializationMapEntry* pMapEntries_)
{
pMapEntries = pMapEntries_;
return *this;
}
SpecializationInfo& setDataSize(size_t dataSize_)
{
dataSize = dataSize_;
return *this;
}
SpecializationInfo& setPData(const void* pData_)
{
pData = pData_;
return *this;
}
operator const VkSpecializationInfo&() const
{
return *reinterpret_cast<const VkSpecializationInfo*>(this);
}
bool operator==(SpecializationInfo const& rhs) const
{
return (mapEntryCount == rhs.mapEntryCount)
&& (pMapEntries == rhs.pMapEntries)
&& (dataSize == rhs.dataSize)
&& (pData == rhs.pData);
}
bool operator!=(SpecializationInfo const& rhs) const
{
return !operator==(rhs);
}
uint32_t mapEntryCount;
const SpecializationMapEntry* pMapEntries;
size_t dataSize;
const void* pData;
};
static_assert(sizeof(SpecializationInfo) == sizeof(VkSpecializationInfo), "struct and wrapper have different size!");
union ClearColorValue
{
ClearColorValue(const std::array<float, 4>& float32_ = { { 0 } })
{
memcpy(&float32, float32_.data(), 4 * sizeof(float));
}
ClearColorValue(const std::array<int32_t, 4>& int32_)
{
memcpy(&int32, int32_.data(), 4 * sizeof(int32_t));
}
ClearColorValue(const std::array<uint32_t, 4>& uint32_)
{
memcpy(&uint32, uint32_.data(), 4 * sizeof(uint32_t));
}
ClearColorValue& setFloat32(std::array<float, 4> float32_)
{
memcpy(&float32, float32_.data(), 4 * sizeof(float));
return *this;
}
ClearColorValue& setInt32(std::array<int32_t, 4> int32_)
{
memcpy(&int32, int32_.data(), 4 * sizeof(int32_t));
return *this;
}
ClearColorValue& setUint32(std::array<uint32_t, 4> uint32_)
{
memcpy(&uint32, uint32_.data(), 4 * sizeof(uint32_t));
return *this;
}
operator VkClearColorValue const& () const
{
return *reinterpret_cast<const VkClearColorValue*>(this);
}
float float32[4];
int32_t int32[4];
uint32_t uint32[4];
};
struct ClearDepthStencilValue
{
ClearDepthStencilValue(float depth_ = 0, uint32_t stencil_ = 0)
: depth(depth_)
, stencil(stencil_)
{
}
ClearDepthStencilValue(VkClearDepthStencilValue const & rhs)
{
memcpy(this, &rhs, sizeof(ClearDepthStencilValue));
}
ClearDepthStencilValue& operator=(VkClearDepthStencilValue const & rhs)
{
memcpy(this, &rhs, sizeof(ClearDepthStencilValue));
return *this;
}
ClearDepthStencilValue& setDepth(float depth_)
{
depth = depth_;
return *this;
}
ClearDepthStencilValue& setStencil(uint32_t stencil_)
{
stencil = stencil_;
return *this;
}
operator const VkClearDepthStencilValue&() const
{
return *reinterpret_cast<const VkClearDepthStencilValue*>(this);
}
bool operator==(ClearDepthStencilValue const& rhs) const
{
return (depth == rhs.depth)
&& (stencil == rhs.stencil);
}
bool operator!=(ClearDepthStencilValue const& rhs) const
{
return !operator==(rhs);
}
float depth;
uint32_t stencil;
};
static_assert(sizeof(ClearDepthStencilValue) == sizeof(VkClearDepthStencilValue), "struct and wrapper have different size!");
union ClearValue
{
ClearValue(ClearColorValue color_ = ClearColorValue())
{
color = color_;
}
ClearValue(ClearDepthStencilValue depthStencil_)
{
depthStencil = depthStencil_;
}
ClearValue& setColor(ClearColorValue color_)
{
color = color_;
return *this;
}
ClearValue& setDepthStencil(ClearDepthStencilValue depthStencil_)
{
depthStencil = depthStencil_;
return *this;
}
operator VkClearValue const& () const
{
return *reinterpret_cast<const VkClearValue*>(this);
}
#ifdef VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
ClearColorValue color;
ClearDepthStencilValue depthStencil;
#else
VkClearColorValue color;
VkClearDepthStencilValue depthStencil;
#endif // VULKAN_HPP_HAS_UNRESTRICTED_UNIONS
};
struct PhysicalDeviceFeatures
{
PhysicalDeviceFeatures(Bool32 robustBufferAccess_ = 0, Bool32 fullDrawIndexUint32_ = 0, Bool32 imageCubeArray_ = 0, Bool32 independentBlend_ = 0, Bool32 geometryShader_ = 0, Bool32 tessellationShader_ = 0, Bool32 sampleRateShading_ = 0, Bool32 dualSrcBlend_ = 0, Bool32 logicOp_ = 0, Bool32 multiDrawIndirect_ = 0, Bool32 drawIndirectFirstInstance_ = 0, Bool32 depthClamp_ = 0, Bool32 depthBiasClamp_ = 0, Bool32 fillModeNonSolid_ = 0, Bool32 depthBounds_ = 0, Bool32 wideLines_ = 0, Bool32 largePoints_ = 0, Bool32 alphaToOne_ = 0, Bool32 multiViewport_ = 0, Bool32 samplerAnisotropy_ = 0, Bool32 textureCompressionETC2_ = 0, Bool32 textureCompressionASTC_LDR_ = 0, Bool32 textureCompressionBC_ = 0, Bool32 occlusionQueryPrecise_ = 0, Bool32 pipelineStatisticsQuery_ = 0, Bool32 vertexPipelineStoresAndAtomics_ = 0, Bool32 fragmentStoresAndAtomics_ = 0, Bool32 shaderTessellationAndGeometryPointSize_ = 0, Bool32 shaderImageGatherExtended_ = 0, Bool32 shaderStorageImageExtendedFormats_ = 0, Bool32 shaderStorageImageMultisample_ = 0, Bool32 shaderStorageImageReadWithoutFormat_ = 0, Bool32 shaderStorageImageWriteWithoutFormat_ = 0, Bool32 shaderUniformBufferArrayDynamicIndexing_ = 0, Bool32 shaderSampledImageArrayDynamicIndexing_ = 0, Bool32 shaderStorageBufferArrayDynamicIndexing_ = 0, Bool32 shaderStorageImageArrayDynamicIndexing_ = 0, Bool32 shaderClipDistance_ = 0, Bool32 shaderCullDistance_ = 0, Bool32 shaderFloat64_ = 0, Bool32 shaderInt64_ = 0, Bool32 shaderInt16_ = 0, Bool32 shaderResourceResidency_ = 0, Bool32 shaderResourceMinLod_ = 0, Bool32 sparseBinding_ = 0, Bool32 sparseResidencyBuffer_ = 0, Bool32 sparseResidencyImage2D_ = 0, Bool32 sparseResidencyImage3D_ = 0, Bool32 sparseResidency2Samples_ = 0, Bool32 sparseResidency4Samples_ = 0, Bool32 sparseResidency8Samples_ = 0, Bool32 sparseResidency16Samples_ = 0, Bool32 sparseResidencyAliased_ = 0, Bool32 variableMultisampleRate_ = 0, Bool32 inheritedQueries_ = 0)
: robustBufferAccess(robustBufferAccess_)
, fullDrawIndexUint32(fullDrawIndexUint32_)
, imageCubeArray(imageCubeArray_)
, independentBlend(independentBlend_)
, geometryShader(geometryShader_)
, tessellationShader(tessellationShader_)
, sampleRateShading(sampleRateShading_)
, dualSrcBlend(dualSrcBlend_)
, logicOp(logicOp_)
, multiDrawIndirect(multiDrawIndirect_)
, drawIndirectFirstInstance(drawIndirectFirstInstance_)
, depthClamp(depthClamp_)
, depthBiasClamp(depthBiasClamp_)
, fillModeNonSolid(fillModeNonSolid_)
, depthBounds(depthBounds_)
, wideLines(wideLines_)
, largePoints(largePoints_)
, alphaToOne(alphaToOne_)
, multiViewport(multiViewport_)
, samplerAnisotropy(samplerAnisotropy_)
, textureCompressionETC2(textureCompressionETC2_)
, textureCompressionASTC_LDR(textureCompressionASTC_LDR_)
, textureCompressionBC(textureCompressionBC_)
, occlusionQueryPrecise(occlusionQueryPrecise_)
, pipelineStatisticsQuery(pipelineStatisticsQuery_)
, vertexPipelineStoresAndAtomics(vertexPipelineStoresAndAtomics_)
, fragmentStoresAndAtomics(fragmentStoresAndAtomics_)
, shaderTessellationAndGeometryPointSize(shaderTessellationAndGeometryPointSize_)
, shaderImageGatherExtended(shaderImageGatherExtended_)
, shaderStorageImageExtendedFormats(shaderStorageImageExtendedFormats_)
, shaderStorageImageMultisample(shaderStorageImageMultisample_)
, shaderStorageImageReadWithoutFormat(shaderStorageImageReadWithoutFormat_)
, shaderStorageImageWriteWithoutFormat(shaderStorageImageWriteWithoutFormat_)
, shaderUniformBufferArrayDynamicIndexing(shaderUniformBufferArrayDynamicIndexing_)
, shaderSampledImageArrayDynamicIndexing(shaderSampledImageArrayDynamicIndexing_)
, shaderStorageBufferArrayDynamicIndexing(shaderStorageBufferArrayDynamicIndexing_)
, shaderStorageImageArrayDynamicIndexing(shaderStorageImageArrayDynamicIndexing_)
, shaderClipDistance(shaderClipDistance_)
, shaderCullDistance(shaderCullDistance_)
, shaderFloat64(shaderFloat64_)
, shaderInt64(shaderInt64_)
, shaderInt16(shaderInt16_)
, shaderResourceResidency(shaderResourceResidency_)
, shaderResourceMinLod(shaderResourceMinLod_)
, sparseBinding(sparseBinding_)
, sparseResidencyBuffer(sparseResidencyBuffer_)
, sparseResidencyImage2D(sparseResidencyImage2D_)
, sparseResidencyImage3D(sparseResidencyImage3D_)
, sparseResidency2Samples(sparseResidency2Samples_)
, sparseResidency4Samples(sparseResidency4Samples_)
, sparseResidency8Samples(sparseResidency8Samples_)
, sparseResidency16Samples(sparseResidency16Samples_)
, sparseResidencyAliased(sparseResidencyAliased_)
, variableMultisampleRate(variableMultisampleRate_)
, inheritedQueries(inheritedQueries_)
{
}
PhysicalDeviceFeatures(VkPhysicalDeviceFeatures const & rhs)
{
memcpy(this, &rhs, sizeof(PhysicalDeviceFeatures));
}
PhysicalDeviceFeatures& operator=(VkPhysicalDeviceFeatures const & rhs)
{
memcpy(this, &rhs, sizeof(PhysicalDeviceFeatures));
return *this;
}
PhysicalDeviceFeatures& setRobustBufferAccess(Bool32 robustBufferAccess_)
{
robustBufferAccess = robustBufferAccess_;
return *this;
}
PhysicalDeviceFeatures& setFullDrawIndexUint32(Bool32 fullDrawIndexUint32_)
{
fullDrawIndexUint32 = fullDrawIndexUint32_;
return *this;
}
PhysicalDeviceFeatures& setImageCubeArray(Bool32 imageCubeArray_)
{
imageCubeArray = imageCubeArray_;
return *this;
}
PhysicalDeviceFeatures& setIndependentBlend(Bool32 independentBlend_)
{
independentBlend = independentBlend_;
return *this;
}
PhysicalDeviceFeatures& setGeometryShader(Bool32 geometryShader_)
{
geometryShader = geometryShader_;
return *this;
}
PhysicalDeviceFeatures& setTessellationShader(Bool32 tessellationShader_)
{
tessellationShader = tessellationShader_;
return *this;
}
PhysicalDeviceFeatures& setSampleRateShading(Bool32 sampleRateShading_)
{
sampleRateShading = sampleRateShading_;
return *this;
}
PhysicalDeviceFeatures& setDualSrcBlend(Bool32 dualSrcBlend_)
{
dualSrcBlend = dualSrcBlend_;
return *this;
}
PhysicalDeviceFeatures& setLogicOp(Bool32 logicOp_)
{
logicOp = logicOp_;
return *this;
}
PhysicalDeviceFeatures& setMultiDrawIndirect(Bool32 multiDrawIndirect_)
{
multiDrawIndirect = multiDrawIndirect_;
return *this;
}
PhysicalDeviceFeatures& setDrawIndirectFirstInstance(Bool32 drawIndirectFirstInstance_)
{
drawIndirectFirstInstance = drawIndirectFirstInstance_;
return *this;
}
PhysicalDeviceFeatures& setDepthClamp(Bool32 depthClamp_)
{
depthClamp = depthClamp_;
return *this;
}
PhysicalDeviceFeatures& setDepthBiasClamp(Bool32 depthBiasClamp_)
{
depthBiasClamp = depthBiasClamp_;
return *this;
}
PhysicalDeviceFeatures& setFillModeNonSolid(Bool32 fillModeNonSolid_)
{
fillModeNonSolid = fillModeNonSolid_;
return *this;
}
PhysicalDeviceFeatures& setDepthBounds(Bool32 depthBounds_)
{
depthBounds = depthBounds_;
return *this;
}
PhysicalDeviceFeatures& setWideLines(Bool32 wideLines_)
{
wideLines = wideLines_;
return *this;
}
PhysicalDeviceFeatures& setLargePoints(Bool32 largePoints_)
{
largePoints = largePoints_;
return *this;
}
PhysicalDeviceFeatures& setAlphaToOne(Bool32 alphaToOne_)
{
alphaToOne = alphaToOne_;
return *this;
}
PhysicalDeviceFeatures& setMultiViewport(Bool32 multiViewport_)
{
multiViewport = multiViewport_;
return *this;
}
PhysicalDeviceFeatures& setSamplerAnisotropy(Bool32 samplerAnisotropy_)
{
samplerAnisotropy = samplerAnisotropy_;
return *this;
}
PhysicalDeviceFeatures& setTextureCompressionETC2(Bool32 textureCompressionETC2_)
{
textureCompressionETC2 = textureCompressionETC2_;
return *this;
}
PhysicalDeviceFeatures& setTextureCompressionASTC_LDR(Bool32 textureCompressionASTC_LDR_)
{
textureCompressionASTC_LDR = textureCompressionASTC_LDR_;
return *this;
}
PhysicalDeviceFeatures& setTextureCompressionBC(Bool32 textureCompressionBC_)
{
textureCompressionBC = textureCompressionBC_;
return *this;
}
PhysicalDeviceFeatures& setOcclusionQueryPrecise(Bool32 occlusionQueryPrecise_)
{
occlusionQueryPrecise = occlusionQueryPrecise_;
return *this;
}
PhysicalDeviceFeatures& setPipelineStatisticsQuery(Bool32 pipelineStatisticsQuery_)
{
pipelineStatisticsQuery = pipelineStatisticsQuery_;
return *this;
}
PhysicalDeviceFeatures& setVertexPipelineStoresAndAtomics(Bool32 vertexPipelineStoresAndAtomics_)
{
vertexPipelineStoresAndAtomics = vertexPipelineStoresAndAtomics_;
return *this;
}
PhysicalDeviceFeatures& setFragmentStoresAndAtomics(Bool32 fragmentStoresAndAtomics_)
{
fragmentStoresAndAtomics = fragmentStoresAndAtomics_;
return *this;
}
PhysicalDeviceFeatures& setShaderTessellationAndGeometryPointSize(Bool32 shaderTessellationAndGeometryPointSize_)
{
shaderTessellationAndGeometryPointSize = shaderTessellationAndGeometryPointSize_;
return *this;
}
PhysicalDeviceFeatures& setShaderImageGatherExtended(Bool32 shaderImageGatherExtended_)
{
shaderImageGatherExtended = shaderImageGatherExtended_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageExtendedFormats(Bool32 shaderStorageImageExtendedFormats_)
{
shaderStorageImageExtendedFormats = shaderStorageImageExtendedFormats_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageMultisample(Bool32 shaderStorageImageMultisample_)
{
shaderStorageImageMultisample = shaderStorageImageMultisample_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageReadWithoutFormat(Bool32 shaderStorageImageReadWithoutFormat_)
{
shaderStorageImageReadWithoutFormat = shaderStorageImageReadWithoutFormat_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageWriteWithoutFormat(Bool32 shaderStorageImageWriteWithoutFormat_)
{
shaderStorageImageWriteWithoutFormat = shaderStorageImageWriteWithoutFormat_;
return *this;
}
PhysicalDeviceFeatures& setShaderUniformBufferArrayDynamicIndexing(Bool32 shaderUniformBufferArrayDynamicIndexing_)
{
shaderUniformBufferArrayDynamicIndexing = shaderUniformBufferArrayDynamicIndexing_;
return *this;
}
PhysicalDeviceFeatures& setShaderSampledImageArrayDynamicIndexing(Bool32 shaderSampledImageArrayDynamicIndexing_)
{
shaderSampledImageArrayDynamicIndexing = shaderSampledImageArrayDynamicIndexing_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageBufferArrayDynamicIndexing(Bool32 shaderStorageBufferArrayDynamicIndexing_)
{
shaderStorageBufferArrayDynamicIndexing = shaderStorageBufferArrayDynamicIndexing_;
return *this;
}
PhysicalDeviceFeatures& setShaderStorageImageArrayDynamicIndexing(Bool32 shaderStorageImageArrayDynamicIndexing_)
{
shaderStorageImageArrayDynamicIndexing = shaderStorageImageArrayDynamicIndexing_;
return *this;
}
PhysicalDeviceFeatures& setShaderClipDistance(Bool32 shaderClipDistance_)
{
shaderClipDistance = shaderClipDistance_;
return *this;
}
PhysicalDeviceFeatures& setShaderCullDistance(Bool32 shaderCullDistance_)
{
shaderCullDistance = shaderCullDistance_;
return *this;
}
PhysicalDeviceFeatures& setShaderFloat64(Bool32 shaderFloat64_)
{
shaderFloat64 = shaderFloat64_;
return *this;
}
PhysicalDeviceFeatures& setShaderInt64(Bool32 shaderInt64_)
{
shaderInt64 = shaderInt64_;
return *this;
}
PhysicalDeviceFeatures& setShaderInt16(Bool32 shaderInt16_)
{
shaderInt16 = shaderInt16_;
return *this;
}
PhysicalDeviceFeatures& setShaderResourceResidency(Bool32 shaderResourceResidency_)
{
shaderResourceResidency = shaderResourceResidency_;
return *this;
}
PhysicalDeviceFeatures& setShaderResourceMinLod(Bool32 shaderResourceMinLod_)
{
shaderResourceMinLod = shaderResourceMinLod_;
return *this;
}
PhysicalDeviceFeatures& setSparseBinding(Bool32 sparseBinding_)
{
sparseBinding = sparseBinding_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidencyBuffer(Bool32 sparseResidencyBuffer_)
{
sparseResidencyBuffer = sparseResidencyBuffer_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidencyImage2D(Bool32 sparseResidencyImage2D_)
{
sparseResidencyImage2D = sparseResidencyImage2D_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidencyImage3D(Bool32 sparseResidencyImage3D_)
{
sparseResidencyImage3D = sparseResidencyImage3D_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidency2Samples(Bool32 sparseResidency2Samples_)
{
sparseResidency2Samples = sparseResidency2Samples_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidency4Samples(Bool32 sparseResidency4Samples_)
{
sparseResidency4Samples = sparseResidency4Samples_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidency8Samples(Bool32 sparseResidency8Samples_)
{
sparseResidency8Samples = sparseResidency8Samples_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidency16Samples(Bool32 sparseResidency16Samples_)
{
sparseResidency16Samples = sparseResidency16Samples_;
return *this;
}
PhysicalDeviceFeatures& setSparseResidencyAliased(Bool32 sparseResidencyAliased_)
{
sparseResidencyAliased = sparseResidencyAliased_;
return *this;
}
PhysicalDeviceFeatures& setVariableMultisampleRate(Bool32 variableMultisampleRate_)
{
variableMultisampleRate = variableMultisampleRate_;
return *this;
}
PhysicalDeviceFeatures& setInheritedQueries(Bool32 inheritedQueries_)
{
inheritedQueries = inheritedQueries_;
return *this;
}
operator const VkPhysicalDeviceFeatures&() const
{
return *reinterpret_cast<const VkPhysicalDeviceFeatures*>(this);
}
bool operator==(PhysicalDeviceFeatures const& rhs) const
{
return (robustBufferAccess == rhs.robustBufferAccess)
&& (fullDrawIndexUint32 == rhs.fullDrawIndexUint32)
&& (imageCubeArray == rhs.imageCubeArray)
&& (independentBlend == rhs.independentBlend)
&& (geometryShader == rhs.geometryShader)
&& (tessellationShader == rhs.tessellationShader)
&& (sampleRateShading == rhs.sampleRateShading)
&& (dualSrcBlend == rhs.dualSrcBlend)
&& (logicOp == rhs.logicOp)
&& (multiDrawIndirect == rhs.multiDrawIndirect)
&& (drawIndirectFirstInstance == rhs.drawIndirectFirstInstance)
&& (depthClamp == rhs.depthClamp)
&& (depthBiasClamp == rhs.depthBiasClamp)
&& (fillModeNonSolid == rhs.fillModeNonSolid)
&& (depthBounds == rhs.depthBounds)
&& (wideLines == rhs.wideLines)
&& (largePoints == rhs.largePoints)
&& (alphaToOne == rhs.alphaToOne)
&& (multiViewport == rhs.multiViewport)
&& (samplerAnisotropy == rhs.samplerAnisotropy)
&& (textureCompressionETC2 == rhs.textureCompressionETC2)
&& (textureCompressionASTC_LDR == rhs.textureCompressionASTC_LDR)
&& (textureCompressionBC == rhs.textureCompressionBC)
&& (occlusionQueryPrecise == rhs.occlusionQueryPrecise)
&& (pipelineStatisticsQuery == rhs.pipelineStatisticsQuery)
&& (vertexPipelineStoresAndAtomics == rhs.vertexPipelineStoresAndAtomics)
&& (fragmentStoresAndAtomics == rhs.fragmentStoresAndAtomics)
&& (shaderTessellationAndGeometryPointSize == rhs.shaderTessellationAndGeometryPointSize)
&& (shaderImageGatherExtended == rhs.shaderImageGatherExtended)
&& (shaderStorageImageExtendedFormats == rhs.shaderStorageImageExtendedFormats)
&& (shaderStorageImageMultisample == rhs.shaderStorageImageMultisample)
&& (shaderStorageImageReadWithoutFormat == rhs.shaderStorageImageReadWithoutFormat)
&& (shaderStorageImageWriteWithoutFormat == rhs.shaderStorageImageWriteWithoutFormat)
&& (shaderUniformBufferArrayDynamicIndexing == rhs.shaderUniformBufferArrayDynamicIndexing)
&& (shaderSampledImageArrayDynamicIndexing == rhs.shaderSampledImageArrayDynamicIndexing)
&& (shaderStorageBufferArrayDynamicIndexing == rhs.shaderStorageBufferArrayDynamicIndexing)
&& (shaderStorageImageArrayDynamicIndexing == rhs.shaderStorageImageArrayDynamicIndexing)
&& (shaderClipDistance == rhs.shaderClipDistance)
&& (shaderCullDistance == rhs.shaderCullDistance)
&& (shaderFloat64 == rhs.shaderFloat64)
&& (shaderInt64 == rhs.shaderInt64)
&& (shaderInt16 == rhs.shaderInt16)
&& (shaderResourceResidency == rhs.shaderResourceResidency)
&& (shaderResourceMinLod == rhs.shaderResourceMinLod)
&& (sparseBinding == rhs.sparseBinding)
&& (sparseResidencyBuffer == rhs.sparseResidencyBuffer)
&& (sparseResidencyImage2D == rhs.sparseResidencyImage2D)
&& (sparseResidencyImage3D == rhs.sparseResidencyImage3D)
&& (sparseResidency2Samples == rhs.sparseResidency2Samples)
&& (sparseResidency4Samples == rhs.sparseResidency4Samples)
&& (sparseResidency8Samples == rhs.sparseResidency8Samples)
&& (sparseResidency16Samples == rhs.sparseResidency16Samples)
&& (sparseResidencyAliased == rhs.sparseResidencyAliased)
&& (variableMultisampleRate == rhs.variableMultisampleRate)
&& (inheritedQueries == rhs.inheritedQueries);
}
bool operator!=(PhysicalDeviceFeatures const& rhs) const
{
return !operator==(rhs);
}
Bool32 robustBufferAccess;
Bool32 fullDrawIndexUint32;
Bool32 imageCubeArray;
Bool32 independentBlend;
Bool32 geometryShader;
Bool32 tessellationShader;
Bool32 sampleRateShading;
Bool32 dualSrcBlend;
Bool32 logicOp;
Bool32 multiDrawIndirect;
Bool32 drawIndirectFirstInstance;
Bool32 depthClamp;
Bool32 depthBiasClamp;
Bool32 fillModeNonSolid;
Bool32 depthBounds;
Bool32 wideLines;
Bool32 largePoints;
Bool32 alphaToOne;
Bool32 multiViewport;
Bool32 samplerAnisotropy;
Bool32 textureCompressionETC2;
Bool32 textureCompressionASTC_LDR;
Bool32 textureCompressionBC;
Bool32 occlusionQueryPrecise;
Bool32 pipelineStatisticsQuery;
Bool32 vertexPipelineStoresAndAtomics;
Bool32 fragmentStoresAndAtomics;
Bool32 shaderTessellationAndGeometryPointSize;
Bool32 shaderImageGatherExtended;
Bool32 shaderStorageImageExtendedFormats;
Bool32 shaderStorageImageMultisample;
Bool32 shaderStorageImageReadWithoutFormat;
Bool32 shaderStorageImageWriteWithoutFormat;
Bool32 shaderUniformBufferArrayDynamicIndexing;
Bool32 shaderSampledImageArrayDynamicIndexing;
Bool32 shaderStorageBufferArrayDynamicIndexing;
Bool32 shaderStorageImageArrayDynamicIndexing;
Bool32 shaderClipDistance;
Bool32 shaderCullDistance;
Bool32 shaderFloat64;
Bool32 shaderInt64;
Bool32 shaderInt16;
Bool32 shaderResourceResidency;
Bool32 shaderResourceMinLod;
Bool32 sparseBinding;
Bool32 sparseResidencyBuffer;
Bool32 sparseResidencyImage2D;
Bool32 sparseResidencyImage3D;
Bool32 sparseResidency2Samples;
Bool32 sparseResidency4Samples;
Bool32 sparseResidency8Samples;
Bool32 sparseResidency16Samples;
Bool32 sparseResidencyAliased;
Bool32 variableMultisampleRate;
Bool32 inheritedQueries;
};
static_assert(sizeof(PhysicalDeviceFeatures) == sizeof(VkPhysicalDeviceFeatures), "struct and wrapper have different size!");
struct PhysicalDeviceSparseProperties
{
operator const VkPhysicalDeviceSparseProperties&() const
{
return *reinterpret_cast<const VkPhysicalDeviceSparseProperties*>(this);
}
bool operator==(PhysicalDeviceSparseProperties const& rhs) const
{
return (residencyStandard2DBlockShape == rhs.residencyStandard2DBlockShape)
&& (residencyStandard2DMultisampleBlockShape == rhs.residencyStandard2DMultisampleBlockShape)
&& (residencyStandard3DBlockShape == rhs.residencyStandard3DBlockShape)
&& (residencyAlignedMipSize == rhs.residencyAlignedMipSize)
&& (residencyNonResidentStrict == rhs.residencyNonResidentStrict);
}
bool operator!=(PhysicalDeviceSparseProperties const& rhs) const
{
return !operator==(rhs);
}
Bool32 residencyStandard2DBlockShape;
Bool32 residencyStandard2DMultisampleBlockShape;
Bool32 residencyStandard3DBlockShape;
Bool32 residencyAlignedMipSize;
Bool32 residencyNonResidentStrict;
};
static_assert(sizeof(PhysicalDeviceSparseProperties) == sizeof(VkPhysicalDeviceSparseProperties), "struct and wrapper have different size!");
struct DrawIndirectCommand
{
DrawIndirectCommand(uint32_t vertexCount_ = 0, uint32_t instanceCount_ = 0, uint32_t firstVertex_ = 0, uint32_t firstInstance_ = 0)
: vertexCount(vertexCount_)
, instanceCount(instanceCount_)
, firstVertex(firstVertex_)
, firstInstance(firstInstance_)
{
}
DrawIndirectCommand(VkDrawIndirectCommand const & rhs)
{
memcpy(this, &rhs, sizeof(DrawIndirectCommand));
}
DrawIndirectCommand& operator=(VkDrawIndirectCommand const & rhs)
{
memcpy(this, &rhs, sizeof(DrawIndirectCommand));
return *this;
}
DrawIndirectCommand& setVertexCount(uint32_t vertexCount_)
{
vertexCount = vertexCount_;
return *this;
}
DrawIndirectCommand& setInstanceCount(uint32_t instanceCount_)
{
instanceCount = instanceCount_;
return *this;
}
DrawIndirectCommand& setFirstVertex(uint32_t firstVertex_)
{
firstVertex = firstVertex_;
return *this;
}
DrawIndirectCommand& setFirstInstance(uint32_t firstInstance_)
{
firstInstance = firstInstance_;
return *this;
}
operator const VkDrawIndirectCommand&() const
{
return *reinterpret_cast<const VkDrawIndirectCommand*>(this);
}
bool operator==(DrawIndirectCommand const& rhs) const
{
return (vertexCount == rhs.vertexCount)
&& (instanceCount == rhs.instanceCount)
&& (firstVertex == rhs.firstVertex)
&& (firstInstance == rhs.firstInstance);
}
bool operator!=(DrawIndirectCommand const& rhs) const
{
return !operator==(rhs);
}
uint32_t vertexCount;
uint32_t instanceCount;
uint32_t firstVertex;
uint32_t firstInstance;
};
static_assert(sizeof(DrawIndirectCommand) == sizeof(VkDrawIndirectCommand), "struct and wrapper have different size!");
struct DrawIndexedIndirectCommand
{
DrawIndexedIndirectCommand(uint32_t indexCount_ = 0, uint32_t instanceCount_ = 0, uint32_t firstIndex_ = 0, int32_t vertexOffset_ = 0, uint32_t firstInstance_ = 0)
: indexCount(indexCount_)
, instanceCount(instanceCount_)
, firstIndex(firstIndex_)
, vertexOffset(vertexOffset_)
, firstInstance(firstInstance_)
{
}
DrawIndexedIndirectCommand(VkDrawIndexedIndirectCommand const & rhs)
{
memcpy(this, &rhs, sizeof(DrawIndexedIndirectCommand));
}
DrawIndexedIndirectCommand& operator=(VkDrawIndexedIndirectCommand const & rhs)
{
memcpy(this, &rhs, sizeof(DrawIndexedIndirectCommand));
return *this;
}
DrawIndexedIndirectCommand& setIndexCount(uint32_t indexCount_)
{
indexCount = indexCount_;
return *this;
}
DrawIndexedIndirectCommand& setInstanceCount(uint32_t instanceCount_)
{
instanceCount = instanceCount_;
return *this;
}
DrawIndexedIndirectCommand& setFirstIndex(uint32_t firstIndex_)
{
firstIndex = firstIndex_;
return *this;
}
DrawIndexedIndirectCommand& setVertexOffset(int32_t vertexOffset_)
{
vertexOffset = vertexOffset_;
return *this;
}
DrawIndexedIndirectCommand& setFirstInstance(uint32_t firstInstance_)
{
firstInstance = firstInstance_;
return *this;
}
operator const VkDrawIndexedIndirectCommand&() const
{
return *reinterpret_cast<const VkDrawIndexedIndirectCommand*>(this);
}
bool operator==(DrawIndexedIndirectCommand const& rhs) const
{
return (indexCount == rhs.indexCount)
&& (instanceCount == rhs.instanceCount)
&& (firstIndex == rhs.firstIndex)
&& (vertexOffset == rhs.vertexOffset)
&& (firstInstance == rhs.firstInstance);
}
bool operator!=(DrawIndexedIndirectCommand const& rhs) const
{
return !operator==(rhs);
}
uint32_t indexCount;
uint32_t instanceCount;
uint32_t firstIndex;
int32_t vertexOffset;
uint32_t firstInstance;
};
static_assert(sizeof(DrawIndexedIndirectCommand) == sizeof(VkDrawIndexedIndirectCommand), "struct and wrapper have different size!");
struct DispatchIndirectCommand
{
DispatchIndirectCommand(uint32_t x_ = 0, uint32_t y_ = 0, uint32_t z_ = 0)
: x(x_)
, y(y_)
, z(z_)
{
}
DispatchIndirectCommand(VkDispatchIndirectCommand const & rhs)
{
memcpy(this, &rhs, sizeof(DispatchIndirectCommand));
}
DispatchIndirectCommand& operator=(VkDispatchIndirectCommand const & rhs)
{
memcpy(this, &rhs, sizeof(DispatchIndirectCommand));
return *this;
}
DispatchIndirectCommand& setX(uint32_t x_)
{
x = x_;
return *this;
}
DispatchIndirectCommand& setY(uint32_t y_)
{
y = y_;
return *this;
}
DispatchIndirectCommand& setZ(uint32_t z_)
{
z = z_;
return *this;
}
operator const VkDispatchIndirectCommand&() const
{
return *reinterpret_cast<const VkDispatchIndirectCommand*>(this);
}
bool operator==(DispatchIndirectCommand const& rhs) const
{
return (x == rhs.x)
&& (y == rhs.y)
&& (z == rhs.z);
}
bool operator!=(DispatchIndirectCommand const& rhs) const
{
return !operator==(rhs);
}
uint32_t x;
uint32_t y;
uint32_t z;
};
static_assert(sizeof(DispatchIndirectCommand) == sizeof(VkDispatchIndirectCommand), "struct and wrapper have different size!");
struct DisplayPlanePropertiesKHR
{
DisplayPlanePropertiesKHR(DisplayKHR currentDisplay_ = DisplayKHR(), uint32_t currentStackIndex_ = 0)
: currentDisplay(currentDisplay_)
, currentStackIndex(currentStackIndex_)
{
}
DisplayPlanePropertiesKHR(VkDisplayPlanePropertiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayPlanePropertiesKHR));
}
DisplayPlanePropertiesKHR& operator=(VkDisplayPlanePropertiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayPlanePropertiesKHR));
return *this;
}
DisplayPlanePropertiesKHR& setCurrentDisplay(DisplayKHR currentDisplay_)
{
currentDisplay = currentDisplay_;
return *this;
}
DisplayPlanePropertiesKHR& setCurrentStackIndex(uint32_t currentStackIndex_)
{
currentStackIndex = currentStackIndex_;
return *this;
}
operator const VkDisplayPlanePropertiesKHR&() const
{
return *reinterpret_cast<const VkDisplayPlanePropertiesKHR*>(this);
}
bool operator==(DisplayPlanePropertiesKHR const& rhs) const
{
return (currentDisplay == rhs.currentDisplay)
&& (currentStackIndex == rhs.currentStackIndex);
}
bool operator!=(DisplayPlanePropertiesKHR const& rhs) const
{
return !operator==(rhs);
}
DisplayKHR currentDisplay;
uint32_t currentStackIndex;
};
static_assert(sizeof(DisplayPlanePropertiesKHR) == sizeof(VkDisplayPlanePropertiesKHR), "struct and wrapper have different size!");
struct DisplayModeParametersKHR
{
DisplayModeParametersKHR(Extent2D visibleRegion_ = Extent2D(), uint32_t refreshRate_ = 0)
: visibleRegion(visibleRegion_)
, refreshRate(refreshRate_)
{
}
DisplayModeParametersKHR(VkDisplayModeParametersKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayModeParametersKHR));
}
DisplayModeParametersKHR& operator=(VkDisplayModeParametersKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayModeParametersKHR));
return *this;
}
DisplayModeParametersKHR& setVisibleRegion(Extent2D visibleRegion_)
{
visibleRegion = visibleRegion_;
return *this;
}
DisplayModeParametersKHR& setRefreshRate(uint32_t refreshRate_)
{
refreshRate = refreshRate_;
return *this;
}
operator const VkDisplayModeParametersKHR&() const
{
return *reinterpret_cast<const VkDisplayModeParametersKHR*>(this);
}
bool operator==(DisplayModeParametersKHR const& rhs) const
{
return (visibleRegion == rhs.visibleRegion)
&& (refreshRate == rhs.refreshRate);
}
bool operator!=(DisplayModeParametersKHR const& rhs) const
{
return !operator==(rhs);
}
Extent2D visibleRegion;
uint32_t refreshRate;
};
static_assert(sizeof(DisplayModeParametersKHR) == sizeof(VkDisplayModeParametersKHR), "struct and wrapper have different size!");
struct DisplayModePropertiesKHR
{
DisplayModePropertiesKHR(DisplayModeKHR displayMode_ = DisplayModeKHR(), DisplayModeParametersKHR parameters_ = DisplayModeParametersKHR())
: displayMode(displayMode_)
, parameters(parameters_)
{
}
DisplayModePropertiesKHR(VkDisplayModePropertiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayModePropertiesKHR));
}
DisplayModePropertiesKHR& operator=(VkDisplayModePropertiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayModePropertiesKHR));
return *this;
}
DisplayModePropertiesKHR& setDisplayMode(DisplayModeKHR displayMode_)
{
displayMode = displayMode_;
return *this;
}
DisplayModePropertiesKHR& setParameters(DisplayModeParametersKHR parameters_)
{
parameters = parameters_;
return *this;
}
operator const VkDisplayModePropertiesKHR&() const
{
return *reinterpret_cast<const VkDisplayModePropertiesKHR*>(this);
}
bool operator==(DisplayModePropertiesKHR const& rhs) const
{
return (displayMode == rhs.displayMode)
&& (parameters == rhs.parameters);
}
bool operator!=(DisplayModePropertiesKHR const& rhs) const
{
return !operator==(rhs);
}
DisplayModeKHR displayMode;
DisplayModeParametersKHR parameters;
};
static_assert(sizeof(DisplayModePropertiesKHR) == sizeof(VkDisplayModePropertiesKHR), "struct and wrapper have different size!");
enum class ImageLayout
{
eUndefined = VK_IMAGE_LAYOUT_UNDEFINED,
eGeneral = VK_IMAGE_LAYOUT_GENERAL,
eColorAttachmentOptimal = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
eDepthStencilAttachmentOptimal = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
eDepthStencilReadOnlyOptimal = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
eShaderReadOnlyOptimal = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
eTransferSrcOptimal = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
eTransferDstOptimal = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
ePreinitialized = VK_IMAGE_LAYOUT_PREINITIALIZED,
ePresentSrcKHR = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
};
struct DescriptorImageInfo
{
DescriptorImageInfo(Sampler sampler_ = Sampler(), ImageView imageView_ = ImageView(), ImageLayout imageLayout_ = ImageLayout::eUndefined)
: sampler(sampler_)
, imageView(imageView_)
, imageLayout(imageLayout_)
{
}
DescriptorImageInfo(VkDescriptorImageInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorImageInfo));
}
DescriptorImageInfo& operator=(VkDescriptorImageInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorImageInfo));
return *this;
}
DescriptorImageInfo& setSampler(Sampler sampler_)
{
sampler = sampler_;
return *this;
}
DescriptorImageInfo& setImageView(ImageView imageView_)
{
imageView = imageView_;
return *this;
}
DescriptorImageInfo& setImageLayout(ImageLayout imageLayout_)
{
imageLayout = imageLayout_;
return *this;
}
operator const VkDescriptorImageInfo&() const
{
return *reinterpret_cast<const VkDescriptorImageInfo*>(this);
}
bool operator==(DescriptorImageInfo const& rhs) const
{
return (sampler == rhs.sampler)
&& (imageView == rhs.imageView)
&& (imageLayout == rhs.imageLayout);
}
bool operator!=(DescriptorImageInfo const& rhs) const
{
return !operator==(rhs);
}
Sampler sampler;
ImageView imageView;
ImageLayout imageLayout;
};
static_assert(sizeof(DescriptorImageInfo) == sizeof(VkDescriptorImageInfo), "struct and wrapper have different size!");
struct AttachmentReference
{
AttachmentReference(uint32_t attachment_ = 0, ImageLayout layout_ = ImageLayout::eUndefined)
: attachment(attachment_)
, layout(layout_)
{
}
AttachmentReference(VkAttachmentReference const & rhs)
{
memcpy(this, &rhs, sizeof(AttachmentReference));
}
AttachmentReference& operator=(VkAttachmentReference const & rhs)
{
memcpy(this, &rhs, sizeof(AttachmentReference));
return *this;
}
AttachmentReference& setAttachment(uint32_t attachment_)
{
attachment = attachment_;
return *this;
}
AttachmentReference& setLayout(ImageLayout layout_)
{
layout = layout_;
return *this;
}
operator const VkAttachmentReference&() const
{
return *reinterpret_cast<const VkAttachmentReference*>(this);
}
bool operator==(AttachmentReference const& rhs) const
{
return (attachment == rhs.attachment)
&& (layout == rhs.layout);
}
bool operator!=(AttachmentReference const& rhs) const
{
return !operator==(rhs);
}
uint32_t attachment;
ImageLayout layout;
};
static_assert(sizeof(AttachmentReference) == sizeof(VkAttachmentReference), "struct and wrapper have different size!");
enum class AttachmentLoadOp
{
eLoad = VK_ATTACHMENT_LOAD_OP_LOAD,
eClear = VK_ATTACHMENT_LOAD_OP_CLEAR,
eDontCare = VK_ATTACHMENT_LOAD_OP_DONT_CARE
};
enum class AttachmentStoreOp
{
eStore = VK_ATTACHMENT_STORE_OP_STORE,
eDontCare = VK_ATTACHMENT_STORE_OP_DONT_CARE
};
enum class ImageType
{
e1D = VK_IMAGE_TYPE_1D,
e2D = VK_IMAGE_TYPE_2D,
e3D = VK_IMAGE_TYPE_3D
};
enum class ImageTiling
{
eOptimal = VK_IMAGE_TILING_OPTIMAL,
eLinear = VK_IMAGE_TILING_LINEAR
};
enum class ImageViewType
{
e1D = VK_IMAGE_VIEW_TYPE_1D,
e2D = VK_IMAGE_VIEW_TYPE_2D,
e3D = VK_IMAGE_VIEW_TYPE_3D,
eCube = VK_IMAGE_VIEW_TYPE_CUBE,
e1DArray = VK_IMAGE_VIEW_TYPE_1D_ARRAY,
e2DArray = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
eCubeArray = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY
};
enum class CommandBufferLevel
{
ePrimary = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
eSecondary = VK_COMMAND_BUFFER_LEVEL_SECONDARY
};
enum class ComponentSwizzle
{
eIdentity = VK_COMPONENT_SWIZZLE_IDENTITY,
eZero = VK_COMPONENT_SWIZZLE_ZERO,
eOne = VK_COMPONENT_SWIZZLE_ONE,
eR = VK_COMPONENT_SWIZZLE_R,
eG = VK_COMPONENT_SWIZZLE_G,
eB = VK_COMPONENT_SWIZZLE_B,
eA = VK_COMPONENT_SWIZZLE_A
};
struct ComponentMapping
{
ComponentMapping(ComponentSwizzle r_ = ComponentSwizzle::eIdentity, ComponentSwizzle g_ = ComponentSwizzle::eIdentity, ComponentSwizzle b_ = ComponentSwizzle::eIdentity, ComponentSwizzle a_ = ComponentSwizzle::eIdentity)
: r(r_)
, g(g_)
, b(b_)
, a(a_)
{
}
ComponentMapping(VkComponentMapping const & rhs)
{
memcpy(this, &rhs, sizeof(ComponentMapping));
}
ComponentMapping& operator=(VkComponentMapping const & rhs)
{
memcpy(this, &rhs, sizeof(ComponentMapping));
return *this;
}
ComponentMapping& setR(ComponentSwizzle r_)
{
r = r_;
return *this;
}
ComponentMapping& setG(ComponentSwizzle g_)
{
g = g_;
return *this;
}
ComponentMapping& setB(ComponentSwizzle b_)
{
b = b_;
return *this;
}
ComponentMapping& setA(ComponentSwizzle a_)
{
a = a_;
return *this;
}
operator const VkComponentMapping&() const
{
return *reinterpret_cast<const VkComponentMapping*>(this);
}
bool operator==(ComponentMapping const& rhs) const
{
return (r == rhs.r)
&& (g == rhs.g)
&& (b == rhs.b)
&& (a == rhs.a);
}
bool operator!=(ComponentMapping const& rhs) const
{
return !operator==(rhs);
}
ComponentSwizzle r;
ComponentSwizzle g;
ComponentSwizzle b;
ComponentSwizzle a;
};
static_assert(sizeof(ComponentMapping) == sizeof(VkComponentMapping), "struct and wrapper have different size!");
enum class DescriptorType
{
eSampler = VK_DESCRIPTOR_TYPE_SAMPLER,
eCombinedImageSampler = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
eSampledImage = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
eStorageImage = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
eUniformTexelBuffer = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
eStorageTexelBuffer = VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER,
eUniformBuffer = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
eStorageBuffer = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
eUniformBufferDynamic = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
eStorageBufferDynamic = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC,
eInputAttachment = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT
};
struct DescriptorPoolSize
{
DescriptorPoolSize(DescriptorType type_ = DescriptorType::eSampler, uint32_t descriptorCount_ = 0)
: type(type_)
, descriptorCount(descriptorCount_)
{
}
DescriptorPoolSize(VkDescriptorPoolSize const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorPoolSize));
}
DescriptorPoolSize& operator=(VkDescriptorPoolSize const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorPoolSize));
return *this;
}
DescriptorPoolSize& setType(DescriptorType type_)
{
type = type_;
return *this;
}
DescriptorPoolSize& setDescriptorCount(uint32_t descriptorCount_)
{
descriptorCount = descriptorCount_;
return *this;
}
operator const VkDescriptorPoolSize&() const
{
return *reinterpret_cast<const VkDescriptorPoolSize*>(this);
}
bool operator==(DescriptorPoolSize const& rhs) const
{
return (type == rhs.type)
&& (descriptorCount == rhs.descriptorCount);
}
bool operator!=(DescriptorPoolSize const& rhs) const
{
return !operator==(rhs);
}
DescriptorType type;
uint32_t descriptorCount;
};
static_assert(sizeof(DescriptorPoolSize) == sizeof(VkDescriptorPoolSize), "struct and wrapper have different size!");
enum class QueryType
{
eOcclusion = VK_QUERY_TYPE_OCCLUSION,
ePipelineStatistics = VK_QUERY_TYPE_PIPELINE_STATISTICS,
eTimestamp = VK_QUERY_TYPE_TIMESTAMP
};
enum class BorderColor
{
eFloatTransparentBlack = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK,
eIntTransparentBlack = VK_BORDER_COLOR_INT_TRANSPARENT_BLACK,
eFloatOpaqueBlack = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK,
eIntOpaqueBlack = VK_BORDER_COLOR_INT_OPAQUE_BLACK,
eFloatOpaqueWhite = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE,
eIntOpaqueWhite = VK_BORDER_COLOR_INT_OPAQUE_WHITE
};
enum class PipelineBindPoint
{
eGraphics = VK_PIPELINE_BIND_POINT_GRAPHICS,
eCompute = VK_PIPELINE_BIND_POINT_COMPUTE
};
struct SubpassDescription
{
SubpassDescription(SubpassDescriptionFlags flags_ = SubpassDescriptionFlags(), PipelineBindPoint pipelineBindPoint_ = PipelineBindPoint::eGraphics, uint32_t inputAttachmentCount_ = 0, const AttachmentReference* pInputAttachments_ = nullptr, uint32_t colorAttachmentCount_ = 0, const AttachmentReference* pColorAttachments_ = nullptr, const AttachmentReference* pResolveAttachments_ = nullptr, const AttachmentReference* pDepthStencilAttachment_ = nullptr, uint32_t preserveAttachmentCount_ = 0, const uint32_t* pPreserveAttachments_ = nullptr)
: flags(flags_)
, pipelineBindPoint(pipelineBindPoint_)
, inputAttachmentCount(inputAttachmentCount_)
, pInputAttachments(pInputAttachments_)
, colorAttachmentCount(colorAttachmentCount_)
, pColorAttachments(pColorAttachments_)
, pResolveAttachments(pResolveAttachments_)
, pDepthStencilAttachment(pDepthStencilAttachment_)
, preserveAttachmentCount(preserveAttachmentCount_)
, pPreserveAttachments(pPreserveAttachments_)
{
}
SubpassDescription(VkSubpassDescription const & rhs)
{
memcpy(this, &rhs, sizeof(SubpassDescription));
}
SubpassDescription& operator=(VkSubpassDescription const & rhs)
{
memcpy(this, &rhs, sizeof(SubpassDescription));
return *this;
}
SubpassDescription& setFlags(SubpassDescriptionFlags flags_)
{
flags = flags_;
return *this;
}
SubpassDescription& setPipelineBindPoint(PipelineBindPoint pipelineBindPoint_)
{
pipelineBindPoint = pipelineBindPoint_;
return *this;
}
SubpassDescription& setInputAttachmentCount(uint32_t inputAttachmentCount_)
{
inputAttachmentCount = inputAttachmentCount_;
return *this;
}
SubpassDescription& setPInputAttachments(const AttachmentReference* pInputAttachments_)
{
pInputAttachments = pInputAttachments_;
return *this;
}
SubpassDescription& setColorAttachmentCount(uint32_t colorAttachmentCount_)
{
colorAttachmentCount = colorAttachmentCount_;
return *this;
}
SubpassDescription& setPColorAttachments(const AttachmentReference* pColorAttachments_)
{
pColorAttachments = pColorAttachments_;
return *this;
}
SubpassDescription& setPResolveAttachments(const AttachmentReference* pResolveAttachments_)
{
pResolveAttachments = pResolveAttachments_;
return *this;
}
SubpassDescription& setPDepthStencilAttachment(const AttachmentReference* pDepthStencilAttachment_)
{
pDepthStencilAttachment = pDepthStencilAttachment_;
return *this;
}
SubpassDescription& setPreserveAttachmentCount(uint32_t preserveAttachmentCount_)
{
preserveAttachmentCount = preserveAttachmentCount_;
return *this;
}
SubpassDescription& setPPreserveAttachments(const uint32_t* pPreserveAttachments_)
{
pPreserveAttachments = pPreserveAttachments_;
return *this;
}
operator const VkSubpassDescription&() const
{
return *reinterpret_cast<const VkSubpassDescription*>(this);
}
bool operator==(SubpassDescription const& rhs) const
{
return (flags == rhs.flags)
&& (pipelineBindPoint == rhs.pipelineBindPoint)
&& (inputAttachmentCount == rhs.inputAttachmentCount)
&& (pInputAttachments == rhs.pInputAttachments)
&& (colorAttachmentCount == rhs.colorAttachmentCount)
&& (pColorAttachments == rhs.pColorAttachments)
&& (pResolveAttachments == rhs.pResolveAttachments)
&& (pDepthStencilAttachment == rhs.pDepthStencilAttachment)
&& (preserveAttachmentCount == rhs.preserveAttachmentCount)
&& (pPreserveAttachments == rhs.pPreserveAttachments);
}
bool operator!=(SubpassDescription const& rhs) const
{
return !operator==(rhs);
}
SubpassDescriptionFlags flags;
PipelineBindPoint pipelineBindPoint;
uint32_t inputAttachmentCount;
const AttachmentReference* pInputAttachments;
uint32_t colorAttachmentCount;
const AttachmentReference* pColorAttachments;
const AttachmentReference* pResolveAttachments;
const AttachmentReference* pDepthStencilAttachment;
uint32_t preserveAttachmentCount;
const uint32_t* pPreserveAttachments;
};
static_assert(sizeof(SubpassDescription) == sizeof(VkSubpassDescription), "struct and wrapper have different size!");
enum class PipelineCacheHeaderVersion
{
eOne = VK_PIPELINE_CACHE_HEADER_VERSION_ONE
};
enum class PrimitiveTopology
{
ePointList = VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
eLineList = VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
eLineStrip = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP,
eTriangleList = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
eTriangleStrip = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
eTriangleFan = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN,
eLineListWithAdjacency = VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
eLineStripWithAdjacency = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY,
eTriangleListWithAdjacency = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY,
eTriangleStripWithAdjacency = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY,
ePatchList = VK_PRIMITIVE_TOPOLOGY_PATCH_LIST
};
enum class SharingMode
{
eExclusive = VK_SHARING_MODE_EXCLUSIVE,
eConcurrent = VK_SHARING_MODE_CONCURRENT
};
enum class IndexType
{
eUint16 = VK_INDEX_TYPE_UINT16,
eUint32 = VK_INDEX_TYPE_UINT32
};
enum class Filter
{
eNearest = VK_FILTER_NEAREST,
eLinear = VK_FILTER_LINEAR,
eCubicIMG = VK_FILTER_CUBIC_IMG
};
enum class SamplerMipmapMode
{
eNearest = VK_SAMPLER_MIPMAP_MODE_NEAREST,
eLinear = VK_SAMPLER_MIPMAP_MODE_LINEAR
};
enum class SamplerAddressMode
{
eRepeat = VK_SAMPLER_ADDRESS_MODE_REPEAT,
eMirroredRepeat = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT,
eClampToEdge = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
eClampToBorder = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
eMirrorClampToEdge = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE
};
enum class CompareOp
{
eNever = VK_COMPARE_OP_NEVER,
eLess = VK_COMPARE_OP_LESS,
eEqual = VK_COMPARE_OP_EQUAL,
eLessOrEqual = VK_COMPARE_OP_LESS_OR_EQUAL,
eGreater = VK_COMPARE_OP_GREATER,
eNotEqual = VK_COMPARE_OP_NOT_EQUAL,
eGreaterOrEqual = VK_COMPARE_OP_GREATER_OR_EQUAL,
eAlways = VK_COMPARE_OP_ALWAYS
};
enum class PolygonMode
{
eFill = VK_POLYGON_MODE_FILL,
eLine = VK_POLYGON_MODE_LINE,
ePoint = VK_POLYGON_MODE_POINT
};
enum class CullModeFlagBits
{
eNone = VK_CULL_MODE_NONE,
eFront = VK_CULL_MODE_FRONT_BIT,
eBack = VK_CULL_MODE_BACK_BIT,
eFrontAndBack = VK_CULL_MODE_FRONT_AND_BACK
};
using CullModeFlags = Flags<CullModeFlagBits, VkCullModeFlags>;
inline CullModeFlags operator|(CullModeFlagBits bit0, CullModeFlagBits bit1)
{
return CullModeFlags(bit0) | bit1;
}
enum class FrontFace
{
eCounterClockwise = VK_FRONT_FACE_COUNTER_CLOCKWISE,
eClockwise = VK_FRONT_FACE_CLOCKWISE
};
enum class BlendFactor
{
eZero = VK_BLEND_FACTOR_ZERO,
eOne = VK_BLEND_FACTOR_ONE,
eSrcColor = VK_BLEND_FACTOR_SRC_COLOR,
eOneMinusSrcColor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR,
eDstColor = VK_BLEND_FACTOR_DST_COLOR,
eOneMinusDstColor = VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR,
eSrcAlpha = VK_BLEND_FACTOR_SRC_ALPHA,
eOneMinusSrcAlpha = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
eDstAlpha = VK_BLEND_FACTOR_DST_ALPHA,
eOneMinusDstAlpha = VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA,
eConstantColor = VK_BLEND_FACTOR_CONSTANT_COLOR,
eOneMinusConstantColor = VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR,
eConstantAlpha = VK_BLEND_FACTOR_CONSTANT_ALPHA,
eOneMinusConstantAlpha = VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA,
eSrcAlphaSaturate = VK_BLEND_FACTOR_SRC_ALPHA_SATURATE,
eSrc1Color = VK_BLEND_FACTOR_SRC1_COLOR,
eOneMinusSrc1Color = VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR,
eSrc1Alpha = VK_BLEND_FACTOR_SRC1_ALPHA,
eOneMinusSrc1Alpha = VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA
};
enum class BlendOp
{
eAdd = VK_BLEND_OP_ADD,
eSubtract = VK_BLEND_OP_SUBTRACT,
eReverseSubtract = VK_BLEND_OP_REVERSE_SUBTRACT,
eMin = VK_BLEND_OP_MIN,
eMax = VK_BLEND_OP_MAX
};
enum class StencilOp
{
eKeep = VK_STENCIL_OP_KEEP,
eZero = VK_STENCIL_OP_ZERO,
eReplace = VK_STENCIL_OP_REPLACE,
eIncrementAndClamp = VK_STENCIL_OP_INCREMENT_AND_CLAMP,
eDecrementAndClamp = VK_STENCIL_OP_DECREMENT_AND_CLAMP,
eInvert = VK_STENCIL_OP_INVERT,
eIncrementAndWrap = VK_STENCIL_OP_INCREMENT_AND_WRAP,
eDecrementAndWrap = VK_STENCIL_OP_DECREMENT_AND_WRAP
};
struct StencilOpState
{
StencilOpState(StencilOp failOp_ = StencilOp::eKeep, StencilOp passOp_ = StencilOp::eKeep, StencilOp depthFailOp_ = StencilOp::eKeep, CompareOp compareOp_ = CompareOp::eNever, uint32_t compareMask_ = 0, uint32_t writeMask_ = 0, uint32_t reference_ = 0)
: failOp(failOp_)
, passOp(passOp_)
, depthFailOp(depthFailOp_)
, compareOp(compareOp_)
, compareMask(compareMask_)
, writeMask(writeMask_)
, reference(reference_)
{
}
StencilOpState(VkStencilOpState const & rhs)
{
memcpy(this, &rhs, sizeof(StencilOpState));
}
StencilOpState& operator=(VkStencilOpState const & rhs)
{
memcpy(this, &rhs, sizeof(StencilOpState));
return *this;
}
StencilOpState& setFailOp(StencilOp failOp_)
{
failOp = failOp_;
return *this;
}
StencilOpState& setPassOp(StencilOp passOp_)
{
passOp = passOp_;
return *this;
}
StencilOpState& setDepthFailOp(StencilOp depthFailOp_)
{
depthFailOp = depthFailOp_;
return *this;
}
StencilOpState& setCompareOp(CompareOp compareOp_)
{
compareOp = compareOp_;
return *this;
}
StencilOpState& setCompareMask(uint32_t compareMask_)
{
compareMask = compareMask_;
return *this;
}
StencilOpState& setWriteMask(uint32_t writeMask_)
{
writeMask = writeMask_;
return *this;
}
StencilOpState& setReference(uint32_t reference_)
{
reference = reference_;
return *this;
}
operator const VkStencilOpState&() const
{
return *reinterpret_cast<const VkStencilOpState*>(this);
}
bool operator==(StencilOpState const& rhs) const
{
return (failOp == rhs.failOp)
&& (passOp == rhs.passOp)
&& (depthFailOp == rhs.depthFailOp)
&& (compareOp == rhs.compareOp)
&& (compareMask == rhs.compareMask)
&& (writeMask == rhs.writeMask)
&& (reference == rhs.reference);
}
bool operator!=(StencilOpState const& rhs) const
{
return !operator==(rhs);
}
StencilOp failOp;
StencilOp passOp;
StencilOp depthFailOp;
CompareOp compareOp;
uint32_t compareMask;
uint32_t writeMask;
uint32_t reference;
};
static_assert(sizeof(StencilOpState) == sizeof(VkStencilOpState), "struct and wrapper have different size!");
enum class LogicOp
{
eClear = VK_LOGIC_OP_CLEAR,
eAnd = VK_LOGIC_OP_AND,
eAndReverse = VK_LOGIC_OP_AND_REVERSE,
eCopy = VK_LOGIC_OP_COPY,
eAndInverted = VK_LOGIC_OP_AND_INVERTED,
eNoOp = VK_LOGIC_OP_NO_OP,
eXor = VK_LOGIC_OP_XOR,
eOr = VK_LOGIC_OP_OR,
eNor = VK_LOGIC_OP_NOR,
eEquivalent = VK_LOGIC_OP_EQUIVALENT,
eInvert = VK_LOGIC_OP_INVERT,
eOrReverse = VK_LOGIC_OP_OR_REVERSE,
eCopyInverted = VK_LOGIC_OP_COPY_INVERTED,
eOrInverted = VK_LOGIC_OP_OR_INVERTED,
eNand = VK_LOGIC_OP_NAND,
eSet = VK_LOGIC_OP_SET
};
enum class InternalAllocationType
{
eExecutable = VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE
};
enum class SystemAllocationScope
{
eCommand = VK_SYSTEM_ALLOCATION_SCOPE_COMMAND,
eObject = VK_SYSTEM_ALLOCATION_SCOPE_OBJECT,
eCache = VK_SYSTEM_ALLOCATION_SCOPE_CACHE,
eDevice = VK_SYSTEM_ALLOCATION_SCOPE_DEVICE,
eInstance = VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE
};
enum class PhysicalDeviceType
{
eOther = VK_PHYSICAL_DEVICE_TYPE_OTHER,
eIntegratedGpu = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
eDiscreteGpu = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU,
eVirtualGpu = VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU,
eCpu = VK_PHYSICAL_DEVICE_TYPE_CPU
};
enum class VertexInputRate
{
eVertex = VK_VERTEX_INPUT_RATE_VERTEX,
eInstance = VK_VERTEX_INPUT_RATE_INSTANCE
};
struct VertexInputBindingDescription
{
VertexInputBindingDescription(uint32_t binding_ = 0, uint32_t stride_ = 0, VertexInputRate inputRate_ = VertexInputRate::eVertex)
: binding(binding_)
, stride(stride_)
, inputRate(inputRate_)
{
}
VertexInputBindingDescription(VkVertexInputBindingDescription const & rhs)
{
memcpy(this, &rhs, sizeof(VertexInputBindingDescription));
}
VertexInputBindingDescription& operator=(VkVertexInputBindingDescription const & rhs)
{
memcpy(this, &rhs, sizeof(VertexInputBindingDescription));
return *this;
}
VertexInputBindingDescription& setBinding(uint32_t binding_)
{
binding = binding_;
return *this;
}
VertexInputBindingDescription& setStride(uint32_t stride_)
{
stride = stride_;
return *this;
}
VertexInputBindingDescription& setInputRate(VertexInputRate inputRate_)
{
inputRate = inputRate_;
return *this;
}
operator const VkVertexInputBindingDescription&() const
{
return *reinterpret_cast<const VkVertexInputBindingDescription*>(this);
}
bool operator==(VertexInputBindingDescription const& rhs) const
{
return (binding == rhs.binding)
&& (stride == rhs.stride)
&& (inputRate == rhs.inputRate);
}
bool operator!=(VertexInputBindingDescription const& rhs) const
{
return !operator==(rhs);
}
uint32_t binding;
uint32_t stride;
VertexInputRate inputRate;
};
static_assert(sizeof(VertexInputBindingDescription) == sizeof(VkVertexInputBindingDescription), "struct and wrapper have different size!");
enum class Format
{
eUndefined = VK_FORMAT_UNDEFINED,
eR4G4UnormPack8 = VK_FORMAT_R4G4_UNORM_PACK8,
eR4G4B4A4UnormPack16 = VK_FORMAT_R4G4B4A4_UNORM_PACK16,
eB4G4R4A4UnormPack16 = VK_FORMAT_B4G4R4A4_UNORM_PACK16,
eR5G6B5UnormPack16 = VK_FORMAT_R5G6B5_UNORM_PACK16,
eB5G6R5UnormPack16 = VK_FORMAT_B5G6R5_UNORM_PACK16,
eR5G5B5A1UnormPack16 = VK_FORMAT_R5G5B5A1_UNORM_PACK16,
eB5G5R5A1UnormPack16 = VK_FORMAT_B5G5R5A1_UNORM_PACK16,
eA1R5G5B5UnormPack16 = VK_FORMAT_A1R5G5B5_UNORM_PACK16,
eR8Unorm = VK_FORMAT_R8_UNORM,
eR8Snorm = VK_FORMAT_R8_SNORM,
eR8Uscaled = VK_FORMAT_R8_USCALED,
eR8Sscaled = VK_FORMAT_R8_SSCALED,
eR8Uint = VK_FORMAT_R8_UINT,
eR8Sint = VK_FORMAT_R8_SINT,
eR8Srgb = VK_FORMAT_R8_SRGB,
eR8G8Unorm = VK_FORMAT_R8G8_UNORM,
eR8G8Snorm = VK_FORMAT_R8G8_SNORM,
eR8G8Uscaled = VK_FORMAT_R8G8_USCALED,
eR8G8Sscaled = VK_FORMAT_R8G8_SSCALED,
eR8G8Uint = VK_FORMAT_R8G8_UINT,
eR8G8Sint = VK_FORMAT_R8G8_SINT,
eR8G8Srgb = VK_FORMAT_R8G8_SRGB,
eR8G8B8Unorm = VK_FORMAT_R8G8B8_UNORM,
eR8G8B8Snorm = VK_FORMAT_R8G8B8_SNORM,
eR8G8B8Uscaled = VK_FORMAT_R8G8B8_USCALED,
eR8G8B8Sscaled = VK_FORMAT_R8G8B8_SSCALED,
eR8G8B8Uint = VK_FORMAT_R8G8B8_UINT,
eR8G8B8Sint = VK_FORMAT_R8G8B8_SINT,
eR8G8B8Srgb = VK_FORMAT_R8G8B8_SRGB,
eB8G8R8Unorm = VK_FORMAT_B8G8R8_UNORM,
eB8G8R8Snorm = VK_FORMAT_B8G8R8_SNORM,
eB8G8R8Uscaled = VK_FORMAT_B8G8R8_USCALED,
eB8G8R8Sscaled = VK_FORMAT_B8G8R8_SSCALED,
eB8G8R8Uint = VK_FORMAT_B8G8R8_UINT,
eB8G8R8Sint = VK_FORMAT_B8G8R8_SINT,
eB8G8R8Srgb = VK_FORMAT_B8G8R8_SRGB,
eR8G8B8A8Unorm = VK_FORMAT_R8G8B8A8_UNORM,
eR8G8B8A8Snorm = VK_FORMAT_R8G8B8A8_SNORM,
eR8G8B8A8Uscaled = VK_FORMAT_R8G8B8A8_USCALED,
eR8G8B8A8Sscaled = VK_FORMAT_R8G8B8A8_SSCALED,
eR8G8B8A8Uint = VK_FORMAT_R8G8B8A8_UINT,
eR8G8B8A8Sint = VK_FORMAT_R8G8B8A8_SINT,
eR8G8B8A8Srgb = VK_FORMAT_R8G8B8A8_SRGB,
eB8G8R8A8Unorm = VK_FORMAT_B8G8R8A8_UNORM,
eB8G8R8A8Snorm = VK_FORMAT_B8G8R8A8_SNORM,
eB8G8R8A8Uscaled = VK_FORMAT_B8G8R8A8_USCALED,
eB8G8R8A8Sscaled = VK_FORMAT_B8G8R8A8_SSCALED,
eB8G8R8A8Uint = VK_FORMAT_B8G8R8A8_UINT,
eB8G8R8A8Sint = VK_FORMAT_B8G8R8A8_SINT,
eB8G8R8A8Srgb = VK_FORMAT_B8G8R8A8_SRGB,
eA8B8G8R8UnormPack32 = VK_FORMAT_A8B8G8R8_UNORM_PACK32,
eA8B8G8R8SnormPack32 = VK_FORMAT_A8B8G8R8_SNORM_PACK32,
eA8B8G8R8UscaledPack32 = VK_FORMAT_A8B8G8R8_USCALED_PACK32,
eA8B8G8R8SscaledPack32 = VK_FORMAT_A8B8G8R8_SSCALED_PACK32,
eA8B8G8R8UintPack32 = VK_FORMAT_A8B8G8R8_UINT_PACK32,
eA8B8G8R8SintPack32 = VK_FORMAT_A8B8G8R8_SINT_PACK32,
eA8B8G8R8SrgbPack32 = VK_FORMAT_A8B8G8R8_SRGB_PACK32,
eA2R10G10B10UnormPack32 = VK_FORMAT_A2R10G10B10_UNORM_PACK32,
eA2R10G10B10SnormPack32 = VK_FORMAT_A2R10G10B10_SNORM_PACK32,
eA2R10G10B10UscaledPack32 = VK_FORMAT_A2R10G10B10_USCALED_PACK32,
eA2R10G10B10SscaledPack32 = VK_FORMAT_A2R10G10B10_SSCALED_PACK32,
eA2R10G10B10UintPack32 = VK_FORMAT_A2R10G10B10_UINT_PACK32,
eA2R10G10B10SintPack32 = VK_FORMAT_A2R10G10B10_SINT_PACK32,
eA2B10G10R10UnormPack32 = VK_FORMAT_A2B10G10R10_UNORM_PACK32,
eA2B10G10R10SnormPack32 = VK_FORMAT_A2B10G10R10_SNORM_PACK32,
eA2B10G10R10UscaledPack32 = VK_FORMAT_A2B10G10R10_USCALED_PACK32,
eA2B10G10R10SscaledPack32 = VK_FORMAT_A2B10G10R10_SSCALED_PACK32,
eA2B10G10R10UintPack32 = VK_FORMAT_A2B10G10R10_UINT_PACK32,
eA2B10G10R10SintPack32 = VK_FORMAT_A2B10G10R10_SINT_PACK32,
eR16Unorm = VK_FORMAT_R16_UNORM,
eR16Snorm = VK_FORMAT_R16_SNORM,
eR16Uscaled = VK_FORMAT_R16_USCALED,
eR16Sscaled = VK_FORMAT_R16_SSCALED,
eR16Uint = VK_FORMAT_R16_UINT,
eR16Sint = VK_FORMAT_R16_SINT,
eR16Sfloat = VK_FORMAT_R16_SFLOAT,
eR16G16Unorm = VK_FORMAT_R16G16_UNORM,
eR16G16Snorm = VK_FORMAT_R16G16_SNORM,
eR16G16Uscaled = VK_FORMAT_R16G16_USCALED,
eR16G16Sscaled = VK_FORMAT_R16G16_SSCALED,
eR16G16Uint = VK_FORMAT_R16G16_UINT,
eR16G16Sint = VK_FORMAT_R16G16_SINT,
eR16G16Sfloat = VK_FORMAT_R16G16_SFLOAT,
eR16G16B16Unorm = VK_FORMAT_R16G16B16_UNORM,
eR16G16B16Snorm = VK_FORMAT_R16G16B16_SNORM,
eR16G16B16Uscaled = VK_FORMAT_R16G16B16_USCALED,
eR16G16B16Sscaled = VK_FORMAT_R16G16B16_SSCALED,
eR16G16B16Uint = VK_FORMAT_R16G16B16_UINT,
eR16G16B16Sint = VK_FORMAT_R16G16B16_SINT,
eR16G16B16Sfloat = VK_FORMAT_R16G16B16_SFLOAT,
eR16G16B16A16Unorm = VK_FORMAT_R16G16B16A16_UNORM,
eR16G16B16A16Snorm = VK_FORMAT_R16G16B16A16_SNORM,
eR16G16B16A16Uscaled = VK_FORMAT_R16G16B16A16_USCALED,
eR16G16B16A16Sscaled = VK_FORMAT_R16G16B16A16_SSCALED,
eR16G16B16A16Uint = VK_FORMAT_R16G16B16A16_UINT,
eR16G16B16A16Sint = VK_FORMAT_R16G16B16A16_SINT,
eR16G16B16A16Sfloat = VK_FORMAT_R16G16B16A16_SFLOAT,
eR32Uint = VK_FORMAT_R32_UINT,
eR32Sint = VK_FORMAT_R32_SINT,
eR32Sfloat = VK_FORMAT_R32_SFLOAT,
eR32G32Uint = VK_FORMAT_R32G32_UINT,
eR32G32Sint = VK_FORMAT_R32G32_SINT,
eR32G32Sfloat = VK_FORMAT_R32G32_SFLOAT,
eR32G32B32Uint = VK_FORMAT_R32G32B32_UINT,
eR32G32B32Sint = VK_FORMAT_R32G32B32_SINT,
eR32G32B32Sfloat = VK_FORMAT_R32G32B32_SFLOAT,
eR32G32B32A32Uint = VK_FORMAT_R32G32B32A32_UINT,
eR32G32B32A32Sint = VK_FORMAT_R32G32B32A32_SINT,
eR32G32B32A32Sfloat = VK_FORMAT_R32G32B32A32_SFLOAT,
eR64Uint = VK_FORMAT_R64_UINT,
eR64Sint = VK_FORMAT_R64_SINT,
eR64Sfloat = VK_FORMAT_R64_SFLOAT,
eR64G64Uint = VK_FORMAT_R64G64_UINT,
eR64G64Sint = VK_FORMAT_R64G64_SINT,
eR64G64Sfloat = VK_FORMAT_R64G64_SFLOAT,
eR64G64B64Uint = VK_FORMAT_R64G64B64_UINT,
eR64G64B64Sint = VK_FORMAT_R64G64B64_SINT,
eR64G64B64Sfloat = VK_FORMAT_R64G64B64_SFLOAT,
eR64G64B64A64Uint = VK_FORMAT_R64G64B64A64_UINT,
eR64G64B64A64Sint = VK_FORMAT_R64G64B64A64_SINT,
eR64G64B64A64Sfloat = VK_FORMAT_R64G64B64A64_SFLOAT,
eB10G11R11UfloatPack32 = VK_FORMAT_B10G11R11_UFLOAT_PACK32,
eE5B9G9R9UfloatPack32 = VK_FORMAT_E5B9G9R9_UFLOAT_PACK32,
eD16Unorm = VK_FORMAT_D16_UNORM,
eX8D24UnormPack32 = VK_FORMAT_X8_D24_UNORM_PACK32,
eD32Sfloat = VK_FORMAT_D32_SFLOAT,
eS8Uint = VK_FORMAT_S8_UINT,
eD16UnormS8Uint = VK_FORMAT_D16_UNORM_S8_UINT,
eD24UnormS8Uint = VK_FORMAT_D24_UNORM_S8_UINT,
eD32SfloatS8Uint = VK_FORMAT_D32_SFLOAT_S8_UINT,
eBc1RgbUnormBlock = VK_FORMAT_BC1_RGB_UNORM_BLOCK,
eBc1RgbSrgbBlock = VK_FORMAT_BC1_RGB_SRGB_BLOCK,
eBc1RgbaUnormBlock = VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
eBc1RgbaSrgbBlock = VK_FORMAT_BC1_RGBA_SRGB_BLOCK,
eBc2UnormBlock = VK_FORMAT_BC2_UNORM_BLOCK,
eBc2SrgbBlock = VK_FORMAT_BC2_SRGB_BLOCK,
eBc3UnormBlock = VK_FORMAT_BC3_UNORM_BLOCK,
eBc3SrgbBlock = VK_FORMAT_BC3_SRGB_BLOCK,
eBc4UnormBlock = VK_FORMAT_BC4_UNORM_BLOCK,
eBc4SnormBlock = VK_FORMAT_BC4_SNORM_BLOCK,
eBc5UnormBlock = VK_FORMAT_BC5_UNORM_BLOCK,
eBc5SnormBlock = VK_FORMAT_BC5_SNORM_BLOCK,
eBc6HUfloatBlock = VK_FORMAT_BC6H_UFLOAT_BLOCK,
eBc6HSfloatBlock = VK_FORMAT_BC6H_SFLOAT_BLOCK,
eBc7UnormBlock = VK_FORMAT_BC7_UNORM_BLOCK,
eBc7SrgbBlock = VK_FORMAT_BC7_SRGB_BLOCK,
eEtc2R8G8B8UnormBlock = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
eEtc2R8G8B8SrgbBlock = VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK,
eEtc2R8G8B8A1UnormBlock = VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK,
eEtc2R8G8B8A1SrgbBlock = VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK,
eEtc2R8G8B8A8UnormBlock = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK,
eEtc2R8G8B8A8SrgbBlock = VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK,
eEacR11UnormBlock = VK_FORMAT_EAC_R11_UNORM_BLOCK,
eEacR11SnormBlock = VK_FORMAT_EAC_R11_SNORM_BLOCK,
eEacR11G11UnormBlock = VK_FORMAT_EAC_R11G11_UNORM_BLOCK,
eEacR11G11SnormBlock = VK_FORMAT_EAC_R11G11_SNORM_BLOCK,
eAstc4x4UnormBlock = VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
eAstc4x4SrgbBlock = VK_FORMAT_ASTC_4x4_SRGB_BLOCK,
eAstc5x4UnormBlock = VK_FORMAT_ASTC_5x4_UNORM_BLOCK,
eAstc5x4SrgbBlock = VK_FORMAT_ASTC_5x4_SRGB_BLOCK,
eAstc5x5UnormBlock = VK_FORMAT_ASTC_5x5_UNORM_BLOCK,
eAstc5x5SrgbBlock = VK_FORMAT_ASTC_5x5_SRGB_BLOCK,
eAstc6x5UnormBlock = VK_FORMAT_ASTC_6x5_UNORM_BLOCK,
eAstc6x5SrgbBlock = VK_FORMAT_ASTC_6x5_SRGB_BLOCK,
eAstc6x6UnormBlock = VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
eAstc6x6SrgbBlock = VK_FORMAT_ASTC_6x6_SRGB_BLOCK,
eAstc8x5UnormBlock = VK_FORMAT_ASTC_8x5_UNORM_BLOCK,
eAstc8x5SrgbBlock = VK_FORMAT_ASTC_8x5_SRGB_BLOCK,
eAstc8x6UnormBlock = VK_FORMAT_ASTC_8x6_UNORM_BLOCK,
eAstc8x6SrgbBlock = VK_FORMAT_ASTC_8x6_SRGB_BLOCK,
eAstc8x8UnormBlock = VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
eAstc8x8SrgbBlock = VK_FORMAT_ASTC_8x8_SRGB_BLOCK,
eAstc10x5UnormBlock = VK_FORMAT_ASTC_10x5_UNORM_BLOCK,
eAstc10x5SrgbBlock = VK_FORMAT_ASTC_10x5_SRGB_BLOCK,
eAstc10x6UnormBlock = VK_FORMAT_ASTC_10x6_UNORM_BLOCK,
eAstc10x6SrgbBlock = VK_FORMAT_ASTC_10x6_SRGB_BLOCK,
eAstc10x8UnormBlock = VK_FORMAT_ASTC_10x8_UNORM_BLOCK,
eAstc10x8SrgbBlock = VK_FORMAT_ASTC_10x8_SRGB_BLOCK,
eAstc10x10UnormBlock = VK_FORMAT_ASTC_10x10_UNORM_BLOCK,
eAstc10x10SrgbBlock = VK_FORMAT_ASTC_10x10_SRGB_BLOCK,
eAstc12x10UnormBlock = VK_FORMAT_ASTC_12x10_UNORM_BLOCK,
eAstc12x10SrgbBlock = VK_FORMAT_ASTC_12x10_SRGB_BLOCK,
eAstc12x12UnormBlock = VK_FORMAT_ASTC_12x12_UNORM_BLOCK,
eAstc12x12SrgbBlock = VK_FORMAT_ASTC_12x12_SRGB_BLOCK
};
struct VertexInputAttributeDescription
{
VertexInputAttributeDescription(uint32_t location_ = 0, uint32_t binding_ = 0, Format format_ = Format::eUndefined, uint32_t offset_ = 0)
: location(location_)
, binding(binding_)
, format(format_)
, offset(offset_)
{
}
VertexInputAttributeDescription(VkVertexInputAttributeDescription const & rhs)
{
memcpy(this, &rhs, sizeof(VertexInputAttributeDescription));
}
VertexInputAttributeDescription& operator=(VkVertexInputAttributeDescription const & rhs)
{
memcpy(this, &rhs, sizeof(VertexInputAttributeDescription));
return *this;
}
VertexInputAttributeDescription& setLocation(uint32_t location_)
{
location = location_;
return *this;
}
VertexInputAttributeDescription& setBinding(uint32_t binding_)
{
binding = binding_;
return *this;
}
VertexInputAttributeDescription& setFormat(Format format_)
{
format = format_;
return *this;
}
VertexInputAttributeDescription& setOffset(uint32_t offset_)
{
offset = offset_;
return *this;
}
operator const VkVertexInputAttributeDescription&() const
{
return *reinterpret_cast<const VkVertexInputAttributeDescription*>(this);
}
bool operator==(VertexInputAttributeDescription const& rhs) const
{
return (location == rhs.location)
&& (binding == rhs.binding)
&& (format == rhs.format)
&& (offset == rhs.offset);
}
bool operator!=(VertexInputAttributeDescription const& rhs) const
{
return !operator==(rhs);
}
uint32_t location;
uint32_t binding;
Format format;
uint32_t offset;
};
static_assert(sizeof(VertexInputAttributeDescription) == sizeof(VkVertexInputAttributeDescription), "struct and wrapper have different size!");
enum class StructureType
{
eApplicationInfo = VK_STRUCTURE_TYPE_APPLICATION_INFO,
eInstanceCreateInfo = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
eDeviceQueueCreateInfo = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
eDeviceCreateInfo = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
eSubmitInfo = VK_STRUCTURE_TYPE_SUBMIT_INFO,
eMemoryAllocateInfo = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
eMappedMemoryRange = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
eBindSparseInfo = VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,
eFenceCreateInfo = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
eSemaphoreCreateInfo = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
eEventCreateInfo = VK_STRUCTURE_TYPE_EVENT_CREATE_INFO,
eQueryPoolCreateInfo = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
eBufferCreateInfo = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
eBufferViewCreateInfo = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
eImageCreateInfo = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
eImageViewCreateInfo = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
eShaderModuleCreateInfo = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
ePipelineCacheCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO,
ePipelineShaderStageCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
ePipelineVertexInputStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
ePipelineInputAssemblyStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
ePipelineTessellationStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
ePipelineViewportStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
ePipelineRasterizationStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
ePipelineMultisampleStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
ePipelineDepthStencilStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
ePipelineColorBlendStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
ePipelineDynamicStateCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
eGraphicsPipelineCreateInfo = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
eComputePipelineCreateInfo = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
ePipelineLayoutCreateInfo = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
eSamplerCreateInfo = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
eDescriptorSetLayoutCreateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
eDescriptorPoolCreateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
eDescriptorSetAllocateInfo = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
eWriteDescriptorSet = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
eCopyDescriptorSet = VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET,
eFramebufferCreateInfo = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
eRenderPassCreateInfo = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
eCommandPoolCreateInfo = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
eCommandBufferAllocateInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
eCommandBufferInheritanceInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO,
eCommandBufferBeginInfo = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
eRenderPassBeginInfo = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
eBufferMemoryBarrier = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
eImageMemoryBarrier = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
eMemoryBarrier = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
eLoaderInstanceCreateInfo = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO,
eLoaderDeviceCreateInfo = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO,
eSwapchainCreateInfoKHR = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
ePresentInfoKHR = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
eDisplayModeCreateInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR,
eDisplaySurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR,
eDisplayPresentInfoKHR = VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR,
eXlibSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR,
eXcbSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR,
eWaylandSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR,
eMirSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_MIR_SURFACE_CREATE_INFO_KHR,
eAndroidSurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR,
eWin32SurfaceCreateInfoKHR = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR,
eDebugReportCallbackCreateInfoEXT = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT,
ePipelineRasterizationStateRasterizationOrderAMD = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD,
eDebugMarkerObjectNameInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT,
eDebugMarkerObjectTagInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT,
eDebugMarkerMarkerInfoEXT = VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT,
eDedicatedAllocationImageCreateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV,
eDedicatedAllocationBufferCreateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV,
eDedicatedAllocationMemoryAllocateInfoNV = VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV
};
struct ApplicationInfo
{
ApplicationInfo(const char* pApplicationName_ = nullptr, uint32_t applicationVersion_ = 0, const char* pEngineName_ = nullptr, uint32_t engineVersion_ = 0, uint32_t apiVersion_ = 0)
: sType(StructureType::eApplicationInfo)
, pNext(nullptr)
, pApplicationName(pApplicationName_)
, applicationVersion(applicationVersion_)
, pEngineName(pEngineName_)
, engineVersion(engineVersion_)
, apiVersion(apiVersion_)
{
}
ApplicationInfo(VkApplicationInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ApplicationInfo));
}
ApplicationInfo& operator=(VkApplicationInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ApplicationInfo));
return *this;
}
ApplicationInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
ApplicationInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
ApplicationInfo& setPApplicationName(const char* pApplicationName_)
{
pApplicationName = pApplicationName_;
return *this;
}
ApplicationInfo& setApplicationVersion(uint32_t applicationVersion_)
{
applicationVersion = applicationVersion_;
return *this;
}
ApplicationInfo& setPEngineName(const char* pEngineName_)
{
pEngineName = pEngineName_;
return *this;
}
ApplicationInfo& setEngineVersion(uint32_t engineVersion_)
{
engineVersion = engineVersion_;
return *this;
}
ApplicationInfo& setApiVersion(uint32_t apiVersion_)
{
apiVersion = apiVersion_;
return *this;
}
operator const VkApplicationInfo&() const
{
return *reinterpret_cast<const VkApplicationInfo*>(this);
}
bool operator==(ApplicationInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (pApplicationName == rhs.pApplicationName)
&& (applicationVersion == rhs.applicationVersion)
&& (pEngineName == rhs.pEngineName)
&& (engineVersion == rhs.engineVersion)
&& (apiVersion == rhs.apiVersion);
}
bool operator!=(ApplicationInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
const char* pApplicationName;
uint32_t applicationVersion;
const char* pEngineName;
uint32_t engineVersion;
uint32_t apiVersion;
};
static_assert(sizeof(ApplicationInfo) == sizeof(VkApplicationInfo), "struct and wrapper have different size!");
struct DeviceQueueCreateInfo
{
DeviceQueueCreateInfo(DeviceQueueCreateFlags flags_ = DeviceQueueCreateFlags(), uint32_t queueFamilyIndex_ = 0, uint32_t queueCount_ = 0, const float* pQueuePriorities_ = nullptr)
: sType(StructureType::eDeviceQueueCreateInfo)
, pNext(nullptr)
, flags(flags_)
, queueFamilyIndex(queueFamilyIndex_)
, queueCount(queueCount_)
, pQueuePriorities(pQueuePriorities_)
{
}
DeviceQueueCreateInfo(VkDeviceQueueCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DeviceQueueCreateInfo));
}
DeviceQueueCreateInfo& operator=(VkDeviceQueueCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DeviceQueueCreateInfo));
return *this;
}
DeviceQueueCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DeviceQueueCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DeviceQueueCreateInfo& setFlags(DeviceQueueCreateFlags flags_)
{
flags = flags_;
return *this;
}
DeviceQueueCreateInfo& setQueueFamilyIndex(uint32_t queueFamilyIndex_)
{
queueFamilyIndex = queueFamilyIndex_;
return *this;
}
DeviceQueueCreateInfo& setQueueCount(uint32_t queueCount_)
{
queueCount = queueCount_;
return *this;
}
DeviceQueueCreateInfo& setPQueuePriorities(const float* pQueuePriorities_)
{
pQueuePriorities = pQueuePriorities_;
return *this;
}
operator const VkDeviceQueueCreateInfo&() const
{
return *reinterpret_cast<const VkDeviceQueueCreateInfo*>(this);
}
bool operator==(DeviceQueueCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (queueFamilyIndex == rhs.queueFamilyIndex)
&& (queueCount == rhs.queueCount)
&& (pQueuePriorities == rhs.pQueuePriorities);
}
bool operator!=(DeviceQueueCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DeviceQueueCreateFlags flags;
uint32_t queueFamilyIndex;
uint32_t queueCount;
const float* pQueuePriorities;
};
static_assert(sizeof(DeviceQueueCreateInfo) == sizeof(VkDeviceQueueCreateInfo), "struct and wrapper have different size!");
struct DeviceCreateInfo
{
DeviceCreateInfo(DeviceCreateFlags flags_ = DeviceCreateFlags(), uint32_t queueCreateInfoCount_ = 0, const DeviceQueueCreateInfo* pQueueCreateInfos_ = nullptr, uint32_t enabledLayerCount_ = 0, const char* const* ppEnabledLayerNames_ = nullptr, uint32_t enabledExtensionCount_ = 0, const char* const* ppEnabledExtensionNames_ = nullptr, const PhysicalDeviceFeatures* pEnabledFeatures_ = nullptr)
: sType(StructureType::eDeviceCreateInfo)
, pNext(nullptr)
, flags(flags_)
, queueCreateInfoCount(queueCreateInfoCount_)
, pQueueCreateInfos(pQueueCreateInfos_)
, enabledLayerCount(enabledLayerCount_)
, ppEnabledLayerNames(ppEnabledLayerNames_)
, enabledExtensionCount(enabledExtensionCount_)
, ppEnabledExtensionNames(ppEnabledExtensionNames_)
, pEnabledFeatures(pEnabledFeatures_)
{
}
DeviceCreateInfo(VkDeviceCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DeviceCreateInfo));
}
DeviceCreateInfo& operator=(VkDeviceCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DeviceCreateInfo));
return *this;
}
DeviceCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DeviceCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DeviceCreateInfo& setFlags(DeviceCreateFlags flags_)
{
flags = flags_;
return *this;
}
DeviceCreateInfo& setQueueCreateInfoCount(uint32_t queueCreateInfoCount_)
{
queueCreateInfoCount = queueCreateInfoCount_;
return *this;
}
DeviceCreateInfo& setPQueueCreateInfos(const DeviceQueueCreateInfo* pQueueCreateInfos_)
{
pQueueCreateInfos = pQueueCreateInfos_;
return *this;
}
DeviceCreateInfo& setEnabledLayerCount(uint32_t enabledLayerCount_)
{
enabledLayerCount = enabledLayerCount_;
return *this;
}
DeviceCreateInfo& setPpEnabledLayerNames(const char* const* ppEnabledLayerNames_)
{
ppEnabledLayerNames = ppEnabledLayerNames_;
return *this;
}
DeviceCreateInfo& setEnabledExtensionCount(uint32_t enabledExtensionCount_)
{
enabledExtensionCount = enabledExtensionCount_;
return *this;
}
DeviceCreateInfo& setPpEnabledExtensionNames(const char* const* ppEnabledExtensionNames_)
{
ppEnabledExtensionNames = ppEnabledExtensionNames_;
return *this;
}
DeviceCreateInfo& setPEnabledFeatures(const PhysicalDeviceFeatures* pEnabledFeatures_)
{
pEnabledFeatures = pEnabledFeatures_;
return *this;
}
operator const VkDeviceCreateInfo&() const
{
return *reinterpret_cast<const VkDeviceCreateInfo*>(this);
}
bool operator==(DeviceCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (queueCreateInfoCount == rhs.queueCreateInfoCount)
&& (pQueueCreateInfos == rhs.pQueueCreateInfos)
&& (enabledLayerCount == rhs.enabledLayerCount)
&& (ppEnabledLayerNames == rhs.ppEnabledLayerNames)
&& (enabledExtensionCount == rhs.enabledExtensionCount)
&& (ppEnabledExtensionNames == rhs.ppEnabledExtensionNames)
&& (pEnabledFeatures == rhs.pEnabledFeatures);
}
bool operator!=(DeviceCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DeviceCreateFlags flags;
uint32_t queueCreateInfoCount;
const DeviceQueueCreateInfo* pQueueCreateInfos;
uint32_t enabledLayerCount;
const char* const* ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* const* ppEnabledExtensionNames;
const PhysicalDeviceFeatures* pEnabledFeatures;
};
static_assert(sizeof(DeviceCreateInfo) == sizeof(VkDeviceCreateInfo), "struct and wrapper have different size!");
struct InstanceCreateInfo
{
InstanceCreateInfo(InstanceCreateFlags flags_ = InstanceCreateFlags(), const ApplicationInfo* pApplicationInfo_ = nullptr, uint32_t enabledLayerCount_ = 0, const char* const* ppEnabledLayerNames_ = nullptr, uint32_t enabledExtensionCount_ = 0, const char* const* ppEnabledExtensionNames_ = nullptr)
: sType(StructureType::eInstanceCreateInfo)
, pNext(nullptr)
, flags(flags_)
, pApplicationInfo(pApplicationInfo_)
, enabledLayerCount(enabledLayerCount_)
, ppEnabledLayerNames(ppEnabledLayerNames_)
, enabledExtensionCount(enabledExtensionCount_)
, ppEnabledExtensionNames(ppEnabledExtensionNames_)
{
}
InstanceCreateInfo(VkInstanceCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(InstanceCreateInfo));
}
InstanceCreateInfo& operator=(VkInstanceCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(InstanceCreateInfo));
return *this;
}
InstanceCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
InstanceCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
InstanceCreateInfo& setFlags(InstanceCreateFlags flags_)
{
flags = flags_;
return *this;
}
InstanceCreateInfo& setPApplicationInfo(const ApplicationInfo* pApplicationInfo_)
{
pApplicationInfo = pApplicationInfo_;
return *this;
}
InstanceCreateInfo& setEnabledLayerCount(uint32_t enabledLayerCount_)
{
enabledLayerCount = enabledLayerCount_;
return *this;
}
InstanceCreateInfo& setPpEnabledLayerNames(const char* const* ppEnabledLayerNames_)
{
ppEnabledLayerNames = ppEnabledLayerNames_;
return *this;
}
InstanceCreateInfo& setEnabledExtensionCount(uint32_t enabledExtensionCount_)
{
enabledExtensionCount = enabledExtensionCount_;
return *this;
}
InstanceCreateInfo& setPpEnabledExtensionNames(const char* const* ppEnabledExtensionNames_)
{
ppEnabledExtensionNames = ppEnabledExtensionNames_;
return *this;
}
operator const VkInstanceCreateInfo&() const
{
return *reinterpret_cast<const VkInstanceCreateInfo*>(this);
}
bool operator==(InstanceCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (pApplicationInfo == rhs.pApplicationInfo)
&& (enabledLayerCount == rhs.enabledLayerCount)
&& (ppEnabledLayerNames == rhs.ppEnabledLayerNames)
&& (enabledExtensionCount == rhs.enabledExtensionCount)
&& (ppEnabledExtensionNames == rhs.ppEnabledExtensionNames);
}
bool operator!=(InstanceCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
InstanceCreateFlags flags;
const ApplicationInfo* pApplicationInfo;
uint32_t enabledLayerCount;
const char* const* ppEnabledLayerNames;
uint32_t enabledExtensionCount;
const char* const* ppEnabledExtensionNames;
};
static_assert(sizeof(InstanceCreateInfo) == sizeof(VkInstanceCreateInfo), "struct and wrapper have different size!");
struct MemoryAllocateInfo
{
MemoryAllocateInfo(DeviceSize allocationSize_ = 0, uint32_t memoryTypeIndex_ = 0)
: sType(StructureType::eMemoryAllocateInfo)
, pNext(nullptr)
, allocationSize(allocationSize_)
, memoryTypeIndex(memoryTypeIndex_)
{
}
MemoryAllocateInfo(VkMemoryAllocateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(MemoryAllocateInfo));
}
MemoryAllocateInfo& operator=(VkMemoryAllocateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(MemoryAllocateInfo));
return *this;
}
MemoryAllocateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
MemoryAllocateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
MemoryAllocateInfo& setAllocationSize(DeviceSize allocationSize_)
{
allocationSize = allocationSize_;
return *this;
}
MemoryAllocateInfo& setMemoryTypeIndex(uint32_t memoryTypeIndex_)
{
memoryTypeIndex = memoryTypeIndex_;
return *this;
}
operator const VkMemoryAllocateInfo&() const
{
return *reinterpret_cast<const VkMemoryAllocateInfo*>(this);
}
bool operator==(MemoryAllocateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (allocationSize == rhs.allocationSize)
&& (memoryTypeIndex == rhs.memoryTypeIndex);
}
bool operator!=(MemoryAllocateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DeviceSize allocationSize;
uint32_t memoryTypeIndex;
};
static_assert(sizeof(MemoryAllocateInfo) == sizeof(VkMemoryAllocateInfo), "struct and wrapper have different size!");
struct MappedMemoryRange
{
MappedMemoryRange(DeviceMemory memory_ = DeviceMemory(), DeviceSize offset_ = 0, DeviceSize size_ = 0)
: sType(StructureType::eMappedMemoryRange)
, pNext(nullptr)
, memory(memory_)
, offset(offset_)
, size(size_)
{
}
MappedMemoryRange(VkMappedMemoryRange const & rhs)
{
memcpy(this, &rhs, sizeof(MappedMemoryRange));
}
MappedMemoryRange& operator=(VkMappedMemoryRange const & rhs)
{
memcpy(this, &rhs, sizeof(MappedMemoryRange));
return *this;
}
MappedMemoryRange& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
MappedMemoryRange& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
MappedMemoryRange& setMemory(DeviceMemory memory_)
{
memory = memory_;
return *this;
}
MappedMemoryRange& setOffset(DeviceSize offset_)
{
offset = offset_;
return *this;
}
MappedMemoryRange& setSize(DeviceSize size_)
{
size = size_;
return *this;
}
operator const VkMappedMemoryRange&() const
{
return *reinterpret_cast<const VkMappedMemoryRange*>(this);
}
bool operator==(MappedMemoryRange const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (memory == rhs.memory)
&& (offset == rhs.offset)
&& (size == rhs.size);
}
bool operator!=(MappedMemoryRange const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DeviceMemory memory;
DeviceSize offset;
DeviceSize size;
};
static_assert(sizeof(MappedMemoryRange) == sizeof(VkMappedMemoryRange), "struct and wrapper have different size!");
struct WriteDescriptorSet
{
WriteDescriptorSet(DescriptorSet dstSet_ = DescriptorSet(), uint32_t dstBinding_ = 0, uint32_t dstArrayElement_ = 0, uint32_t descriptorCount_ = 0, DescriptorType descriptorType_ = DescriptorType::eSampler, const DescriptorImageInfo* pImageInfo_ = nullptr, const DescriptorBufferInfo* pBufferInfo_ = nullptr, const BufferView* pTexelBufferView_ = nullptr)
: sType(StructureType::eWriteDescriptorSet)
, pNext(nullptr)
, dstSet(dstSet_)
, dstBinding(dstBinding_)
, dstArrayElement(dstArrayElement_)
, descriptorCount(descriptorCount_)
, descriptorType(descriptorType_)
, pImageInfo(pImageInfo_)
, pBufferInfo(pBufferInfo_)
, pTexelBufferView(pTexelBufferView_)
{
}
WriteDescriptorSet(VkWriteDescriptorSet const & rhs)
{
memcpy(this, &rhs, sizeof(WriteDescriptorSet));
}
WriteDescriptorSet& operator=(VkWriteDescriptorSet const & rhs)
{
memcpy(this, &rhs, sizeof(WriteDescriptorSet));
return *this;
}
WriteDescriptorSet& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
WriteDescriptorSet& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
WriteDescriptorSet& setDstSet(DescriptorSet dstSet_)
{
dstSet = dstSet_;
return *this;
}
WriteDescriptorSet& setDstBinding(uint32_t dstBinding_)
{
dstBinding = dstBinding_;
return *this;
}
WriteDescriptorSet& setDstArrayElement(uint32_t dstArrayElement_)
{
dstArrayElement = dstArrayElement_;
return *this;
}
WriteDescriptorSet& setDescriptorCount(uint32_t descriptorCount_)
{
descriptorCount = descriptorCount_;
return *this;
}
WriteDescriptorSet& setDescriptorType(DescriptorType descriptorType_)
{
descriptorType = descriptorType_;
return *this;
}
WriteDescriptorSet& setPImageInfo(const DescriptorImageInfo* pImageInfo_)
{
pImageInfo = pImageInfo_;
return *this;
}
WriteDescriptorSet& setPBufferInfo(const DescriptorBufferInfo* pBufferInfo_)
{
pBufferInfo = pBufferInfo_;
return *this;
}
WriteDescriptorSet& setPTexelBufferView(const BufferView* pTexelBufferView_)
{
pTexelBufferView = pTexelBufferView_;
return *this;
}
operator const VkWriteDescriptorSet&() const
{
return *reinterpret_cast<const VkWriteDescriptorSet*>(this);
}
bool operator==(WriteDescriptorSet const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (dstSet == rhs.dstSet)
&& (dstBinding == rhs.dstBinding)
&& (dstArrayElement == rhs.dstArrayElement)
&& (descriptorCount == rhs.descriptorCount)
&& (descriptorType == rhs.descriptorType)
&& (pImageInfo == rhs.pImageInfo)
&& (pBufferInfo == rhs.pBufferInfo)
&& (pTexelBufferView == rhs.pTexelBufferView);
}
bool operator!=(WriteDescriptorSet const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorSet dstSet;
uint32_t dstBinding;
uint32_t dstArrayElement;
uint32_t descriptorCount;
DescriptorType descriptorType;
const DescriptorImageInfo* pImageInfo;
const DescriptorBufferInfo* pBufferInfo;
const BufferView* pTexelBufferView;
};
static_assert(sizeof(WriteDescriptorSet) == sizeof(VkWriteDescriptorSet), "struct and wrapper have different size!");
struct CopyDescriptorSet
{
CopyDescriptorSet(DescriptorSet srcSet_ = DescriptorSet(), uint32_t srcBinding_ = 0, uint32_t srcArrayElement_ = 0, DescriptorSet dstSet_ = DescriptorSet(), uint32_t dstBinding_ = 0, uint32_t dstArrayElement_ = 0, uint32_t descriptorCount_ = 0)
: sType(StructureType::eCopyDescriptorSet)
, pNext(nullptr)
, srcSet(srcSet_)
, srcBinding(srcBinding_)
, srcArrayElement(srcArrayElement_)
, dstSet(dstSet_)
, dstBinding(dstBinding_)
, dstArrayElement(dstArrayElement_)
, descriptorCount(descriptorCount_)
{
}
CopyDescriptorSet(VkCopyDescriptorSet const & rhs)
{
memcpy(this, &rhs, sizeof(CopyDescriptorSet));
}
CopyDescriptorSet& operator=(VkCopyDescriptorSet const & rhs)
{
memcpy(this, &rhs, sizeof(CopyDescriptorSet));
return *this;
}
CopyDescriptorSet& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
CopyDescriptorSet& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
CopyDescriptorSet& setSrcSet(DescriptorSet srcSet_)
{
srcSet = srcSet_;
return *this;
}
CopyDescriptorSet& setSrcBinding(uint32_t srcBinding_)
{
srcBinding = srcBinding_;
return *this;
}
CopyDescriptorSet& setSrcArrayElement(uint32_t srcArrayElement_)
{
srcArrayElement = srcArrayElement_;
return *this;
}
CopyDescriptorSet& setDstSet(DescriptorSet dstSet_)
{
dstSet = dstSet_;
return *this;
}
CopyDescriptorSet& setDstBinding(uint32_t dstBinding_)
{
dstBinding = dstBinding_;
return *this;
}
CopyDescriptorSet& setDstArrayElement(uint32_t dstArrayElement_)
{
dstArrayElement = dstArrayElement_;
return *this;
}
CopyDescriptorSet& setDescriptorCount(uint32_t descriptorCount_)
{
descriptorCount = descriptorCount_;
return *this;
}
operator const VkCopyDescriptorSet&() const
{
return *reinterpret_cast<const VkCopyDescriptorSet*>(this);
}
bool operator==(CopyDescriptorSet const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (srcSet == rhs.srcSet)
&& (srcBinding == rhs.srcBinding)
&& (srcArrayElement == rhs.srcArrayElement)
&& (dstSet == rhs.dstSet)
&& (dstBinding == rhs.dstBinding)
&& (dstArrayElement == rhs.dstArrayElement)
&& (descriptorCount == rhs.descriptorCount);
}
bool operator!=(CopyDescriptorSet const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorSet srcSet;
uint32_t srcBinding;
uint32_t srcArrayElement;
DescriptorSet dstSet;
uint32_t dstBinding;
uint32_t dstArrayElement;
uint32_t descriptorCount;
};
static_assert(sizeof(CopyDescriptorSet) == sizeof(VkCopyDescriptorSet), "struct and wrapper have different size!");
struct BufferViewCreateInfo
{
BufferViewCreateInfo(BufferViewCreateFlags flags_ = BufferViewCreateFlags(), Buffer buffer_ = Buffer(), Format format_ = Format::eUndefined, DeviceSize offset_ = 0, DeviceSize range_ = 0)
: sType(StructureType::eBufferViewCreateInfo)
, pNext(nullptr)
, flags(flags_)
, buffer(buffer_)
, format(format_)
, offset(offset_)
, range(range_)
{
}
BufferViewCreateInfo(VkBufferViewCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(BufferViewCreateInfo));
}
BufferViewCreateInfo& operator=(VkBufferViewCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(BufferViewCreateInfo));
return *this;
}
BufferViewCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
BufferViewCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
BufferViewCreateInfo& setFlags(BufferViewCreateFlags flags_)
{
flags = flags_;
return *this;
}
BufferViewCreateInfo& setBuffer(Buffer buffer_)
{
buffer = buffer_;
return *this;
}
BufferViewCreateInfo& setFormat(Format format_)
{
format = format_;
return *this;
}
BufferViewCreateInfo& setOffset(DeviceSize offset_)
{
offset = offset_;
return *this;
}
BufferViewCreateInfo& setRange(DeviceSize range_)
{
range = range_;
return *this;
}
operator const VkBufferViewCreateInfo&() const
{
return *reinterpret_cast<const VkBufferViewCreateInfo*>(this);
}
bool operator==(BufferViewCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (buffer == rhs.buffer)
&& (format == rhs.format)
&& (offset == rhs.offset)
&& (range == rhs.range);
}
bool operator!=(BufferViewCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
BufferViewCreateFlags flags;
Buffer buffer;
Format format;
DeviceSize offset;
DeviceSize range;
};
static_assert(sizeof(BufferViewCreateInfo) == sizeof(VkBufferViewCreateInfo), "struct and wrapper have different size!");
struct ShaderModuleCreateInfo
{
ShaderModuleCreateInfo(ShaderModuleCreateFlags flags_ = ShaderModuleCreateFlags(), size_t codeSize_ = 0, const uint32_t* pCode_ = nullptr)
: sType(StructureType::eShaderModuleCreateInfo)
, pNext(nullptr)
, flags(flags_)
, codeSize(codeSize_)
, pCode(pCode_)
{
}
ShaderModuleCreateInfo(VkShaderModuleCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ShaderModuleCreateInfo));
}
ShaderModuleCreateInfo& operator=(VkShaderModuleCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ShaderModuleCreateInfo));
return *this;
}
ShaderModuleCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
ShaderModuleCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
ShaderModuleCreateInfo& setFlags(ShaderModuleCreateFlags flags_)
{
flags = flags_;
return *this;
}
ShaderModuleCreateInfo& setCodeSize(size_t codeSize_)
{
codeSize = codeSize_;
return *this;
}
ShaderModuleCreateInfo& setPCode(const uint32_t* pCode_)
{
pCode = pCode_;
return *this;
}
operator const VkShaderModuleCreateInfo&() const
{
return *reinterpret_cast<const VkShaderModuleCreateInfo*>(this);
}
bool operator==(ShaderModuleCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (codeSize == rhs.codeSize)
&& (pCode == rhs.pCode);
}
bool operator!=(ShaderModuleCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
ShaderModuleCreateFlags flags;
size_t codeSize;
const uint32_t* pCode;
};
static_assert(sizeof(ShaderModuleCreateInfo) == sizeof(VkShaderModuleCreateInfo), "struct and wrapper have different size!");
struct DescriptorSetAllocateInfo
{
DescriptorSetAllocateInfo(DescriptorPool descriptorPool_ = DescriptorPool(), uint32_t descriptorSetCount_ = 0, const DescriptorSetLayout* pSetLayouts_ = nullptr)
: sType(StructureType::eDescriptorSetAllocateInfo)
, pNext(nullptr)
, descriptorPool(descriptorPool_)
, descriptorSetCount(descriptorSetCount_)
, pSetLayouts(pSetLayouts_)
{
}
DescriptorSetAllocateInfo(VkDescriptorSetAllocateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorSetAllocateInfo));
}
DescriptorSetAllocateInfo& operator=(VkDescriptorSetAllocateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorSetAllocateInfo));
return *this;
}
DescriptorSetAllocateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DescriptorSetAllocateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DescriptorSetAllocateInfo& setDescriptorPool(DescriptorPool descriptorPool_)
{
descriptorPool = descriptorPool_;
return *this;
}
DescriptorSetAllocateInfo& setDescriptorSetCount(uint32_t descriptorSetCount_)
{
descriptorSetCount = descriptorSetCount_;
return *this;
}
DescriptorSetAllocateInfo& setPSetLayouts(const DescriptorSetLayout* pSetLayouts_)
{
pSetLayouts = pSetLayouts_;
return *this;
}
operator const VkDescriptorSetAllocateInfo&() const
{
return *reinterpret_cast<const VkDescriptorSetAllocateInfo*>(this);
}
bool operator==(DescriptorSetAllocateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (descriptorPool == rhs.descriptorPool)
&& (descriptorSetCount == rhs.descriptorSetCount)
&& (pSetLayouts == rhs.pSetLayouts);
}
bool operator!=(DescriptorSetAllocateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorPool descriptorPool;
uint32_t descriptorSetCount;
const DescriptorSetLayout* pSetLayouts;
};
static_assert(sizeof(DescriptorSetAllocateInfo) == sizeof(VkDescriptorSetAllocateInfo), "struct and wrapper have different size!");
struct PipelineVertexInputStateCreateInfo
{
PipelineVertexInputStateCreateInfo(PipelineVertexInputStateCreateFlags flags_ = PipelineVertexInputStateCreateFlags(), uint32_t vertexBindingDescriptionCount_ = 0, const VertexInputBindingDescription* pVertexBindingDescriptions_ = nullptr, uint32_t vertexAttributeDescriptionCount_ = 0, const VertexInputAttributeDescription* pVertexAttributeDescriptions_ = nullptr)
: sType(StructureType::ePipelineVertexInputStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, vertexBindingDescriptionCount(vertexBindingDescriptionCount_)
, pVertexBindingDescriptions(pVertexBindingDescriptions_)
, vertexAttributeDescriptionCount(vertexAttributeDescriptionCount_)
, pVertexAttributeDescriptions(pVertexAttributeDescriptions_)
{
}
PipelineVertexInputStateCreateInfo(VkPipelineVertexInputStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineVertexInputStateCreateInfo));
}
PipelineVertexInputStateCreateInfo& operator=(VkPipelineVertexInputStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineVertexInputStateCreateInfo));
return *this;
}
PipelineVertexInputStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineVertexInputStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineVertexInputStateCreateInfo& setFlags(PipelineVertexInputStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineVertexInputStateCreateInfo& setVertexBindingDescriptionCount(uint32_t vertexBindingDescriptionCount_)
{
vertexBindingDescriptionCount = vertexBindingDescriptionCount_;
return *this;
}
PipelineVertexInputStateCreateInfo& setPVertexBindingDescriptions(const VertexInputBindingDescription* pVertexBindingDescriptions_)
{
pVertexBindingDescriptions = pVertexBindingDescriptions_;
return *this;
}
PipelineVertexInputStateCreateInfo& setVertexAttributeDescriptionCount(uint32_t vertexAttributeDescriptionCount_)
{
vertexAttributeDescriptionCount = vertexAttributeDescriptionCount_;
return *this;
}
PipelineVertexInputStateCreateInfo& setPVertexAttributeDescriptions(const VertexInputAttributeDescription* pVertexAttributeDescriptions_)
{
pVertexAttributeDescriptions = pVertexAttributeDescriptions_;
return *this;
}
operator const VkPipelineVertexInputStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineVertexInputStateCreateInfo*>(this);
}
bool operator==(PipelineVertexInputStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (vertexBindingDescriptionCount == rhs.vertexBindingDescriptionCount)
&& (pVertexBindingDescriptions == rhs.pVertexBindingDescriptions)
&& (vertexAttributeDescriptionCount == rhs.vertexAttributeDescriptionCount)
&& (pVertexAttributeDescriptions == rhs.pVertexAttributeDescriptions);
}
bool operator!=(PipelineVertexInputStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineVertexInputStateCreateFlags flags;
uint32_t vertexBindingDescriptionCount;
const VertexInputBindingDescription* pVertexBindingDescriptions;
uint32_t vertexAttributeDescriptionCount;
const VertexInputAttributeDescription* pVertexAttributeDescriptions;
};
static_assert(sizeof(PipelineVertexInputStateCreateInfo) == sizeof(VkPipelineVertexInputStateCreateInfo), "struct and wrapper have different size!");
struct PipelineInputAssemblyStateCreateInfo
{
PipelineInputAssemblyStateCreateInfo(PipelineInputAssemblyStateCreateFlags flags_ = PipelineInputAssemblyStateCreateFlags(), PrimitiveTopology topology_ = PrimitiveTopology::ePointList, Bool32 primitiveRestartEnable_ = 0)
: sType(StructureType::ePipelineInputAssemblyStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, topology(topology_)
, primitiveRestartEnable(primitiveRestartEnable_)
{
}
PipelineInputAssemblyStateCreateInfo(VkPipelineInputAssemblyStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineInputAssemblyStateCreateInfo));
}
PipelineInputAssemblyStateCreateInfo& operator=(VkPipelineInputAssemblyStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineInputAssemblyStateCreateInfo));
return *this;
}
PipelineInputAssemblyStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineInputAssemblyStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineInputAssemblyStateCreateInfo& setFlags(PipelineInputAssemblyStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineInputAssemblyStateCreateInfo& setTopology(PrimitiveTopology topology_)
{
topology = topology_;
return *this;
}
PipelineInputAssemblyStateCreateInfo& setPrimitiveRestartEnable(Bool32 primitiveRestartEnable_)
{
primitiveRestartEnable = primitiveRestartEnable_;
return *this;
}
operator const VkPipelineInputAssemblyStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineInputAssemblyStateCreateInfo*>(this);
}
bool operator==(PipelineInputAssemblyStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (topology == rhs.topology)
&& (primitiveRestartEnable == rhs.primitiveRestartEnable);
}
bool operator!=(PipelineInputAssemblyStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineInputAssemblyStateCreateFlags flags;
PrimitiveTopology topology;
Bool32 primitiveRestartEnable;
};
static_assert(sizeof(PipelineInputAssemblyStateCreateInfo) == sizeof(VkPipelineInputAssemblyStateCreateInfo), "struct and wrapper have different size!");
struct PipelineTessellationStateCreateInfo
{
PipelineTessellationStateCreateInfo(PipelineTessellationStateCreateFlags flags_ = PipelineTessellationStateCreateFlags(), uint32_t patchControlPoints_ = 0)
: sType(StructureType::ePipelineTessellationStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, patchControlPoints(patchControlPoints_)
{
}
PipelineTessellationStateCreateInfo(VkPipelineTessellationStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineTessellationStateCreateInfo));
}
PipelineTessellationStateCreateInfo& operator=(VkPipelineTessellationStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineTessellationStateCreateInfo));
return *this;
}
PipelineTessellationStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineTessellationStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineTessellationStateCreateInfo& setFlags(PipelineTessellationStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineTessellationStateCreateInfo& setPatchControlPoints(uint32_t patchControlPoints_)
{
patchControlPoints = patchControlPoints_;
return *this;
}
operator const VkPipelineTessellationStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineTessellationStateCreateInfo*>(this);
}
bool operator==(PipelineTessellationStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (patchControlPoints == rhs.patchControlPoints);
}
bool operator!=(PipelineTessellationStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineTessellationStateCreateFlags flags;
uint32_t patchControlPoints;
};
static_assert(sizeof(PipelineTessellationStateCreateInfo) == sizeof(VkPipelineTessellationStateCreateInfo), "struct and wrapper have different size!");
struct PipelineViewportStateCreateInfo
{
PipelineViewportStateCreateInfo(PipelineViewportStateCreateFlags flags_ = PipelineViewportStateCreateFlags(), uint32_t viewportCount_ = 0, const Viewport* pViewports_ = nullptr, uint32_t scissorCount_ = 0, const Rect2D* pScissors_ = nullptr)
: sType(StructureType::ePipelineViewportStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, viewportCount(viewportCount_)
, pViewports(pViewports_)
, scissorCount(scissorCount_)
, pScissors(pScissors_)
{
}
PipelineViewportStateCreateInfo(VkPipelineViewportStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineViewportStateCreateInfo));
}
PipelineViewportStateCreateInfo& operator=(VkPipelineViewportStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineViewportStateCreateInfo));
return *this;
}
PipelineViewportStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineViewportStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineViewportStateCreateInfo& setFlags(PipelineViewportStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineViewportStateCreateInfo& setViewportCount(uint32_t viewportCount_)
{
viewportCount = viewportCount_;
return *this;
}
PipelineViewportStateCreateInfo& setPViewports(const Viewport* pViewports_)
{
pViewports = pViewports_;
return *this;
}
PipelineViewportStateCreateInfo& setScissorCount(uint32_t scissorCount_)
{
scissorCount = scissorCount_;
return *this;
}
PipelineViewportStateCreateInfo& setPScissors(const Rect2D* pScissors_)
{
pScissors = pScissors_;
return *this;
}
operator const VkPipelineViewportStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineViewportStateCreateInfo*>(this);
}
bool operator==(PipelineViewportStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (viewportCount == rhs.viewportCount)
&& (pViewports == rhs.pViewports)
&& (scissorCount == rhs.scissorCount)
&& (pScissors == rhs.pScissors);
}
bool operator!=(PipelineViewportStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineViewportStateCreateFlags flags;
uint32_t viewportCount;
const Viewport* pViewports;
uint32_t scissorCount;
const Rect2D* pScissors;
};
static_assert(sizeof(PipelineViewportStateCreateInfo) == sizeof(VkPipelineViewportStateCreateInfo), "struct and wrapper have different size!");
struct PipelineRasterizationStateCreateInfo
{
PipelineRasterizationStateCreateInfo(PipelineRasterizationStateCreateFlags flags_ = PipelineRasterizationStateCreateFlags(), Bool32 depthClampEnable_ = 0, Bool32 rasterizerDiscardEnable_ = 0, PolygonMode polygonMode_ = PolygonMode::eFill, CullModeFlags cullMode_ = CullModeFlags(), FrontFace frontFace_ = FrontFace::eCounterClockwise, Bool32 depthBiasEnable_ = 0, float depthBiasConstantFactor_ = 0, float depthBiasClamp_ = 0, float depthBiasSlopeFactor_ = 0, float lineWidth_ = 0)
: sType(StructureType::ePipelineRasterizationStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, depthClampEnable(depthClampEnable_)
, rasterizerDiscardEnable(rasterizerDiscardEnable_)
, polygonMode(polygonMode_)
, cullMode(cullMode_)
, frontFace(frontFace_)
, depthBiasEnable(depthBiasEnable_)
, depthBiasConstantFactor(depthBiasConstantFactor_)
, depthBiasClamp(depthBiasClamp_)
, depthBiasSlopeFactor(depthBiasSlopeFactor_)
, lineWidth(lineWidth_)
{
}
PipelineRasterizationStateCreateInfo(VkPipelineRasterizationStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineRasterizationStateCreateInfo));
}
PipelineRasterizationStateCreateInfo& operator=(VkPipelineRasterizationStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineRasterizationStateCreateInfo));
return *this;
}
PipelineRasterizationStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineRasterizationStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineRasterizationStateCreateInfo& setFlags(PipelineRasterizationStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthClampEnable(Bool32 depthClampEnable_)
{
depthClampEnable = depthClampEnable_;
return *this;
}
PipelineRasterizationStateCreateInfo& setRasterizerDiscardEnable(Bool32 rasterizerDiscardEnable_)
{
rasterizerDiscardEnable = rasterizerDiscardEnable_;
return *this;
}
PipelineRasterizationStateCreateInfo& setPolygonMode(PolygonMode polygonMode_)
{
polygonMode = polygonMode_;
return *this;
}
PipelineRasterizationStateCreateInfo& setCullMode(CullModeFlags cullMode_)
{
cullMode = cullMode_;
return *this;
}
PipelineRasterizationStateCreateInfo& setFrontFace(FrontFace frontFace_)
{
frontFace = frontFace_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthBiasEnable(Bool32 depthBiasEnable_)
{
depthBiasEnable = depthBiasEnable_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthBiasConstantFactor(float depthBiasConstantFactor_)
{
depthBiasConstantFactor = depthBiasConstantFactor_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthBiasClamp(float depthBiasClamp_)
{
depthBiasClamp = depthBiasClamp_;
return *this;
}
PipelineRasterizationStateCreateInfo& setDepthBiasSlopeFactor(float depthBiasSlopeFactor_)
{
depthBiasSlopeFactor = depthBiasSlopeFactor_;
return *this;
}
PipelineRasterizationStateCreateInfo& setLineWidth(float lineWidth_)
{
lineWidth = lineWidth_;
return *this;
}
operator const VkPipelineRasterizationStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineRasterizationStateCreateInfo*>(this);
}
bool operator==(PipelineRasterizationStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (depthClampEnable == rhs.depthClampEnable)
&& (rasterizerDiscardEnable == rhs.rasterizerDiscardEnable)
&& (polygonMode == rhs.polygonMode)
&& (cullMode == rhs.cullMode)
&& (frontFace == rhs.frontFace)
&& (depthBiasEnable == rhs.depthBiasEnable)
&& (depthBiasConstantFactor == rhs.depthBiasConstantFactor)
&& (depthBiasClamp == rhs.depthBiasClamp)
&& (depthBiasSlopeFactor == rhs.depthBiasSlopeFactor)
&& (lineWidth == rhs.lineWidth);
}
bool operator!=(PipelineRasterizationStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineRasterizationStateCreateFlags flags;
Bool32 depthClampEnable;
Bool32 rasterizerDiscardEnable;
PolygonMode polygonMode;
CullModeFlags cullMode;
FrontFace frontFace;
Bool32 depthBiasEnable;
float depthBiasConstantFactor;
float depthBiasClamp;
float depthBiasSlopeFactor;
float lineWidth;
};
static_assert(sizeof(PipelineRasterizationStateCreateInfo) == sizeof(VkPipelineRasterizationStateCreateInfo), "struct and wrapper have different size!");
struct PipelineDepthStencilStateCreateInfo
{
PipelineDepthStencilStateCreateInfo(PipelineDepthStencilStateCreateFlags flags_ = PipelineDepthStencilStateCreateFlags(), Bool32 depthTestEnable_ = 0, Bool32 depthWriteEnable_ = 0, CompareOp depthCompareOp_ = CompareOp::eNever, Bool32 depthBoundsTestEnable_ = 0, Bool32 stencilTestEnable_ = 0, StencilOpState front_ = StencilOpState(), StencilOpState back_ = StencilOpState(), float minDepthBounds_ = 0, float maxDepthBounds_ = 0)
: sType(StructureType::ePipelineDepthStencilStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, depthTestEnable(depthTestEnable_)
, depthWriteEnable(depthWriteEnable_)
, depthCompareOp(depthCompareOp_)
, depthBoundsTestEnable(depthBoundsTestEnable_)
, stencilTestEnable(stencilTestEnable_)
, front(front_)
, back(back_)
, minDepthBounds(minDepthBounds_)
, maxDepthBounds(maxDepthBounds_)
{
}
PipelineDepthStencilStateCreateInfo(VkPipelineDepthStencilStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineDepthStencilStateCreateInfo));
}
PipelineDepthStencilStateCreateInfo& operator=(VkPipelineDepthStencilStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineDepthStencilStateCreateInfo));
return *this;
}
PipelineDepthStencilStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setFlags(PipelineDepthStencilStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setDepthTestEnable(Bool32 depthTestEnable_)
{
depthTestEnable = depthTestEnable_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setDepthWriteEnable(Bool32 depthWriteEnable_)
{
depthWriteEnable = depthWriteEnable_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setDepthCompareOp(CompareOp depthCompareOp_)
{
depthCompareOp = depthCompareOp_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setDepthBoundsTestEnable(Bool32 depthBoundsTestEnable_)
{
depthBoundsTestEnable = depthBoundsTestEnable_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setStencilTestEnable(Bool32 stencilTestEnable_)
{
stencilTestEnable = stencilTestEnable_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setFront(StencilOpState front_)
{
front = front_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setBack(StencilOpState back_)
{
back = back_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setMinDepthBounds(float minDepthBounds_)
{
minDepthBounds = minDepthBounds_;
return *this;
}
PipelineDepthStencilStateCreateInfo& setMaxDepthBounds(float maxDepthBounds_)
{
maxDepthBounds = maxDepthBounds_;
return *this;
}
operator const VkPipelineDepthStencilStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineDepthStencilStateCreateInfo*>(this);
}
bool operator==(PipelineDepthStencilStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (depthTestEnable == rhs.depthTestEnable)
&& (depthWriteEnable == rhs.depthWriteEnable)
&& (depthCompareOp == rhs.depthCompareOp)
&& (depthBoundsTestEnable == rhs.depthBoundsTestEnable)
&& (stencilTestEnable == rhs.stencilTestEnable)
&& (front == rhs.front)
&& (back == rhs.back)
&& (minDepthBounds == rhs.minDepthBounds)
&& (maxDepthBounds == rhs.maxDepthBounds);
}
bool operator!=(PipelineDepthStencilStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineDepthStencilStateCreateFlags flags;
Bool32 depthTestEnable;
Bool32 depthWriteEnable;
CompareOp depthCompareOp;
Bool32 depthBoundsTestEnable;
Bool32 stencilTestEnable;
StencilOpState front;
StencilOpState back;
float minDepthBounds;
float maxDepthBounds;
};
static_assert(sizeof(PipelineDepthStencilStateCreateInfo) == sizeof(VkPipelineDepthStencilStateCreateInfo), "struct and wrapper have different size!");
struct PipelineCacheCreateInfo
{
PipelineCacheCreateInfo(PipelineCacheCreateFlags flags_ = PipelineCacheCreateFlags(), size_t initialDataSize_ = 0, const void* pInitialData_ = nullptr)
: sType(StructureType::ePipelineCacheCreateInfo)
, pNext(nullptr)
, flags(flags_)
, initialDataSize(initialDataSize_)
, pInitialData(pInitialData_)
{
}
PipelineCacheCreateInfo(VkPipelineCacheCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineCacheCreateInfo));
}
PipelineCacheCreateInfo& operator=(VkPipelineCacheCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineCacheCreateInfo));
return *this;
}
PipelineCacheCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineCacheCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineCacheCreateInfo& setFlags(PipelineCacheCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineCacheCreateInfo& setInitialDataSize(size_t initialDataSize_)
{
initialDataSize = initialDataSize_;
return *this;
}
PipelineCacheCreateInfo& setPInitialData(const void* pInitialData_)
{
pInitialData = pInitialData_;
return *this;
}
operator const VkPipelineCacheCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineCacheCreateInfo*>(this);
}
bool operator==(PipelineCacheCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (initialDataSize == rhs.initialDataSize)
&& (pInitialData == rhs.pInitialData);
}
bool operator!=(PipelineCacheCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineCacheCreateFlags flags;
size_t initialDataSize;
const void* pInitialData;
};
static_assert(sizeof(PipelineCacheCreateInfo) == sizeof(VkPipelineCacheCreateInfo), "struct and wrapper have different size!");
struct SamplerCreateInfo
{
SamplerCreateInfo(SamplerCreateFlags flags_ = SamplerCreateFlags(), Filter magFilter_ = Filter::eNearest, Filter minFilter_ = Filter::eNearest, SamplerMipmapMode mipmapMode_ = SamplerMipmapMode::eNearest, SamplerAddressMode addressModeU_ = SamplerAddressMode::eRepeat, SamplerAddressMode addressModeV_ = SamplerAddressMode::eRepeat, SamplerAddressMode addressModeW_ = SamplerAddressMode::eRepeat, float mipLodBias_ = 0, Bool32 anisotropyEnable_ = 0, float maxAnisotropy_ = 0, Bool32 compareEnable_ = 0, CompareOp compareOp_ = CompareOp::eNever, float minLod_ = 0, float maxLod_ = 0, BorderColor borderColor_ = BorderColor::eFloatTransparentBlack, Bool32 unnormalizedCoordinates_ = 0)
: sType(StructureType::eSamplerCreateInfo)
, pNext(nullptr)
, flags(flags_)
, magFilter(magFilter_)
, minFilter(minFilter_)
, mipmapMode(mipmapMode_)
, addressModeU(addressModeU_)
, addressModeV(addressModeV_)
, addressModeW(addressModeW_)
, mipLodBias(mipLodBias_)
, anisotropyEnable(anisotropyEnable_)
, maxAnisotropy(maxAnisotropy_)
, compareEnable(compareEnable_)
, compareOp(compareOp_)
, minLod(minLod_)
, maxLod(maxLod_)
, borderColor(borderColor_)
, unnormalizedCoordinates(unnormalizedCoordinates_)
{
}
SamplerCreateInfo(VkSamplerCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SamplerCreateInfo));
}
SamplerCreateInfo& operator=(VkSamplerCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SamplerCreateInfo));
return *this;
}
SamplerCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
SamplerCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
SamplerCreateInfo& setFlags(SamplerCreateFlags flags_)
{
flags = flags_;
return *this;
}
SamplerCreateInfo& setMagFilter(Filter magFilter_)
{
magFilter = magFilter_;
return *this;
}
SamplerCreateInfo& setMinFilter(Filter minFilter_)
{
minFilter = minFilter_;
return *this;
}
SamplerCreateInfo& setMipmapMode(SamplerMipmapMode mipmapMode_)
{
mipmapMode = mipmapMode_;
return *this;
}
SamplerCreateInfo& setAddressModeU(SamplerAddressMode addressModeU_)
{
addressModeU = addressModeU_;
return *this;
}
SamplerCreateInfo& setAddressModeV(SamplerAddressMode addressModeV_)
{
addressModeV = addressModeV_;
return *this;
}
SamplerCreateInfo& setAddressModeW(SamplerAddressMode addressModeW_)
{
addressModeW = addressModeW_;
return *this;
}
SamplerCreateInfo& setMipLodBias(float mipLodBias_)
{
mipLodBias = mipLodBias_;
return *this;
}
SamplerCreateInfo& setAnisotropyEnable(Bool32 anisotropyEnable_)
{
anisotropyEnable = anisotropyEnable_;
return *this;
}
SamplerCreateInfo& setMaxAnisotropy(float maxAnisotropy_)
{
maxAnisotropy = maxAnisotropy_;
return *this;
}
SamplerCreateInfo& setCompareEnable(Bool32 compareEnable_)
{
compareEnable = compareEnable_;
return *this;
}
SamplerCreateInfo& setCompareOp(CompareOp compareOp_)
{
compareOp = compareOp_;
return *this;
}
SamplerCreateInfo& setMinLod(float minLod_)
{
minLod = minLod_;
return *this;
}
SamplerCreateInfo& setMaxLod(float maxLod_)
{
maxLod = maxLod_;
return *this;
}
SamplerCreateInfo& setBorderColor(BorderColor borderColor_)
{
borderColor = borderColor_;
return *this;
}
SamplerCreateInfo& setUnnormalizedCoordinates(Bool32 unnormalizedCoordinates_)
{
unnormalizedCoordinates = unnormalizedCoordinates_;
return *this;
}
operator const VkSamplerCreateInfo&() const
{
return *reinterpret_cast<const VkSamplerCreateInfo*>(this);
}
bool operator==(SamplerCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (magFilter == rhs.magFilter)
&& (minFilter == rhs.minFilter)
&& (mipmapMode == rhs.mipmapMode)
&& (addressModeU == rhs.addressModeU)
&& (addressModeV == rhs.addressModeV)
&& (addressModeW == rhs.addressModeW)
&& (mipLodBias == rhs.mipLodBias)
&& (anisotropyEnable == rhs.anisotropyEnable)
&& (maxAnisotropy == rhs.maxAnisotropy)
&& (compareEnable == rhs.compareEnable)
&& (compareOp == rhs.compareOp)
&& (minLod == rhs.minLod)
&& (maxLod == rhs.maxLod)
&& (borderColor == rhs.borderColor)
&& (unnormalizedCoordinates == rhs.unnormalizedCoordinates);
}
bool operator!=(SamplerCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
SamplerCreateFlags flags;
Filter magFilter;
Filter minFilter;
SamplerMipmapMode mipmapMode;
SamplerAddressMode addressModeU;
SamplerAddressMode addressModeV;
SamplerAddressMode addressModeW;
float mipLodBias;
Bool32 anisotropyEnable;
float maxAnisotropy;
Bool32 compareEnable;
CompareOp compareOp;
float minLod;
float maxLod;
BorderColor borderColor;
Bool32 unnormalizedCoordinates;
};
static_assert(sizeof(SamplerCreateInfo) == sizeof(VkSamplerCreateInfo), "struct and wrapper have different size!");
struct CommandBufferAllocateInfo
{
CommandBufferAllocateInfo(CommandPool commandPool_ = CommandPool(), CommandBufferLevel level_ = CommandBufferLevel::ePrimary, uint32_t commandBufferCount_ = 0)
: sType(StructureType::eCommandBufferAllocateInfo)
, pNext(nullptr)
, commandPool(commandPool_)
, level(level_)
, commandBufferCount(commandBufferCount_)
{
}
CommandBufferAllocateInfo(VkCommandBufferAllocateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(CommandBufferAllocateInfo));
}
CommandBufferAllocateInfo& operator=(VkCommandBufferAllocateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(CommandBufferAllocateInfo));
return *this;
}
CommandBufferAllocateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
CommandBufferAllocateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
CommandBufferAllocateInfo& setCommandPool(CommandPool commandPool_)
{
commandPool = commandPool_;
return *this;
}
CommandBufferAllocateInfo& setLevel(CommandBufferLevel level_)
{
level = level_;
return *this;
}
CommandBufferAllocateInfo& setCommandBufferCount(uint32_t commandBufferCount_)
{
commandBufferCount = commandBufferCount_;
return *this;
}
operator const VkCommandBufferAllocateInfo&() const
{
return *reinterpret_cast<const VkCommandBufferAllocateInfo*>(this);
}
bool operator==(CommandBufferAllocateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (commandPool == rhs.commandPool)
&& (level == rhs.level)
&& (commandBufferCount == rhs.commandBufferCount);
}
bool operator!=(CommandBufferAllocateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
CommandPool commandPool;
CommandBufferLevel level;
uint32_t commandBufferCount;
};
static_assert(sizeof(CommandBufferAllocateInfo) == sizeof(VkCommandBufferAllocateInfo), "struct and wrapper have different size!");
struct RenderPassBeginInfo
{
RenderPassBeginInfo(RenderPass renderPass_ = RenderPass(), Framebuffer framebuffer_ = Framebuffer(), Rect2D renderArea_ = Rect2D(), uint32_t clearValueCount_ = 0, const ClearValue* pClearValues_ = nullptr)
: sType(StructureType::eRenderPassBeginInfo)
, pNext(nullptr)
, renderPass(renderPass_)
, framebuffer(framebuffer_)
, renderArea(renderArea_)
, clearValueCount(clearValueCount_)
, pClearValues(pClearValues_)
{
}
RenderPassBeginInfo(VkRenderPassBeginInfo const & rhs)
{
memcpy(this, &rhs, sizeof(RenderPassBeginInfo));
}
RenderPassBeginInfo& operator=(VkRenderPassBeginInfo const & rhs)
{
memcpy(this, &rhs, sizeof(RenderPassBeginInfo));
return *this;
}
RenderPassBeginInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
RenderPassBeginInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
RenderPassBeginInfo& setRenderPass(RenderPass renderPass_)
{
renderPass = renderPass_;
return *this;
}
RenderPassBeginInfo& setFramebuffer(Framebuffer framebuffer_)
{
framebuffer = framebuffer_;
return *this;
}
RenderPassBeginInfo& setRenderArea(Rect2D renderArea_)
{
renderArea = renderArea_;
return *this;
}
RenderPassBeginInfo& setClearValueCount(uint32_t clearValueCount_)
{
clearValueCount = clearValueCount_;
return *this;
}
RenderPassBeginInfo& setPClearValues(const ClearValue* pClearValues_)
{
pClearValues = pClearValues_;
return *this;
}
operator const VkRenderPassBeginInfo&() const
{
return *reinterpret_cast<const VkRenderPassBeginInfo*>(this);
}
bool operator==(RenderPassBeginInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (renderPass == rhs.renderPass)
&& (framebuffer == rhs.framebuffer)
&& (renderArea == rhs.renderArea)
&& (clearValueCount == rhs.clearValueCount)
&& (pClearValues == rhs.pClearValues);
}
bool operator!=(RenderPassBeginInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
RenderPass renderPass;
Framebuffer framebuffer;
Rect2D renderArea;
uint32_t clearValueCount;
const ClearValue* pClearValues;
};
static_assert(sizeof(RenderPassBeginInfo) == sizeof(VkRenderPassBeginInfo), "struct and wrapper have different size!");
struct EventCreateInfo
{
EventCreateInfo(EventCreateFlags flags_ = EventCreateFlags())
: sType(StructureType::eEventCreateInfo)
, pNext(nullptr)
, flags(flags_)
{
}
EventCreateInfo(VkEventCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(EventCreateInfo));
}
EventCreateInfo& operator=(VkEventCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(EventCreateInfo));
return *this;
}
EventCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
EventCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
EventCreateInfo& setFlags(EventCreateFlags flags_)
{
flags = flags_;
return *this;
}
operator const VkEventCreateInfo&() const
{
return *reinterpret_cast<const VkEventCreateInfo*>(this);
}
bool operator==(EventCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags);
}
bool operator!=(EventCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
EventCreateFlags flags;
};
static_assert(sizeof(EventCreateInfo) == sizeof(VkEventCreateInfo), "struct and wrapper have different size!");
struct SemaphoreCreateInfo
{
SemaphoreCreateInfo(SemaphoreCreateFlags flags_ = SemaphoreCreateFlags())
: sType(StructureType::eSemaphoreCreateInfo)
, pNext(nullptr)
, flags(flags_)
{
}
SemaphoreCreateInfo(VkSemaphoreCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SemaphoreCreateInfo));
}
SemaphoreCreateInfo& operator=(VkSemaphoreCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SemaphoreCreateInfo));
return *this;
}
SemaphoreCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
SemaphoreCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
SemaphoreCreateInfo& setFlags(SemaphoreCreateFlags flags_)
{
flags = flags_;
return *this;
}
operator const VkSemaphoreCreateInfo&() const
{
return *reinterpret_cast<const VkSemaphoreCreateInfo*>(this);
}
bool operator==(SemaphoreCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags);
}
bool operator!=(SemaphoreCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
SemaphoreCreateFlags flags;
};
static_assert(sizeof(SemaphoreCreateInfo) == sizeof(VkSemaphoreCreateInfo), "struct and wrapper have different size!");
struct FramebufferCreateInfo
{
FramebufferCreateInfo(FramebufferCreateFlags flags_ = FramebufferCreateFlags(), RenderPass renderPass_ = RenderPass(), uint32_t attachmentCount_ = 0, const ImageView* pAttachments_ = nullptr, uint32_t width_ = 0, uint32_t height_ = 0, uint32_t layers_ = 0)
: sType(StructureType::eFramebufferCreateInfo)
, pNext(nullptr)
, flags(flags_)
, renderPass(renderPass_)
, attachmentCount(attachmentCount_)
, pAttachments(pAttachments_)
, width(width_)
, height(height_)
, layers(layers_)
{
}
FramebufferCreateInfo(VkFramebufferCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(FramebufferCreateInfo));
}
FramebufferCreateInfo& operator=(VkFramebufferCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(FramebufferCreateInfo));
return *this;
}
FramebufferCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
FramebufferCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
FramebufferCreateInfo& setFlags(FramebufferCreateFlags flags_)
{
flags = flags_;
return *this;
}
FramebufferCreateInfo& setRenderPass(RenderPass renderPass_)
{
renderPass = renderPass_;
return *this;
}
FramebufferCreateInfo& setAttachmentCount(uint32_t attachmentCount_)
{
attachmentCount = attachmentCount_;
return *this;
}
FramebufferCreateInfo& setPAttachments(const ImageView* pAttachments_)
{
pAttachments = pAttachments_;
return *this;
}
FramebufferCreateInfo& setWidth(uint32_t width_)
{
width = width_;
return *this;
}
FramebufferCreateInfo& setHeight(uint32_t height_)
{
height = height_;
return *this;
}
FramebufferCreateInfo& setLayers(uint32_t layers_)
{
layers = layers_;
return *this;
}
operator const VkFramebufferCreateInfo&() const
{
return *reinterpret_cast<const VkFramebufferCreateInfo*>(this);
}
bool operator==(FramebufferCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (renderPass == rhs.renderPass)
&& (attachmentCount == rhs.attachmentCount)
&& (pAttachments == rhs.pAttachments)
&& (width == rhs.width)
&& (height == rhs.height)
&& (layers == rhs.layers);
}
bool operator!=(FramebufferCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
FramebufferCreateFlags flags;
RenderPass renderPass;
uint32_t attachmentCount;
const ImageView* pAttachments;
uint32_t width;
uint32_t height;
uint32_t layers;
};
static_assert(sizeof(FramebufferCreateInfo) == sizeof(VkFramebufferCreateInfo), "struct and wrapper have different size!");
struct DisplayModeCreateInfoKHR
{
DisplayModeCreateInfoKHR(DisplayModeCreateFlagsKHR flags_ = DisplayModeCreateFlagsKHR(), DisplayModeParametersKHR parameters_ = DisplayModeParametersKHR())
: sType(StructureType::eDisplayModeCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, parameters(parameters_)
{
}
DisplayModeCreateInfoKHR(VkDisplayModeCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayModeCreateInfoKHR));
}
DisplayModeCreateInfoKHR& operator=(VkDisplayModeCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayModeCreateInfoKHR));
return *this;
}
DisplayModeCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DisplayModeCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DisplayModeCreateInfoKHR& setFlags(DisplayModeCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
DisplayModeCreateInfoKHR& setParameters(DisplayModeParametersKHR parameters_)
{
parameters = parameters_;
return *this;
}
operator const VkDisplayModeCreateInfoKHR&() const
{
return *reinterpret_cast<const VkDisplayModeCreateInfoKHR*>(this);
}
bool operator==(DisplayModeCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (parameters == rhs.parameters);
}
bool operator!=(DisplayModeCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DisplayModeCreateFlagsKHR flags;
DisplayModeParametersKHR parameters;
};
static_assert(sizeof(DisplayModeCreateInfoKHR) == sizeof(VkDisplayModeCreateInfoKHR), "struct and wrapper have different size!");
struct DisplayPresentInfoKHR
{
DisplayPresentInfoKHR(Rect2D srcRect_ = Rect2D(), Rect2D dstRect_ = Rect2D(), Bool32 persistent_ = 0)
: sType(StructureType::eDisplayPresentInfoKHR)
, pNext(nullptr)
, srcRect(srcRect_)
, dstRect(dstRect_)
, persistent(persistent_)
{
}
DisplayPresentInfoKHR(VkDisplayPresentInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayPresentInfoKHR));
}
DisplayPresentInfoKHR& operator=(VkDisplayPresentInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayPresentInfoKHR));
return *this;
}
DisplayPresentInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DisplayPresentInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DisplayPresentInfoKHR& setSrcRect(Rect2D srcRect_)
{
srcRect = srcRect_;
return *this;
}
DisplayPresentInfoKHR& setDstRect(Rect2D dstRect_)
{
dstRect = dstRect_;
return *this;
}
DisplayPresentInfoKHR& setPersistent(Bool32 persistent_)
{
persistent = persistent_;
return *this;
}
operator const VkDisplayPresentInfoKHR&() const
{
return *reinterpret_cast<const VkDisplayPresentInfoKHR*>(this);
}
bool operator==(DisplayPresentInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (srcRect == rhs.srcRect)
&& (dstRect == rhs.dstRect)
&& (persistent == rhs.persistent);
}
bool operator!=(DisplayPresentInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
Rect2D srcRect;
Rect2D dstRect;
Bool32 persistent;
};
static_assert(sizeof(DisplayPresentInfoKHR) == sizeof(VkDisplayPresentInfoKHR), "struct and wrapper have different size!");
#ifdef VK_USE_PLATFORM_ANDROID_KHR
struct AndroidSurfaceCreateInfoKHR
{
AndroidSurfaceCreateInfoKHR(AndroidSurfaceCreateFlagsKHR flags_ = AndroidSurfaceCreateFlagsKHR(), ANativeWindow* window_ = nullptr)
: sType(StructureType::eAndroidSurfaceCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, window(window_)
{
}
AndroidSurfaceCreateInfoKHR(VkAndroidSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(AndroidSurfaceCreateInfoKHR));
}
AndroidSurfaceCreateInfoKHR& operator=(VkAndroidSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(AndroidSurfaceCreateInfoKHR));
return *this;
}
AndroidSurfaceCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
AndroidSurfaceCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
AndroidSurfaceCreateInfoKHR& setFlags(AndroidSurfaceCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
AndroidSurfaceCreateInfoKHR& setWindow(ANativeWindow* window_)
{
window = window_;
return *this;
}
operator const VkAndroidSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkAndroidSurfaceCreateInfoKHR*>(this);
}
bool operator==(AndroidSurfaceCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (window == rhs.window);
}
bool operator!=(AndroidSurfaceCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
AndroidSurfaceCreateFlagsKHR flags;
ANativeWindow* window;
};
static_assert(sizeof(AndroidSurfaceCreateInfoKHR) == sizeof(VkAndroidSurfaceCreateInfoKHR), "struct and wrapper have different size!");
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
struct MirSurfaceCreateInfoKHR
{
MirSurfaceCreateInfoKHR(MirSurfaceCreateFlagsKHR flags_ = MirSurfaceCreateFlagsKHR(), MirConnection* connection_ = nullptr, MirSurface* mirSurface_ = nullptr)
: sType(StructureType::eMirSurfaceCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, connection(connection_)
, mirSurface(mirSurface_)
{
}
MirSurfaceCreateInfoKHR(VkMirSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(MirSurfaceCreateInfoKHR));
}
MirSurfaceCreateInfoKHR& operator=(VkMirSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(MirSurfaceCreateInfoKHR));
return *this;
}
MirSurfaceCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
MirSurfaceCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
MirSurfaceCreateInfoKHR& setFlags(MirSurfaceCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
MirSurfaceCreateInfoKHR& setConnection(MirConnection* connection_)
{
connection = connection_;
return *this;
}
MirSurfaceCreateInfoKHR& setMirSurface(MirSurface* mirSurface_)
{
mirSurface = mirSurface_;
return *this;
}
operator const VkMirSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkMirSurfaceCreateInfoKHR*>(this);
}
bool operator==(MirSurfaceCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (connection == rhs.connection)
&& (mirSurface == rhs.mirSurface);
}
bool operator!=(MirSurfaceCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
MirSurfaceCreateFlagsKHR flags;
MirConnection* connection;
MirSurface* mirSurface;
};
static_assert(sizeof(MirSurfaceCreateInfoKHR) == sizeof(VkMirSurfaceCreateInfoKHR), "struct and wrapper have different size!");
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
struct WaylandSurfaceCreateInfoKHR
{
WaylandSurfaceCreateInfoKHR(WaylandSurfaceCreateFlagsKHR flags_ = WaylandSurfaceCreateFlagsKHR(), struct wl_display* display_ = nullptr, struct wl_surface* surface_ = nullptr)
: sType(StructureType::eWaylandSurfaceCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, display(display_)
, surface(surface_)
{
}
WaylandSurfaceCreateInfoKHR(VkWaylandSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(WaylandSurfaceCreateInfoKHR));
}
WaylandSurfaceCreateInfoKHR& operator=(VkWaylandSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(WaylandSurfaceCreateInfoKHR));
return *this;
}
WaylandSurfaceCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
WaylandSurfaceCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
WaylandSurfaceCreateInfoKHR& setFlags(WaylandSurfaceCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
WaylandSurfaceCreateInfoKHR& setDisplay(struct wl_display* display_)
{
display = display_;
return *this;
}
WaylandSurfaceCreateInfoKHR& setSurface(struct wl_surface* surface_)
{
surface = surface_;
return *this;
}
operator const VkWaylandSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkWaylandSurfaceCreateInfoKHR*>(this);
}
bool operator==(WaylandSurfaceCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (display == rhs.display)
&& (surface == rhs.surface);
}
bool operator!=(WaylandSurfaceCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
WaylandSurfaceCreateFlagsKHR flags;
struct wl_display* display;
struct wl_surface* surface;
};
static_assert(sizeof(WaylandSurfaceCreateInfoKHR) == sizeof(VkWaylandSurfaceCreateInfoKHR), "struct and wrapper have different size!");
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
struct Win32SurfaceCreateInfoKHR
{
Win32SurfaceCreateInfoKHR(Win32SurfaceCreateFlagsKHR flags_ = Win32SurfaceCreateFlagsKHR(), HINSTANCE hinstance_ = 0, HWND hwnd_ = 0)
: sType(StructureType::eWin32SurfaceCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, hinstance(hinstance_)
, hwnd(hwnd_)
{
}
Win32SurfaceCreateInfoKHR(VkWin32SurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(Win32SurfaceCreateInfoKHR));
}
Win32SurfaceCreateInfoKHR& operator=(VkWin32SurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(Win32SurfaceCreateInfoKHR));
return *this;
}
Win32SurfaceCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
Win32SurfaceCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
Win32SurfaceCreateInfoKHR& setFlags(Win32SurfaceCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
Win32SurfaceCreateInfoKHR& setHinstance(HINSTANCE hinstance_)
{
hinstance = hinstance_;
return *this;
}
Win32SurfaceCreateInfoKHR& setHwnd(HWND hwnd_)
{
hwnd = hwnd_;
return *this;
}
operator const VkWin32SurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkWin32SurfaceCreateInfoKHR*>(this);
}
bool operator==(Win32SurfaceCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (hinstance == rhs.hinstance)
&& (hwnd == rhs.hwnd);
}
bool operator!=(Win32SurfaceCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
Win32SurfaceCreateFlagsKHR flags;
HINSTANCE hinstance;
HWND hwnd;
};
static_assert(sizeof(Win32SurfaceCreateInfoKHR) == sizeof(VkWin32SurfaceCreateInfoKHR), "struct and wrapper have different size!");
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
struct XlibSurfaceCreateInfoKHR
{
XlibSurfaceCreateInfoKHR(XlibSurfaceCreateFlagsKHR flags_ = XlibSurfaceCreateFlagsKHR(), Display* dpy_ = nullptr, Window window_ = 0)
: sType(StructureType::eXlibSurfaceCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, dpy(dpy_)
, window(window_)
{
}
XlibSurfaceCreateInfoKHR(VkXlibSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(XlibSurfaceCreateInfoKHR));
}
XlibSurfaceCreateInfoKHR& operator=(VkXlibSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(XlibSurfaceCreateInfoKHR));
return *this;
}
XlibSurfaceCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
XlibSurfaceCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
XlibSurfaceCreateInfoKHR& setFlags(XlibSurfaceCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
XlibSurfaceCreateInfoKHR& setDpy(Display* dpy_)
{
dpy = dpy_;
return *this;
}
XlibSurfaceCreateInfoKHR& setWindow(Window window_)
{
window = window_;
return *this;
}
operator const VkXlibSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkXlibSurfaceCreateInfoKHR*>(this);
}
bool operator==(XlibSurfaceCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (dpy == rhs.dpy)
&& (window == rhs.window);
}
bool operator!=(XlibSurfaceCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
XlibSurfaceCreateFlagsKHR flags;
Display* dpy;
Window window;
};
static_assert(sizeof(XlibSurfaceCreateInfoKHR) == sizeof(VkXlibSurfaceCreateInfoKHR), "struct and wrapper have different size!");
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
struct XcbSurfaceCreateInfoKHR
{
XcbSurfaceCreateInfoKHR(XcbSurfaceCreateFlagsKHR flags_ = XcbSurfaceCreateFlagsKHR(), xcb_connection_t* connection_ = nullptr, xcb_window_t window_ = 0)
: sType(StructureType::eXcbSurfaceCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, connection(connection_)
, window(window_)
{
}
XcbSurfaceCreateInfoKHR(VkXcbSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(XcbSurfaceCreateInfoKHR));
}
XcbSurfaceCreateInfoKHR& operator=(VkXcbSurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(XcbSurfaceCreateInfoKHR));
return *this;
}
XcbSurfaceCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
XcbSurfaceCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
XcbSurfaceCreateInfoKHR& setFlags(XcbSurfaceCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
XcbSurfaceCreateInfoKHR& setConnection(xcb_connection_t* connection_)
{
connection = connection_;
return *this;
}
XcbSurfaceCreateInfoKHR& setWindow(xcb_window_t window_)
{
window = window_;
return *this;
}
operator const VkXcbSurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkXcbSurfaceCreateInfoKHR*>(this);
}
bool operator==(XcbSurfaceCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (connection == rhs.connection)
&& (window == rhs.window);
}
bool operator!=(XcbSurfaceCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
XcbSurfaceCreateFlagsKHR flags;
xcb_connection_t* connection;
xcb_window_t window;
};
static_assert(sizeof(XcbSurfaceCreateInfoKHR) == sizeof(VkXcbSurfaceCreateInfoKHR), "struct and wrapper have different size!");
#endif /*VK_USE_PLATFORM_XCB_KHR*/
struct DebugMarkerMarkerInfoEXT
{
DebugMarkerMarkerInfoEXT(const char* pMarkerName_ = nullptr, std::array<float, 4> const& color_ = { { 0, 0, 0, 0 } })
: sType(StructureType::eDebugMarkerMarkerInfoEXT)
, pNext(nullptr)
, pMarkerName(pMarkerName_)
{
memcpy(&color, color_.data(), 4 * sizeof(float));
}
DebugMarkerMarkerInfoEXT(VkDebugMarkerMarkerInfoEXT const & rhs)
{
memcpy(this, &rhs, sizeof(DebugMarkerMarkerInfoEXT));
}
DebugMarkerMarkerInfoEXT& operator=(VkDebugMarkerMarkerInfoEXT const & rhs)
{
memcpy(this, &rhs, sizeof(DebugMarkerMarkerInfoEXT));
return *this;
}
DebugMarkerMarkerInfoEXT& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DebugMarkerMarkerInfoEXT& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DebugMarkerMarkerInfoEXT& setPMarkerName(const char* pMarkerName_)
{
pMarkerName = pMarkerName_;
return *this;
}
DebugMarkerMarkerInfoEXT& setColor(std::array<float, 4> color_)
{
memcpy(&color, color_.data(), 4 * sizeof(float));
return *this;
}
operator const VkDebugMarkerMarkerInfoEXT&() const
{
return *reinterpret_cast<const VkDebugMarkerMarkerInfoEXT*>(this);
}
bool operator==(DebugMarkerMarkerInfoEXT const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (pMarkerName == rhs.pMarkerName)
&& (memcmp(color, rhs.color, 4 * sizeof(float)) == 0);
}
bool operator!=(DebugMarkerMarkerInfoEXT const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
const char* pMarkerName;
float color[4];
};
static_assert(sizeof(DebugMarkerMarkerInfoEXT) == sizeof(VkDebugMarkerMarkerInfoEXT), "struct and wrapper have different size!");
struct DedicatedAllocationImageCreateInfoNV
{
DedicatedAllocationImageCreateInfoNV(Bool32 dedicatedAllocation_ = 0)
: sType(StructureType::eDedicatedAllocationImageCreateInfoNV)
, pNext(nullptr)
, dedicatedAllocation(dedicatedAllocation_)
{
}
DedicatedAllocationImageCreateInfoNV(VkDedicatedAllocationImageCreateInfoNV const & rhs)
{
memcpy(this, &rhs, sizeof(DedicatedAllocationImageCreateInfoNV));
}
DedicatedAllocationImageCreateInfoNV& operator=(VkDedicatedAllocationImageCreateInfoNV const & rhs)
{
memcpy(this, &rhs, sizeof(DedicatedAllocationImageCreateInfoNV));
return *this;
}
DedicatedAllocationImageCreateInfoNV& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DedicatedAllocationImageCreateInfoNV& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DedicatedAllocationImageCreateInfoNV& setDedicatedAllocation(Bool32 dedicatedAllocation_)
{
dedicatedAllocation = dedicatedAllocation_;
return *this;
}
operator const VkDedicatedAllocationImageCreateInfoNV&() const
{
return *reinterpret_cast<const VkDedicatedAllocationImageCreateInfoNV*>(this);
}
bool operator==(DedicatedAllocationImageCreateInfoNV const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (dedicatedAllocation == rhs.dedicatedAllocation);
}
bool operator!=(DedicatedAllocationImageCreateInfoNV const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
Bool32 dedicatedAllocation;
};
static_assert(sizeof(DedicatedAllocationImageCreateInfoNV) == sizeof(VkDedicatedAllocationImageCreateInfoNV), "struct and wrapper have different size!");
struct DedicatedAllocationBufferCreateInfoNV
{
DedicatedAllocationBufferCreateInfoNV(Bool32 dedicatedAllocation_ = 0)
: sType(StructureType::eDedicatedAllocationBufferCreateInfoNV)
, pNext(nullptr)
, dedicatedAllocation(dedicatedAllocation_)
{
}
DedicatedAllocationBufferCreateInfoNV(VkDedicatedAllocationBufferCreateInfoNV const & rhs)
{
memcpy(this, &rhs, sizeof(DedicatedAllocationBufferCreateInfoNV));
}
DedicatedAllocationBufferCreateInfoNV& operator=(VkDedicatedAllocationBufferCreateInfoNV const & rhs)
{
memcpy(this, &rhs, sizeof(DedicatedAllocationBufferCreateInfoNV));
return *this;
}
DedicatedAllocationBufferCreateInfoNV& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DedicatedAllocationBufferCreateInfoNV& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DedicatedAllocationBufferCreateInfoNV& setDedicatedAllocation(Bool32 dedicatedAllocation_)
{
dedicatedAllocation = dedicatedAllocation_;
return *this;
}
operator const VkDedicatedAllocationBufferCreateInfoNV&() const
{
return *reinterpret_cast<const VkDedicatedAllocationBufferCreateInfoNV*>(this);
}
bool operator==(DedicatedAllocationBufferCreateInfoNV const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (dedicatedAllocation == rhs.dedicatedAllocation);
}
bool operator!=(DedicatedAllocationBufferCreateInfoNV const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
Bool32 dedicatedAllocation;
};
static_assert(sizeof(DedicatedAllocationBufferCreateInfoNV) == sizeof(VkDedicatedAllocationBufferCreateInfoNV), "struct and wrapper have different size!");
struct DedicatedAllocationMemoryAllocateInfoNV
{
DedicatedAllocationMemoryAllocateInfoNV(Image image_ = Image(), Buffer buffer_ = Buffer())
: sType(StructureType::eDedicatedAllocationMemoryAllocateInfoNV)
, pNext(nullptr)
, image(image_)
, buffer(buffer_)
{
}
DedicatedAllocationMemoryAllocateInfoNV(VkDedicatedAllocationMemoryAllocateInfoNV const & rhs)
{
memcpy(this, &rhs, sizeof(DedicatedAllocationMemoryAllocateInfoNV));
}
DedicatedAllocationMemoryAllocateInfoNV& operator=(VkDedicatedAllocationMemoryAllocateInfoNV const & rhs)
{
memcpy(this, &rhs, sizeof(DedicatedAllocationMemoryAllocateInfoNV));
return *this;
}
DedicatedAllocationMemoryAllocateInfoNV& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DedicatedAllocationMemoryAllocateInfoNV& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DedicatedAllocationMemoryAllocateInfoNV& setImage(Image image_)
{
image = image_;
return *this;
}
DedicatedAllocationMemoryAllocateInfoNV& setBuffer(Buffer buffer_)
{
buffer = buffer_;
return *this;
}
operator const VkDedicatedAllocationMemoryAllocateInfoNV&() const
{
return *reinterpret_cast<const VkDedicatedAllocationMemoryAllocateInfoNV*>(this);
}
bool operator==(DedicatedAllocationMemoryAllocateInfoNV const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (image == rhs.image)
&& (buffer == rhs.buffer);
}
bool operator!=(DedicatedAllocationMemoryAllocateInfoNV const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
Image image;
Buffer buffer;
};
static_assert(sizeof(DedicatedAllocationMemoryAllocateInfoNV) == sizeof(VkDedicatedAllocationMemoryAllocateInfoNV), "struct and wrapper have different size!");
enum class SubpassContents
{
eInline = VK_SUBPASS_CONTENTS_INLINE,
eSecondaryCommandBuffers = VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS
};
struct PresentInfoKHR
{
PresentInfoKHR(uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, uint32_t swapchainCount_ = 0, const SwapchainKHR* pSwapchains_ = nullptr, const uint32_t* pImageIndices_ = nullptr, Result* pResults_ = nullptr)
: sType(StructureType::ePresentInfoKHR)
, pNext(nullptr)
, waitSemaphoreCount(waitSemaphoreCount_)
, pWaitSemaphores(pWaitSemaphores_)
, swapchainCount(swapchainCount_)
, pSwapchains(pSwapchains_)
, pImageIndices(pImageIndices_)
, pResults(pResults_)
{
}
PresentInfoKHR(VkPresentInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(PresentInfoKHR));
}
PresentInfoKHR& operator=(VkPresentInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(PresentInfoKHR));
return *this;
}
PresentInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PresentInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PresentInfoKHR& setWaitSemaphoreCount(uint32_t waitSemaphoreCount_)
{
waitSemaphoreCount = waitSemaphoreCount_;
return *this;
}
PresentInfoKHR& setPWaitSemaphores(const Semaphore* pWaitSemaphores_)
{
pWaitSemaphores = pWaitSemaphores_;
return *this;
}
PresentInfoKHR& setSwapchainCount(uint32_t swapchainCount_)
{
swapchainCount = swapchainCount_;
return *this;
}
PresentInfoKHR& setPSwapchains(const SwapchainKHR* pSwapchains_)
{
pSwapchains = pSwapchains_;
return *this;
}
PresentInfoKHR& setPImageIndices(const uint32_t* pImageIndices_)
{
pImageIndices = pImageIndices_;
return *this;
}
PresentInfoKHR& setPResults(Result* pResults_)
{
pResults = pResults_;
return *this;
}
operator const VkPresentInfoKHR&() const
{
return *reinterpret_cast<const VkPresentInfoKHR*>(this);
}
bool operator==(PresentInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (waitSemaphoreCount == rhs.waitSemaphoreCount)
&& (pWaitSemaphores == rhs.pWaitSemaphores)
&& (swapchainCount == rhs.swapchainCount)
&& (pSwapchains == rhs.pSwapchains)
&& (pImageIndices == rhs.pImageIndices)
&& (pResults == rhs.pResults);
}
bool operator!=(PresentInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t waitSemaphoreCount;
const Semaphore* pWaitSemaphores;
uint32_t swapchainCount;
const SwapchainKHR* pSwapchains;
const uint32_t* pImageIndices;
Result* pResults;
};
static_assert(sizeof(PresentInfoKHR) == sizeof(VkPresentInfoKHR), "struct and wrapper have different size!");
enum class DynamicState
{
eViewport = VK_DYNAMIC_STATE_VIEWPORT,
eScissor = VK_DYNAMIC_STATE_SCISSOR,
eLineWidth = VK_DYNAMIC_STATE_LINE_WIDTH,
eDepthBias = VK_DYNAMIC_STATE_DEPTH_BIAS,
eBlendConstants = VK_DYNAMIC_STATE_BLEND_CONSTANTS,
eDepthBounds = VK_DYNAMIC_STATE_DEPTH_BOUNDS,
eStencilCompareMask = VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
eStencilWriteMask = VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
eStencilReference = VK_DYNAMIC_STATE_STENCIL_REFERENCE
};
struct PipelineDynamicStateCreateInfo
{
PipelineDynamicStateCreateInfo(PipelineDynamicStateCreateFlags flags_ = PipelineDynamicStateCreateFlags(), uint32_t dynamicStateCount_ = 0, const DynamicState* pDynamicStates_ = nullptr)
: sType(StructureType::ePipelineDynamicStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, dynamicStateCount(dynamicStateCount_)
, pDynamicStates(pDynamicStates_)
{
}
PipelineDynamicStateCreateInfo(VkPipelineDynamicStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineDynamicStateCreateInfo));
}
PipelineDynamicStateCreateInfo& operator=(VkPipelineDynamicStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineDynamicStateCreateInfo));
return *this;
}
PipelineDynamicStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineDynamicStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineDynamicStateCreateInfo& setFlags(PipelineDynamicStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineDynamicStateCreateInfo& setDynamicStateCount(uint32_t dynamicStateCount_)
{
dynamicStateCount = dynamicStateCount_;
return *this;
}
PipelineDynamicStateCreateInfo& setPDynamicStates(const DynamicState* pDynamicStates_)
{
pDynamicStates = pDynamicStates_;
return *this;
}
operator const VkPipelineDynamicStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineDynamicStateCreateInfo*>(this);
}
bool operator==(PipelineDynamicStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (dynamicStateCount == rhs.dynamicStateCount)
&& (pDynamicStates == rhs.pDynamicStates);
}
bool operator!=(PipelineDynamicStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineDynamicStateCreateFlags flags;
uint32_t dynamicStateCount;
const DynamicState* pDynamicStates;
};
static_assert(sizeof(PipelineDynamicStateCreateInfo) == sizeof(VkPipelineDynamicStateCreateInfo), "struct and wrapper have different size!");
enum class QueueFlagBits
{
eGraphics = VK_QUEUE_GRAPHICS_BIT,
eCompute = VK_QUEUE_COMPUTE_BIT,
eTransfer = VK_QUEUE_TRANSFER_BIT,
eSparseBinding = VK_QUEUE_SPARSE_BINDING_BIT
};
using QueueFlags = Flags<QueueFlagBits, VkQueueFlags>;
inline QueueFlags operator|(QueueFlagBits bit0, QueueFlagBits bit1)
{
return QueueFlags(bit0) | bit1;
}
struct QueueFamilyProperties
{
operator const VkQueueFamilyProperties&() const
{
return *reinterpret_cast<const VkQueueFamilyProperties*>(this);
}
bool operator==(QueueFamilyProperties const& rhs) const
{
return (queueFlags == rhs.queueFlags)
&& (queueCount == rhs.queueCount)
&& (timestampValidBits == rhs.timestampValidBits)
&& (minImageTransferGranularity == rhs.minImageTransferGranularity);
}
bool operator!=(QueueFamilyProperties const& rhs) const
{
return !operator==(rhs);
}
QueueFlags queueFlags;
uint32_t queueCount;
uint32_t timestampValidBits;
Extent3D minImageTransferGranularity;
};
static_assert(sizeof(QueueFamilyProperties) == sizeof(VkQueueFamilyProperties), "struct and wrapper have different size!");
enum class MemoryPropertyFlagBits
{
eDeviceLocal = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
eHostVisible = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
eHostCoherent = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
eHostCached = VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
eLazilyAllocated = VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
};
using MemoryPropertyFlags = Flags<MemoryPropertyFlagBits, VkMemoryPropertyFlags>;
inline MemoryPropertyFlags operator|(MemoryPropertyFlagBits bit0, MemoryPropertyFlagBits bit1)
{
return MemoryPropertyFlags(bit0) | bit1;
}
struct MemoryType
{
operator const VkMemoryType&() const
{
return *reinterpret_cast<const VkMemoryType*>(this);
}
bool operator==(MemoryType const& rhs) const
{
return (propertyFlags == rhs.propertyFlags)
&& (heapIndex == rhs.heapIndex);
}
bool operator!=(MemoryType const& rhs) const
{
return !operator==(rhs);
}
MemoryPropertyFlags propertyFlags;
uint32_t heapIndex;
};
static_assert(sizeof(MemoryType) == sizeof(VkMemoryType), "struct and wrapper have different size!");
enum class MemoryHeapFlagBits
{
eDeviceLocal = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT
};
using MemoryHeapFlags = Flags<MemoryHeapFlagBits, VkMemoryHeapFlags>;
inline MemoryHeapFlags operator|(MemoryHeapFlagBits bit0, MemoryHeapFlagBits bit1)
{
return MemoryHeapFlags(bit0) | bit1;
}
struct MemoryHeap
{
operator const VkMemoryHeap&() const
{
return *reinterpret_cast<const VkMemoryHeap*>(this);
}
bool operator==(MemoryHeap const& rhs) const
{
return (size == rhs.size)
&& (flags == rhs.flags);
}
bool operator!=(MemoryHeap const& rhs) const
{
return !operator==(rhs);
}
DeviceSize size;
MemoryHeapFlags flags;
};
static_assert(sizeof(MemoryHeap) == sizeof(VkMemoryHeap), "struct and wrapper have different size!");
struct PhysicalDeviceMemoryProperties
{
operator const VkPhysicalDeviceMemoryProperties&() const
{
return *reinterpret_cast<const VkPhysicalDeviceMemoryProperties*>(this);
}
bool operator==(PhysicalDeviceMemoryProperties const& rhs) const
{
return (memoryTypeCount == rhs.memoryTypeCount)
&& (memcmp(memoryTypes, rhs.memoryTypes, VK_MAX_MEMORY_TYPES * sizeof(MemoryType)) == 0)
&& (memoryHeapCount == rhs.memoryHeapCount)
&& (memcmp(memoryHeaps, rhs.memoryHeaps, VK_MAX_MEMORY_HEAPS * sizeof(MemoryHeap)) == 0);
}
bool operator!=(PhysicalDeviceMemoryProperties const& rhs) const
{
return !operator==(rhs);
}
uint32_t memoryTypeCount;
MemoryType memoryTypes[VK_MAX_MEMORY_TYPES];
uint32_t memoryHeapCount;
MemoryHeap memoryHeaps[VK_MAX_MEMORY_HEAPS];
};
static_assert(sizeof(PhysicalDeviceMemoryProperties) == sizeof(VkPhysicalDeviceMemoryProperties), "struct and wrapper have different size!");
enum class AccessFlagBits
{
eIndirectCommandRead = VK_ACCESS_INDIRECT_COMMAND_READ_BIT,
eIndexRead = VK_ACCESS_INDEX_READ_BIT,
eVertexAttributeRead = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT,
eUniformRead = VK_ACCESS_UNIFORM_READ_BIT,
eInputAttachmentRead = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT,
eShaderRead = VK_ACCESS_SHADER_READ_BIT,
eShaderWrite = VK_ACCESS_SHADER_WRITE_BIT,
eColorAttachmentRead = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT,
eColorAttachmentWrite = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
eDepthStencilAttachmentRead = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
eDepthStencilAttachmentWrite = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
eTransferRead = VK_ACCESS_TRANSFER_READ_BIT,
eTransferWrite = VK_ACCESS_TRANSFER_WRITE_BIT,
eHostRead = VK_ACCESS_HOST_READ_BIT,
eHostWrite = VK_ACCESS_HOST_WRITE_BIT,
eMemoryRead = VK_ACCESS_MEMORY_READ_BIT,
eMemoryWrite = VK_ACCESS_MEMORY_WRITE_BIT
};
using AccessFlags = Flags<AccessFlagBits, VkAccessFlags>;
inline AccessFlags operator|(AccessFlagBits bit0, AccessFlagBits bit1)
{
return AccessFlags(bit0) | bit1;
}
struct MemoryBarrier
{
MemoryBarrier(AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags())
: sType(StructureType::eMemoryBarrier)
, pNext(nullptr)
, srcAccessMask(srcAccessMask_)
, dstAccessMask(dstAccessMask_)
{
}
MemoryBarrier(VkMemoryBarrier const & rhs)
{
memcpy(this, &rhs, sizeof(MemoryBarrier));
}
MemoryBarrier& operator=(VkMemoryBarrier const & rhs)
{
memcpy(this, &rhs, sizeof(MemoryBarrier));
return *this;
}
MemoryBarrier& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
MemoryBarrier& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
MemoryBarrier& setSrcAccessMask(AccessFlags srcAccessMask_)
{
srcAccessMask = srcAccessMask_;
return *this;
}
MemoryBarrier& setDstAccessMask(AccessFlags dstAccessMask_)
{
dstAccessMask = dstAccessMask_;
return *this;
}
operator const VkMemoryBarrier&() const
{
return *reinterpret_cast<const VkMemoryBarrier*>(this);
}
bool operator==(MemoryBarrier const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (srcAccessMask == rhs.srcAccessMask)
&& (dstAccessMask == rhs.dstAccessMask);
}
bool operator!=(MemoryBarrier const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
AccessFlags srcAccessMask;
AccessFlags dstAccessMask;
};
static_assert(sizeof(MemoryBarrier) == sizeof(VkMemoryBarrier), "struct and wrapper have different size!");
struct BufferMemoryBarrier
{
BufferMemoryBarrier(AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), uint32_t srcQueueFamilyIndex_ = 0, uint32_t dstQueueFamilyIndex_ = 0, Buffer buffer_ = Buffer(), DeviceSize offset_ = 0, DeviceSize size_ = 0)
: sType(StructureType::eBufferMemoryBarrier)
, pNext(nullptr)
, srcAccessMask(srcAccessMask_)
, dstAccessMask(dstAccessMask_)
, srcQueueFamilyIndex(srcQueueFamilyIndex_)
, dstQueueFamilyIndex(dstQueueFamilyIndex_)
, buffer(buffer_)
, offset(offset_)
, size(size_)
{
}
BufferMemoryBarrier(VkBufferMemoryBarrier const & rhs)
{
memcpy(this, &rhs, sizeof(BufferMemoryBarrier));
}
BufferMemoryBarrier& operator=(VkBufferMemoryBarrier const & rhs)
{
memcpy(this, &rhs, sizeof(BufferMemoryBarrier));
return *this;
}
BufferMemoryBarrier& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
BufferMemoryBarrier& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
BufferMemoryBarrier& setSrcAccessMask(AccessFlags srcAccessMask_)
{
srcAccessMask = srcAccessMask_;
return *this;
}
BufferMemoryBarrier& setDstAccessMask(AccessFlags dstAccessMask_)
{
dstAccessMask = dstAccessMask_;
return *this;
}
BufferMemoryBarrier& setSrcQueueFamilyIndex(uint32_t srcQueueFamilyIndex_)
{
srcQueueFamilyIndex = srcQueueFamilyIndex_;
return *this;
}
BufferMemoryBarrier& setDstQueueFamilyIndex(uint32_t dstQueueFamilyIndex_)
{
dstQueueFamilyIndex = dstQueueFamilyIndex_;
return *this;
}
BufferMemoryBarrier& setBuffer(Buffer buffer_)
{
buffer = buffer_;
return *this;
}
BufferMemoryBarrier& setOffset(DeviceSize offset_)
{
offset = offset_;
return *this;
}
BufferMemoryBarrier& setSize(DeviceSize size_)
{
size = size_;
return *this;
}
operator const VkBufferMemoryBarrier&() const
{
return *reinterpret_cast<const VkBufferMemoryBarrier*>(this);
}
bool operator==(BufferMemoryBarrier const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (srcAccessMask == rhs.srcAccessMask)
&& (dstAccessMask == rhs.dstAccessMask)
&& (srcQueueFamilyIndex == rhs.srcQueueFamilyIndex)
&& (dstQueueFamilyIndex == rhs.dstQueueFamilyIndex)
&& (buffer == rhs.buffer)
&& (offset == rhs.offset)
&& (size == rhs.size);
}
bool operator!=(BufferMemoryBarrier const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
AccessFlags srcAccessMask;
AccessFlags dstAccessMask;
uint32_t srcQueueFamilyIndex;
uint32_t dstQueueFamilyIndex;
Buffer buffer;
DeviceSize offset;
DeviceSize size;
};
static_assert(sizeof(BufferMemoryBarrier) == sizeof(VkBufferMemoryBarrier), "struct and wrapper have different size!");
enum class BufferUsageFlagBits
{
eTransferSrc = VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
eTransferDst = VK_BUFFER_USAGE_TRANSFER_DST_BIT,
eUniformTexelBuffer = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
eStorageTexelBuffer = VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT,
eUniformBuffer = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
eStorageBuffer = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
eIndexBuffer = VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
eVertexBuffer = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
eIndirectBuffer = VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT
};
using BufferUsageFlags = Flags<BufferUsageFlagBits, VkBufferUsageFlags>;
inline BufferUsageFlags operator|(BufferUsageFlagBits bit0, BufferUsageFlagBits bit1)
{
return BufferUsageFlags(bit0) | bit1;
}
enum class BufferCreateFlagBits
{
eSparseBinding = VK_BUFFER_CREATE_SPARSE_BINDING_BIT,
eSparseResidency = VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT,
eSparseAliased = VK_BUFFER_CREATE_SPARSE_ALIASED_BIT
};
using BufferCreateFlags = Flags<BufferCreateFlagBits, VkBufferCreateFlags>;
inline BufferCreateFlags operator|(BufferCreateFlagBits bit0, BufferCreateFlagBits bit1)
{
return BufferCreateFlags(bit0) | bit1;
}
struct BufferCreateInfo
{
BufferCreateInfo(BufferCreateFlags flags_ = BufferCreateFlags(), DeviceSize size_ = 0, BufferUsageFlags usage_ = BufferUsageFlags(), SharingMode sharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr)
: sType(StructureType::eBufferCreateInfo)
, pNext(nullptr)
, flags(flags_)
, size(size_)
, usage(usage_)
, sharingMode(sharingMode_)
, queueFamilyIndexCount(queueFamilyIndexCount_)
, pQueueFamilyIndices(pQueueFamilyIndices_)
{
}
BufferCreateInfo(VkBufferCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(BufferCreateInfo));
}
BufferCreateInfo& operator=(VkBufferCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(BufferCreateInfo));
return *this;
}
BufferCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
BufferCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
BufferCreateInfo& setFlags(BufferCreateFlags flags_)
{
flags = flags_;
return *this;
}
BufferCreateInfo& setSize(DeviceSize size_)
{
size = size_;
return *this;
}
BufferCreateInfo& setUsage(BufferUsageFlags usage_)
{
usage = usage_;
return *this;
}
BufferCreateInfo& setSharingMode(SharingMode sharingMode_)
{
sharingMode = sharingMode_;
return *this;
}
BufferCreateInfo& setQueueFamilyIndexCount(uint32_t queueFamilyIndexCount_)
{
queueFamilyIndexCount = queueFamilyIndexCount_;
return *this;
}
BufferCreateInfo& setPQueueFamilyIndices(const uint32_t* pQueueFamilyIndices_)
{
pQueueFamilyIndices = pQueueFamilyIndices_;
return *this;
}
operator const VkBufferCreateInfo&() const
{
return *reinterpret_cast<const VkBufferCreateInfo*>(this);
}
bool operator==(BufferCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (size == rhs.size)
&& (usage == rhs.usage)
&& (sharingMode == rhs.sharingMode)
&& (queueFamilyIndexCount == rhs.queueFamilyIndexCount)
&& (pQueueFamilyIndices == rhs.pQueueFamilyIndices);
}
bool operator!=(BufferCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
BufferCreateFlags flags;
DeviceSize size;
BufferUsageFlags usage;
SharingMode sharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;
};
static_assert(sizeof(BufferCreateInfo) == sizeof(VkBufferCreateInfo), "struct and wrapper have different size!");
enum class ShaderStageFlagBits
{
eVertex = VK_SHADER_STAGE_VERTEX_BIT,
eTessellationControl = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
eTessellationEvaluation = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
eGeometry = VK_SHADER_STAGE_GEOMETRY_BIT,
eFragment = VK_SHADER_STAGE_FRAGMENT_BIT,
eCompute = VK_SHADER_STAGE_COMPUTE_BIT,
eAllGraphics = VK_SHADER_STAGE_ALL_GRAPHICS,
eAll = VK_SHADER_STAGE_ALL
};
using ShaderStageFlags = Flags<ShaderStageFlagBits, VkShaderStageFlags>;
inline ShaderStageFlags operator|(ShaderStageFlagBits bit0, ShaderStageFlagBits bit1)
{
return ShaderStageFlags(bit0) | bit1;
}
struct DescriptorSetLayoutBinding
{
DescriptorSetLayoutBinding(uint32_t binding_ = 0, DescriptorType descriptorType_ = DescriptorType::eSampler, uint32_t descriptorCount_ = 0, ShaderStageFlags stageFlags_ = ShaderStageFlags(), const Sampler* pImmutableSamplers_ = nullptr)
: binding(binding_)
, descriptorType(descriptorType_)
, descriptorCount(descriptorCount_)
, stageFlags(stageFlags_)
, pImmutableSamplers(pImmutableSamplers_)
{
}
DescriptorSetLayoutBinding(VkDescriptorSetLayoutBinding const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorSetLayoutBinding));
}
DescriptorSetLayoutBinding& operator=(VkDescriptorSetLayoutBinding const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorSetLayoutBinding));
return *this;
}
DescriptorSetLayoutBinding& setBinding(uint32_t binding_)
{
binding = binding_;
return *this;
}
DescriptorSetLayoutBinding& setDescriptorType(DescriptorType descriptorType_)
{
descriptorType = descriptorType_;
return *this;
}
DescriptorSetLayoutBinding& setDescriptorCount(uint32_t descriptorCount_)
{
descriptorCount = descriptorCount_;
return *this;
}
DescriptorSetLayoutBinding& setStageFlags(ShaderStageFlags stageFlags_)
{
stageFlags = stageFlags_;
return *this;
}
DescriptorSetLayoutBinding& setPImmutableSamplers(const Sampler* pImmutableSamplers_)
{
pImmutableSamplers = pImmutableSamplers_;
return *this;
}
operator const VkDescriptorSetLayoutBinding&() const
{
return *reinterpret_cast<const VkDescriptorSetLayoutBinding*>(this);
}
bool operator==(DescriptorSetLayoutBinding const& rhs) const
{
return (binding == rhs.binding)
&& (descriptorType == rhs.descriptorType)
&& (descriptorCount == rhs.descriptorCount)
&& (stageFlags == rhs.stageFlags)
&& (pImmutableSamplers == rhs.pImmutableSamplers);
}
bool operator!=(DescriptorSetLayoutBinding const& rhs) const
{
return !operator==(rhs);
}
uint32_t binding;
DescriptorType descriptorType;
uint32_t descriptorCount;
ShaderStageFlags stageFlags;
const Sampler* pImmutableSamplers;
};
static_assert(sizeof(DescriptorSetLayoutBinding) == sizeof(VkDescriptorSetLayoutBinding), "struct and wrapper have different size!");
struct DescriptorSetLayoutCreateInfo
{
DescriptorSetLayoutCreateInfo(DescriptorSetLayoutCreateFlags flags_ = DescriptorSetLayoutCreateFlags(), uint32_t bindingCount_ = 0, const DescriptorSetLayoutBinding* pBindings_ = nullptr)
: sType(StructureType::eDescriptorSetLayoutCreateInfo)
, pNext(nullptr)
, flags(flags_)
, bindingCount(bindingCount_)
, pBindings(pBindings_)
{
}
DescriptorSetLayoutCreateInfo(VkDescriptorSetLayoutCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorSetLayoutCreateInfo));
}
DescriptorSetLayoutCreateInfo& operator=(VkDescriptorSetLayoutCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorSetLayoutCreateInfo));
return *this;
}
DescriptorSetLayoutCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DescriptorSetLayoutCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DescriptorSetLayoutCreateInfo& setFlags(DescriptorSetLayoutCreateFlags flags_)
{
flags = flags_;
return *this;
}
DescriptorSetLayoutCreateInfo& setBindingCount(uint32_t bindingCount_)
{
bindingCount = bindingCount_;
return *this;
}
DescriptorSetLayoutCreateInfo& setPBindings(const DescriptorSetLayoutBinding* pBindings_)
{
pBindings = pBindings_;
return *this;
}
operator const VkDescriptorSetLayoutCreateInfo&() const
{
return *reinterpret_cast<const VkDescriptorSetLayoutCreateInfo*>(this);
}
bool operator==(DescriptorSetLayoutCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (bindingCount == rhs.bindingCount)
&& (pBindings == rhs.pBindings);
}
bool operator!=(DescriptorSetLayoutCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorSetLayoutCreateFlags flags;
uint32_t bindingCount;
const DescriptorSetLayoutBinding* pBindings;
};
static_assert(sizeof(DescriptorSetLayoutCreateInfo) == sizeof(VkDescriptorSetLayoutCreateInfo), "struct and wrapper have different size!");
struct PipelineShaderStageCreateInfo
{
PipelineShaderStageCreateInfo(PipelineShaderStageCreateFlags flags_ = PipelineShaderStageCreateFlags(), ShaderStageFlagBits stage_ = ShaderStageFlagBits::eVertex, ShaderModule module_ = ShaderModule(), const char* pName_ = nullptr, const SpecializationInfo* pSpecializationInfo_ = nullptr)
: sType(StructureType::ePipelineShaderStageCreateInfo)
, pNext(nullptr)
, flags(flags_)
, stage(stage_)
, module(module_)
, pName(pName_)
, pSpecializationInfo(pSpecializationInfo_)
{
}
PipelineShaderStageCreateInfo(VkPipelineShaderStageCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineShaderStageCreateInfo));
}
PipelineShaderStageCreateInfo& operator=(VkPipelineShaderStageCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineShaderStageCreateInfo));
return *this;
}
PipelineShaderStageCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineShaderStageCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineShaderStageCreateInfo& setFlags(PipelineShaderStageCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineShaderStageCreateInfo& setStage(ShaderStageFlagBits stage_)
{
stage = stage_;
return *this;
}
PipelineShaderStageCreateInfo& setModule(ShaderModule module_)
{
module = module_;
return *this;
}
PipelineShaderStageCreateInfo& setPName(const char* pName_)
{
pName = pName_;
return *this;
}
PipelineShaderStageCreateInfo& setPSpecializationInfo(const SpecializationInfo* pSpecializationInfo_)
{
pSpecializationInfo = pSpecializationInfo_;
return *this;
}
operator const VkPipelineShaderStageCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineShaderStageCreateInfo*>(this);
}
bool operator==(PipelineShaderStageCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (stage == rhs.stage)
&& (module == rhs.module)
&& (pName == rhs.pName)
&& (pSpecializationInfo == rhs.pSpecializationInfo);
}
bool operator!=(PipelineShaderStageCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineShaderStageCreateFlags flags;
ShaderStageFlagBits stage;
ShaderModule module;
const char* pName;
const SpecializationInfo* pSpecializationInfo;
};
static_assert(sizeof(PipelineShaderStageCreateInfo) == sizeof(VkPipelineShaderStageCreateInfo), "struct and wrapper have different size!");
struct PushConstantRange
{
PushConstantRange(ShaderStageFlags stageFlags_ = ShaderStageFlags(), uint32_t offset_ = 0, uint32_t size_ = 0)
: stageFlags(stageFlags_)
, offset(offset_)
, size(size_)
{
}
PushConstantRange(VkPushConstantRange const & rhs)
{
memcpy(this, &rhs, sizeof(PushConstantRange));
}
PushConstantRange& operator=(VkPushConstantRange const & rhs)
{
memcpy(this, &rhs, sizeof(PushConstantRange));
return *this;
}
PushConstantRange& setStageFlags(ShaderStageFlags stageFlags_)
{
stageFlags = stageFlags_;
return *this;
}
PushConstantRange& setOffset(uint32_t offset_)
{
offset = offset_;
return *this;
}
PushConstantRange& setSize(uint32_t size_)
{
size = size_;
return *this;
}
operator const VkPushConstantRange&() const
{
return *reinterpret_cast<const VkPushConstantRange*>(this);
}
bool operator==(PushConstantRange const& rhs) const
{
return (stageFlags == rhs.stageFlags)
&& (offset == rhs.offset)
&& (size == rhs.size);
}
bool operator!=(PushConstantRange const& rhs) const
{
return !operator==(rhs);
}
ShaderStageFlags stageFlags;
uint32_t offset;
uint32_t size;
};
static_assert(sizeof(PushConstantRange) == sizeof(VkPushConstantRange), "struct and wrapper have different size!");
struct PipelineLayoutCreateInfo
{
PipelineLayoutCreateInfo(PipelineLayoutCreateFlags flags_ = PipelineLayoutCreateFlags(), uint32_t setLayoutCount_ = 0, const DescriptorSetLayout* pSetLayouts_ = nullptr, uint32_t pushConstantRangeCount_ = 0, const PushConstantRange* pPushConstantRanges_ = nullptr)
: sType(StructureType::ePipelineLayoutCreateInfo)
, pNext(nullptr)
, flags(flags_)
, setLayoutCount(setLayoutCount_)
, pSetLayouts(pSetLayouts_)
, pushConstantRangeCount(pushConstantRangeCount_)
, pPushConstantRanges(pPushConstantRanges_)
{
}
PipelineLayoutCreateInfo(VkPipelineLayoutCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineLayoutCreateInfo));
}
PipelineLayoutCreateInfo& operator=(VkPipelineLayoutCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineLayoutCreateInfo));
return *this;
}
PipelineLayoutCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineLayoutCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineLayoutCreateInfo& setFlags(PipelineLayoutCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineLayoutCreateInfo& setSetLayoutCount(uint32_t setLayoutCount_)
{
setLayoutCount = setLayoutCount_;
return *this;
}
PipelineLayoutCreateInfo& setPSetLayouts(const DescriptorSetLayout* pSetLayouts_)
{
pSetLayouts = pSetLayouts_;
return *this;
}
PipelineLayoutCreateInfo& setPushConstantRangeCount(uint32_t pushConstantRangeCount_)
{
pushConstantRangeCount = pushConstantRangeCount_;
return *this;
}
PipelineLayoutCreateInfo& setPPushConstantRanges(const PushConstantRange* pPushConstantRanges_)
{
pPushConstantRanges = pPushConstantRanges_;
return *this;
}
operator const VkPipelineLayoutCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineLayoutCreateInfo*>(this);
}
bool operator==(PipelineLayoutCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (setLayoutCount == rhs.setLayoutCount)
&& (pSetLayouts == rhs.pSetLayouts)
&& (pushConstantRangeCount == rhs.pushConstantRangeCount)
&& (pPushConstantRanges == rhs.pPushConstantRanges);
}
bool operator!=(PipelineLayoutCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineLayoutCreateFlags flags;
uint32_t setLayoutCount;
const DescriptorSetLayout* pSetLayouts;
uint32_t pushConstantRangeCount;
const PushConstantRange* pPushConstantRanges;
};
static_assert(sizeof(PipelineLayoutCreateInfo) == sizeof(VkPipelineLayoutCreateInfo), "struct and wrapper have different size!");
enum class ImageUsageFlagBits
{
eTransferSrc = VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
eTransferDst = VK_IMAGE_USAGE_TRANSFER_DST_BIT,
eSampled = VK_IMAGE_USAGE_SAMPLED_BIT,
eStorage = VK_IMAGE_USAGE_STORAGE_BIT,
eColorAttachment = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
eDepthStencilAttachment = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
eTransientAttachment = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT,
eInputAttachment = VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT
};
using ImageUsageFlags = Flags<ImageUsageFlagBits, VkImageUsageFlags>;
inline ImageUsageFlags operator|(ImageUsageFlagBits bit0, ImageUsageFlagBits bit1)
{
return ImageUsageFlags(bit0) | bit1;
}
enum class ImageCreateFlagBits
{
eSparseBinding = VK_IMAGE_CREATE_SPARSE_BINDING_BIT,
eSparseResidency = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT,
eSparseAliased = VK_IMAGE_CREATE_SPARSE_ALIASED_BIT,
eMutableFormat = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT,
eCubeCompatible = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT
};
using ImageCreateFlags = Flags<ImageCreateFlagBits, VkImageCreateFlags>;
inline ImageCreateFlags operator|(ImageCreateFlagBits bit0, ImageCreateFlagBits bit1)
{
return ImageCreateFlags(bit0) | bit1;
}
enum class PipelineCreateFlagBits
{
eDisableOptimization = VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT,
eAllowDerivatives = VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT,
eDerivative = VK_PIPELINE_CREATE_DERIVATIVE_BIT
};
using PipelineCreateFlags = Flags<PipelineCreateFlagBits, VkPipelineCreateFlags>;
inline PipelineCreateFlags operator|(PipelineCreateFlagBits bit0, PipelineCreateFlagBits bit1)
{
return PipelineCreateFlags(bit0) | bit1;
}
struct ComputePipelineCreateInfo
{
ComputePipelineCreateInfo(PipelineCreateFlags flags_ = PipelineCreateFlags(), PipelineShaderStageCreateInfo stage_ = PipelineShaderStageCreateInfo(), PipelineLayout layout_ = PipelineLayout(), Pipeline basePipelineHandle_ = Pipeline(), int32_t basePipelineIndex_ = 0)
: sType(StructureType::eComputePipelineCreateInfo)
, pNext(nullptr)
, flags(flags_)
, stage(stage_)
, layout(layout_)
, basePipelineHandle(basePipelineHandle_)
, basePipelineIndex(basePipelineIndex_)
{
}
ComputePipelineCreateInfo(VkComputePipelineCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ComputePipelineCreateInfo));
}
ComputePipelineCreateInfo& operator=(VkComputePipelineCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ComputePipelineCreateInfo));
return *this;
}
ComputePipelineCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
ComputePipelineCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
ComputePipelineCreateInfo& setFlags(PipelineCreateFlags flags_)
{
flags = flags_;
return *this;
}
ComputePipelineCreateInfo& setStage(PipelineShaderStageCreateInfo stage_)
{
stage = stage_;
return *this;
}
ComputePipelineCreateInfo& setLayout(PipelineLayout layout_)
{
layout = layout_;
return *this;
}
ComputePipelineCreateInfo& setBasePipelineHandle(Pipeline basePipelineHandle_)
{
basePipelineHandle = basePipelineHandle_;
return *this;
}
ComputePipelineCreateInfo& setBasePipelineIndex(int32_t basePipelineIndex_)
{
basePipelineIndex = basePipelineIndex_;
return *this;
}
operator const VkComputePipelineCreateInfo&() const
{
return *reinterpret_cast<const VkComputePipelineCreateInfo*>(this);
}
bool operator==(ComputePipelineCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (stage == rhs.stage)
&& (layout == rhs.layout)
&& (basePipelineHandle == rhs.basePipelineHandle)
&& (basePipelineIndex == rhs.basePipelineIndex);
}
bool operator!=(ComputePipelineCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineCreateFlags flags;
PipelineShaderStageCreateInfo stage;
PipelineLayout layout;
Pipeline basePipelineHandle;
int32_t basePipelineIndex;
};
static_assert(sizeof(ComputePipelineCreateInfo) == sizeof(VkComputePipelineCreateInfo), "struct and wrapper have different size!");
enum class ColorComponentFlagBits
{
eR = VK_COLOR_COMPONENT_R_BIT,
eG = VK_COLOR_COMPONENT_G_BIT,
eB = VK_COLOR_COMPONENT_B_BIT,
eA = VK_COLOR_COMPONENT_A_BIT
};
using ColorComponentFlags = Flags<ColorComponentFlagBits, VkColorComponentFlags>;
inline ColorComponentFlags operator|(ColorComponentFlagBits bit0, ColorComponentFlagBits bit1)
{
return ColorComponentFlags(bit0) | bit1;
}
struct PipelineColorBlendAttachmentState
{
PipelineColorBlendAttachmentState(Bool32 blendEnable_ = 0, BlendFactor srcColorBlendFactor_ = BlendFactor::eZero, BlendFactor dstColorBlendFactor_ = BlendFactor::eZero, BlendOp colorBlendOp_ = BlendOp::eAdd, BlendFactor srcAlphaBlendFactor_ = BlendFactor::eZero, BlendFactor dstAlphaBlendFactor_ = BlendFactor::eZero, BlendOp alphaBlendOp_ = BlendOp::eAdd, ColorComponentFlags colorWriteMask_ = ColorComponentFlags())
: blendEnable(blendEnable_)
, srcColorBlendFactor(srcColorBlendFactor_)
, dstColorBlendFactor(dstColorBlendFactor_)
, colorBlendOp(colorBlendOp_)
, srcAlphaBlendFactor(srcAlphaBlendFactor_)
, dstAlphaBlendFactor(dstAlphaBlendFactor_)
, alphaBlendOp(alphaBlendOp_)
, colorWriteMask(colorWriteMask_)
{
}
PipelineColorBlendAttachmentState(VkPipelineColorBlendAttachmentState const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineColorBlendAttachmentState));
}
PipelineColorBlendAttachmentState& operator=(VkPipelineColorBlendAttachmentState const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineColorBlendAttachmentState));
return *this;
}
PipelineColorBlendAttachmentState& setBlendEnable(Bool32 blendEnable_)
{
blendEnable = blendEnable_;
return *this;
}
PipelineColorBlendAttachmentState& setSrcColorBlendFactor(BlendFactor srcColorBlendFactor_)
{
srcColorBlendFactor = srcColorBlendFactor_;
return *this;
}
PipelineColorBlendAttachmentState& setDstColorBlendFactor(BlendFactor dstColorBlendFactor_)
{
dstColorBlendFactor = dstColorBlendFactor_;
return *this;
}
PipelineColorBlendAttachmentState& setColorBlendOp(BlendOp colorBlendOp_)
{
colorBlendOp = colorBlendOp_;
return *this;
}
PipelineColorBlendAttachmentState& setSrcAlphaBlendFactor(BlendFactor srcAlphaBlendFactor_)
{
srcAlphaBlendFactor = srcAlphaBlendFactor_;
return *this;
}
PipelineColorBlendAttachmentState& setDstAlphaBlendFactor(BlendFactor dstAlphaBlendFactor_)
{
dstAlphaBlendFactor = dstAlphaBlendFactor_;
return *this;
}
PipelineColorBlendAttachmentState& setAlphaBlendOp(BlendOp alphaBlendOp_)
{
alphaBlendOp = alphaBlendOp_;
return *this;
}
PipelineColorBlendAttachmentState& setColorWriteMask(ColorComponentFlags colorWriteMask_)
{
colorWriteMask = colorWriteMask_;
return *this;
}
operator const VkPipelineColorBlendAttachmentState&() const
{
return *reinterpret_cast<const VkPipelineColorBlendAttachmentState*>(this);
}
bool operator==(PipelineColorBlendAttachmentState const& rhs) const
{
return (blendEnable == rhs.blendEnable)
&& (srcColorBlendFactor == rhs.srcColorBlendFactor)
&& (dstColorBlendFactor == rhs.dstColorBlendFactor)
&& (colorBlendOp == rhs.colorBlendOp)
&& (srcAlphaBlendFactor == rhs.srcAlphaBlendFactor)
&& (dstAlphaBlendFactor == rhs.dstAlphaBlendFactor)
&& (alphaBlendOp == rhs.alphaBlendOp)
&& (colorWriteMask == rhs.colorWriteMask);
}
bool operator!=(PipelineColorBlendAttachmentState const& rhs) const
{
return !operator==(rhs);
}
Bool32 blendEnable;
BlendFactor srcColorBlendFactor;
BlendFactor dstColorBlendFactor;
BlendOp colorBlendOp;
BlendFactor srcAlphaBlendFactor;
BlendFactor dstAlphaBlendFactor;
BlendOp alphaBlendOp;
ColorComponentFlags colorWriteMask;
};
static_assert(sizeof(PipelineColorBlendAttachmentState) == sizeof(VkPipelineColorBlendAttachmentState), "struct and wrapper have different size!");
struct PipelineColorBlendStateCreateInfo
{
PipelineColorBlendStateCreateInfo(PipelineColorBlendStateCreateFlags flags_ = PipelineColorBlendStateCreateFlags(), Bool32 logicOpEnable_ = 0, LogicOp logicOp_ = LogicOp::eClear, uint32_t attachmentCount_ = 0, const PipelineColorBlendAttachmentState* pAttachments_ = nullptr, std::array<float, 4> const& blendConstants_ = { { 0, 0, 0, 0 } })
: sType(StructureType::ePipelineColorBlendStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, logicOpEnable(logicOpEnable_)
, logicOp(logicOp_)
, attachmentCount(attachmentCount_)
, pAttachments(pAttachments_)
{
memcpy(&blendConstants, blendConstants_.data(), 4 * sizeof(float));
}
PipelineColorBlendStateCreateInfo(VkPipelineColorBlendStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineColorBlendStateCreateInfo));
}
PipelineColorBlendStateCreateInfo& operator=(VkPipelineColorBlendStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineColorBlendStateCreateInfo));
return *this;
}
PipelineColorBlendStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineColorBlendStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineColorBlendStateCreateInfo& setFlags(PipelineColorBlendStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineColorBlendStateCreateInfo& setLogicOpEnable(Bool32 logicOpEnable_)
{
logicOpEnable = logicOpEnable_;
return *this;
}
PipelineColorBlendStateCreateInfo& setLogicOp(LogicOp logicOp_)
{
logicOp = logicOp_;
return *this;
}
PipelineColorBlendStateCreateInfo& setAttachmentCount(uint32_t attachmentCount_)
{
attachmentCount = attachmentCount_;
return *this;
}
PipelineColorBlendStateCreateInfo& setPAttachments(const PipelineColorBlendAttachmentState* pAttachments_)
{
pAttachments = pAttachments_;
return *this;
}
PipelineColorBlendStateCreateInfo& setBlendConstants(std::array<float, 4> blendConstants_)
{
memcpy(&blendConstants, blendConstants_.data(), 4 * sizeof(float));
return *this;
}
operator const VkPipelineColorBlendStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineColorBlendStateCreateInfo*>(this);
}
bool operator==(PipelineColorBlendStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (logicOpEnable == rhs.logicOpEnable)
&& (logicOp == rhs.logicOp)
&& (attachmentCount == rhs.attachmentCount)
&& (pAttachments == rhs.pAttachments)
&& (memcmp(blendConstants, rhs.blendConstants, 4 * sizeof(float)) == 0);
}
bool operator!=(PipelineColorBlendStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineColorBlendStateCreateFlags flags;
Bool32 logicOpEnable;
LogicOp logicOp;
uint32_t attachmentCount;
const PipelineColorBlendAttachmentState* pAttachments;
float blendConstants[4];
};
static_assert(sizeof(PipelineColorBlendStateCreateInfo) == sizeof(VkPipelineColorBlendStateCreateInfo), "struct and wrapper have different size!");
enum class FenceCreateFlagBits
{
eSignaled = VK_FENCE_CREATE_SIGNALED_BIT
};
using FenceCreateFlags = Flags<FenceCreateFlagBits, VkFenceCreateFlags>;
inline FenceCreateFlags operator|(FenceCreateFlagBits bit0, FenceCreateFlagBits bit1)
{
return FenceCreateFlags(bit0) | bit1;
}
struct FenceCreateInfo
{
FenceCreateInfo(FenceCreateFlags flags_ = FenceCreateFlags())
: sType(StructureType::eFenceCreateInfo)
, pNext(nullptr)
, flags(flags_)
{
}
FenceCreateInfo(VkFenceCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(FenceCreateInfo));
}
FenceCreateInfo& operator=(VkFenceCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(FenceCreateInfo));
return *this;
}
FenceCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
FenceCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
FenceCreateInfo& setFlags(FenceCreateFlags flags_)
{
flags = flags_;
return *this;
}
operator const VkFenceCreateInfo&() const
{
return *reinterpret_cast<const VkFenceCreateInfo*>(this);
}
bool operator==(FenceCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags);
}
bool operator!=(FenceCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
FenceCreateFlags flags;
};
static_assert(sizeof(FenceCreateInfo) == sizeof(VkFenceCreateInfo), "struct and wrapper have different size!");
enum class FormatFeatureFlagBits
{
eSampledImage = VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT,
eStorageImage = VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT,
eStorageImageAtomic = VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT,
eUniformTexelBuffer = VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT,
eStorageTexelBuffer = VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT,
eStorageTexelBufferAtomic = VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT,
eVertexBuffer = VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT,
eColorAttachment = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT,
eColorAttachmentBlend = VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT,
eDepthStencilAttachment = VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT,
eBlitSrc = VK_FORMAT_FEATURE_BLIT_SRC_BIT,
eBlitDst = VK_FORMAT_FEATURE_BLIT_DST_BIT,
eSampledImageFilterLinear = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT,
eSampledImageFilterCubicIMG = VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG
};
using FormatFeatureFlags = Flags<FormatFeatureFlagBits, VkFormatFeatureFlags>;
inline FormatFeatureFlags operator|(FormatFeatureFlagBits bit0, FormatFeatureFlagBits bit1)
{
return FormatFeatureFlags(bit0) | bit1;
}
struct FormatProperties
{
operator const VkFormatProperties&() const
{
return *reinterpret_cast<const VkFormatProperties*>(this);
}
bool operator==(FormatProperties const& rhs) const
{
return (linearTilingFeatures == rhs.linearTilingFeatures)
&& (optimalTilingFeatures == rhs.optimalTilingFeatures)
&& (bufferFeatures == rhs.bufferFeatures);
}
bool operator!=(FormatProperties const& rhs) const
{
return !operator==(rhs);
}
FormatFeatureFlags linearTilingFeatures;
FormatFeatureFlags optimalTilingFeatures;
FormatFeatureFlags bufferFeatures;
};
static_assert(sizeof(FormatProperties) == sizeof(VkFormatProperties), "struct and wrapper have different size!");
enum class QueryControlFlagBits
{
ePrecise = VK_QUERY_CONTROL_PRECISE_BIT
};
using QueryControlFlags = Flags<QueryControlFlagBits, VkQueryControlFlags>;
inline QueryControlFlags operator|(QueryControlFlagBits bit0, QueryControlFlagBits bit1)
{
return QueryControlFlags(bit0) | bit1;
}
enum class QueryResultFlagBits
{
e64 = VK_QUERY_RESULT_64_BIT,
eWait = VK_QUERY_RESULT_WAIT_BIT,
eWithAvailability = VK_QUERY_RESULT_WITH_AVAILABILITY_BIT,
ePartial = VK_QUERY_RESULT_PARTIAL_BIT
};
using QueryResultFlags = Flags<QueryResultFlagBits, VkQueryResultFlags>;
inline QueryResultFlags operator|(QueryResultFlagBits bit0, QueryResultFlagBits bit1)
{
return QueryResultFlags(bit0) | bit1;
}
enum class CommandBufferUsageFlagBits
{
eOneTimeSubmit = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
eRenderPassContinue = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT,
eSimultaneousUse = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT
};
using CommandBufferUsageFlags = Flags<CommandBufferUsageFlagBits, VkCommandBufferUsageFlags>;
inline CommandBufferUsageFlags operator|(CommandBufferUsageFlagBits bit0, CommandBufferUsageFlagBits bit1)
{
return CommandBufferUsageFlags(bit0) | bit1;
}
enum class QueryPipelineStatisticFlagBits
{
eInputAssemblyVertices = VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT,
eInputAssemblyPrimitives = VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT,
eVertexShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT,
eGeometryShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT,
eGeometryShaderPrimitives = VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT,
eClippingInvocations = VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT,
eClippingPrimitives = VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT,
eFragmentShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT,
eTessellationControlShaderPatches = VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT,
eTessellationEvaluationShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT,
eComputeShaderInvocations = VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT
};
using QueryPipelineStatisticFlags = Flags<QueryPipelineStatisticFlagBits, VkQueryPipelineStatisticFlags>;
inline QueryPipelineStatisticFlags operator|(QueryPipelineStatisticFlagBits bit0, QueryPipelineStatisticFlagBits bit1)
{
return QueryPipelineStatisticFlags(bit0) | bit1;
}
struct CommandBufferInheritanceInfo
{
CommandBufferInheritanceInfo(RenderPass renderPass_ = RenderPass(), uint32_t subpass_ = 0, Framebuffer framebuffer_ = Framebuffer(), Bool32 occlusionQueryEnable_ = 0, QueryControlFlags queryFlags_ = QueryControlFlags(), QueryPipelineStatisticFlags pipelineStatistics_ = QueryPipelineStatisticFlags())
: sType(StructureType::eCommandBufferInheritanceInfo)
, pNext(nullptr)
, renderPass(renderPass_)
, subpass(subpass_)
, framebuffer(framebuffer_)
, occlusionQueryEnable(occlusionQueryEnable_)
, queryFlags(queryFlags_)
, pipelineStatistics(pipelineStatistics_)
{
}
CommandBufferInheritanceInfo(VkCommandBufferInheritanceInfo const & rhs)
{
memcpy(this, &rhs, sizeof(CommandBufferInheritanceInfo));
}
CommandBufferInheritanceInfo& operator=(VkCommandBufferInheritanceInfo const & rhs)
{
memcpy(this, &rhs, sizeof(CommandBufferInheritanceInfo));
return *this;
}
CommandBufferInheritanceInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
CommandBufferInheritanceInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
CommandBufferInheritanceInfo& setRenderPass(RenderPass renderPass_)
{
renderPass = renderPass_;
return *this;
}
CommandBufferInheritanceInfo& setSubpass(uint32_t subpass_)
{
subpass = subpass_;
return *this;
}
CommandBufferInheritanceInfo& setFramebuffer(Framebuffer framebuffer_)
{
framebuffer = framebuffer_;
return *this;
}
CommandBufferInheritanceInfo& setOcclusionQueryEnable(Bool32 occlusionQueryEnable_)
{
occlusionQueryEnable = occlusionQueryEnable_;
return *this;
}
CommandBufferInheritanceInfo& setQueryFlags(QueryControlFlags queryFlags_)
{
queryFlags = queryFlags_;
return *this;
}
CommandBufferInheritanceInfo& setPipelineStatistics(QueryPipelineStatisticFlags pipelineStatistics_)
{
pipelineStatistics = pipelineStatistics_;
return *this;
}
operator const VkCommandBufferInheritanceInfo&() const
{
return *reinterpret_cast<const VkCommandBufferInheritanceInfo*>(this);
}
bool operator==(CommandBufferInheritanceInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (renderPass == rhs.renderPass)
&& (subpass == rhs.subpass)
&& (framebuffer == rhs.framebuffer)
&& (occlusionQueryEnable == rhs.occlusionQueryEnable)
&& (queryFlags == rhs.queryFlags)
&& (pipelineStatistics == rhs.pipelineStatistics);
}
bool operator!=(CommandBufferInheritanceInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
RenderPass renderPass;
uint32_t subpass;
Framebuffer framebuffer;
Bool32 occlusionQueryEnable;
QueryControlFlags queryFlags;
QueryPipelineStatisticFlags pipelineStatistics;
};
static_assert(sizeof(CommandBufferInheritanceInfo) == sizeof(VkCommandBufferInheritanceInfo), "struct and wrapper have different size!");
struct CommandBufferBeginInfo
{
CommandBufferBeginInfo(CommandBufferUsageFlags flags_ = CommandBufferUsageFlags(), const CommandBufferInheritanceInfo* pInheritanceInfo_ = nullptr)
: sType(StructureType::eCommandBufferBeginInfo)
, pNext(nullptr)
, flags(flags_)
, pInheritanceInfo(pInheritanceInfo_)
{
}
CommandBufferBeginInfo(VkCommandBufferBeginInfo const & rhs)
{
memcpy(this, &rhs, sizeof(CommandBufferBeginInfo));
}
CommandBufferBeginInfo& operator=(VkCommandBufferBeginInfo const & rhs)
{
memcpy(this, &rhs, sizeof(CommandBufferBeginInfo));
return *this;
}
CommandBufferBeginInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
CommandBufferBeginInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
CommandBufferBeginInfo& setFlags(CommandBufferUsageFlags flags_)
{
flags = flags_;
return *this;
}
CommandBufferBeginInfo& setPInheritanceInfo(const CommandBufferInheritanceInfo* pInheritanceInfo_)
{
pInheritanceInfo = pInheritanceInfo_;
return *this;
}
operator const VkCommandBufferBeginInfo&() const
{
return *reinterpret_cast<const VkCommandBufferBeginInfo*>(this);
}
bool operator==(CommandBufferBeginInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (pInheritanceInfo == rhs.pInheritanceInfo);
}
bool operator!=(CommandBufferBeginInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
CommandBufferUsageFlags flags;
const CommandBufferInheritanceInfo* pInheritanceInfo;
};
static_assert(sizeof(CommandBufferBeginInfo) == sizeof(VkCommandBufferBeginInfo), "struct and wrapper have different size!");
struct QueryPoolCreateInfo
{
QueryPoolCreateInfo(QueryPoolCreateFlags flags_ = QueryPoolCreateFlags(), QueryType queryType_ = QueryType::eOcclusion, uint32_t queryCount_ = 0, QueryPipelineStatisticFlags pipelineStatistics_ = QueryPipelineStatisticFlags())
: sType(StructureType::eQueryPoolCreateInfo)
, pNext(nullptr)
, flags(flags_)
, queryType(queryType_)
, queryCount(queryCount_)
, pipelineStatistics(pipelineStatistics_)
{
}
QueryPoolCreateInfo(VkQueryPoolCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(QueryPoolCreateInfo));
}
QueryPoolCreateInfo& operator=(VkQueryPoolCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(QueryPoolCreateInfo));
return *this;
}
QueryPoolCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
QueryPoolCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
QueryPoolCreateInfo& setFlags(QueryPoolCreateFlags flags_)
{
flags = flags_;
return *this;
}
QueryPoolCreateInfo& setQueryType(QueryType queryType_)
{
queryType = queryType_;
return *this;
}
QueryPoolCreateInfo& setQueryCount(uint32_t queryCount_)
{
queryCount = queryCount_;
return *this;
}
QueryPoolCreateInfo& setPipelineStatistics(QueryPipelineStatisticFlags pipelineStatistics_)
{
pipelineStatistics = pipelineStatistics_;
return *this;
}
operator const VkQueryPoolCreateInfo&() const
{
return *reinterpret_cast<const VkQueryPoolCreateInfo*>(this);
}
bool operator==(QueryPoolCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (queryType == rhs.queryType)
&& (queryCount == rhs.queryCount)
&& (pipelineStatistics == rhs.pipelineStatistics);
}
bool operator!=(QueryPoolCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
QueryPoolCreateFlags flags;
QueryType queryType;
uint32_t queryCount;
QueryPipelineStatisticFlags pipelineStatistics;
};
static_assert(sizeof(QueryPoolCreateInfo) == sizeof(VkQueryPoolCreateInfo), "struct and wrapper have different size!");
enum class ImageAspectFlagBits
{
eColor = VK_IMAGE_ASPECT_COLOR_BIT,
eDepth = VK_IMAGE_ASPECT_DEPTH_BIT,
eStencil = VK_IMAGE_ASPECT_STENCIL_BIT,
eMetadata = VK_IMAGE_ASPECT_METADATA_BIT
};
using ImageAspectFlags = Flags<ImageAspectFlagBits, VkImageAspectFlags>;
inline ImageAspectFlags operator|(ImageAspectFlagBits bit0, ImageAspectFlagBits bit1)
{
return ImageAspectFlags(bit0) | bit1;
}
struct ImageSubresource
{
ImageSubresource(ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t mipLevel_ = 0, uint32_t arrayLayer_ = 0)
: aspectMask(aspectMask_)
, mipLevel(mipLevel_)
, arrayLayer(arrayLayer_)
{
}
ImageSubresource(VkImageSubresource const & rhs)
{
memcpy(this, &rhs, sizeof(ImageSubresource));
}
ImageSubresource& operator=(VkImageSubresource const & rhs)
{
memcpy(this, &rhs, sizeof(ImageSubresource));
return *this;
}
ImageSubresource& setAspectMask(ImageAspectFlags aspectMask_)
{
aspectMask = aspectMask_;
return *this;
}
ImageSubresource& setMipLevel(uint32_t mipLevel_)
{
mipLevel = mipLevel_;
return *this;
}
ImageSubresource& setArrayLayer(uint32_t arrayLayer_)
{
arrayLayer = arrayLayer_;
return *this;
}
operator const VkImageSubresource&() const
{
return *reinterpret_cast<const VkImageSubresource*>(this);
}
bool operator==(ImageSubresource const& rhs) const
{
return (aspectMask == rhs.aspectMask)
&& (mipLevel == rhs.mipLevel)
&& (arrayLayer == rhs.arrayLayer);
}
bool operator!=(ImageSubresource const& rhs) const
{
return !operator==(rhs);
}
ImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32_t arrayLayer;
};
static_assert(sizeof(ImageSubresource) == sizeof(VkImageSubresource), "struct and wrapper have different size!");
struct ImageSubresourceLayers
{
ImageSubresourceLayers(ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t mipLevel_ = 0, uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0)
: aspectMask(aspectMask_)
, mipLevel(mipLevel_)
, baseArrayLayer(baseArrayLayer_)
, layerCount(layerCount_)
{
}
ImageSubresourceLayers(VkImageSubresourceLayers const & rhs)
{
memcpy(this, &rhs, sizeof(ImageSubresourceLayers));
}
ImageSubresourceLayers& operator=(VkImageSubresourceLayers const & rhs)
{
memcpy(this, &rhs, sizeof(ImageSubresourceLayers));
return *this;
}
ImageSubresourceLayers& setAspectMask(ImageAspectFlags aspectMask_)
{
aspectMask = aspectMask_;
return *this;
}
ImageSubresourceLayers& setMipLevel(uint32_t mipLevel_)
{
mipLevel = mipLevel_;
return *this;
}
ImageSubresourceLayers& setBaseArrayLayer(uint32_t baseArrayLayer_)
{
baseArrayLayer = baseArrayLayer_;
return *this;
}
ImageSubresourceLayers& setLayerCount(uint32_t layerCount_)
{
layerCount = layerCount_;
return *this;
}
operator const VkImageSubresourceLayers&() const
{
return *reinterpret_cast<const VkImageSubresourceLayers*>(this);
}
bool operator==(ImageSubresourceLayers const& rhs) const
{
return (aspectMask == rhs.aspectMask)
&& (mipLevel == rhs.mipLevel)
&& (baseArrayLayer == rhs.baseArrayLayer)
&& (layerCount == rhs.layerCount);
}
bool operator!=(ImageSubresourceLayers const& rhs) const
{
return !operator==(rhs);
}
ImageAspectFlags aspectMask;
uint32_t mipLevel;
uint32_t baseArrayLayer;
uint32_t layerCount;
};
static_assert(sizeof(ImageSubresourceLayers) == sizeof(VkImageSubresourceLayers), "struct and wrapper have different size!");
struct ImageSubresourceRange
{
ImageSubresourceRange(ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t baseMipLevel_ = 0, uint32_t levelCount_ = 0, uint32_t baseArrayLayer_ = 0, uint32_t layerCount_ = 0)
: aspectMask(aspectMask_)
, baseMipLevel(baseMipLevel_)
, levelCount(levelCount_)
, baseArrayLayer(baseArrayLayer_)
, layerCount(layerCount_)
{
}
ImageSubresourceRange(VkImageSubresourceRange const & rhs)
{
memcpy(this, &rhs, sizeof(ImageSubresourceRange));
}
ImageSubresourceRange& operator=(VkImageSubresourceRange const & rhs)
{
memcpy(this, &rhs, sizeof(ImageSubresourceRange));
return *this;
}
ImageSubresourceRange& setAspectMask(ImageAspectFlags aspectMask_)
{
aspectMask = aspectMask_;
return *this;
}
ImageSubresourceRange& setBaseMipLevel(uint32_t baseMipLevel_)
{
baseMipLevel = baseMipLevel_;
return *this;
}
ImageSubresourceRange& setLevelCount(uint32_t levelCount_)
{
levelCount = levelCount_;
return *this;
}
ImageSubresourceRange& setBaseArrayLayer(uint32_t baseArrayLayer_)
{
baseArrayLayer = baseArrayLayer_;
return *this;
}
ImageSubresourceRange& setLayerCount(uint32_t layerCount_)
{
layerCount = layerCount_;
return *this;
}
operator const VkImageSubresourceRange&() const
{
return *reinterpret_cast<const VkImageSubresourceRange*>(this);
}
bool operator==(ImageSubresourceRange const& rhs) const
{
return (aspectMask == rhs.aspectMask)
&& (baseMipLevel == rhs.baseMipLevel)
&& (levelCount == rhs.levelCount)
&& (baseArrayLayer == rhs.baseArrayLayer)
&& (layerCount == rhs.layerCount);
}
bool operator!=(ImageSubresourceRange const& rhs) const
{
return !operator==(rhs);
}
ImageAspectFlags aspectMask;
uint32_t baseMipLevel;
uint32_t levelCount;
uint32_t baseArrayLayer;
uint32_t layerCount;
};
static_assert(sizeof(ImageSubresourceRange) == sizeof(VkImageSubresourceRange), "struct and wrapper have different size!");
struct ImageMemoryBarrier
{
ImageMemoryBarrier(AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), ImageLayout oldLayout_ = ImageLayout::eUndefined, ImageLayout newLayout_ = ImageLayout::eUndefined, uint32_t srcQueueFamilyIndex_ = 0, uint32_t dstQueueFamilyIndex_ = 0, Image image_ = Image(), ImageSubresourceRange subresourceRange_ = ImageSubresourceRange())
: sType(StructureType::eImageMemoryBarrier)
, pNext(nullptr)
, srcAccessMask(srcAccessMask_)
, dstAccessMask(dstAccessMask_)
, oldLayout(oldLayout_)
, newLayout(newLayout_)
, srcQueueFamilyIndex(srcQueueFamilyIndex_)
, dstQueueFamilyIndex(dstQueueFamilyIndex_)
, image(image_)
, subresourceRange(subresourceRange_)
{
}
ImageMemoryBarrier(VkImageMemoryBarrier const & rhs)
{
memcpy(this, &rhs, sizeof(ImageMemoryBarrier));
}
ImageMemoryBarrier& operator=(VkImageMemoryBarrier const & rhs)
{
memcpy(this, &rhs, sizeof(ImageMemoryBarrier));
return *this;
}
ImageMemoryBarrier& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
ImageMemoryBarrier& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
ImageMemoryBarrier& setSrcAccessMask(AccessFlags srcAccessMask_)
{
srcAccessMask = srcAccessMask_;
return *this;
}
ImageMemoryBarrier& setDstAccessMask(AccessFlags dstAccessMask_)
{
dstAccessMask = dstAccessMask_;
return *this;
}
ImageMemoryBarrier& setOldLayout(ImageLayout oldLayout_)
{
oldLayout = oldLayout_;
return *this;
}
ImageMemoryBarrier& setNewLayout(ImageLayout newLayout_)
{
newLayout = newLayout_;
return *this;
}
ImageMemoryBarrier& setSrcQueueFamilyIndex(uint32_t srcQueueFamilyIndex_)
{
srcQueueFamilyIndex = srcQueueFamilyIndex_;
return *this;
}
ImageMemoryBarrier& setDstQueueFamilyIndex(uint32_t dstQueueFamilyIndex_)
{
dstQueueFamilyIndex = dstQueueFamilyIndex_;
return *this;
}
ImageMemoryBarrier& setImage(Image image_)
{
image = image_;
return *this;
}
ImageMemoryBarrier& setSubresourceRange(ImageSubresourceRange subresourceRange_)
{
subresourceRange = subresourceRange_;
return *this;
}
operator const VkImageMemoryBarrier&() const
{
return *reinterpret_cast<const VkImageMemoryBarrier*>(this);
}
bool operator==(ImageMemoryBarrier const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (srcAccessMask == rhs.srcAccessMask)
&& (dstAccessMask == rhs.dstAccessMask)
&& (oldLayout == rhs.oldLayout)
&& (newLayout == rhs.newLayout)
&& (srcQueueFamilyIndex == rhs.srcQueueFamilyIndex)
&& (dstQueueFamilyIndex == rhs.dstQueueFamilyIndex)
&& (image == rhs.image)
&& (subresourceRange == rhs.subresourceRange);
}
bool operator!=(ImageMemoryBarrier const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
AccessFlags srcAccessMask;
AccessFlags dstAccessMask;
ImageLayout oldLayout;
ImageLayout newLayout;
uint32_t srcQueueFamilyIndex;
uint32_t dstQueueFamilyIndex;
Image image;
ImageSubresourceRange subresourceRange;
};
static_assert(sizeof(ImageMemoryBarrier) == sizeof(VkImageMemoryBarrier), "struct and wrapper have different size!");
struct ImageViewCreateInfo
{
ImageViewCreateInfo(ImageViewCreateFlags flags_ = ImageViewCreateFlags(), Image image_ = Image(), ImageViewType viewType_ = ImageViewType::e1D, Format format_ = Format::eUndefined, ComponentMapping components_ = ComponentMapping(), ImageSubresourceRange subresourceRange_ = ImageSubresourceRange())
: sType(StructureType::eImageViewCreateInfo)
, pNext(nullptr)
, flags(flags_)
, image(image_)
, viewType(viewType_)
, format(format_)
, components(components_)
, subresourceRange(subresourceRange_)
{
}
ImageViewCreateInfo(VkImageViewCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ImageViewCreateInfo));
}
ImageViewCreateInfo& operator=(VkImageViewCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ImageViewCreateInfo));
return *this;
}
ImageViewCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
ImageViewCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
ImageViewCreateInfo& setFlags(ImageViewCreateFlags flags_)
{
flags = flags_;
return *this;
}
ImageViewCreateInfo& setImage(Image image_)
{
image = image_;
return *this;
}
ImageViewCreateInfo& setViewType(ImageViewType viewType_)
{
viewType = viewType_;
return *this;
}
ImageViewCreateInfo& setFormat(Format format_)
{
format = format_;
return *this;
}
ImageViewCreateInfo& setComponents(ComponentMapping components_)
{
components = components_;
return *this;
}
ImageViewCreateInfo& setSubresourceRange(ImageSubresourceRange subresourceRange_)
{
subresourceRange = subresourceRange_;
return *this;
}
operator const VkImageViewCreateInfo&() const
{
return *reinterpret_cast<const VkImageViewCreateInfo*>(this);
}
bool operator==(ImageViewCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (image == rhs.image)
&& (viewType == rhs.viewType)
&& (format == rhs.format)
&& (components == rhs.components)
&& (subresourceRange == rhs.subresourceRange);
}
bool operator!=(ImageViewCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
ImageViewCreateFlags flags;
Image image;
ImageViewType viewType;
Format format;
ComponentMapping components;
ImageSubresourceRange subresourceRange;
};
static_assert(sizeof(ImageViewCreateInfo) == sizeof(VkImageViewCreateInfo), "struct and wrapper have different size!");
struct ImageCopy
{
ImageCopy(ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), Offset3D srcOffset_ = Offset3D(), ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), Offset3D dstOffset_ = Offset3D(), Extent3D extent_ = Extent3D())
: srcSubresource(srcSubresource_)
, srcOffset(srcOffset_)
, dstSubresource(dstSubresource_)
, dstOffset(dstOffset_)
, extent(extent_)
{
}
ImageCopy(VkImageCopy const & rhs)
{
memcpy(this, &rhs, sizeof(ImageCopy));
}
ImageCopy& operator=(VkImageCopy const & rhs)
{
memcpy(this, &rhs, sizeof(ImageCopy));
return *this;
}
ImageCopy& setSrcSubresource(ImageSubresourceLayers srcSubresource_)
{
srcSubresource = srcSubresource_;
return *this;
}
ImageCopy& setSrcOffset(Offset3D srcOffset_)
{
srcOffset = srcOffset_;
return *this;
}
ImageCopy& setDstSubresource(ImageSubresourceLayers dstSubresource_)
{
dstSubresource = dstSubresource_;
return *this;
}
ImageCopy& setDstOffset(Offset3D dstOffset_)
{
dstOffset = dstOffset_;
return *this;
}
ImageCopy& setExtent(Extent3D extent_)
{
extent = extent_;
return *this;
}
operator const VkImageCopy&() const
{
return *reinterpret_cast<const VkImageCopy*>(this);
}
bool operator==(ImageCopy const& rhs) const
{
return (srcSubresource == rhs.srcSubresource)
&& (srcOffset == rhs.srcOffset)
&& (dstSubresource == rhs.dstSubresource)
&& (dstOffset == rhs.dstOffset)
&& (extent == rhs.extent);
}
bool operator!=(ImageCopy const& rhs) const
{
return !operator==(rhs);
}
ImageSubresourceLayers srcSubresource;
Offset3D srcOffset;
ImageSubresourceLayers dstSubresource;
Offset3D dstOffset;
Extent3D extent;
};
static_assert(sizeof(ImageCopy) == sizeof(VkImageCopy), "struct and wrapper have different size!");
struct ImageBlit
{
ImageBlit(ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), std::array<Offset3D, 2> const& srcOffsets_ = { { Offset3D(), Offset3D() } }, ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), std::array<Offset3D, 2> const& dstOffsets_ = { { Offset3D(), Offset3D() } })
: srcSubresource(srcSubresource_)
, dstSubresource(dstSubresource_)
{
memcpy(&srcOffsets, srcOffsets_.data(), 2 * sizeof(Offset3D));
memcpy(&dstOffsets, dstOffsets_.data(), 2 * sizeof(Offset3D));
}
ImageBlit(VkImageBlit const & rhs)
{
memcpy(this, &rhs, sizeof(ImageBlit));
}
ImageBlit& operator=(VkImageBlit const & rhs)
{
memcpy(this, &rhs, sizeof(ImageBlit));
return *this;
}
ImageBlit& setSrcSubresource(ImageSubresourceLayers srcSubresource_)
{
srcSubresource = srcSubresource_;
return *this;
}
ImageBlit& setSrcOffsets(std::array<Offset3D, 2> srcOffsets_)
{
memcpy(&srcOffsets, srcOffsets_.data(), 2 * sizeof(Offset3D));
return *this;
}
ImageBlit& setDstSubresource(ImageSubresourceLayers dstSubresource_)
{
dstSubresource = dstSubresource_;
return *this;
}
ImageBlit& setDstOffsets(std::array<Offset3D, 2> dstOffsets_)
{
memcpy(&dstOffsets, dstOffsets_.data(), 2 * sizeof(Offset3D));
return *this;
}
operator const VkImageBlit&() const
{
return *reinterpret_cast<const VkImageBlit*>(this);
}
bool operator==(ImageBlit const& rhs) const
{
return (srcSubresource == rhs.srcSubresource)
&& (memcmp(srcOffsets, rhs.srcOffsets, 2 * sizeof(Offset3D)) == 0)
&& (dstSubresource == rhs.dstSubresource)
&& (memcmp(dstOffsets, rhs.dstOffsets, 2 * sizeof(Offset3D)) == 0);
}
bool operator!=(ImageBlit const& rhs) const
{
return !operator==(rhs);
}
ImageSubresourceLayers srcSubresource;
Offset3D srcOffsets[2];
ImageSubresourceLayers dstSubresource;
Offset3D dstOffsets[2];
};
static_assert(sizeof(ImageBlit) == sizeof(VkImageBlit), "struct and wrapper have different size!");
struct BufferImageCopy
{
BufferImageCopy(DeviceSize bufferOffset_ = 0, uint32_t bufferRowLength_ = 0, uint32_t bufferImageHeight_ = 0, ImageSubresourceLayers imageSubresource_ = ImageSubresourceLayers(), Offset3D imageOffset_ = Offset3D(), Extent3D imageExtent_ = Extent3D())
: bufferOffset(bufferOffset_)
, bufferRowLength(bufferRowLength_)
, bufferImageHeight(bufferImageHeight_)
, imageSubresource(imageSubresource_)
, imageOffset(imageOffset_)
, imageExtent(imageExtent_)
{
}
BufferImageCopy(VkBufferImageCopy const & rhs)
{
memcpy(this, &rhs, sizeof(BufferImageCopy));
}
BufferImageCopy& operator=(VkBufferImageCopy const & rhs)
{
memcpy(this, &rhs, sizeof(BufferImageCopy));
return *this;
}
BufferImageCopy& setBufferOffset(DeviceSize bufferOffset_)
{
bufferOffset = bufferOffset_;
return *this;
}
BufferImageCopy& setBufferRowLength(uint32_t bufferRowLength_)
{
bufferRowLength = bufferRowLength_;
return *this;
}
BufferImageCopy& setBufferImageHeight(uint32_t bufferImageHeight_)
{
bufferImageHeight = bufferImageHeight_;
return *this;
}
BufferImageCopy& setImageSubresource(ImageSubresourceLayers imageSubresource_)
{
imageSubresource = imageSubresource_;
return *this;
}
BufferImageCopy& setImageOffset(Offset3D imageOffset_)
{
imageOffset = imageOffset_;
return *this;
}
BufferImageCopy& setImageExtent(Extent3D imageExtent_)
{
imageExtent = imageExtent_;
return *this;
}
operator const VkBufferImageCopy&() const
{
return *reinterpret_cast<const VkBufferImageCopy*>(this);
}
bool operator==(BufferImageCopy const& rhs) const
{
return (bufferOffset == rhs.bufferOffset)
&& (bufferRowLength == rhs.bufferRowLength)
&& (bufferImageHeight == rhs.bufferImageHeight)
&& (imageSubresource == rhs.imageSubresource)
&& (imageOffset == rhs.imageOffset)
&& (imageExtent == rhs.imageExtent);
}
bool operator!=(BufferImageCopy const& rhs) const
{
return !operator==(rhs);
}
DeviceSize bufferOffset;
uint32_t bufferRowLength;
uint32_t bufferImageHeight;
ImageSubresourceLayers imageSubresource;
Offset3D imageOffset;
Extent3D imageExtent;
};
static_assert(sizeof(BufferImageCopy) == sizeof(VkBufferImageCopy), "struct and wrapper have different size!");
struct ImageResolve
{
ImageResolve(ImageSubresourceLayers srcSubresource_ = ImageSubresourceLayers(), Offset3D srcOffset_ = Offset3D(), ImageSubresourceLayers dstSubresource_ = ImageSubresourceLayers(), Offset3D dstOffset_ = Offset3D(), Extent3D extent_ = Extent3D())
: srcSubresource(srcSubresource_)
, srcOffset(srcOffset_)
, dstSubresource(dstSubresource_)
, dstOffset(dstOffset_)
, extent(extent_)
{
}
ImageResolve(VkImageResolve const & rhs)
{
memcpy(this, &rhs, sizeof(ImageResolve));
}
ImageResolve& operator=(VkImageResolve const & rhs)
{
memcpy(this, &rhs, sizeof(ImageResolve));
return *this;
}
ImageResolve& setSrcSubresource(ImageSubresourceLayers srcSubresource_)
{
srcSubresource = srcSubresource_;
return *this;
}
ImageResolve& setSrcOffset(Offset3D srcOffset_)
{
srcOffset = srcOffset_;
return *this;
}
ImageResolve& setDstSubresource(ImageSubresourceLayers dstSubresource_)
{
dstSubresource = dstSubresource_;
return *this;
}
ImageResolve& setDstOffset(Offset3D dstOffset_)
{
dstOffset = dstOffset_;
return *this;
}
ImageResolve& setExtent(Extent3D extent_)
{
extent = extent_;
return *this;
}
operator const VkImageResolve&() const
{
return *reinterpret_cast<const VkImageResolve*>(this);
}
bool operator==(ImageResolve const& rhs) const
{
return (srcSubresource == rhs.srcSubresource)
&& (srcOffset == rhs.srcOffset)
&& (dstSubresource == rhs.dstSubresource)
&& (dstOffset == rhs.dstOffset)
&& (extent == rhs.extent);
}
bool operator!=(ImageResolve const& rhs) const
{
return !operator==(rhs);
}
ImageSubresourceLayers srcSubresource;
Offset3D srcOffset;
ImageSubresourceLayers dstSubresource;
Offset3D dstOffset;
Extent3D extent;
};
static_assert(sizeof(ImageResolve) == sizeof(VkImageResolve), "struct and wrapper have different size!");
struct ClearAttachment
{
ClearAttachment(ImageAspectFlags aspectMask_ = ImageAspectFlags(), uint32_t colorAttachment_ = 0, ClearValue clearValue_ = ClearValue())
: aspectMask(aspectMask_)
, colorAttachment(colorAttachment_)
, clearValue(clearValue_)
{
}
ClearAttachment(VkClearAttachment const & rhs)
{
memcpy(this, &rhs, sizeof(ClearAttachment));
}
ClearAttachment& operator=(VkClearAttachment const & rhs)
{
memcpy(this, &rhs, sizeof(ClearAttachment));
return *this;
}
ClearAttachment& setAspectMask(ImageAspectFlags aspectMask_)
{
aspectMask = aspectMask_;
return *this;
}
ClearAttachment& setColorAttachment(uint32_t colorAttachment_)
{
colorAttachment = colorAttachment_;
return *this;
}
ClearAttachment& setClearValue(ClearValue clearValue_)
{
clearValue = clearValue_;
return *this;
}
operator const VkClearAttachment&() const
{
return *reinterpret_cast<const VkClearAttachment*>(this);
}
ImageAspectFlags aspectMask;
uint32_t colorAttachment;
ClearValue clearValue;
};
static_assert(sizeof(ClearAttachment) == sizeof(VkClearAttachment), "struct and wrapper have different size!");
enum class SparseImageFormatFlagBits
{
eSingleMiptail = VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT,
eAlignedMipSize = VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT,
eNonstandardBlockSize = VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT
};
using SparseImageFormatFlags = Flags<SparseImageFormatFlagBits, VkSparseImageFormatFlags>;
inline SparseImageFormatFlags operator|(SparseImageFormatFlagBits bit0, SparseImageFormatFlagBits bit1)
{
return SparseImageFormatFlags(bit0) | bit1;
}
struct SparseImageFormatProperties
{
operator const VkSparseImageFormatProperties&() const
{
return *reinterpret_cast<const VkSparseImageFormatProperties*>(this);
}
bool operator==(SparseImageFormatProperties const& rhs) const
{
return (aspectMask == rhs.aspectMask)
&& (imageGranularity == rhs.imageGranularity)
&& (flags == rhs.flags);
}
bool operator!=(SparseImageFormatProperties const& rhs) const
{
return !operator==(rhs);
}
ImageAspectFlags aspectMask;
Extent3D imageGranularity;
SparseImageFormatFlags flags;
};
static_assert(sizeof(SparseImageFormatProperties) == sizeof(VkSparseImageFormatProperties), "struct and wrapper have different size!");
struct SparseImageMemoryRequirements
{
operator const VkSparseImageMemoryRequirements&() const
{
return *reinterpret_cast<const VkSparseImageMemoryRequirements*>(this);
}
bool operator==(SparseImageMemoryRequirements const& rhs) const
{
return (formatProperties == rhs.formatProperties)
&& (imageMipTailFirstLod == rhs.imageMipTailFirstLod)
&& (imageMipTailSize == rhs.imageMipTailSize)
&& (imageMipTailOffset == rhs.imageMipTailOffset)
&& (imageMipTailStride == rhs.imageMipTailStride);
}
bool operator!=(SparseImageMemoryRequirements const& rhs) const
{
return !operator==(rhs);
}
SparseImageFormatProperties formatProperties;
uint32_t imageMipTailFirstLod;
DeviceSize imageMipTailSize;
DeviceSize imageMipTailOffset;
DeviceSize imageMipTailStride;
};
static_assert(sizeof(SparseImageMemoryRequirements) == sizeof(VkSparseImageMemoryRequirements), "struct and wrapper have different size!");
enum class SparseMemoryBindFlagBits
{
eMetadata = VK_SPARSE_MEMORY_BIND_METADATA_BIT
};
using SparseMemoryBindFlags = Flags<SparseMemoryBindFlagBits, VkSparseMemoryBindFlags>;
inline SparseMemoryBindFlags operator|(SparseMemoryBindFlagBits bit0, SparseMemoryBindFlagBits bit1)
{
return SparseMemoryBindFlags(bit0) | bit1;
}
struct SparseMemoryBind
{
SparseMemoryBind(DeviceSize resourceOffset_ = 0, DeviceSize size_ = 0, DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0, SparseMemoryBindFlags flags_ = SparseMemoryBindFlags())
: resourceOffset(resourceOffset_)
, size(size_)
, memory(memory_)
, memoryOffset(memoryOffset_)
, flags(flags_)
{
}
SparseMemoryBind(VkSparseMemoryBind const & rhs)
{
memcpy(this, &rhs, sizeof(SparseMemoryBind));
}
SparseMemoryBind& operator=(VkSparseMemoryBind const & rhs)
{
memcpy(this, &rhs, sizeof(SparseMemoryBind));
return *this;
}
SparseMemoryBind& setResourceOffset(DeviceSize resourceOffset_)
{
resourceOffset = resourceOffset_;
return *this;
}
SparseMemoryBind& setSize(DeviceSize size_)
{
size = size_;
return *this;
}
SparseMemoryBind& setMemory(DeviceMemory memory_)
{
memory = memory_;
return *this;
}
SparseMemoryBind& setMemoryOffset(DeviceSize memoryOffset_)
{
memoryOffset = memoryOffset_;
return *this;
}
SparseMemoryBind& setFlags(SparseMemoryBindFlags flags_)
{
flags = flags_;
return *this;
}
operator const VkSparseMemoryBind&() const
{
return *reinterpret_cast<const VkSparseMemoryBind*>(this);
}
bool operator==(SparseMemoryBind const& rhs) const
{
return (resourceOffset == rhs.resourceOffset)
&& (size == rhs.size)
&& (memory == rhs.memory)
&& (memoryOffset == rhs.memoryOffset)
&& (flags == rhs.flags);
}
bool operator!=(SparseMemoryBind const& rhs) const
{
return !operator==(rhs);
}
DeviceSize resourceOffset;
DeviceSize size;
DeviceMemory memory;
DeviceSize memoryOffset;
SparseMemoryBindFlags flags;
};
static_assert(sizeof(SparseMemoryBind) == sizeof(VkSparseMemoryBind), "struct and wrapper have different size!");
struct SparseImageMemoryBind
{
SparseImageMemoryBind(ImageSubresource subresource_ = ImageSubresource(), Offset3D offset_ = Offset3D(), Extent3D extent_ = Extent3D(), DeviceMemory memory_ = DeviceMemory(), DeviceSize memoryOffset_ = 0, SparseMemoryBindFlags flags_ = SparseMemoryBindFlags())
: subresource(subresource_)
, offset(offset_)
, extent(extent_)
, memory(memory_)
, memoryOffset(memoryOffset_)
, flags(flags_)
{
}
SparseImageMemoryBind(VkSparseImageMemoryBind const & rhs)
{
memcpy(this, &rhs, sizeof(SparseImageMemoryBind));
}
SparseImageMemoryBind& operator=(VkSparseImageMemoryBind const & rhs)
{
memcpy(this, &rhs, sizeof(SparseImageMemoryBind));
return *this;
}
SparseImageMemoryBind& setSubresource(ImageSubresource subresource_)
{
subresource = subresource_;
return *this;
}
SparseImageMemoryBind& setOffset(Offset3D offset_)
{
offset = offset_;
return *this;
}
SparseImageMemoryBind& setExtent(Extent3D extent_)
{
extent = extent_;
return *this;
}
SparseImageMemoryBind& setMemory(DeviceMemory memory_)
{
memory = memory_;
return *this;
}
SparseImageMemoryBind& setMemoryOffset(DeviceSize memoryOffset_)
{
memoryOffset = memoryOffset_;
return *this;
}
SparseImageMemoryBind& setFlags(SparseMemoryBindFlags flags_)
{
flags = flags_;
return *this;
}
operator const VkSparseImageMemoryBind&() const
{
return *reinterpret_cast<const VkSparseImageMemoryBind*>(this);
}
bool operator==(SparseImageMemoryBind const& rhs) const
{
return (subresource == rhs.subresource)
&& (offset == rhs.offset)
&& (extent == rhs.extent)
&& (memory == rhs.memory)
&& (memoryOffset == rhs.memoryOffset)
&& (flags == rhs.flags);
}
bool operator!=(SparseImageMemoryBind const& rhs) const
{
return !operator==(rhs);
}
ImageSubresource subresource;
Offset3D offset;
Extent3D extent;
DeviceMemory memory;
DeviceSize memoryOffset;
SparseMemoryBindFlags flags;
};
static_assert(sizeof(SparseImageMemoryBind) == sizeof(VkSparseImageMemoryBind), "struct and wrapper have different size!");
struct SparseBufferMemoryBindInfo
{
SparseBufferMemoryBindInfo(Buffer buffer_ = Buffer(), uint32_t bindCount_ = 0, const SparseMemoryBind* pBinds_ = nullptr)
: buffer(buffer_)
, bindCount(bindCount_)
, pBinds(pBinds_)
{
}
SparseBufferMemoryBindInfo(VkSparseBufferMemoryBindInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SparseBufferMemoryBindInfo));
}
SparseBufferMemoryBindInfo& operator=(VkSparseBufferMemoryBindInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SparseBufferMemoryBindInfo));
return *this;
}
SparseBufferMemoryBindInfo& setBuffer(Buffer buffer_)
{
buffer = buffer_;
return *this;
}
SparseBufferMemoryBindInfo& setBindCount(uint32_t bindCount_)
{
bindCount = bindCount_;
return *this;
}
SparseBufferMemoryBindInfo& setPBinds(const SparseMemoryBind* pBinds_)
{
pBinds = pBinds_;
return *this;
}
operator const VkSparseBufferMemoryBindInfo&() const
{
return *reinterpret_cast<const VkSparseBufferMemoryBindInfo*>(this);
}
bool operator==(SparseBufferMemoryBindInfo const& rhs) const
{
return (buffer == rhs.buffer)
&& (bindCount == rhs.bindCount)
&& (pBinds == rhs.pBinds);
}
bool operator!=(SparseBufferMemoryBindInfo const& rhs) const
{
return !operator==(rhs);
}
Buffer buffer;
uint32_t bindCount;
const SparseMemoryBind* pBinds;
};
static_assert(sizeof(SparseBufferMemoryBindInfo) == sizeof(VkSparseBufferMemoryBindInfo), "struct and wrapper have different size!");
struct SparseImageOpaqueMemoryBindInfo
{
SparseImageOpaqueMemoryBindInfo(Image image_ = Image(), uint32_t bindCount_ = 0, const SparseMemoryBind* pBinds_ = nullptr)
: image(image_)
, bindCount(bindCount_)
, pBinds(pBinds_)
{
}
SparseImageOpaqueMemoryBindInfo(VkSparseImageOpaqueMemoryBindInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SparseImageOpaqueMemoryBindInfo));
}
SparseImageOpaqueMemoryBindInfo& operator=(VkSparseImageOpaqueMemoryBindInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SparseImageOpaqueMemoryBindInfo));
return *this;
}
SparseImageOpaqueMemoryBindInfo& setImage(Image image_)
{
image = image_;
return *this;
}
SparseImageOpaqueMemoryBindInfo& setBindCount(uint32_t bindCount_)
{
bindCount = bindCount_;
return *this;
}
SparseImageOpaqueMemoryBindInfo& setPBinds(const SparseMemoryBind* pBinds_)
{
pBinds = pBinds_;
return *this;
}
operator const VkSparseImageOpaqueMemoryBindInfo&() const
{
return *reinterpret_cast<const VkSparseImageOpaqueMemoryBindInfo*>(this);
}
bool operator==(SparseImageOpaqueMemoryBindInfo const& rhs) const
{
return (image == rhs.image)
&& (bindCount == rhs.bindCount)
&& (pBinds == rhs.pBinds);
}
bool operator!=(SparseImageOpaqueMemoryBindInfo const& rhs) const
{
return !operator==(rhs);
}
Image image;
uint32_t bindCount;
const SparseMemoryBind* pBinds;
};
static_assert(sizeof(SparseImageOpaqueMemoryBindInfo) == sizeof(VkSparseImageOpaqueMemoryBindInfo), "struct and wrapper have different size!");
struct SparseImageMemoryBindInfo
{
SparseImageMemoryBindInfo(Image image_ = Image(), uint32_t bindCount_ = 0, const SparseImageMemoryBind* pBinds_ = nullptr)
: image(image_)
, bindCount(bindCount_)
, pBinds(pBinds_)
{
}
SparseImageMemoryBindInfo(VkSparseImageMemoryBindInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SparseImageMemoryBindInfo));
}
SparseImageMemoryBindInfo& operator=(VkSparseImageMemoryBindInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SparseImageMemoryBindInfo));
return *this;
}
SparseImageMemoryBindInfo& setImage(Image image_)
{
image = image_;
return *this;
}
SparseImageMemoryBindInfo& setBindCount(uint32_t bindCount_)
{
bindCount = bindCount_;
return *this;
}
SparseImageMemoryBindInfo& setPBinds(const SparseImageMemoryBind* pBinds_)
{
pBinds = pBinds_;
return *this;
}
operator const VkSparseImageMemoryBindInfo&() const
{
return *reinterpret_cast<const VkSparseImageMemoryBindInfo*>(this);
}
bool operator==(SparseImageMemoryBindInfo const& rhs) const
{
return (image == rhs.image)
&& (bindCount == rhs.bindCount)
&& (pBinds == rhs.pBinds);
}
bool operator!=(SparseImageMemoryBindInfo const& rhs) const
{
return !operator==(rhs);
}
Image image;
uint32_t bindCount;
const SparseImageMemoryBind* pBinds;
};
static_assert(sizeof(SparseImageMemoryBindInfo) == sizeof(VkSparseImageMemoryBindInfo), "struct and wrapper have different size!");
struct BindSparseInfo
{
BindSparseInfo(uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, uint32_t bufferBindCount_ = 0, const SparseBufferMemoryBindInfo* pBufferBinds_ = nullptr, uint32_t imageOpaqueBindCount_ = 0, const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds_ = nullptr, uint32_t imageBindCount_ = 0, const SparseImageMemoryBindInfo* pImageBinds_ = nullptr, uint32_t signalSemaphoreCount_ = 0, const Semaphore* pSignalSemaphores_ = nullptr)
: sType(StructureType::eBindSparseInfo)
, pNext(nullptr)
, waitSemaphoreCount(waitSemaphoreCount_)
, pWaitSemaphores(pWaitSemaphores_)
, bufferBindCount(bufferBindCount_)
, pBufferBinds(pBufferBinds_)
, imageOpaqueBindCount(imageOpaqueBindCount_)
, pImageOpaqueBinds(pImageOpaqueBinds_)
, imageBindCount(imageBindCount_)
, pImageBinds(pImageBinds_)
, signalSemaphoreCount(signalSemaphoreCount_)
, pSignalSemaphores(pSignalSemaphores_)
{
}
BindSparseInfo(VkBindSparseInfo const & rhs)
{
memcpy(this, &rhs, sizeof(BindSparseInfo));
}
BindSparseInfo& operator=(VkBindSparseInfo const & rhs)
{
memcpy(this, &rhs, sizeof(BindSparseInfo));
return *this;
}
BindSparseInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
BindSparseInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
BindSparseInfo& setWaitSemaphoreCount(uint32_t waitSemaphoreCount_)
{
waitSemaphoreCount = waitSemaphoreCount_;
return *this;
}
BindSparseInfo& setPWaitSemaphores(const Semaphore* pWaitSemaphores_)
{
pWaitSemaphores = pWaitSemaphores_;
return *this;
}
BindSparseInfo& setBufferBindCount(uint32_t bufferBindCount_)
{
bufferBindCount = bufferBindCount_;
return *this;
}
BindSparseInfo& setPBufferBinds(const SparseBufferMemoryBindInfo* pBufferBinds_)
{
pBufferBinds = pBufferBinds_;
return *this;
}
BindSparseInfo& setImageOpaqueBindCount(uint32_t imageOpaqueBindCount_)
{
imageOpaqueBindCount = imageOpaqueBindCount_;
return *this;
}
BindSparseInfo& setPImageOpaqueBinds(const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds_)
{
pImageOpaqueBinds = pImageOpaqueBinds_;
return *this;
}
BindSparseInfo& setImageBindCount(uint32_t imageBindCount_)
{
imageBindCount = imageBindCount_;
return *this;
}
BindSparseInfo& setPImageBinds(const SparseImageMemoryBindInfo* pImageBinds_)
{
pImageBinds = pImageBinds_;
return *this;
}
BindSparseInfo& setSignalSemaphoreCount(uint32_t signalSemaphoreCount_)
{
signalSemaphoreCount = signalSemaphoreCount_;
return *this;
}
BindSparseInfo& setPSignalSemaphores(const Semaphore* pSignalSemaphores_)
{
pSignalSemaphores = pSignalSemaphores_;
return *this;
}
operator const VkBindSparseInfo&() const
{
return *reinterpret_cast<const VkBindSparseInfo*>(this);
}
bool operator==(BindSparseInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (waitSemaphoreCount == rhs.waitSemaphoreCount)
&& (pWaitSemaphores == rhs.pWaitSemaphores)
&& (bufferBindCount == rhs.bufferBindCount)
&& (pBufferBinds == rhs.pBufferBinds)
&& (imageOpaqueBindCount == rhs.imageOpaqueBindCount)
&& (pImageOpaqueBinds == rhs.pImageOpaqueBinds)
&& (imageBindCount == rhs.imageBindCount)
&& (pImageBinds == rhs.pImageBinds)
&& (signalSemaphoreCount == rhs.signalSemaphoreCount)
&& (pSignalSemaphores == rhs.pSignalSemaphores);
}
bool operator!=(BindSparseInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t waitSemaphoreCount;
const Semaphore* pWaitSemaphores;
uint32_t bufferBindCount;
const SparseBufferMemoryBindInfo* pBufferBinds;
uint32_t imageOpaqueBindCount;
const SparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
uint32_t imageBindCount;
const SparseImageMemoryBindInfo* pImageBinds;
uint32_t signalSemaphoreCount;
const Semaphore* pSignalSemaphores;
};
static_assert(sizeof(BindSparseInfo) == sizeof(VkBindSparseInfo), "struct and wrapper have different size!");
enum class PipelineStageFlagBits
{
eTopOfPipe = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
eDrawIndirect = VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT,
eVertexInput = VK_PIPELINE_STAGE_VERTEX_INPUT_BIT,
eVertexShader = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
eTessellationControlShader = VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT,
eTessellationEvaluationShader = VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT,
eGeometryShader = VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT,
eFragmentShader = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
eEarlyFragmentTests = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT,
eLateFragmentTests = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
eColorAttachmentOutput = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
eComputeShader = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
eTransfer = VK_PIPELINE_STAGE_TRANSFER_BIT,
eBottomOfPipe = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
eHost = VK_PIPELINE_STAGE_HOST_BIT,
eAllGraphics = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
eAllCommands = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT
};
using PipelineStageFlags = Flags<PipelineStageFlagBits, VkPipelineStageFlags>;
inline PipelineStageFlags operator|(PipelineStageFlagBits bit0, PipelineStageFlagBits bit1)
{
return PipelineStageFlags(bit0) | bit1;
}
enum class CommandPoolCreateFlagBits
{
eTransient = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT,
eResetCommandBuffer = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT
};
using CommandPoolCreateFlags = Flags<CommandPoolCreateFlagBits, VkCommandPoolCreateFlags>;
inline CommandPoolCreateFlags operator|(CommandPoolCreateFlagBits bit0, CommandPoolCreateFlagBits bit1)
{
return CommandPoolCreateFlags(bit0) | bit1;
}
struct CommandPoolCreateInfo
{
CommandPoolCreateInfo(CommandPoolCreateFlags flags_ = CommandPoolCreateFlags(), uint32_t queueFamilyIndex_ = 0)
: sType(StructureType::eCommandPoolCreateInfo)
, pNext(nullptr)
, flags(flags_)
, queueFamilyIndex(queueFamilyIndex_)
{
}
CommandPoolCreateInfo(VkCommandPoolCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(CommandPoolCreateInfo));
}
CommandPoolCreateInfo& operator=(VkCommandPoolCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(CommandPoolCreateInfo));
return *this;
}
CommandPoolCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
CommandPoolCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
CommandPoolCreateInfo& setFlags(CommandPoolCreateFlags flags_)
{
flags = flags_;
return *this;
}
CommandPoolCreateInfo& setQueueFamilyIndex(uint32_t queueFamilyIndex_)
{
queueFamilyIndex = queueFamilyIndex_;
return *this;
}
operator const VkCommandPoolCreateInfo&() const
{
return *reinterpret_cast<const VkCommandPoolCreateInfo*>(this);
}
bool operator==(CommandPoolCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (queueFamilyIndex == rhs.queueFamilyIndex);
}
bool operator!=(CommandPoolCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
CommandPoolCreateFlags flags;
uint32_t queueFamilyIndex;
};
static_assert(sizeof(CommandPoolCreateInfo) == sizeof(VkCommandPoolCreateInfo), "struct and wrapper have different size!");
enum class CommandPoolResetFlagBits
{
eReleaseResources = VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT
};
using CommandPoolResetFlags = Flags<CommandPoolResetFlagBits, VkCommandPoolResetFlags>;
inline CommandPoolResetFlags operator|(CommandPoolResetFlagBits bit0, CommandPoolResetFlagBits bit1)
{
return CommandPoolResetFlags(bit0) | bit1;
}
enum class CommandBufferResetFlagBits
{
eReleaseResources = VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT
};
using CommandBufferResetFlags = Flags<CommandBufferResetFlagBits, VkCommandBufferResetFlags>;
inline CommandBufferResetFlags operator|(CommandBufferResetFlagBits bit0, CommandBufferResetFlagBits bit1)
{
return CommandBufferResetFlags(bit0) | bit1;
}
enum class SampleCountFlagBits
{
e1 = VK_SAMPLE_COUNT_1_BIT,
e2 = VK_SAMPLE_COUNT_2_BIT,
e4 = VK_SAMPLE_COUNT_4_BIT,
e8 = VK_SAMPLE_COUNT_8_BIT,
e16 = VK_SAMPLE_COUNT_16_BIT,
e32 = VK_SAMPLE_COUNT_32_BIT,
e64 = VK_SAMPLE_COUNT_64_BIT
};
using SampleCountFlags = Flags<SampleCountFlagBits, VkSampleCountFlags>;
inline SampleCountFlags operator|(SampleCountFlagBits bit0, SampleCountFlagBits bit1)
{
return SampleCountFlags(bit0) | bit1;
}
struct ImageFormatProperties
{
operator const VkImageFormatProperties&() const
{
return *reinterpret_cast<const VkImageFormatProperties*>(this);
}
bool operator==(ImageFormatProperties const& rhs) const
{
return (maxExtent == rhs.maxExtent)
&& (maxMipLevels == rhs.maxMipLevels)
&& (maxArrayLayers == rhs.maxArrayLayers)
&& (sampleCounts == rhs.sampleCounts)
&& (maxResourceSize == rhs.maxResourceSize);
}
bool operator!=(ImageFormatProperties const& rhs) const
{
return !operator==(rhs);
}
Extent3D maxExtent;
uint32_t maxMipLevels;
uint32_t maxArrayLayers;
SampleCountFlags sampleCounts;
DeviceSize maxResourceSize;
};
static_assert(sizeof(ImageFormatProperties) == sizeof(VkImageFormatProperties), "struct and wrapper have different size!");
struct ImageCreateInfo
{
ImageCreateInfo(ImageCreateFlags flags_ = ImageCreateFlags(), ImageType imageType_ = ImageType::e1D, Format format_ = Format::eUndefined, Extent3D extent_ = Extent3D(), uint32_t mipLevels_ = 0, uint32_t arrayLayers_ = 0, SampleCountFlagBits samples_ = SampleCountFlagBits::e1, ImageTiling tiling_ = ImageTiling::eOptimal, ImageUsageFlags usage_ = ImageUsageFlags(), SharingMode sharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr, ImageLayout initialLayout_ = ImageLayout::eUndefined)
: sType(StructureType::eImageCreateInfo)
, pNext(nullptr)
, flags(flags_)
, imageType(imageType_)
, format(format_)
, extent(extent_)
, mipLevels(mipLevels_)
, arrayLayers(arrayLayers_)
, samples(samples_)
, tiling(tiling_)
, usage(usage_)
, sharingMode(sharingMode_)
, queueFamilyIndexCount(queueFamilyIndexCount_)
, pQueueFamilyIndices(pQueueFamilyIndices_)
, initialLayout(initialLayout_)
{
}
ImageCreateInfo(VkImageCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ImageCreateInfo));
}
ImageCreateInfo& operator=(VkImageCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(ImageCreateInfo));
return *this;
}
ImageCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
ImageCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
ImageCreateInfo& setFlags(ImageCreateFlags flags_)
{
flags = flags_;
return *this;
}
ImageCreateInfo& setImageType(ImageType imageType_)
{
imageType = imageType_;
return *this;
}
ImageCreateInfo& setFormat(Format format_)
{
format = format_;
return *this;
}
ImageCreateInfo& setExtent(Extent3D extent_)
{
extent = extent_;
return *this;
}
ImageCreateInfo& setMipLevels(uint32_t mipLevels_)
{
mipLevels = mipLevels_;
return *this;
}
ImageCreateInfo& setArrayLayers(uint32_t arrayLayers_)
{
arrayLayers = arrayLayers_;
return *this;
}
ImageCreateInfo& setSamples(SampleCountFlagBits samples_)
{
samples = samples_;
return *this;
}
ImageCreateInfo& setTiling(ImageTiling tiling_)
{
tiling = tiling_;
return *this;
}
ImageCreateInfo& setUsage(ImageUsageFlags usage_)
{
usage = usage_;
return *this;
}
ImageCreateInfo& setSharingMode(SharingMode sharingMode_)
{
sharingMode = sharingMode_;
return *this;
}
ImageCreateInfo& setQueueFamilyIndexCount(uint32_t queueFamilyIndexCount_)
{
queueFamilyIndexCount = queueFamilyIndexCount_;
return *this;
}
ImageCreateInfo& setPQueueFamilyIndices(const uint32_t* pQueueFamilyIndices_)
{
pQueueFamilyIndices = pQueueFamilyIndices_;
return *this;
}
ImageCreateInfo& setInitialLayout(ImageLayout initialLayout_)
{
initialLayout = initialLayout_;
return *this;
}
operator const VkImageCreateInfo&() const
{
return *reinterpret_cast<const VkImageCreateInfo*>(this);
}
bool operator==(ImageCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (imageType == rhs.imageType)
&& (format == rhs.format)
&& (extent == rhs.extent)
&& (mipLevels == rhs.mipLevels)
&& (arrayLayers == rhs.arrayLayers)
&& (samples == rhs.samples)
&& (tiling == rhs.tiling)
&& (usage == rhs.usage)
&& (sharingMode == rhs.sharingMode)
&& (queueFamilyIndexCount == rhs.queueFamilyIndexCount)
&& (pQueueFamilyIndices == rhs.pQueueFamilyIndices)
&& (initialLayout == rhs.initialLayout);
}
bool operator!=(ImageCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
ImageCreateFlags flags;
ImageType imageType;
Format format;
Extent3D extent;
uint32_t mipLevels;
uint32_t arrayLayers;
SampleCountFlagBits samples;
ImageTiling tiling;
ImageUsageFlags usage;
SharingMode sharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;
ImageLayout initialLayout;
};
static_assert(sizeof(ImageCreateInfo) == sizeof(VkImageCreateInfo), "struct and wrapper have different size!");
struct PipelineMultisampleStateCreateInfo
{
PipelineMultisampleStateCreateInfo(PipelineMultisampleStateCreateFlags flags_ = PipelineMultisampleStateCreateFlags(), SampleCountFlagBits rasterizationSamples_ = SampleCountFlagBits::e1, Bool32 sampleShadingEnable_ = 0, float minSampleShading_ = 0, const SampleMask* pSampleMask_ = nullptr, Bool32 alphaToCoverageEnable_ = 0, Bool32 alphaToOneEnable_ = 0)
: sType(StructureType::ePipelineMultisampleStateCreateInfo)
, pNext(nullptr)
, flags(flags_)
, rasterizationSamples(rasterizationSamples_)
, sampleShadingEnable(sampleShadingEnable_)
, minSampleShading(minSampleShading_)
, pSampleMask(pSampleMask_)
, alphaToCoverageEnable(alphaToCoverageEnable_)
, alphaToOneEnable(alphaToOneEnable_)
{
}
PipelineMultisampleStateCreateInfo(VkPipelineMultisampleStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineMultisampleStateCreateInfo));
}
PipelineMultisampleStateCreateInfo& operator=(VkPipelineMultisampleStateCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineMultisampleStateCreateInfo));
return *this;
}
PipelineMultisampleStateCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineMultisampleStateCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineMultisampleStateCreateInfo& setFlags(PipelineMultisampleStateCreateFlags flags_)
{
flags = flags_;
return *this;
}
PipelineMultisampleStateCreateInfo& setRasterizationSamples(SampleCountFlagBits rasterizationSamples_)
{
rasterizationSamples = rasterizationSamples_;
return *this;
}
PipelineMultisampleStateCreateInfo& setSampleShadingEnable(Bool32 sampleShadingEnable_)
{
sampleShadingEnable = sampleShadingEnable_;
return *this;
}
PipelineMultisampleStateCreateInfo& setMinSampleShading(float minSampleShading_)
{
minSampleShading = minSampleShading_;
return *this;
}
PipelineMultisampleStateCreateInfo& setPSampleMask(const SampleMask* pSampleMask_)
{
pSampleMask = pSampleMask_;
return *this;
}
PipelineMultisampleStateCreateInfo& setAlphaToCoverageEnable(Bool32 alphaToCoverageEnable_)
{
alphaToCoverageEnable = alphaToCoverageEnable_;
return *this;
}
PipelineMultisampleStateCreateInfo& setAlphaToOneEnable(Bool32 alphaToOneEnable_)
{
alphaToOneEnable = alphaToOneEnable_;
return *this;
}
operator const VkPipelineMultisampleStateCreateInfo&() const
{
return *reinterpret_cast<const VkPipelineMultisampleStateCreateInfo*>(this);
}
bool operator==(PipelineMultisampleStateCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (rasterizationSamples == rhs.rasterizationSamples)
&& (sampleShadingEnable == rhs.sampleShadingEnable)
&& (minSampleShading == rhs.minSampleShading)
&& (pSampleMask == rhs.pSampleMask)
&& (alphaToCoverageEnable == rhs.alphaToCoverageEnable)
&& (alphaToOneEnable == rhs.alphaToOneEnable);
}
bool operator!=(PipelineMultisampleStateCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineMultisampleStateCreateFlags flags;
SampleCountFlagBits rasterizationSamples;
Bool32 sampleShadingEnable;
float minSampleShading;
const SampleMask* pSampleMask;
Bool32 alphaToCoverageEnable;
Bool32 alphaToOneEnable;
};
static_assert(sizeof(PipelineMultisampleStateCreateInfo) == sizeof(VkPipelineMultisampleStateCreateInfo), "struct and wrapper have different size!");
struct GraphicsPipelineCreateInfo
{
GraphicsPipelineCreateInfo(PipelineCreateFlags flags_ = PipelineCreateFlags(), uint32_t stageCount_ = 0, const PipelineShaderStageCreateInfo* pStages_ = nullptr, const PipelineVertexInputStateCreateInfo* pVertexInputState_ = nullptr, const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState_ = nullptr, const PipelineTessellationStateCreateInfo* pTessellationState_ = nullptr, const PipelineViewportStateCreateInfo* pViewportState_ = nullptr, const PipelineRasterizationStateCreateInfo* pRasterizationState_ = nullptr, const PipelineMultisampleStateCreateInfo* pMultisampleState_ = nullptr, const PipelineDepthStencilStateCreateInfo* pDepthStencilState_ = nullptr, const PipelineColorBlendStateCreateInfo* pColorBlendState_ = nullptr, const PipelineDynamicStateCreateInfo* pDynamicState_ = nullptr, PipelineLayout layout_ = PipelineLayout(), RenderPass renderPass_ = RenderPass(), uint32_t subpass_ = 0, Pipeline basePipelineHandle_ = Pipeline(), int32_t basePipelineIndex_ = 0)
: sType(StructureType::eGraphicsPipelineCreateInfo)
, pNext(nullptr)
, flags(flags_)
, stageCount(stageCount_)
, pStages(pStages_)
, pVertexInputState(pVertexInputState_)
, pInputAssemblyState(pInputAssemblyState_)
, pTessellationState(pTessellationState_)
, pViewportState(pViewportState_)
, pRasterizationState(pRasterizationState_)
, pMultisampleState(pMultisampleState_)
, pDepthStencilState(pDepthStencilState_)
, pColorBlendState(pColorBlendState_)
, pDynamicState(pDynamicState_)
, layout(layout_)
, renderPass(renderPass_)
, subpass(subpass_)
, basePipelineHandle(basePipelineHandle_)
, basePipelineIndex(basePipelineIndex_)
{
}
GraphicsPipelineCreateInfo(VkGraphicsPipelineCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(GraphicsPipelineCreateInfo));
}
GraphicsPipelineCreateInfo& operator=(VkGraphicsPipelineCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(GraphicsPipelineCreateInfo));
return *this;
}
GraphicsPipelineCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
GraphicsPipelineCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
GraphicsPipelineCreateInfo& setFlags(PipelineCreateFlags flags_)
{
flags = flags_;
return *this;
}
GraphicsPipelineCreateInfo& setStageCount(uint32_t stageCount_)
{
stageCount = stageCount_;
return *this;
}
GraphicsPipelineCreateInfo& setPStages(const PipelineShaderStageCreateInfo* pStages_)
{
pStages = pStages_;
return *this;
}
GraphicsPipelineCreateInfo& setPVertexInputState(const PipelineVertexInputStateCreateInfo* pVertexInputState_)
{
pVertexInputState = pVertexInputState_;
return *this;
}
GraphicsPipelineCreateInfo& setPInputAssemblyState(const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState_)
{
pInputAssemblyState = pInputAssemblyState_;
return *this;
}
GraphicsPipelineCreateInfo& setPTessellationState(const PipelineTessellationStateCreateInfo* pTessellationState_)
{
pTessellationState = pTessellationState_;
return *this;
}
GraphicsPipelineCreateInfo& setPViewportState(const PipelineViewportStateCreateInfo* pViewportState_)
{
pViewportState = pViewportState_;
return *this;
}
GraphicsPipelineCreateInfo& setPRasterizationState(const PipelineRasterizationStateCreateInfo* pRasterizationState_)
{
pRasterizationState = pRasterizationState_;
return *this;
}
GraphicsPipelineCreateInfo& setPMultisampleState(const PipelineMultisampleStateCreateInfo* pMultisampleState_)
{
pMultisampleState = pMultisampleState_;
return *this;
}
GraphicsPipelineCreateInfo& setPDepthStencilState(const PipelineDepthStencilStateCreateInfo* pDepthStencilState_)
{
pDepthStencilState = pDepthStencilState_;
return *this;
}
GraphicsPipelineCreateInfo& setPColorBlendState(const PipelineColorBlendStateCreateInfo* pColorBlendState_)
{
pColorBlendState = pColorBlendState_;
return *this;
}
GraphicsPipelineCreateInfo& setPDynamicState(const PipelineDynamicStateCreateInfo* pDynamicState_)
{
pDynamicState = pDynamicState_;
return *this;
}
GraphicsPipelineCreateInfo& setLayout(PipelineLayout layout_)
{
layout = layout_;
return *this;
}
GraphicsPipelineCreateInfo& setRenderPass(RenderPass renderPass_)
{
renderPass = renderPass_;
return *this;
}
GraphicsPipelineCreateInfo& setSubpass(uint32_t subpass_)
{
subpass = subpass_;
return *this;
}
GraphicsPipelineCreateInfo& setBasePipelineHandle(Pipeline basePipelineHandle_)
{
basePipelineHandle = basePipelineHandle_;
return *this;
}
GraphicsPipelineCreateInfo& setBasePipelineIndex(int32_t basePipelineIndex_)
{
basePipelineIndex = basePipelineIndex_;
return *this;
}
operator const VkGraphicsPipelineCreateInfo&() const
{
return *reinterpret_cast<const VkGraphicsPipelineCreateInfo*>(this);
}
bool operator==(GraphicsPipelineCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (stageCount == rhs.stageCount)
&& (pStages == rhs.pStages)
&& (pVertexInputState == rhs.pVertexInputState)
&& (pInputAssemblyState == rhs.pInputAssemblyState)
&& (pTessellationState == rhs.pTessellationState)
&& (pViewportState == rhs.pViewportState)
&& (pRasterizationState == rhs.pRasterizationState)
&& (pMultisampleState == rhs.pMultisampleState)
&& (pDepthStencilState == rhs.pDepthStencilState)
&& (pColorBlendState == rhs.pColorBlendState)
&& (pDynamicState == rhs.pDynamicState)
&& (layout == rhs.layout)
&& (renderPass == rhs.renderPass)
&& (subpass == rhs.subpass)
&& (basePipelineHandle == rhs.basePipelineHandle)
&& (basePipelineIndex == rhs.basePipelineIndex);
}
bool operator!=(GraphicsPipelineCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
PipelineCreateFlags flags;
uint32_t stageCount;
const PipelineShaderStageCreateInfo* pStages;
const PipelineVertexInputStateCreateInfo* pVertexInputState;
const PipelineInputAssemblyStateCreateInfo* pInputAssemblyState;
const PipelineTessellationStateCreateInfo* pTessellationState;
const PipelineViewportStateCreateInfo* pViewportState;
const PipelineRasterizationStateCreateInfo* pRasterizationState;
const PipelineMultisampleStateCreateInfo* pMultisampleState;
const PipelineDepthStencilStateCreateInfo* pDepthStencilState;
const PipelineColorBlendStateCreateInfo* pColorBlendState;
const PipelineDynamicStateCreateInfo* pDynamicState;
PipelineLayout layout;
RenderPass renderPass;
uint32_t subpass;
Pipeline basePipelineHandle;
int32_t basePipelineIndex;
};
static_assert(sizeof(GraphicsPipelineCreateInfo) == sizeof(VkGraphicsPipelineCreateInfo), "struct and wrapper have different size!");
struct PhysicalDeviceLimits
{
operator const VkPhysicalDeviceLimits&() const
{
return *reinterpret_cast<const VkPhysicalDeviceLimits*>(this);
}
bool operator==(PhysicalDeviceLimits const& rhs) const
{
return (maxImageDimension1D == rhs.maxImageDimension1D)
&& (maxImageDimension2D == rhs.maxImageDimension2D)
&& (maxImageDimension3D == rhs.maxImageDimension3D)
&& (maxImageDimensionCube == rhs.maxImageDimensionCube)
&& (maxImageArrayLayers == rhs.maxImageArrayLayers)
&& (maxTexelBufferElements == rhs.maxTexelBufferElements)
&& (maxUniformBufferRange == rhs.maxUniformBufferRange)
&& (maxStorageBufferRange == rhs.maxStorageBufferRange)
&& (maxPushConstantsSize == rhs.maxPushConstantsSize)
&& (maxMemoryAllocationCount == rhs.maxMemoryAllocationCount)
&& (maxSamplerAllocationCount == rhs.maxSamplerAllocationCount)
&& (bufferImageGranularity == rhs.bufferImageGranularity)
&& (sparseAddressSpaceSize == rhs.sparseAddressSpaceSize)
&& (maxBoundDescriptorSets == rhs.maxBoundDescriptorSets)
&& (maxPerStageDescriptorSamplers == rhs.maxPerStageDescriptorSamplers)
&& (maxPerStageDescriptorUniformBuffers == rhs.maxPerStageDescriptorUniformBuffers)
&& (maxPerStageDescriptorStorageBuffers == rhs.maxPerStageDescriptorStorageBuffers)
&& (maxPerStageDescriptorSampledImages == rhs.maxPerStageDescriptorSampledImages)
&& (maxPerStageDescriptorStorageImages == rhs.maxPerStageDescriptorStorageImages)
&& (maxPerStageDescriptorInputAttachments == rhs.maxPerStageDescriptorInputAttachments)
&& (maxPerStageResources == rhs.maxPerStageResources)
&& (maxDescriptorSetSamplers == rhs.maxDescriptorSetSamplers)
&& (maxDescriptorSetUniformBuffers == rhs.maxDescriptorSetUniformBuffers)
&& (maxDescriptorSetUniformBuffersDynamic == rhs.maxDescriptorSetUniformBuffersDynamic)
&& (maxDescriptorSetStorageBuffers == rhs.maxDescriptorSetStorageBuffers)
&& (maxDescriptorSetStorageBuffersDynamic == rhs.maxDescriptorSetStorageBuffersDynamic)
&& (maxDescriptorSetSampledImages == rhs.maxDescriptorSetSampledImages)
&& (maxDescriptorSetStorageImages == rhs.maxDescriptorSetStorageImages)
&& (maxDescriptorSetInputAttachments == rhs.maxDescriptorSetInputAttachments)
&& (maxVertexInputAttributes == rhs.maxVertexInputAttributes)
&& (maxVertexInputBindings == rhs.maxVertexInputBindings)
&& (maxVertexInputAttributeOffset == rhs.maxVertexInputAttributeOffset)
&& (maxVertexInputBindingStride == rhs.maxVertexInputBindingStride)
&& (maxVertexOutputComponents == rhs.maxVertexOutputComponents)
&& (maxTessellationGenerationLevel == rhs.maxTessellationGenerationLevel)
&& (maxTessellationPatchSize == rhs.maxTessellationPatchSize)
&& (maxTessellationControlPerVertexInputComponents == rhs.maxTessellationControlPerVertexInputComponents)
&& (maxTessellationControlPerVertexOutputComponents == rhs.maxTessellationControlPerVertexOutputComponents)
&& (maxTessellationControlPerPatchOutputComponents == rhs.maxTessellationControlPerPatchOutputComponents)
&& (maxTessellationControlTotalOutputComponents == rhs.maxTessellationControlTotalOutputComponents)
&& (maxTessellationEvaluationInputComponents == rhs.maxTessellationEvaluationInputComponents)
&& (maxTessellationEvaluationOutputComponents == rhs.maxTessellationEvaluationOutputComponents)
&& (maxGeometryShaderInvocations == rhs.maxGeometryShaderInvocations)
&& (maxGeometryInputComponents == rhs.maxGeometryInputComponents)
&& (maxGeometryOutputComponents == rhs.maxGeometryOutputComponents)
&& (maxGeometryOutputVertices == rhs.maxGeometryOutputVertices)
&& (maxGeometryTotalOutputComponents == rhs.maxGeometryTotalOutputComponents)
&& (maxFragmentInputComponents == rhs.maxFragmentInputComponents)
&& (maxFragmentOutputAttachments == rhs.maxFragmentOutputAttachments)
&& (maxFragmentDualSrcAttachments == rhs.maxFragmentDualSrcAttachments)
&& (maxFragmentCombinedOutputResources == rhs.maxFragmentCombinedOutputResources)
&& (maxComputeSharedMemorySize == rhs.maxComputeSharedMemorySize)
&& (memcmp(maxComputeWorkGroupCount, rhs.maxComputeWorkGroupCount, 3 * sizeof(uint32_t)) == 0)
&& (maxComputeWorkGroupInvocations == rhs.maxComputeWorkGroupInvocations)
&& (memcmp(maxComputeWorkGroupSize, rhs.maxComputeWorkGroupSize, 3 * sizeof(uint32_t)) == 0)
&& (subPixelPrecisionBits == rhs.subPixelPrecisionBits)
&& (subTexelPrecisionBits == rhs.subTexelPrecisionBits)
&& (mipmapPrecisionBits == rhs.mipmapPrecisionBits)
&& (maxDrawIndexedIndexValue == rhs.maxDrawIndexedIndexValue)
&& (maxDrawIndirectCount == rhs.maxDrawIndirectCount)
&& (maxSamplerLodBias == rhs.maxSamplerLodBias)
&& (maxSamplerAnisotropy == rhs.maxSamplerAnisotropy)
&& (maxViewports == rhs.maxViewports)
&& (memcmp(maxViewportDimensions, rhs.maxViewportDimensions, 2 * sizeof(uint32_t)) == 0)
&& (memcmp(viewportBoundsRange, rhs.viewportBoundsRange, 2 * sizeof(float)) == 0)
&& (viewportSubPixelBits == rhs.viewportSubPixelBits)
&& (minMemoryMapAlignment == rhs.minMemoryMapAlignment)
&& (minTexelBufferOffsetAlignment == rhs.minTexelBufferOffsetAlignment)
&& (minUniformBufferOffsetAlignment == rhs.minUniformBufferOffsetAlignment)
&& (minStorageBufferOffsetAlignment == rhs.minStorageBufferOffsetAlignment)
&& (minTexelOffset == rhs.minTexelOffset)
&& (maxTexelOffset == rhs.maxTexelOffset)
&& (minTexelGatherOffset == rhs.minTexelGatherOffset)
&& (maxTexelGatherOffset == rhs.maxTexelGatherOffset)
&& (minInterpolationOffset == rhs.minInterpolationOffset)
&& (maxInterpolationOffset == rhs.maxInterpolationOffset)
&& (subPixelInterpolationOffsetBits == rhs.subPixelInterpolationOffsetBits)
&& (maxFramebufferWidth == rhs.maxFramebufferWidth)
&& (maxFramebufferHeight == rhs.maxFramebufferHeight)
&& (maxFramebufferLayers == rhs.maxFramebufferLayers)
&& (framebufferColorSampleCounts == rhs.framebufferColorSampleCounts)
&& (framebufferDepthSampleCounts == rhs.framebufferDepthSampleCounts)
&& (framebufferStencilSampleCounts == rhs.framebufferStencilSampleCounts)
&& (framebufferNoAttachmentsSampleCounts == rhs.framebufferNoAttachmentsSampleCounts)
&& (maxColorAttachments == rhs.maxColorAttachments)
&& (sampledImageColorSampleCounts == rhs.sampledImageColorSampleCounts)
&& (sampledImageIntegerSampleCounts == rhs.sampledImageIntegerSampleCounts)
&& (sampledImageDepthSampleCounts == rhs.sampledImageDepthSampleCounts)
&& (sampledImageStencilSampleCounts == rhs.sampledImageStencilSampleCounts)
&& (storageImageSampleCounts == rhs.storageImageSampleCounts)
&& (maxSampleMaskWords == rhs.maxSampleMaskWords)
&& (timestampComputeAndGraphics == rhs.timestampComputeAndGraphics)
&& (timestampPeriod == rhs.timestampPeriod)
&& (maxClipDistances == rhs.maxClipDistances)
&& (maxCullDistances == rhs.maxCullDistances)
&& (maxCombinedClipAndCullDistances == rhs.maxCombinedClipAndCullDistances)
&& (discreteQueuePriorities == rhs.discreteQueuePriorities)
&& (memcmp(pointSizeRange, rhs.pointSizeRange, 2 * sizeof(float)) == 0)
&& (memcmp(lineWidthRange, rhs.lineWidthRange, 2 * sizeof(float)) == 0)
&& (pointSizeGranularity == rhs.pointSizeGranularity)
&& (lineWidthGranularity == rhs.lineWidthGranularity)
&& (strictLines == rhs.strictLines)
&& (standardSampleLocations == rhs.standardSampleLocations)
&& (optimalBufferCopyOffsetAlignment == rhs.optimalBufferCopyOffsetAlignment)
&& (optimalBufferCopyRowPitchAlignment == rhs.optimalBufferCopyRowPitchAlignment)
&& (nonCoherentAtomSize == rhs.nonCoherentAtomSize);
}
bool operator!=(PhysicalDeviceLimits const& rhs) const
{
return !operator==(rhs);
}
uint32_t maxImageDimension1D;
uint32_t maxImageDimension2D;
uint32_t maxImageDimension3D;
uint32_t maxImageDimensionCube;
uint32_t maxImageArrayLayers;
uint32_t maxTexelBufferElements;
uint32_t maxUniformBufferRange;
uint32_t maxStorageBufferRange;
uint32_t maxPushConstantsSize;
uint32_t maxMemoryAllocationCount;
uint32_t maxSamplerAllocationCount;
DeviceSize bufferImageGranularity;
DeviceSize sparseAddressSpaceSize;
uint32_t maxBoundDescriptorSets;
uint32_t maxPerStageDescriptorSamplers;
uint32_t maxPerStageDescriptorUniformBuffers;
uint32_t maxPerStageDescriptorStorageBuffers;
uint32_t maxPerStageDescriptorSampledImages;
uint32_t maxPerStageDescriptorStorageImages;
uint32_t maxPerStageDescriptorInputAttachments;
uint32_t maxPerStageResources;
uint32_t maxDescriptorSetSamplers;
uint32_t maxDescriptorSetUniformBuffers;
uint32_t maxDescriptorSetUniformBuffersDynamic;
uint32_t maxDescriptorSetStorageBuffers;
uint32_t maxDescriptorSetStorageBuffersDynamic;
uint32_t maxDescriptorSetSampledImages;
uint32_t maxDescriptorSetStorageImages;
uint32_t maxDescriptorSetInputAttachments;
uint32_t maxVertexInputAttributes;
uint32_t maxVertexInputBindings;
uint32_t maxVertexInputAttributeOffset;
uint32_t maxVertexInputBindingStride;
uint32_t maxVertexOutputComponents;
uint32_t maxTessellationGenerationLevel;
uint32_t maxTessellationPatchSize;
uint32_t maxTessellationControlPerVertexInputComponents;
uint32_t maxTessellationControlPerVertexOutputComponents;
uint32_t maxTessellationControlPerPatchOutputComponents;
uint32_t maxTessellationControlTotalOutputComponents;
uint32_t maxTessellationEvaluationInputComponents;
uint32_t maxTessellationEvaluationOutputComponents;
uint32_t maxGeometryShaderInvocations;
uint32_t maxGeometryInputComponents;
uint32_t maxGeometryOutputComponents;
uint32_t maxGeometryOutputVertices;
uint32_t maxGeometryTotalOutputComponents;
uint32_t maxFragmentInputComponents;
uint32_t maxFragmentOutputAttachments;
uint32_t maxFragmentDualSrcAttachments;
uint32_t maxFragmentCombinedOutputResources;
uint32_t maxComputeSharedMemorySize;
uint32_t maxComputeWorkGroupCount[3];
uint32_t maxComputeWorkGroupInvocations;
uint32_t maxComputeWorkGroupSize[3];
uint32_t subPixelPrecisionBits;
uint32_t subTexelPrecisionBits;
uint32_t mipmapPrecisionBits;
uint32_t maxDrawIndexedIndexValue;
uint32_t maxDrawIndirectCount;
float maxSamplerLodBias;
float maxSamplerAnisotropy;
uint32_t maxViewports;
uint32_t maxViewportDimensions[2];
float viewportBoundsRange[2];
uint32_t viewportSubPixelBits;
size_t minMemoryMapAlignment;
DeviceSize minTexelBufferOffsetAlignment;
DeviceSize minUniformBufferOffsetAlignment;
DeviceSize minStorageBufferOffsetAlignment;
int32_t minTexelOffset;
uint32_t maxTexelOffset;
int32_t minTexelGatherOffset;
uint32_t maxTexelGatherOffset;
float minInterpolationOffset;
float maxInterpolationOffset;
uint32_t subPixelInterpolationOffsetBits;
uint32_t maxFramebufferWidth;
uint32_t maxFramebufferHeight;
uint32_t maxFramebufferLayers;
SampleCountFlags framebufferColorSampleCounts;
SampleCountFlags framebufferDepthSampleCounts;
SampleCountFlags framebufferStencilSampleCounts;
SampleCountFlags framebufferNoAttachmentsSampleCounts;
uint32_t maxColorAttachments;
SampleCountFlags sampledImageColorSampleCounts;
SampleCountFlags sampledImageIntegerSampleCounts;
SampleCountFlags sampledImageDepthSampleCounts;
SampleCountFlags sampledImageStencilSampleCounts;
SampleCountFlags storageImageSampleCounts;
uint32_t maxSampleMaskWords;
Bool32 timestampComputeAndGraphics;
float timestampPeriod;
uint32_t maxClipDistances;
uint32_t maxCullDistances;
uint32_t maxCombinedClipAndCullDistances;
uint32_t discreteQueuePriorities;
float pointSizeRange[2];
float lineWidthRange[2];
float pointSizeGranularity;
float lineWidthGranularity;
Bool32 strictLines;
Bool32 standardSampleLocations;
DeviceSize optimalBufferCopyOffsetAlignment;
DeviceSize optimalBufferCopyRowPitchAlignment;
DeviceSize nonCoherentAtomSize;
};
static_assert(sizeof(PhysicalDeviceLimits) == sizeof(VkPhysicalDeviceLimits), "struct and wrapper have different size!");
struct PhysicalDeviceProperties
{
operator const VkPhysicalDeviceProperties&() const
{
return *reinterpret_cast<const VkPhysicalDeviceProperties*>(this);
}
bool operator==(PhysicalDeviceProperties const& rhs) const
{
return (apiVersion == rhs.apiVersion)
&& (driverVersion == rhs.driverVersion)
&& (vendorID == rhs.vendorID)
&& (deviceID == rhs.deviceID)
&& (deviceType == rhs.deviceType)
&& (memcmp(deviceName, rhs.deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE * sizeof(char)) == 0)
&& (memcmp(pipelineCacheUUID, rhs.pipelineCacheUUID, VK_UUID_SIZE * sizeof(uint8_t)) == 0)
&& (limits == rhs.limits)
&& (sparseProperties == rhs.sparseProperties);
}
bool operator!=(PhysicalDeviceProperties const& rhs) const
{
return !operator==(rhs);
}
uint32_t apiVersion;
uint32_t driverVersion;
uint32_t vendorID;
uint32_t deviceID;
PhysicalDeviceType deviceType;
char deviceName[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
uint8_t pipelineCacheUUID[VK_UUID_SIZE];
PhysicalDeviceLimits limits;
PhysicalDeviceSparseProperties sparseProperties;
};
static_assert(sizeof(PhysicalDeviceProperties) == sizeof(VkPhysicalDeviceProperties), "struct and wrapper have different size!");
enum class AttachmentDescriptionFlagBits
{
eMayAlias = VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT
};
using AttachmentDescriptionFlags = Flags<AttachmentDescriptionFlagBits, VkAttachmentDescriptionFlags>;
inline AttachmentDescriptionFlags operator|(AttachmentDescriptionFlagBits bit0, AttachmentDescriptionFlagBits bit1)
{
return AttachmentDescriptionFlags(bit0) | bit1;
}
struct AttachmentDescription
{
AttachmentDescription(AttachmentDescriptionFlags flags_ = AttachmentDescriptionFlags(), Format format_ = Format::eUndefined, SampleCountFlagBits samples_ = SampleCountFlagBits::e1, AttachmentLoadOp loadOp_ = AttachmentLoadOp::eLoad, AttachmentStoreOp storeOp_ = AttachmentStoreOp::eStore, AttachmentLoadOp stencilLoadOp_ = AttachmentLoadOp::eLoad, AttachmentStoreOp stencilStoreOp_ = AttachmentStoreOp::eStore, ImageLayout initialLayout_ = ImageLayout::eUndefined, ImageLayout finalLayout_ = ImageLayout::eUndefined)
: flags(flags_)
, format(format_)
, samples(samples_)
, loadOp(loadOp_)
, storeOp(storeOp_)
, stencilLoadOp(stencilLoadOp_)
, stencilStoreOp(stencilStoreOp_)
, initialLayout(initialLayout_)
, finalLayout(finalLayout_)
{
}
AttachmentDescription(VkAttachmentDescription const & rhs)
{
memcpy(this, &rhs, sizeof(AttachmentDescription));
}
AttachmentDescription& operator=(VkAttachmentDescription const & rhs)
{
memcpy(this, &rhs, sizeof(AttachmentDescription));
return *this;
}
AttachmentDescription& setFlags(AttachmentDescriptionFlags flags_)
{
flags = flags_;
return *this;
}
AttachmentDescription& setFormat(Format format_)
{
format = format_;
return *this;
}
AttachmentDescription& setSamples(SampleCountFlagBits samples_)
{
samples = samples_;
return *this;
}
AttachmentDescription& setLoadOp(AttachmentLoadOp loadOp_)
{
loadOp = loadOp_;
return *this;
}
AttachmentDescription& setStoreOp(AttachmentStoreOp storeOp_)
{
storeOp = storeOp_;
return *this;
}
AttachmentDescription& setStencilLoadOp(AttachmentLoadOp stencilLoadOp_)
{
stencilLoadOp = stencilLoadOp_;
return *this;
}
AttachmentDescription& setStencilStoreOp(AttachmentStoreOp stencilStoreOp_)
{
stencilStoreOp = stencilStoreOp_;
return *this;
}
AttachmentDescription& setInitialLayout(ImageLayout initialLayout_)
{
initialLayout = initialLayout_;
return *this;
}
AttachmentDescription& setFinalLayout(ImageLayout finalLayout_)
{
finalLayout = finalLayout_;
return *this;
}
operator const VkAttachmentDescription&() const
{
return *reinterpret_cast<const VkAttachmentDescription*>(this);
}
bool operator==(AttachmentDescription const& rhs) const
{
return (flags == rhs.flags)
&& (format == rhs.format)
&& (samples == rhs.samples)
&& (loadOp == rhs.loadOp)
&& (storeOp == rhs.storeOp)
&& (stencilLoadOp == rhs.stencilLoadOp)
&& (stencilStoreOp == rhs.stencilStoreOp)
&& (initialLayout == rhs.initialLayout)
&& (finalLayout == rhs.finalLayout);
}
bool operator!=(AttachmentDescription const& rhs) const
{
return !operator==(rhs);
}
AttachmentDescriptionFlags flags;
Format format;
SampleCountFlagBits samples;
AttachmentLoadOp loadOp;
AttachmentStoreOp storeOp;
AttachmentLoadOp stencilLoadOp;
AttachmentStoreOp stencilStoreOp;
ImageLayout initialLayout;
ImageLayout finalLayout;
};
static_assert(sizeof(AttachmentDescription) == sizeof(VkAttachmentDescription), "struct and wrapper have different size!");
enum class StencilFaceFlagBits
{
eFront = VK_STENCIL_FACE_FRONT_BIT,
eBack = VK_STENCIL_FACE_BACK_BIT,
eVkStencilFrontAndBack = VK_STENCIL_FRONT_AND_BACK
};
using StencilFaceFlags = Flags<StencilFaceFlagBits, VkStencilFaceFlags>;
inline StencilFaceFlags operator|(StencilFaceFlagBits bit0, StencilFaceFlagBits bit1)
{
return StencilFaceFlags(bit0) | bit1;
}
enum class DescriptorPoolCreateFlagBits
{
eFreeDescriptorSet = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT
};
using DescriptorPoolCreateFlags = Flags<DescriptorPoolCreateFlagBits, VkDescriptorPoolCreateFlags>;
inline DescriptorPoolCreateFlags operator|(DescriptorPoolCreateFlagBits bit0, DescriptorPoolCreateFlagBits bit1)
{
return DescriptorPoolCreateFlags(bit0) | bit1;
}
struct DescriptorPoolCreateInfo
{
DescriptorPoolCreateInfo(DescriptorPoolCreateFlags flags_ = DescriptorPoolCreateFlags(), uint32_t maxSets_ = 0, uint32_t poolSizeCount_ = 0, const DescriptorPoolSize* pPoolSizes_ = nullptr)
: sType(StructureType::eDescriptorPoolCreateInfo)
, pNext(nullptr)
, flags(flags_)
, maxSets(maxSets_)
, poolSizeCount(poolSizeCount_)
, pPoolSizes(pPoolSizes_)
{
}
DescriptorPoolCreateInfo(VkDescriptorPoolCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorPoolCreateInfo));
}
DescriptorPoolCreateInfo& operator=(VkDescriptorPoolCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(DescriptorPoolCreateInfo));
return *this;
}
DescriptorPoolCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DescriptorPoolCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DescriptorPoolCreateInfo& setFlags(DescriptorPoolCreateFlags flags_)
{
flags = flags_;
return *this;
}
DescriptorPoolCreateInfo& setMaxSets(uint32_t maxSets_)
{
maxSets = maxSets_;
return *this;
}
DescriptorPoolCreateInfo& setPoolSizeCount(uint32_t poolSizeCount_)
{
poolSizeCount = poolSizeCount_;
return *this;
}
DescriptorPoolCreateInfo& setPPoolSizes(const DescriptorPoolSize* pPoolSizes_)
{
pPoolSizes = pPoolSizes_;
return *this;
}
operator const VkDescriptorPoolCreateInfo&() const
{
return *reinterpret_cast<const VkDescriptorPoolCreateInfo*>(this);
}
bool operator==(DescriptorPoolCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (maxSets == rhs.maxSets)
&& (poolSizeCount == rhs.poolSizeCount)
&& (pPoolSizes == rhs.pPoolSizes);
}
bool operator!=(DescriptorPoolCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DescriptorPoolCreateFlags flags;
uint32_t maxSets;
uint32_t poolSizeCount;
const DescriptorPoolSize* pPoolSizes;
};
static_assert(sizeof(DescriptorPoolCreateInfo) == sizeof(VkDescriptorPoolCreateInfo), "struct and wrapper have different size!");
enum class DependencyFlagBits
{
eByRegion = VK_DEPENDENCY_BY_REGION_BIT
};
using DependencyFlags = Flags<DependencyFlagBits, VkDependencyFlags>;
inline DependencyFlags operator|(DependencyFlagBits bit0, DependencyFlagBits bit1)
{
return DependencyFlags(bit0) | bit1;
}
class CommandBuffer
{
public:
CommandBuffer()
: m_commandBuffer(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
CommandBuffer(VkCommandBuffer commandBuffer)
: m_commandBuffer(commandBuffer)
{}
CommandBuffer& operator=(VkCommandBuffer commandBuffer)
{
m_commandBuffer = commandBuffer;
return *this;
}
#endif
bool operator==(CommandBuffer const &rhs) const
{
return m_commandBuffer == rhs.m_commandBuffer;
}
bool operator!=(CommandBuffer const &rhs) const
{
return m_commandBuffer != rhs.m_commandBuffer;
}
bool operator<(CommandBuffer const &rhs) const
{
return m_commandBuffer < rhs.m_commandBuffer;
}
Result begin(const CommandBufferBeginInfo* pBeginInfo) const
{
return static_cast<Result>(vkBeginCommandBuffer(m_commandBuffer, reinterpret_cast<const VkCommandBufferBeginInfo*>(pBeginInfo)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type begin(const CommandBufferBeginInfo & beginInfo) const
{
Result result = static_cast<Result>(vkBeginCommandBuffer(m_commandBuffer, reinterpret_cast<const VkCommandBufferBeginInfo*>(&beginInfo)));
return createResultValue(result, "vk::CommandBuffer::begin");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result end() const
{
return static_cast<Result>(vkEndCommandBuffer(m_commandBuffer));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type end() const
{
Result result = static_cast<Result>(vkEndCommandBuffer(m_commandBuffer));
return createResultValue(result, "vk::CommandBuffer::end");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result reset(CommandBufferResetFlags flags) const
{
return static_cast<Result>(vkResetCommandBuffer(m_commandBuffer, static_cast<VkCommandBufferResetFlags>(flags)));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type reset(CommandBufferResetFlags flags) const
{
Result result = static_cast<Result>(vkResetCommandBuffer(m_commandBuffer, static_cast<VkCommandBufferResetFlags>(flags)));
return createResultValue(result, "vk::CommandBuffer::reset");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void bindPipeline(PipelineBindPoint pipelineBindPoint, Pipeline pipeline) const
{
vkCmdBindPipeline(m_commandBuffer, static_cast<VkPipelineBindPoint>(pipelineBindPoint), static_cast<VkPipeline>(pipeline));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void bindPipeline(PipelineBindPoint pipelineBindPoint, Pipeline pipeline) const
{
vkCmdBindPipeline(m_commandBuffer, static_cast<VkPipelineBindPoint>(pipelineBindPoint), static_cast<VkPipeline>(pipeline));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void setViewport(uint32_t firstViewport, uint32_t viewportCount, const Viewport* pViewports) const
{
vkCmdSetViewport(m_commandBuffer, firstViewport, viewportCount, reinterpret_cast<const VkViewport*>(pViewports));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setViewport(uint32_t firstViewport, ArrayProxy<const Viewport> viewports) const
{
vkCmdSetViewport(m_commandBuffer, firstViewport, viewports.size(), reinterpret_cast<const VkViewport*>(viewports.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void setScissor(uint32_t firstScissor, uint32_t scissorCount, const Rect2D* pScissors) const
{
vkCmdSetScissor(m_commandBuffer, firstScissor, scissorCount, reinterpret_cast<const VkRect2D*>(pScissors));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setScissor(uint32_t firstScissor, ArrayProxy<const Rect2D> scissors) const
{
vkCmdSetScissor(m_commandBuffer, firstScissor, scissors.size(), reinterpret_cast<const VkRect2D*>(scissors.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setLineWidth(float lineWidth) const
{
vkCmdSetLineWidth(m_commandBuffer, lineWidth);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setLineWidth(float lineWidth) const
{
vkCmdSetLineWidth(m_commandBuffer, lineWidth);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setDepthBias(float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) const
{
vkCmdSetDepthBias(m_commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setDepthBias(float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) const
{
vkCmdSetDepthBias(m_commandBuffer, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setBlendConstants(const float blendConstants[4]) const
{
vkCmdSetBlendConstants(m_commandBuffer, blendConstants);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setBlendConstants(const float blendConstants[4]) const
{
vkCmdSetBlendConstants(m_commandBuffer, blendConstants);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setDepthBounds(float minDepthBounds, float maxDepthBounds) const
{
vkCmdSetDepthBounds(m_commandBuffer, minDepthBounds, maxDepthBounds);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setDepthBounds(float minDepthBounds, float maxDepthBounds) const
{
vkCmdSetDepthBounds(m_commandBuffer, minDepthBounds, maxDepthBounds);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setStencilCompareMask(StencilFaceFlags faceMask, uint32_t compareMask) const
{
vkCmdSetStencilCompareMask(m_commandBuffer, static_cast<VkStencilFaceFlags>(faceMask), compareMask);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setStencilCompareMask(StencilFaceFlags faceMask, uint32_t compareMask) const
{
vkCmdSetStencilCompareMask(m_commandBuffer, static_cast<VkStencilFaceFlags>(faceMask), compareMask);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setStencilWriteMask(StencilFaceFlags faceMask, uint32_t writeMask) const
{
vkCmdSetStencilWriteMask(m_commandBuffer, static_cast<VkStencilFaceFlags>(faceMask), writeMask);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setStencilWriteMask(StencilFaceFlags faceMask, uint32_t writeMask) const
{
vkCmdSetStencilWriteMask(m_commandBuffer, static_cast<VkStencilFaceFlags>(faceMask), writeMask);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setStencilReference(StencilFaceFlags faceMask, uint32_t reference) const
{
vkCmdSetStencilReference(m_commandBuffer, static_cast<VkStencilFaceFlags>(faceMask), reference);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setStencilReference(StencilFaceFlags faceMask, uint32_t reference) const
{
vkCmdSetStencilReference(m_commandBuffer, static_cast<VkStencilFaceFlags>(faceMask), reference);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void bindDescriptorSets(PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets) const
{
vkCmdBindDescriptorSets(m_commandBuffer, static_cast<VkPipelineBindPoint>(pipelineBindPoint), static_cast<VkPipelineLayout>(layout), firstSet, descriptorSetCount, reinterpret_cast<const VkDescriptorSet*>(pDescriptorSets), dynamicOffsetCount, pDynamicOffsets);
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void bindDescriptorSets(PipelineBindPoint pipelineBindPoint, PipelineLayout layout, uint32_t firstSet, ArrayProxy<const DescriptorSet> descriptorSets, ArrayProxy<const uint32_t> dynamicOffsets) const
{
vkCmdBindDescriptorSets(m_commandBuffer, static_cast<VkPipelineBindPoint>(pipelineBindPoint), static_cast<VkPipelineLayout>(layout), firstSet, descriptorSets.size(), reinterpret_cast<const VkDescriptorSet*>(descriptorSets.data()), dynamicOffsets.size(), dynamicOffsets.data());
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void bindIndexBuffer(Buffer buffer, DeviceSize offset, IndexType indexType) const
{
vkCmdBindIndexBuffer(m_commandBuffer, static_cast<VkBuffer>(buffer), offset, static_cast<VkIndexType>(indexType));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void bindIndexBuffer(Buffer buffer, DeviceSize offset, IndexType indexType) const
{
vkCmdBindIndexBuffer(m_commandBuffer, static_cast<VkBuffer>(buffer), offset, static_cast<VkIndexType>(indexType));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void bindVertexBuffers(uint32_t firstBinding, uint32_t bindingCount, const Buffer* pBuffers, const DeviceSize* pOffsets) const
{
vkCmdBindVertexBuffers(m_commandBuffer, firstBinding, bindingCount, reinterpret_cast<const VkBuffer*>(pBuffers), pOffsets);
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void bindVertexBuffers(uint32_t firstBinding, ArrayProxy<const Buffer> buffers, ArrayProxy<const DeviceSize> offsets) const
{
#ifdef VULKAN_HPP_NO_EXCEPTIONS
assert(buffers.size() == offsets.size());
#else
if (buffers.size() != offsets.size())
{
throw std::logic_error("vk::CommandBuffer::bindVertexBuffers: buffers.size() != offsets.size()");
}
#endif // VULKAN_HPP_NO_EXCEPTIONS
vkCmdBindVertexBuffers(m_commandBuffer, firstBinding, buffers.size(), reinterpret_cast<const VkBuffer*>(buffers.data()), offsets.data());
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void draw(uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) const
{
vkCmdDraw(m_commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void draw(uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) const
{
vkCmdDraw(m_commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void drawIndexed(uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const
{
vkCmdDrawIndexed(m_commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void drawIndexed(uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const
{
vkCmdDrawIndexed(m_commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void drawIndirect(Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride) const
{
vkCmdDrawIndirect(m_commandBuffer, static_cast<VkBuffer>(buffer), offset, drawCount, stride);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void drawIndirect(Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride) const
{
vkCmdDrawIndirect(m_commandBuffer, static_cast<VkBuffer>(buffer), offset, drawCount, stride);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void drawIndexedIndirect(Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride) const
{
vkCmdDrawIndexedIndirect(m_commandBuffer, static_cast<VkBuffer>(buffer), offset, drawCount, stride);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void drawIndexedIndirect(Buffer buffer, DeviceSize offset, uint32_t drawCount, uint32_t stride) const
{
vkCmdDrawIndexedIndirect(m_commandBuffer, static_cast<VkBuffer>(buffer), offset, drawCount, stride);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void dispatch(uint32_t x, uint32_t y, uint32_t z) const
{
vkCmdDispatch(m_commandBuffer, x, y, z);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void dispatch(uint32_t x, uint32_t y, uint32_t z) const
{
vkCmdDispatch(m_commandBuffer, x, y, z);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void dispatchIndirect(Buffer buffer, DeviceSize offset) const
{
vkCmdDispatchIndirect(m_commandBuffer, static_cast<VkBuffer>(buffer), offset);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void dispatchIndirect(Buffer buffer, DeviceSize offset) const
{
vkCmdDispatchIndirect(m_commandBuffer, static_cast<VkBuffer>(buffer), offset);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void copyBuffer(Buffer srcBuffer, Buffer dstBuffer, uint32_t regionCount, const BufferCopy* pRegions) const
{
vkCmdCopyBuffer(m_commandBuffer, static_cast<VkBuffer>(srcBuffer), static_cast<VkBuffer>(dstBuffer), regionCount, reinterpret_cast<const VkBufferCopy*>(pRegions));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyBuffer(Buffer srcBuffer, Buffer dstBuffer, ArrayProxy<const BufferCopy> regions) const
{
vkCmdCopyBuffer(m_commandBuffer, static_cast<VkBuffer>(srcBuffer), static_cast<VkBuffer>(dstBuffer), regions.size(), reinterpret_cast<const VkBufferCopy*>(regions.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void copyImage(Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageCopy* pRegions) const
{
vkCmdCopyImage(m_commandBuffer, static_cast<VkImage>(srcImage), static_cast<VkImageLayout>(srcImageLayout), static_cast<VkImage>(dstImage), static_cast<VkImageLayout>(dstImageLayout), regionCount, reinterpret_cast<const VkImageCopy*>(pRegions));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyImage(Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageCopy> regions) const
{
vkCmdCopyImage(m_commandBuffer, static_cast<VkImage>(srcImage), static_cast<VkImageLayout>(srcImageLayout), static_cast<VkImage>(dstImage), static_cast<VkImageLayout>(dstImageLayout), regions.size(), reinterpret_cast<const VkImageCopy*>(regions.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void blitImage(Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageBlit* pRegions, Filter filter) const
{
vkCmdBlitImage(m_commandBuffer, static_cast<VkImage>(srcImage), static_cast<VkImageLayout>(srcImageLayout), static_cast<VkImage>(dstImage), static_cast<VkImageLayout>(dstImageLayout), regionCount, reinterpret_cast<const VkImageBlit*>(pRegions), static_cast<VkFilter>(filter));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void blitImage(Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageBlit> regions, Filter filter) const
{
vkCmdBlitImage(m_commandBuffer, static_cast<VkImage>(srcImage), static_cast<VkImageLayout>(srcImageLayout), static_cast<VkImage>(dstImage), static_cast<VkImageLayout>(dstImageLayout), regions.size(), reinterpret_cast<const VkImageBlit*>(regions.data()), static_cast<VkFilter>(filter));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void copyBufferToImage(Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const BufferImageCopy* pRegions) const
{
vkCmdCopyBufferToImage(m_commandBuffer, static_cast<VkBuffer>(srcBuffer), static_cast<VkImage>(dstImage), static_cast<VkImageLayout>(dstImageLayout), regionCount, reinterpret_cast<const VkBufferImageCopy*>(pRegions));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyBufferToImage(Buffer srcBuffer, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const BufferImageCopy> regions) const
{
vkCmdCopyBufferToImage(m_commandBuffer, static_cast<VkBuffer>(srcBuffer), static_cast<VkImage>(dstImage), static_cast<VkImageLayout>(dstImageLayout), regions.size(), reinterpret_cast<const VkBufferImageCopy*>(regions.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void copyImageToBuffer(Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, uint32_t regionCount, const BufferImageCopy* pRegions) const
{
vkCmdCopyImageToBuffer(m_commandBuffer, static_cast<VkImage>(srcImage), static_cast<VkImageLayout>(srcImageLayout), static_cast<VkBuffer>(dstBuffer), regionCount, reinterpret_cast<const VkBufferImageCopy*>(pRegions));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyImageToBuffer(Image srcImage, ImageLayout srcImageLayout, Buffer dstBuffer, ArrayProxy<const BufferImageCopy> regions) const
{
vkCmdCopyImageToBuffer(m_commandBuffer, static_cast<VkImage>(srcImage), static_cast<VkImageLayout>(srcImageLayout), static_cast<VkBuffer>(dstBuffer), regions.size(), reinterpret_cast<const VkBufferImageCopy*>(regions.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void updateBuffer(Buffer dstBuffer, DeviceSize dstOffset, DeviceSize dataSize, const void* pData) const
{
vkCmdUpdateBuffer(m_commandBuffer, static_cast<VkBuffer>(dstBuffer), dstOffset, dataSize, pData);
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
void updateBuffer(Buffer dstBuffer, DeviceSize dstOffset, ArrayProxy<const T> data) const
{
vkCmdUpdateBuffer(m_commandBuffer, static_cast<VkBuffer>(dstBuffer), dstOffset, data.size() * sizeof(T), reinterpret_cast<const void*>(data.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void fillBuffer(Buffer dstBuffer, DeviceSize dstOffset, DeviceSize size, uint32_t data) const
{
vkCmdFillBuffer(m_commandBuffer, static_cast<VkBuffer>(dstBuffer), dstOffset, size, data);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void fillBuffer(Buffer dstBuffer, DeviceSize dstOffset, DeviceSize size, uint32_t data) const
{
vkCmdFillBuffer(m_commandBuffer, static_cast<VkBuffer>(dstBuffer), dstOffset, size, data);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void clearColorImage(Image image, ImageLayout imageLayout, const ClearColorValue* pColor, uint32_t rangeCount, const ImageSubresourceRange* pRanges) const
{
vkCmdClearColorImage(m_commandBuffer, static_cast<VkImage>(image), static_cast<VkImageLayout>(imageLayout), reinterpret_cast<const VkClearColorValue*>(pColor), rangeCount, reinterpret_cast<const VkImageSubresourceRange*>(pRanges));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void clearColorImage(Image image, ImageLayout imageLayout, const ClearColorValue & color, ArrayProxy<const ImageSubresourceRange> ranges) const
{
vkCmdClearColorImage(m_commandBuffer, static_cast<VkImage>(image), static_cast<VkImageLayout>(imageLayout), reinterpret_cast<const VkClearColorValue*>(&color), ranges.size(), reinterpret_cast<const VkImageSubresourceRange*>(ranges.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void clearDepthStencilImage(Image image, ImageLayout imageLayout, const ClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const ImageSubresourceRange* pRanges) const
{
vkCmdClearDepthStencilImage(m_commandBuffer, static_cast<VkImage>(image), static_cast<VkImageLayout>(imageLayout), reinterpret_cast<const VkClearDepthStencilValue*>(pDepthStencil), rangeCount, reinterpret_cast<const VkImageSubresourceRange*>(pRanges));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void clearDepthStencilImage(Image image, ImageLayout imageLayout, const ClearDepthStencilValue & depthStencil, ArrayProxy<const ImageSubresourceRange> ranges) const
{
vkCmdClearDepthStencilImage(m_commandBuffer, static_cast<VkImage>(image), static_cast<VkImageLayout>(imageLayout), reinterpret_cast<const VkClearDepthStencilValue*>(&depthStencil), ranges.size(), reinterpret_cast<const VkImageSubresourceRange*>(ranges.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void clearAttachments(uint32_t attachmentCount, const ClearAttachment* pAttachments, uint32_t rectCount, const ClearRect* pRects) const
{
vkCmdClearAttachments(m_commandBuffer, attachmentCount, reinterpret_cast<const VkClearAttachment*>(pAttachments), rectCount, reinterpret_cast<const VkClearRect*>(pRects));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void clearAttachments(ArrayProxy<const ClearAttachment> attachments, ArrayProxy<const ClearRect> rects) const
{
vkCmdClearAttachments(m_commandBuffer, attachments.size(), reinterpret_cast<const VkClearAttachment*>(attachments.data()), rects.size(), reinterpret_cast<const VkClearRect*>(rects.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void resolveImage(Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, uint32_t regionCount, const ImageResolve* pRegions) const
{
vkCmdResolveImage(m_commandBuffer, static_cast<VkImage>(srcImage), static_cast<VkImageLayout>(srcImageLayout), static_cast<VkImage>(dstImage), static_cast<VkImageLayout>(dstImageLayout), regionCount, reinterpret_cast<const VkImageResolve*>(pRegions));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void resolveImage(Image srcImage, ImageLayout srcImageLayout, Image dstImage, ImageLayout dstImageLayout, ArrayProxy<const ImageResolve> regions) const
{
vkCmdResolveImage(m_commandBuffer, static_cast<VkImage>(srcImage), static_cast<VkImageLayout>(srcImageLayout), static_cast<VkImage>(dstImage), static_cast<VkImageLayout>(dstImageLayout), regions.size(), reinterpret_cast<const VkImageResolve*>(regions.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setEvent(Event event, PipelineStageFlags stageMask) const
{
vkCmdSetEvent(m_commandBuffer, static_cast<VkEvent>(event), static_cast<VkPipelineStageFlags>(stageMask));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void setEvent(Event event, PipelineStageFlags stageMask) const
{
vkCmdSetEvent(m_commandBuffer, static_cast<VkEvent>(event), static_cast<VkPipelineStageFlags>(stageMask));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void resetEvent(Event event, PipelineStageFlags stageMask) const
{
vkCmdResetEvent(m_commandBuffer, static_cast<VkEvent>(event), static_cast<VkPipelineStageFlags>(stageMask));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void resetEvent(Event event, PipelineStageFlags stageMask) const
{
vkCmdResetEvent(m_commandBuffer, static_cast<VkEvent>(event), static_cast<VkPipelineStageFlags>(stageMask));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void waitEvents(uint32_t eventCount, const Event* pEvents, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers) const
{
vkCmdWaitEvents(m_commandBuffer, eventCount, reinterpret_cast<const VkEvent*>(pEvents), static_cast<VkPipelineStageFlags>(srcStageMask), static_cast<VkPipelineStageFlags>(dstStageMask), memoryBarrierCount, reinterpret_cast<const VkMemoryBarrier*>(pMemoryBarriers), bufferMemoryBarrierCount, reinterpret_cast<const VkBufferMemoryBarrier*>(pBufferMemoryBarriers), imageMemoryBarrierCount, reinterpret_cast<const VkImageMemoryBarrier*>(pImageMemoryBarriers));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void waitEvents(ArrayProxy<const Event> events, PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, ArrayProxy<const MemoryBarrier> memoryBarriers, ArrayProxy<const BufferMemoryBarrier> bufferMemoryBarriers, ArrayProxy<const ImageMemoryBarrier> imageMemoryBarriers) const
{
vkCmdWaitEvents(m_commandBuffer, events.size(), reinterpret_cast<const VkEvent*>(events.data()), static_cast<VkPipelineStageFlags>(srcStageMask), static_cast<VkPipelineStageFlags>(dstStageMask), memoryBarriers.size(), reinterpret_cast<const VkMemoryBarrier*>(memoryBarriers.data()), bufferMemoryBarriers.size(), reinterpret_cast<const VkBufferMemoryBarrier*>(bufferMemoryBarriers.data()), imageMemoryBarriers.size(), reinterpret_cast<const VkImageMemoryBarrier*>(imageMemoryBarriers.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void pipelineBarrier(PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const MemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const BufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const ImageMemoryBarrier* pImageMemoryBarriers) const
{
vkCmdPipelineBarrier(m_commandBuffer, static_cast<VkPipelineStageFlags>(srcStageMask), static_cast<VkPipelineStageFlags>(dstStageMask), static_cast<VkDependencyFlags>(dependencyFlags), memoryBarrierCount, reinterpret_cast<const VkMemoryBarrier*>(pMemoryBarriers), bufferMemoryBarrierCount, reinterpret_cast<const VkBufferMemoryBarrier*>(pBufferMemoryBarriers), imageMemoryBarrierCount, reinterpret_cast<const VkImageMemoryBarrier*>(pImageMemoryBarriers));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void pipelineBarrier(PipelineStageFlags srcStageMask, PipelineStageFlags dstStageMask, DependencyFlags dependencyFlags, ArrayProxy<const MemoryBarrier> memoryBarriers, ArrayProxy<const BufferMemoryBarrier> bufferMemoryBarriers, ArrayProxy<const ImageMemoryBarrier> imageMemoryBarriers) const
{
vkCmdPipelineBarrier(m_commandBuffer, static_cast<VkPipelineStageFlags>(srcStageMask), static_cast<VkPipelineStageFlags>(dstStageMask), static_cast<VkDependencyFlags>(dependencyFlags), memoryBarriers.size(), reinterpret_cast<const VkMemoryBarrier*>(memoryBarriers.data()), bufferMemoryBarriers.size(), reinterpret_cast<const VkBufferMemoryBarrier*>(bufferMemoryBarriers.data()), imageMemoryBarriers.size(), reinterpret_cast<const VkImageMemoryBarrier*>(imageMemoryBarriers.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void beginQuery(QueryPool queryPool, uint32_t query, QueryControlFlags flags) const
{
vkCmdBeginQuery(m_commandBuffer, static_cast<VkQueryPool>(queryPool), query, static_cast<VkQueryControlFlags>(flags));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void beginQuery(QueryPool queryPool, uint32_t query, QueryControlFlags flags) const
{
vkCmdBeginQuery(m_commandBuffer, static_cast<VkQueryPool>(queryPool), query, static_cast<VkQueryControlFlags>(flags));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void endQuery(QueryPool queryPool, uint32_t query) const
{
vkCmdEndQuery(m_commandBuffer, static_cast<VkQueryPool>(queryPool), query);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void endQuery(QueryPool queryPool, uint32_t query) const
{
vkCmdEndQuery(m_commandBuffer, static_cast<VkQueryPool>(queryPool), query);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void resetQueryPool(QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) const
{
vkCmdResetQueryPool(m_commandBuffer, static_cast<VkQueryPool>(queryPool), firstQuery, queryCount);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void resetQueryPool(QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount) const
{
vkCmdResetQueryPool(m_commandBuffer, static_cast<VkQueryPool>(queryPool), firstQuery, queryCount);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void writeTimestamp(PipelineStageFlagBits pipelineStage, QueryPool queryPool, uint32_t query) const
{
vkCmdWriteTimestamp(m_commandBuffer, static_cast<VkPipelineStageFlagBits>(pipelineStage), static_cast<VkQueryPool>(queryPool), query);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void writeTimestamp(PipelineStageFlagBits pipelineStage, QueryPool queryPool, uint32_t query) const
{
vkCmdWriteTimestamp(m_commandBuffer, static_cast<VkPipelineStageFlagBits>(pipelineStage), static_cast<VkQueryPool>(queryPool), query);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyQueryPoolResults(QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, Buffer dstBuffer, DeviceSize dstOffset, DeviceSize stride, QueryResultFlags flags) const
{
vkCmdCopyQueryPoolResults(m_commandBuffer, static_cast<VkQueryPool>(queryPool), firstQuery, queryCount, static_cast<VkBuffer>(dstBuffer), dstOffset, stride, static_cast<VkQueryResultFlags>(flags));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void copyQueryPoolResults(QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, Buffer dstBuffer, DeviceSize dstOffset, DeviceSize stride, QueryResultFlags flags) const
{
vkCmdCopyQueryPoolResults(m_commandBuffer, static_cast<VkQueryPool>(queryPool), firstQuery, queryCount, static_cast<VkBuffer>(dstBuffer), dstOffset, stride, static_cast<VkQueryResultFlags>(flags));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void pushConstants(PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void* pValues) const
{
vkCmdPushConstants(m_commandBuffer, static_cast<VkPipelineLayout>(layout), static_cast<VkShaderStageFlags>(stageFlags), offset, size, pValues);
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
void pushConstants(PipelineLayout layout, ShaderStageFlags stageFlags, uint32_t offset, ArrayProxy<const T> values) const
{
vkCmdPushConstants(m_commandBuffer, static_cast<VkPipelineLayout>(layout), static_cast<VkShaderStageFlags>(stageFlags), offset, values.size() * sizeof(T), reinterpret_cast<const void*>(values.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void beginRenderPass(const RenderPassBeginInfo* pRenderPassBegin, SubpassContents contents) const
{
vkCmdBeginRenderPass(m_commandBuffer, reinterpret_cast<const VkRenderPassBeginInfo*>(pRenderPassBegin), static_cast<VkSubpassContents>(contents));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void beginRenderPass(const RenderPassBeginInfo & renderPassBegin, SubpassContents contents) const
{
vkCmdBeginRenderPass(m_commandBuffer, reinterpret_cast<const VkRenderPassBeginInfo*>(&renderPassBegin), static_cast<VkSubpassContents>(contents));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void nextSubpass(SubpassContents contents) const
{
vkCmdNextSubpass(m_commandBuffer, static_cast<VkSubpassContents>(contents));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void nextSubpass(SubpassContents contents) const
{
vkCmdNextSubpass(m_commandBuffer, static_cast<VkSubpassContents>(contents));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void endRenderPass() const
{
vkCmdEndRenderPass(m_commandBuffer);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void endRenderPass() const
{
vkCmdEndRenderPass(m_commandBuffer);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void executeCommands(uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers) const
{
vkCmdExecuteCommands(m_commandBuffer, commandBufferCount, reinterpret_cast<const VkCommandBuffer*>(pCommandBuffers));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void executeCommands(ArrayProxy<const CommandBuffer> commandBuffers) const
{
vkCmdExecuteCommands(m_commandBuffer, commandBuffers.size(), reinterpret_cast<const VkCommandBuffer*>(commandBuffers.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void debugMarkerBeginEXT(DebugMarkerMarkerInfoEXT* pMarkerInfo) const
{
vkCmdDebugMarkerBeginEXT(m_commandBuffer, reinterpret_cast<VkDebugMarkerMarkerInfoEXT*>(pMarkerInfo));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
DebugMarkerMarkerInfoEXT debugMarkerBeginEXT() const
{
DebugMarkerMarkerInfoEXT markerInfo;
vkCmdDebugMarkerBeginEXT(m_commandBuffer, reinterpret_cast<VkDebugMarkerMarkerInfoEXT*>(&markerInfo));
return markerInfo;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void debugMarkerEndEXT() const
{
vkCmdDebugMarkerEndEXT(m_commandBuffer);
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void debugMarkerEndEXT() const
{
vkCmdDebugMarkerEndEXT(m_commandBuffer);
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void debugMarkerInsertEXT(DebugMarkerMarkerInfoEXT* pMarkerInfo) const
{
vkCmdDebugMarkerInsertEXT(m_commandBuffer, reinterpret_cast<VkDebugMarkerMarkerInfoEXT*>(pMarkerInfo));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
DebugMarkerMarkerInfoEXT debugMarkerInsertEXT() const
{
DebugMarkerMarkerInfoEXT markerInfo;
vkCmdDebugMarkerInsertEXT(m_commandBuffer, reinterpret_cast<VkDebugMarkerMarkerInfoEXT*>(&markerInfo));
return markerInfo;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkCommandBuffer() const
{
return m_commandBuffer;
}
explicit operator bool() const
{
return m_commandBuffer != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_commandBuffer == VK_NULL_HANDLE;
}
private:
VkCommandBuffer m_commandBuffer;
};
static_assert(sizeof(CommandBuffer) == sizeof(VkCommandBuffer), "handle and wrapper have different size!");
struct SubpassDependency
{
SubpassDependency(uint32_t srcSubpass_ = 0, uint32_t dstSubpass_ = 0, PipelineStageFlags srcStageMask_ = PipelineStageFlags(), PipelineStageFlags dstStageMask_ = PipelineStageFlags(), AccessFlags srcAccessMask_ = AccessFlags(), AccessFlags dstAccessMask_ = AccessFlags(), DependencyFlags dependencyFlags_ = DependencyFlags())
: srcSubpass(srcSubpass_)
, dstSubpass(dstSubpass_)
, srcStageMask(srcStageMask_)
, dstStageMask(dstStageMask_)
, srcAccessMask(srcAccessMask_)
, dstAccessMask(dstAccessMask_)
, dependencyFlags(dependencyFlags_)
{
}
SubpassDependency(VkSubpassDependency const & rhs)
{
memcpy(this, &rhs, sizeof(SubpassDependency));
}
SubpassDependency& operator=(VkSubpassDependency const & rhs)
{
memcpy(this, &rhs, sizeof(SubpassDependency));
return *this;
}
SubpassDependency& setSrcSubpass(uint32_t srcSubpass_)
{
srcSubpass = srcSubpass_;
return *this;
}
SubpassDependency& setDstSubpass(uint32_t dstSubpass_)
{
dstSubpass = dstSubpass_;
return *this;
}
SubpassDependency& setSrcStageMask(PipelineStageFlags srcStageMask_)
{
srcStageMask = srcStageMask_;
return *this;
}
SubpassDependency& setDstStageMask(PipelineStageFlags dstStageMask_)
{
dstStageMask = dstStageMask_;
return *this;
}
SubpassDependency& setSrcAccessMask(AccessFlags srcAccessMask_)
{
srcAccessMask = srcAccessMask_;
return *this;
}
SubpassDependency& setDstAccessMask(AccessFlags dstAccessMask_)
{
dstAccessMask = dstAccessMask_;
return *this;
}
SubpassDependency& setDependencyFlags(DependencyFlags dependencyFlags_)
{
dependencyFlags = dependencyFlags_;
return *this;
}
operator const VkSubpassDependency&() const
{
return *reinterpret_cast<const VkSubpassDependency*>(this);
}
bool operator==(SubpassDependency const& rhs) const
{
return (srcSubpass == rhs.srcSubpass)
&& (dstSubpass == rhs.dstSubpass)
&& (srcStageMask == rhs.srcStageMask)
&& (dstStageMask == rhs.dstStageMask)
&& (srcAccessMask == rhs.srcAccessMask)
&& (dstAccessMask == rhs.dstAccessMask)
&& (dependencyFlags == rhs.dependencyFlags);
}
bool operator!=(SubpassDependency const& rhs) const
{
return !operator==(rhs);
}
uint32_t srcSubpass;
uint32_t dstSubpass;
PipelineStageFlags srcStageMask;
PipelineStageFlags dstStageMask;
AccessFlags srcAccessMask;
AccessFlags dstAccessMask;
DependencyFlags dependencyFlags;
};
static_assert(sizeof(SubpassDependency) == sizeof(VkSubpassDependency), "struct and wrapper have different size!");
struct RenderPassCreateInfo
{
RenderPassCreateInfo(RenderPassCreateFlags flags_ = RenderPassCreateFlags(), uint32_t attachmentCount_ = 0, const AttachmentDescription* pAttachments_ = nullptr, uint32_t subpassCount_ = 0, const SubpassDescription* pSubpasses_ = nullptr, uint32_t dependencyCount_ = 0, const SubpassDependency* pDependencies_ = nullptr)
: sType(StructureType::eRenderPassCreateInfo)
, pNext(nullptr)
, flags(flags_)
, attachmentCount(attachmentCount_)
, pAttachments(pAttachments_)
, subpassCount(subpassCount_)
, pSubpasses(pSubpasses_)
, dependencyCount(dependencyCount_)
, pDependencies(pDependencies_)
{
}
RenderPassCreateInfo(VkRenderPassCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(RenderPassCreateInfo));
}
RenderPassCreateInfo& operator=(VkRenderPassCreateInfo const & rhs)
{
memcpy(this, &rhs, sizeof(RenderPassCreateInfo));
return *this;
}
RenderPassCreateInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
RenderPassCreateInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
RenderPassCreateInfo& setFlags(RenderPassCreateFlags flags_)
{
flags = flags_;
return *this;
}
RenderPassCreateInfo& setAttachmentCount(uint32_t attachmentCount_)
{
attachmentCount = attachmentCount_;
return *this;
}
RenderPassCreateInfo& setPAttachments(const AttachmentDescription* pAttachments_)
{
pAttachments = pAttachments_;
return *this;
}
RenderPassCreateInfo& setSubpassCount(uint32_t subpassCount_)
{
subpassCount = subpassCount_;
return *this;
}
RenderPassCreateInfo& setPSubpasses(const SubpassDescription* pSubpasses_)
{
pSubpasses = pSubpasses_;
return *this;
}
RenderPassCreateInfo& setDependencyCount(uint32_t dependencyCount_)
{
dependencyCount = dependencyCount_;
return *this;
}
RenderPassCreateInfo& setPDependencies(const SubpassDependency* pDependencies_)
{
pDependencies = pDependencies_;
return *this;
}
operator const VkRenderPassCreateInfo&() const
{
return *reinterpret_cast<const VkRenderPassCreateInfo*>(this);
}
bool operator==(RenderPassCreateInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (attachmentCount == rhs.attachmentCount)
&& (pAttachments == rhs.pAttachments)
&& (subpassCount == rhs.subpassCount)
&& (pSubpasses == rhs.pSubpasses)
&& (dependencyCount == rhs.dependencyCount)
&& (pDependencies == rhs.pDependencies);
}
bool operator!=(RenderPassCreateInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
RenderPassCreateFlags flags;
uint32_t attachmentCount;
const AttachmentDescription* pAttachments;
uint32_t subpassCount;
const SubpassDescription* pSubpasses;
uint32_t dependencyCount;
const SubpassDependency* pDependencies;
};
static_assert(sizeof(RenderPassCreateInfo) == sizeof(VkRenderPassCreateInfo), "struct and wrapper have different size!");
struct SubmitInfo
{
SubmitInfo(uint32_t waitSemaphoreCount_ = 0, const Semaphore* pWaitSemaphores_ = nullptr, const PipelineStageFlags* pWaitDstStageMask_ = nullptr, uint32_t commandBufferCount_ = 0, const CommandBuffer* pCommandBuffers_ = nullptr, uint32_t signalSemaphoreCount_ = 0, const Semaphore* pSignalSemaphores_ = nullptr)
: sType(StructureType::eSubmitInfo)
, pNext(nullptr)
, waitSemaphoreCount(waitSemaphoreCount_)
, pWaitSemaphores(pWaitSemaphores_)
, pWaitDstStageMask(pWaitDstStageMask_)
, commandBufferCount(commandBufferCount_)
, pCommandBuffers(pCommandBuffers_)
, signalSemaphoreCount(signalSemaphoreCount_)
, pSignalSemaphores(pSignalSemaphores_)
{
}
SubmitInfo(VkSubmitInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SubmitInfo));
}
SubmitInfo& operator=(VkSubmitInfo const & rhs)
{
memcpy(this, &rhs, sizeof(SubmitInfo));
return *this;
}
SubmitInfo& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
SubmitInfo& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
SubmitInfo& setWaitSemaphoreCount(uint32_t waitSemaphoreCount_)
{
waitSemaphoreCount = waitSemaphoreCount_;
return *this;
}
SubmitInfo& setPWaitSemaphores(const Semaphore* pWaitSemaphores_)
{
pWaitSemaphores = pWaitSemaphores_;
return *this;
}
SubmitInfo& setPWaitDstStageMask(const PipelineStageFlags* pWaitDstStageMask_)
{
pWaitDstStageMask = pWaitDstStageMask_;
return *this;
}
SubmitInfo& setCommandBufferCount(uint32_t commandBufferCount_)
{
commandBufferCount = commandBufferCount_;
return *this;
}
SubmitInfo& setPCommandBuffers(const CommandBuffer* pCommandBuffers_)
{
pCommandBuffers = pCommandBuffers_;
return *this;
}
SubmitInfo& setSignalSemaphoreCount(uint32_t signalSemaphoreCount_)
{
signalSemaphoreCount = signalSemaphoreCount_;
return *this;
}
SubmitInfo& setPSignalSemaphores(const Semaphore* pSignalSemaphores_)
{
pSignalSemaphores = pSignalSemaphores_;
return *this;
}
operator const VkSubmitInfo&() const
{
return *reinterpret_cast<const VkSubmitInfo*>(this);
}
bool operator==(SubmitInfo const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (waitSemaphoreCount == rhs.waitSemaphoreCount)
&& (pWaitSemaphores == rhs.pWaitSemaphores)
&& (pWaitDstStageMask == rhs.pWaitDstStageMask)
&& (commandBufferCount == rhs.commandBufferCount)
&& (pCommandBuffers == rhs.pCommandBuffers)
&& (signalSemaphoreCount == rhs.signalSemaphoreCount)
&& (pSignalSemaphores == rhs.pSignalSemaphores);
}
bool operator!=(SubmitInfo const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
uint32_t waitSemaphoreCount;
const Semaphore* pWaitSemaphores;
const PipelineStageFlags* pWaitDstStageMask;
uint32_t commandBufferCount;
const CommandBuffer* pCommandBuffers;
uint32_t signalSemaphoreCount;
const Semaphore* pSignalSemaphores;
};
static_assert(sizeof(SubmitInfo) == sizeof(VkSubmitInfo), "struct and wrapper have different size!");
class Queue
{
public:
Queue()
: m_queue(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Queue(VkQueue queue)
: m_queue(queue)
{}
Queue& operator=(VkQueue queue)
{
m_queue = queue;
return *this;
}
#endif
bool operator==(Queue const &rhs) const
{
return m_queue == rhs.m_queue;
}
bool operator!=(Queue const &rhs) const
{
return m_queue != rhs.m_queue;
}
bool operator<(Queue const &rhs) const
{
return m_queue < rhs.m_queue;
}
Result submit(uint32_t submitCount, const SubmitInfo* pSubmits, Fence fence) const
{
return static_cast<Result>(vkQueueSubmit(m_queue, submitCount, reinterpret_cast<const VkSubmitInfo*>(pSubmits), static_cast<VkFence>(fence)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type submit(ArrayProxy<const SubmitInfo> submits, Fence fence) const
{
Result result = static_cast<Result>(vkQueueSubmit(m_queue, submits.size(), reinterpret_cast<const VkSubmitInfo*>(submits.data()), static_cast<VkFence>(fence)));
return createResultValue(result, "vk::Queue::submit");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result waitIdle() const
{
return static_cast<Result>(vkQueueWaitIdle(m_queue));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type waitIdle() const
{
Result result = static_cast<Result>(vkQueueWaitIdle(m_queue));
return createResultValue(result, "vk::Queue::waitIdle");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result bindSparse(uint32_t bindInfoCount, const BindSparseInfo* pBindInfo, Fence fence) const
{
return static_cast<Result>(vkQueueBindSparse(m_queue, bindInfoCount, reinterpret_cast<const VkBindSparseInfo*>(pBindInfo), static_cast<VkFence>(fence)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type bindSparse(ArrayProxy<const BindSparseInfo> bindInfo, Fence fence) const
{
Result result = static_cast<Result>(vkQueueBindSparse(m_queue, bindInfo.size(), reinterpret_cast<const VkBindSparseInfo*>(bindInfo.data()), static_cast<VkFence>(fence)));
return createResultValue(result, "vk::Queue::bindSparse");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result presentKHR(const PresentInfoKHR* pPresentInfo) const
{
return static_cast<Result>(vkQueuePresentKHR(m_queue, reinterpret_cast<const VkPresentInfoKHR*>(pPresentInfo)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result presentKHR(const PresentInfoKHR & presentInfo) const
{
Result result = static_cast<Result>(vkQueuePresentKHR(m_queue, reinterpret_cast<const VkPresentInfoKHR*>(&presentInfo)));
return createResultValue(result, "vk::Queue::presentKHR", { Result::eSuccess, Result::eSuboptimalKHR });
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkQueue() const
{
return m_queue;
}
explicit operator bool() const
{
return m_queue != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_queue == VK_NULL_HANDLE;
}
private:
VkQueue m_queue;
};
static_assert(sizeof(Queue) == sizeof(VkQueue), "handle and wrapper have different size!");
enum class PresentModeKHR
{
eImmediate = VK_PRESENT_MODE_IMMEDIATE_KHR,
eMailbox = VK_PRESENT_MODE_MAILBOX_KHR,
eFifo = VK_PRESENT_MODE_FIFO_KHR,
eFifoRelaxed = VK_PRESENT_MODE_FIFO_RELAXED_KHR
};
enum class ColorSpaceKHR
{
eSrgbNonlinear = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR
};
struct SurfaceFormatKHR
{
SurfaceFormatKHR(Format format_ = Format::eUndefined, ColorSpaceKHR colorSpace_ = ColorSpaceKHR::eSrgbNonlinear)
: format(format_)
, colorSpace(colorSpace_)
{
}
SurfaceFormatKHR(VkSurfaceFormatKHR const & rhs)
{
memcpy(this, &rhs, sizeof(SurfaceFormatKHR));
}
SurfaceFormatKHR& operator=(VkSurfaceFormatKHR const & rhs)
{
memcpy(this, &rhs, sizeof(SurfaceFormatKHR));
return *this;
}
SurfaceFormatKHR& setFormat(Format format_)
{
format = format_;
return *this;
}
SurfaceFormatKHR& setColorSpace(ColorSpaceKHR colorSpace_)
{
colorSpace = colorSpace_;
return *this;
}
operator const VkSurfaceFormatKHR&() const
{
return *reinterpret_cast<const VkSurfaceFormatKHR*>(this);
}
bool operator==(SurfaceFormatKHR const& rhs) const
{
return (format == rhs.format)
&& (colorSpace == rhs.colorSpace);
}
bool operator!=(SurfaceFormatKHR const& rhs) const
{
return !operator==(rhs);
}
Format format;
ColorSpaceKHR colorSpace;
};
static_assert(sizeof(SurfaceFormatKHR) == sizeof(VkSurfaceFormatKHR), "struct and wrapper have different size!");
enum class DisplayPlaneAlphaFlagBitsKHR
{
eOpaque = VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR,
eGlobal = VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR,
ePerPixel = VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR,
ePerPixelPremultiplied = VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR
};
using DisplayPlaneAlphaFlagsKHR = Flags<DisplayPlaneAlphaFlagBitsKHR, VkDisplayPlaneAlphaFlagsKHR>;
inline DisplayPlaneAlphaFlagsKHR operator|(DisplayPlaneAlphaFlagBitsKHR bit0, DisplayPlaneAlphaFlagBitsKHR bit1)
{
return DisplayPlaneAlphaFlagsKHR(bit0) | bit1;
}
struct DisplayPlaneCapabilitiesKHR
{
DisplayPlaneCapabilitiesKHR(DisplayPlaneAlphaFlagsKHR supportedAlpha_ = DisplayPlaneAlphaFlagsKHR(), Offset2D minSrcPosition_ = Offset2D(), Offset2D maxSrcPosition_ = Offset2D(), Extent2D minSrcExtent_ = Extent2D(), Extent2D maxSrcExtent_ = Extent2D(), Offset2D minDstPosition_ = Offset2D(), Offset2D maxDstPosition_ = Offset2D(), Extent2D minDstExtent_ = Extent2D(), Extent2D maxDstExtent_ = Extent2D())
: supportedAlpha(supportedAlpha_)
, minSrcPosition(minSrcPosition_)
, maxSrcPosition(maxSrcPosition_)
, minSrcExtent(minSrcExtent_)
, maxSrcExtent(maxSrcExtent_)
, minDstPosition(minDstPosition_)
, maxDstPosition(maxDstPosition_)
, minDstExtent(minDstExtent_)
, maxDstExtent(maxDstExtent_)
{
}
DisplayPlaneCapabilitiesKHR(VkDisplayPlaneCapabilitiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayPlaneCapabilitiesKHR));
}
DisplayPlaneCapabilitiesKHR& operator=(VkDisplayPlaneCapabilitiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayPlaneCapabilitiesKHR));
return *this;
}
DisplayPlaneCapabilitiesKHR& setSupportedAlpha(DisplayPlaneAlphaFlagsKHR supportedAlpha_)
{
supportedAlpha = supportedAlpha_;
return *this;
}
DisplayPlaneCapabilitiesKHR& setMinSrcPosition(Offset2D minSrcPosition_)
{
minSrcPosition = minSrcPosition_;
return *this;
}
DisplayPlaneCapabilitiesKHR& setMaxSrcPosition(Offset2D maxSrcPosition_)
{
maxSrcPosition = maxSrcPosition_;
return *this;
}
DisplayPlaneCapabilitiesKHR& setMinSrcExtent(Extent2D minSrcExtent_)
{
minSrcExtent = minSrcExtent_;
return *this;
}
DisplayPlaneCapabilitiesKHR& setMaxSrcExtent(Extent2D maxSrcExtent_)
{
maxSrcExtent = maxSrcExtent_;
return *this;
}
DisplayPlaneCapabilitiesKHR& setMinDstPosition(Offset2D minDstPosition_)
{
minDstPosition = minDstPosition_;
return *this;
}
DisplayPlaneCapabilitiesKHR& setMaxDstPosition(Offset2D maxDstPosition_)
{
maxDstPosition = maxDstPosition_;
return *this;
}
DisplayPlaneCapabilitiesKHR& setMinDstExtent(Extent2D minDstExtent_)
{
minDstExtent = minDstExtent_;
return *this;
}
DisplayPlaneCapabilitiesKHR& setMaxDstExtent(Extent2D maxDstExtent_)
{
maxDstExtent = maxDstExtent_;
return *this;
}
operator const VkDisplayPlaneCapabilitiesKHR&() const
{
return *reinterpret_cast<const VkDisplayPlaneCapabilitiesKHR*>(this);
}
bool operator==(DisplayPlaneCapabilitiesKHR const& rhs) const
{
return (supportedAlpha == rhs.supportedAlpha)
&& (minSrcPosition == rhs.minSrcPosition)
&& (maxSrcPosition == rhs.maxSrcPosition)
&& (minSrcExtent == rhs.minSrcExtent)
&& (maxSrcExtent == rhs.maxSrcExtent)
&& (minDstPosition == rhs.minDstPosition)
&& (maxDstPosition == rhs.maxDstPosition)
&& (minDstExtent == rhs.minDstExtent)
&& (maxDstExtent == rhs.maxDstExtent);
}
bool operator!=(DisplayPlaneCapabilitiesKHR const& rhs) const
{
return !operator==(rhs);
}
DisplayPlaneAlphaFlagsKHR supportedAlpha;
Offset2D minSrcPosition;
Offset2D maxSrcPosition;
Extent2D minSrcExtent;
Extent2D maxSrcExtent;
Offset2D minDstPosition;
Offset2D maxDstPosition;
Extent2D minDstExtent;
Extent2D maxDstExtent;
};
static_assert(sizeof(DisplayPlaneCapabilitiesKHR) == sizeof(VkDisplayPlaneCapabilitiesKHR), "struct and wrapper have different size!");
enum class CompositeAlphaFlagBitsKHR
{
eOpaque = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
ePreMultiplied = VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR,
ePostMultiplied = VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
eInherit = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR
};
using CompositeAlphaFlagsKHR = Flags<CompositeAlphaFlagBitsKHR, VkCompositeAlphaFlagsKHR>;
inline CompositeAlphaFlagsKHR operator|(CompositeAlphaFlagBitsKHR bit0, CompositeAlphaFlagBitsKHR bit1)
{
return CompositeAlphaFlagsKHR(bit0) | bit1;
}
enum class SurfaceTransformFlagBitsKHR
{
eIdentity = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
eRotate90 = VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR,
eRotate180 = VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR,
eRotate270 = VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR,
eHorizontalMirror = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR,
eHorizontalMirrorRotate90 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR,
eHorizontalMirrorRotate180 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR,
eHorizontalMirrorRotate270 = VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR,
eInherit = VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR
};
using SurfaceTransformFlagsKHR = Flags<SurfaceTransformFlagBitsKHR, VkSurfaceTransformFlagsKHR>;
inline SurfaceTransformFlagsKHR operator|(SurfaceTransformFlagBitsKHR bit0, SurfaceTransformFlagBitsKHR bit1)
{
return SurfaceTransformFlagsKHR(bit0) | bit1;
}
struct DisplayPropertiesKHR
{
DisplayPropertiesKHR(DisplayKHR display_ = DisplayKHR(), const char* displayName_ = nullptr, Extent2D physicalDimensions_ = Extent2D(), Extent2D physicalResolution_ = Extent2D(), SurfaceTransformFlagsKHR supportedTransforms_ = SurfaceTransformFlagsKHR(), Bool32 planeReorderPossible_ = 0, Bool32 persistentContent_ = 0)
: display(display_)
, displayName(displayName_)
, physicalDimensions(physicalDimensions_)
, physicalResolution(physicalResolution_)
, supportedTransforms(supportedTransforms_)
, planeReorderPossible(planeReorderPossible_)
, persistentContent(persistentContent_)
{
}
DisplayPropertiesKHR(VkDisplayPropertiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayPropertiesKHR));
}
DisplayPropertiesKHR& operator=(VkDisplayPropertiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplayPropertiesKHR));
return *this;
}
DisplayPropertiesKHR& setDisplay(DisplayKHR display_)
{
display = display_;
return *this;
}
DisplayPropertiesKHR& setDisplayName(const char* displayName_)
{
displayName = displayName_;
return *this;
}
DisplayPropertiesKHR& setPhysicalDimensions(Extent2D physicalDimensions_)
{
physicalDimensions = physicalDimensions_;
return *this;
}
DisplayPropertiesKHR& setPhysicalResolution(Extent2D physicalResolution_)
{
physicalResolution = physicalResolution_;
return *this;
}
DisplayPropertiesKHR& setSupportedTransforms(SurfaceTransformFlagsKHR supportedTransforms_)
{
supportedTransforms = supportedTransforms_;
return *this;
}
DisplayPropertiesKHR& setPlaneReorderPossible(Bool32 planeReorderPossible_)
{
planeReorderPossible = planeReorderPossible_;
return *this;
}
DisplayPropertiesKHR& setPersistentContent(Bool32 persistentContent_)
{
persistentContent = persistentContent_;
return *this;
}
operator const VkDisplayPropertiesKHR&() const
{
return *reinterpret_cast<const VkDisplayPropertiesKHR*>(this);
}
bool operator==(DisplayPropertiesKHR const& rhs) const
{
return (display == rhs.display)
&& (displayName == rhs.displayName)
&& (physicalDimensions == rhs.physicalDimensions)
&& (physicalResolution == rhs.physicalResolution)
&& (supportedTransforms == rhs.supportedTransforms)
&& (planeReorderPossible == rhs.planeReorderPossible)
&& (persistentContent == rhs.persistentContent);
}
bool operator!=(DisplayPropertiesKHR const& rhs) const
{
return !operator==(rhs);
}
DisplayKHR display;
const char* displayName;
Extent2D physicalDimensions;
Extent2D physicalResolution;
SurfaceTransformFlagsKHR supportedTransforms;
Bool32 planeReorderPossible;
Bool32 persistentContent;
};
static_assert(sizeof(DisplayPropertiesKHR) == sizeof(VkDisplayPropertiesKHR), "struct and wrapper have different size!");
struct DisplaySurfaceCreateInfoKHR
{
DisplaySurfaceCreateInfoKHR(DisplaySurfaceCreateFlagsKHR flags_ = DisplaySurfaceCreateFlagsKHR(), DisplayModeKHR displayMode_ = DisplayModeKHR(), uint32_t planeIndex_ = 0, uint32_t planeStackIndex_ = 0, SurfaceTransformFlagBitsKHR transform_ = SurfaceTransformFlagBitsKHR::eIdentity, float globalAlpha_ = 0, DisplayPlaneAlphaFlagBitsKHR alphaMode_ = DisplayPlaneAlphaFlagBitsKHR::eOpaque, Extent2D imageExtent_ = Extent2D())
: sType(StructureType::eDisplaySurfaceCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, displayMode(displayMode_)
, planeIndex(planeIndex_)
, planeStackIndex(planeStackIndex_)
, transform(transform_)
, globalAlpha(globalAlpha_)
, alphaMode(alphaMode_)
, imageExtent(imageExtent_)
{
}
DisplaySurfaceCreateInfoKHR(VkDisplaySurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplaySurfaceCreateInfoKHR));
}
DisplaySurfaceCreateInfoKHR& operator=(VkDisplaySurfaceCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(DisplaySurfaceCreateInfoKHR));
return *this;
}
DisplaySurfaceCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setFlags(DisplaySurfaceCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setDisplayMode(DisplayModeKHR displayMode_)
{
displayMode = displayMode_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setPlaneIndex(uint32_t planeIndex_)
{
planeIndex = planeIndex_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setPlaneStackIndex(uint32_t planeStackIndex_)
{
planeStackIndex = planeStackIndex_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setTransform(SurfaceTransformFlagBitsKHR transform_)
{
transform = transform_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setGlobalAlpha(float globalAlpha_)
{
globalAlpha = globalAlpha_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setAlphaMode(DisplayPlaneAlphaFlagBitsKHR alphaMode_)
{
alphaMode = alphaMode_;
return *this;
}
DisplaySurfaceCreateInfoKHR& setImageExtent(Extent2D imageExtent_)
{
imageExtent = imageExtent_;
return *this;
}
operator const VkDisplaySurfaceCreateInfoKHR&() const
{
return *reinterpret_cast<const VkDisplaySurfaceCreateInfoKHR*>(this);
}
bool operator==(DisplaySurfaceCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (displayMode == rhs.displayMode)
&& (planeIndex == rhs.planeIndex)
&& (planeStackIndex == rhs.planeStackIndex)
&& (transform == rhs.transform)
&& (globalAlpha == rhs.globalAlpha)
&& (alphaMode == rhs.alphaMode)
&& (imageExtent == rhs.imageExtent);
}
bool operator!=(DisplaySurfaceCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DisplaySurfaceCreateFlagsKHR flags;
DisplayModeKHR displayMode;
uint32_t planeIndex;
uint32_t planeStackIndex;
SurfaceTransformFlagBitsKHR transform;
float globalAlpha;
DisplayPlaneAlphaFlagBitsKHR alphaMode;
Extent2D imageExtent;
};
static_assert(sizeof(DisplaySurfaceCreateInfoKHR) == sizeof(VkDisplaySurfaceCreateInfoKHR), "struct and wrapper have different size!");
struct SurfaceCapabilitiesKHR
{
SurfaceCapabilitiesKHR(uint32_t minImageCount_ = 0, uint32_t maxImageCount_ = 0, Extent2D currentExtent_ = Extent2D(), Extent2D minImageExtent_ = Extent2D(), Extent2D maxImageExtent_ = Extent2D(), uint32_t maxImageArrayLayers_ = 0, SurfaceTransformFlagsKHR supportedTransforms_ = SurfaceTransformFlagsKHR(), SurfaceTransformFlagBitsKHR currentTransform_ = SurfaceTransformFlagBitsKHR::eIdentity, CompositeAlphaFlagsKHR supportedCompositeAlpha_ = CompositeAlphaFlagsKHR(), ImageUsageFlags supportedUsageFlags_ = ImageUsageFlags())
: minImageCount(minImageCount_)
, maxImageCount(maxImageCount_)
, currentExtent(currentExtent_)
, minImageExtent(minImageExtent_)
, maxImageExtent(maxImageExtent_)
, maxImageArrayLayers(maxImageArrayLayers_)
, supportedTransforms(supportedTransforms_)
, currentTransform(currentTransform_)
, supportedCompositeAlpha(supportedCompositeAlpha_)
, supportedUsageFlags(supportedUsageFlags_)
{
}
SurfaceCapabilitiesKHR(VkSurfaceCapabilitiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(SurfaceCapabilitiesKHR));
}
SurfaceCapabilitiesKHR& operator=(VkSurfaceCapabilitiesKHR const & rhs)
{
memcpy(this, &rhs, sizeof(SurfaceCapabilitiesKHR));
return *this;
}
SurfaceCapabilitiesKHR& setMinImageCount(uint32_t minImageCount_)
{
minImageCount = minImageCount_;
return *this;
}
SurfaceCapabilitiesKHR& setMaxImageCount(uint32_t maxImageCount_)
{
maxImageCount = maxImageCount_;
return *this;
}
SurfaceCapabilitiesKHR& setCurrentExtent(Extent2D currentExtent_)
{
currentExtent = currentExtent_;
return *this;
}
SurfaceCapabilitiesKHR& setMinImageExtent(Extent2D minImageExtent_)
{
minImageExtent = minImageExtent_;
return *this;
}
SurfaceCapabilitiesKHR& setMaxImageExtent(Extent2D maxImageExtent_)
{
maxImageExtent = maxImageExtent_;
return *this;
}
SurfaceCapabilitiesKHR& setMaxImageArrayLayers(uint32_t maxImageArrayLayers_)
{
maxImageArrayLayers = maxImageArrayLayers_;
return *this;
}
SurfaceCapabilitiesKHR& setSupportedTransforms(SurfaceTransformFlagsKHR supportedTransforms_)
{
supportedTransforms = supportedTransforms_;
return *this;
}
SurfaceCapabilitiesKHR& setCurrentTransform(SurfaceTransformFlagBitsKHR currentTransform_)
{
currentTransform = currentTransform_;
return *this;
}
SurfaceCapabilitiesKHR& setSupportedCompositeAlpha(CompositeAlphaFlagsKHR supportedCompositeAlpha_)
{
supportedCompositeAlpha = supportedCompositeAlpha_;
return *this;
}
SurfaceCapabilitiesKHR& setSupportedUsageFlags(ImageUsageFlags supportedUsageFlags_)
{
supportedUsageFlags = supportedUsageFlags_;
return *this;
}
operator const VkSurfaceCapabilitiesKHR&() const
{
return *reinterpret_cast<const VkSurfaceCapabilitiesKHR*>(this);
}
bool operator==(SurfaceCapabilitiesKHR const& rhs) const
{
return (minImageCount == rhs.minImageCount)
&& (maxImageCount == rhs.maxImageCount)
&& (currentExtent == rhs.currentExtent)
&& (minImageExtent == rhs.minImageExtent)
&& (maxImageExtent == rhs.maxImageExtent)
&& (maxImageArrayLayers == rhs.maxImageArrayLayers)
&& (supportedTransforms == rhs.supportedTransforms)
&& (currentTransform == rhs.currentTransform)
&& (supportedCompositeAlpha == rhs.supportedCompositeAlpha)
&& (supportedUsageFlags == rhs.supportedUsageFlags);
}
bool operator!=(SurfaceCapabilitiesKHR const& rhs) const
{
return !operator==(rhs);
}
uint32_t minImageCount;
uint32_t maxImageCount;
Extent2D currentExtent;
Extent2D minImageExtent;
Extent2D maxImageExtent;
uint32_t maxImageArrayLayers;
SurfaceTransformFlagsKHR supportedTransforms;
SurfaceTransformFlagBitsKHR currentTransform;
CompositeAlphaFlagsKHR supportedCompositeAlpha;
ImageUsageFlags supportedUsageFlags;
};
static_assert(sizeof(SurfaceCapabilitiesKHR) == sizeof(VkSurfaceCapabilitiesKHR), "struct and wrapper have different size!");
struct SwapchainCreateInfoKHR
{
SwapchainCreateInfoKHR(SwapchainCreateFlagsKHR flags_ = SwapchainCreateFlagsKHR(), SurfaceKHR surface_ = SurfaceKHR(), uint32_t minImageCount_ = 0, Format imageFormat_ = Format::eUndefined, ColorSpaceKHR imageColorSpace_ = ColorSpaceKHR::eSrgbNonlinear, Extent2D imageExtent_ = Extent2D(), uint32_t imageArrayLayers_ = 0, ImageUsageFlags imageUsage_ = ImageUsageFlags(), SharingMode imageSharingMode_ = SharingMode::eExclusive, uint32_t queueFamilyIndexCount_ = 0, const uint32_t* pQueueFamilyIndices_ = nullptr, SurfaceTransformFlagBitsKHR preTransform_ = SurfaceTransformFlagBitsKHR::eIdentity, CompositeAlphaFlagBitsKHR compositeAlpha_ = CompositeAlphaFlagBitsKHR::eOpaque, PresentModeKHR presentMode_ = PresentModeKHR::eImmediate, Bool32 clipped_ = 0, SwapchainKHR oldSwapchain_ = SwapchainKHR())
: sType(StructureType::eSwapchainCreateInfoKHR)
, pNext(nullptr)
, flags(flags_)
, surface(surface_)
, minImageCount(minImageCount_)
, imageFormat(imageFormat_)
, imageColorSpace(imageColorSpace_)
, imageExtent(imageExtent_)
, imageArrayLayers(imageArrayLayers_)
, imageUsage(imageUsage_)
, imageSharingMode(imageSharingMode_)
, queueFamilyIndexCount(queueFamilyIndexCount_)
, pQueueFamilyIndices(pQueueFamilyIndices_)
, preTransform(preTransform_)
, compositeAlpha(compositeAlpha_)
, presentMode(presentMode_)
, clipped(clipped_)
, oldSwapchain(oldSwapchain_)
{
}
SwapchainCreateInfoKHR(VkSwapchainCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(SwapchainCreateInfoKHR));
}
SwapchainCreateInfoKHR& operator=(VkSwapchainCreateInfoKHR const & rhs)
{
memcpy(this, &rhs, sizeof(SwapchainCreateInfoKHR));
return *this;
}
SwapchainCreateInfoKHR& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
SwapchainCreateInfoKHR& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
SwapchainCreateInfoKHR& setFlags(SwapchainCreateFlagsKHR flags_)
{
flags = flags_;
return *this;
}
SwapchainCreateInfoKHR& setSurface(SurfaceKHR surface_)
{
surface = surface_;
return *this;
}
SwapchainCreateInfoKHR& setMinImageCount(uint32_t minImageCount_)
{
minImageCount = minImageCount_;
return *this;
}
SwapchainCreateInfoKHR& setImageFormat(Format imageFormat_)
{
imageFormat = imageFormat_;
return *this;
}
SwapchainCreateInfoKHR& setImageColorSpace(ColorSpaceKHR imageColorSpace_)
{
imageColorSpace = imageColorSpace_;
return *this;
}
SwapchainCreateInfoKHR& setImageExtent(Extent2D imageExtent_)
{
imageExtent = imageExtent_;
return *this;
}
SwapchainCreateInfoKHR& setImageArrayLayers(uint32_t imageArrayLayers_)
{
imageArrayLayers = imageArrayLayers_;
return *this;
}
SwapchainCreateInfoKHR& setImageUsage(ImageUsageFlags imageUsage_)
{
imageUsage = imageUsage_;
return *this;
}
SwapchainCreateInfoKHR& setImageSharingMode(SharingMode imageSharingMode_)
{
imageSharingMode = imageSharingMode_;
return *this;
}
SwapchainCreateInfoKHR& setQueueFamilyIndexCount(uint32_t queueFamilyIndexCount_)
{
queueFamilyIndexCount = queueFamilyIndexCount_;
return *this;
}
SwapchainCreateInfoKHR& setPQueueFamilyIndices(const uint32_t* pQueueFamilyIndices_)
{
pQueueFamilyIndices = pQueueFamilyIndices_;
return *this;
}
SwapchainCreateInfoKHR& setPreTransform(SurfaceTransformFlagBitsKHR preTransform_)
{
preTransform = preTransform_;
return *this;
}
SwapchainCreateInfoKHR& setCompositeAlpha(CompositeAlphaFlagBitsKHR compositeAlpha_)
{
compositeAlpha = compositeAlpha_;
return *this;
}
SwapchainCreateInfoKHR& setPresentMode(PresentModeKHR presentMode_)
{
presentMode = presentMode_;
return *this;
}
SwapchainCreateInfoKHR& setClipped(Bool32 clipped_)
{
clipped = clipped_;
return *this;
}
SwapchainCreateInfoKHR& setOldSwapchain(SwapchainKHR oldSwapchain_)
{
oldSwapchain = oldSwapchain_;
return *this;
}
operator const VkSwapchainCreateInfoKHR&() const
{
return *reinterpret_cast<const VkSwapchainCreateInfoKHR*>(this);
}
bool operator==(SwapchainCreateInfoKHR const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (surface == rhs.surface)
&& (minImageCount == rhs.minImageCount)
&& (imageFormat == rhs.imageFormat)
&& (imageColorSpace == rhs.imageColorSpace)
&& (imageExtent == rhs.imageExtent)
&& (imageArrayLayers == rhs.imageArrayLayers)
&& (imageUsage == rhs.imageUsage)
&& (imageSharingMode == rhs.imageSharingMode)
&& (queueFamilyIndexCount == rhs.queueFamilyIndexCount)
&& (pQueueFamilyIndices == rhs.pQueueFamilyIndices)
&& (preTransform == rhs.preTransform)
&& (compositeAlpha == rhs.compositeAlpha)
&& (presentMode == rhs.presentMode)
&& (clipped == rhs.clipped)
&& (oldSwapchain == rhs.oldSwapchain);
}
bool operator!=(SwapchainCreateInfoKHR const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
SwapchainCreateFlagsKHR flags;
SurfaceKHR surface;
uint32_t minImageCount;
Format imageFormat;
ColorSpaceKHR imageColorSpace;
Extent2D imageExtent;
uint32_t imageArrayLayers;
ImageUsageFlags imageUsage;
SharingMode imageSharingMode;
uint32_t queueFamilyIndexCount;
const uint32_t* pQueueFamilyIndices;
SurfaceTransformFlagBitsKHR preTransform;
CompositeAlphaFlagBitsKHR compositeAlpha;
PresentModeKHR presentMode;
Bool32 clipped;
SwapchainKHR oldSwapchain;
};
static_assert(sizeof(SwapchainCreateInfoKHR) == sizeof(VkSwapchainCreateInfoKHR), "struct and wrapper have different size!");
enum class DebugReportFlagBitsEXT
{
eInformation = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
eWarning = VK_DEBUG_REPORT_WARNING_BIT_EXT,
ePerformanceWarning = VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
eError = VK_DEBUG_REPORT_ERROR_BIT_EXT,
eDebug = VK_DEBUG_REPORT_DEBUG_BIT_EXT
};
using DebugReportFlagsEXT = Flags<DebugReportFlagBitsEXT, VkDebugReportFlagsEXT>;
inline DebugReportFlagsEXT operator|(DebugReportFlagBitsEXT bit0, DebugReportFlagBitsEXT bit1)
{
return DebugReportFlagsEXT(bit0) | bit1;
}
struct DebugReportCallbackCreateInfoEXT
{
DebugReportCallbackCreateInfoEXT(DebugReportFlagsEXT flags_ = DebugReportFlagsEXT(), PFN_vkDebugReportCallbackEXT pfnCallback_ = nullptr, void* pUserData_ = nullptr)
: sType(StructureType::eDebugReportCallbackCreateInfoEXT)
, pNext(nullptr)
, flags(flags_)
, pfnCallback(pfnCallback_)
, pUserData(pUserData_)
{
}
DebugReportCallbackCreateInfoEXT(VkDebugReportCallbackCreateInfoEXT const & rhs)
{
memcpy(this, &rhs, sizeof(DebugReportCallbackCreateInfoEXT));
}
DebugReportCallbackCreateInfoEXT& operator=(VkDebugReportCallbackCreateInfoEXT const & rhs)
{
memcpy(this, &rhs, sizeof(DebugReportCallbackCreateInfoEXT));
return *this;
}
DebugReportCallbackCreateInfoEXT& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DebugReportCallbackCreateInfoEXT& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DebugReportCallbackCreateInfoEXT& setFlags(DebugReportFlagsEXT flags_)
{
flags = flags_;
return *this;
}
DebugReportCallbackCreateInfoEXT& setPfnCallback(PFN_vkDebugReportCallbackEXT pfnCallback_)
{
pfnCallback = pfnCallback_;
return *this;
}
DebugReportCallbackCreateInfoEXT& setPUserData(void* pUserData_)
{
pUserData = pUserData_;
return *this;
}
operator const VkDebugReportCallbackCreateInfoEXT&() const
{
return *reinterpret_cast<const VkDebugReportCallbackCreateInfoEXT*>(this);
}
bool operator==(DebugReportCallbackCreateInfoEXT const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (flags == rhs.flags)
&& (pfnCallback == rhs.pfnCallback)
&& (pUserData == rhs.pUserData);
}
bool operator!=(DebugReportCallbackCreateInfoEXT const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DebugReportFlagsEXT flags;
PFN_vkDebugReportCallbackEXT pfnCallback;
void* pUserData;
};
static_assert(sizeof(DebugReportCallbackCreateInfoEXT) == sizeof(VkDebugReportCallbackCreateInfoEXT), "struct and wrapper have different size!");
enum class DebugReportObjectTypeEXT
{
eUnknown = VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
eInstance = VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
ePhysicalDevice = VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT,
eDevice = VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
eQueue = VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT,
eSemaphore = VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT,
eCommandBuffer = VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT,
eFence = VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT,
eDeviceMemory = VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT,
eBuffer = VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT,
eImage = VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT,
eEvent = VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT,
eQueryPool = VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT,
eBufferView = VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT,
eImageView = VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT,
eShaderModule = VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
ePipelineCache = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
ePipelineLayout = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT,
eRenderPass = VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT,
ePipeline = VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT,
eDescriptorSetLayout = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT,
eSampler = VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT,
eDescriptorPool = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT,
eDescriptorSet = VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
eFramebuffer = VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT,
eCommandPool = VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT,
eSurfaceKhr = VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT,
eSwapchainKhr = VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT,
eDebugReport = VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_EXT
};
struct DebugMarkerObjectNameInfoEXT
{
DebugMarkerObjectNameInfoEXT(DebugReportObjectTypeEXT objectType_ = DebugReportObjectTypeEXT::eUnknown, uint64_t object_ = 0, const char* pObjectName_ = nullptr)
: sType(StructureType::eDebugMarkerObjectNameInfoEXT)
, pNext(nullptr)
, objectType(objectType_)
, object(object_)
, pObjectName(pObjectName_)
{
}
DebugMarkerObjectNameInfoEXT(VkDebugMarkerObjectNameInfoEXT const & rhs)
{
memcpy(this, &rhs, sizeof(DebugMarkerObjectNameInfoEXT));
}
DebugMarkerObjectNameInfoEXT& operator=(VkDebugMarkerObjectNameInfoEXT const & rhs)
{
memcpy(this, &rhs, sizeof(DebugMarkerObjectNameInfoEXT));
return *this;
}
DebugMarkerObjectNameInfoEXT& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DebugMarkerObjectNameInfoEXT& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DebugMarkerObjectNameInfoEXT& setObjectType(DebugReportObjectTypeEXT objectType_)
{
objectType = objectType_;
return *this;
}
DebugMarkerObjectNameInfoEXT& setObject(uint64_t object_)
{
object = object_;
return *this;
}
DebugMarkerObjectNameInfoEXT& setPObjectName(const char* pObjectName_)
{
pObjectName = pObjectName_;
return *this;
}
operator const VkDebugMarkerObjectNameInfoEXT&() const
{
return *reinterpret_cast<const VkDebugMarkerObjectNameInfoEXT*>(this);
}
bool operator==(DebugMarkerObjectNameInfoEXT const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (objectType == rhs.objectType)
&& (object == rhs.object)
&& (pObjectName == rhs.pObjectName);
}
bool operator!=(DebugMarkerObjectNameInfoEXT const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DebugReportObjectTypeEXT objectType;
uint64_t object;
const char* pObjectName;
};
static_assert(sizeof(DebugMarkerObjectNameInfoEXT) == sizeof(VkDebugMarkerObjectNameInfoEXT), "struct and wrapper have different size!");
struct DebugMarkerObjectTagInfoEXT
{
DebugMarkerObjectTagInfoEXT(DebugReportObjectTypeEXT objectType_ = DebugReportObjectTypeEXT::eUnknown, uint64_t object_ = 0, uint64_t tagName_ = 0, size_t tagSize_ = 0, const void* pTag_ = nullptr)
: sType(StructureType::eDebugMarkerObjectTagInfoEXT)
, pNext(nullptr)
, objectType(objectType_)
, object(object_)
, tagName(tagName_)
, tagSize(tagSize_)
, pTag(pTag_)
{
}
DebugMarkerObjectTagInfoEXT(VkDebugMarkerObjectTagInfoEXT const & rhs)
{
memcpy(this, &rhs, sizeof(DebugMarkerObjectTagInfoEXT));
}
DebugMarkerObjectTagInfoEXT& operator=(VkDebugMarkerObjectTagInfoEXT const & rhs)
{
memcpy(this, &rhs, sizeof(DebugMarkerObjectTagInfoEXT));
return *this;
}
DebugMarkerObjectTagInfoEXT& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setObjectType(DebugReportObjectTypeEXT objectType_)
{
objectType = objectType_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setObject(uint64_t object_)
{
object = object_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setTagName(uint64_t tagName_)
{
tagName = tagName_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setTagSize(size_t tagSize_)
{
tagSize = tagSize_;
return *this;
}
DebugMarkerObjectTagInfoEXT& setPTag(const void* pTag_)
{
pTag = pTag_;
return *this;
}
operator const VkDebugMarkerObjectTagInfoEXT&() const
{
return *reinterpret_cast<const VkDebugMarkerObjectTagInfoEXT*>(this);
}
bool operator==(DebugMarkerObjectTagInfoEXT const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (objectType == rhs.objectType)
&& (object == rhs.object)
&& (tagName == rhs.tagName)
&& (tagSize == rhs.tagSize)
&& (pTag == rhs.pTag);
}
bool operator!=(DebugMarkerObjectTagInfoEXT const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
DebugReportObjectTypeEXT objectType;
uint64_t object;
uint64_t tagName;
size_t tagSize;
const void* pTag;
};
static_assert(sizeof(DebugMarkerObjectTagInfoEXT) == sizeof(VkDebugMarkerObjectTagInfoEXT), "struct and wrapper have different size!");
class Device
{
public:
Device()
: m_device(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Device(VkDevice device)
: m_device(device)
{}
Device& operator=(VkDevice device)
{
m_device = device;
return *this;
}
#endif
bool operator==(Device const &rhs) const
{
return m_device == rhs.m_device;
}
bool operator!=(Device const &rhs) const
{
return m_device != rhs.m_device;
}
bool operator<(Device const &rhs) const
{
return m_device < rhs.m_device;
}
PFN_vkVoidFunction getProcAddr(const char* pName) const
{
return vkGetDeviceProcAddr(m_device, pName);
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PFN_vkVoidFunction getProcAddr(const std::string & name) const
{
return vkGetDeviceProcAddr(m_device, name.c_str());
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroy(const AllocationCallbacks* pAllocator) const
{
vkDestroyDevice(m_device, reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroy(Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyDevice(m_device, reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getQueue(uint32_t queueFamilyIndex, uint32_t queueIndex, Queue* pQueue) const
{
vkGetDeviceQueue(m_device, queueFamilyIndex, queueIndex, reinterpret_cast<VkQueue*>(pQueue));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Queue getQueue(uint32_t queueFamilyIndex, uint32_t queueIndex) const
{
Queue queue = Queue();
vkGetDeviceQueue(m_device, queueFamilyIndex, queueIndex, reinterpret_cast<VkQueue*>(&queue));
if (&queue == nullptr)std::cout << "fail" << std::endl;
return queue;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result waitIdle() const
{
return static_cast<Result>(vkDeviceWaitIdle(m_device));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type waitIdle() const
{
Result result = static_cast<Result>(vkDeviceWaitIdle(m_device));
return createResultValue(result, "vk::Device::waitIdle");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result allocateMemory(const MemoryAllocateInfo* pAllocateInfo, const AllocationCallbacks* pAllocator, DeviceMemory* pMemory) const
{
return static_cast<Result>(vkAllocateMemory(m_device, reinterpret_cast<const VkMemoryAllocateInfo*>(pAllocateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDeviceMemory*>(pMemory)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DeviceMemory>::type allocateMemory(const MemoryAllocateInfo & allocateInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
DeviceMemory memory;
Result result = static_cast<Result>(vkAllocateMemory(m_device, reinterpret_cast<const VkMemoryAllocateInfo*>(&allocateInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDeviceMemory*>(&memory)));
return createResultValue(result, memory, "vk::Device::allocateMemory");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result allocateMemory(const MemoryAllocateInfo* pAllocateInfo, const AllocationCallbacks* pAllocator, scoped_handle<DeviceMemory>* pMemory) const
{
return static_cast<Result>(vkAllocateMemory(m_device, reinterpret_cast<const VkMemoryAllocateInfo*>(pAllocateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDeviceMemory*>(&pMemory->get())));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<DeviceMemory>>::type allocateMemory(const MemoryAllocateInfo & allocateInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<DeviceMemory> memory(ptrMemberFnc < Device, DeviceMemory, Optional<const AllocationCallbacks>>(&Device::freeMemory), *this, allocator);
Result result = static_cast<Result>(vkAllocateMemory(m_device, reinterpret_cast<const VkMemoryAllocateInfo*>(&allocateInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDeviceMemory*>(&memory)));
return createResultValue(result, memory, "vk::Device::allocateMemory");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void freeMemory(DeviceMemory memory, const AllocationCallbacks* pAllocator) const
{
vkFreeMemory(m_device, static_cast<VkDeviceMemory>(memory), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void freeMemory(DeviceMemory memory, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkFreeMemory(m_device, static_cast<VkDeviceMemory>(memory), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result mapMemory(DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags, void** ppData) const
{
return static_cast<Result>(vkMapMemory(m_device, static_cast<VkDeviceMemory>(memory), offset, size, static_cast<VkMemoryMapFlags>(flags), ppData));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void*>::type mapMemory(DeviceMemory memory, DeviceSize offset, DeviceSize size, MemoryMapFlags flags = MemoryMapFlags()) const
{
void* pData;
Result result = static_cast<Result>(vkMapMemory(m_device, static_cast<VkDeviceMemory>(memory), offset, size, static_cast<VkMemoryMapFlags>(flags), &pData));
return createResultValue(result, pData, "vk::Device::mapMemory");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
void unmapMemory(DeviceMemory memory) const
{
vkUnmapMemory(m_device, static_cast<VkDeviceMemory>(memory));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void unmapMemory(DeviceMemory memory) const
{
vkUnmapMemory(m_device, static_cast<VkDeviceMemory>(memory));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result flushMappedMemoryRanges(uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges) const
{
return static_cast<Result>(vkFlushMappedMemoryRanges(m_device, memoryRangeCount, reinterpret_cast<const VkMappedMemoryRange*>(pMemoryRanges)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type flushMappedMemoryRanges(ArrayProxy<const MappedMemoryRange> memoryRanges) const
{
Result result = static_cast<Result>(vkFlushMappedMemoryRanges(m_device, memoryRanges.size(), reinterpret_cast<const VkMappedMemoryRange*>(memoryRanges.data())));
return createResultValue(result, "vk::Device::flushMappedMemoryRanges");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result invalidateMappedMemoryRanges(uint32_t memoryRangeCount, const MappedMemoryRange* pMemoryRanges) const
{
return static_cast<Result>(vkInvalidateMappedMemoryRanges(m_device, memoryRangeCount, reinterpret_cast<const VkMappedMemoryRange*>(pMemoryRanges)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type invalidateMappedMemoryRanges(ArrayProxy<const MappedMemoryRange> memoryRanges) const
{
Result result = static_cast<Result>(vkInvalidateMappedMemoryRanges(m_device, memoryRanges.size(), reinterpret_cast<const VkMappedMemoryRange*>(memoryRanges.data())));
return createResultValue(result, "vk::Device::invalidateMappedMemoryRanges");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getMemoryCommitment(DeviceMemory memory, DeviceSize* pCommittedMemoryInBytes) const
{
vkGetDeviceMemoryCommitment(m_device, static_cast<VkDeviceMemory>(memory), pCommittedMemoryInBytes);
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
DeviceSize getMemoryCommitment(DeviceMemory memory) const
{
DeviceSize committedMemoryInBytes;
vkGetDeviceMemoryCommitment(m_device, static_cast<VkDeviceMemory>(memory), &committedMemoryInBytes);
return committedMemoryInBytes;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getBufferMemoryRequirements(Buffer buffer, MemoryRequirements* pMemoryRequirements) const
{
vkGetBufferMemoryRequirements(m_device, static_cast<VkBuffer>(buffer), reinterpret_cast<VkMemoryRequirements*>(pMemoryRequirements));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
MemoryRequirements getBufferMemoryRequirements(Buffer buffer) const
{
MemoryRequirements memoryRequirements;
vkGetBufferMemoryRequirements(m_device, static_cast<VkBuffer>(buffer), reinterpret_cast<VkMemoryRequirements*>(&memoryRequirements));
return memoryRequirements;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result bindBufferMemory(Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset) const
{
return static_cast<Result>(vkBindBufferMemory(m_device, static_cast<VkBuffer>(buffer), static_cast<VkDeviceMemory>(memory), memoryOffset));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type bindBufferMemory(Buffer buffer, DeviceMemory memory, DeviceSize memoryOffset) const
{
Result result = static_cast<Result>(vkBindBufferMemory(m_device, static_cast<VkBuffer>(buffer), static_cast<VkDeviceMemory>(memory), memoryOffset));
return createResultValue(result, "vk::Device::bindBufferMemory");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getImageMemoryRequirements(Image image, MemoryRequirements* pMemoryRequirements) const
{
vkGetImageMemoryRequirements(m_device, static_cast<VkImage>(image), reinterpret_cast<VkMemoryRequirements*>(pMemoryRequirements));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
MemoryRequirements getImageMemoryRequirements(Image image) const
{
MemoryRequirements memoryRequirements;
vkGetImageMemoryRequirements(m_device, static_cast<VkImage>(image), reinterpret_cast<VkMemoryRequirements*>(&memoryRequirements));
return memoryRequirements;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result bindImageMemory(Image image, DeviceMemory memory, DeviceSize memoryOffset) const
{
return static_cast<Result>(vkBindImageMemory(m_device, static_cast<VkImage>(image), static_cast<VkDeviceMemory>(memory), memoryOffset));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type bindImageMemory(Image image, DeviceMemory memory, DeviceSize memoryOffset) const
{
Result result = static_cast<Result>(vkBindImageMemory(m_device, static_cast<VkImage>(image), static_cast<VkDeviceMemory>(memory), memoryOffset));
return createResultValue(result, "vk::Device::bindImageMemory");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getImageSparseMemoryRequirements(Image image, uint32_t* pSparseMemoryRequirementCount, SparseImageMemoryRequirements* pSparseMemoryRequirements) const
{
vkGetImageSparseMemoryRequirements(m_device, static_cast<VkImage>(image), pSparseMemoryRequirementCount, reinterpret_cast<VkSparseImageMemoryRequirements*>(pSparseMemoryRequirements));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SparseImageMemoryRequirements>>
std::vector<SparseImageMemoryRequirements, Allocator> getImageSparseMemoryRequirements(Image image) const
{
std::vector<SparseImageMemoryRequirements, Allocator> sparseMemoryRequirements;
uint32_t sparseMemoryRequirementCount;
vkGetImageSparseMemoryRequirements(m_device, static_cast<VkImage>(image), &sparseMemoryRequirementCount, nullptr);
sparseMemoryRequirements.resize(sparseMemoryRequirementCount);
vkGetImageSparseMemoryRequirements(m_device, static_cast<VkImage>(image), &sparseMemoryRequirementCount, reinterpret_cast<VkSparseImageMemoryRequirements*>(sparseMemoryRequirements.data()));
return sparseMemoryRequirements;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createFence(const FenceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Fence* pFence) const
{
return static_cast<Result>(vkCreateFence(m_device, reinterpret_cast<const VkFenceCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkFence*>(pFence)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Fence>::type createFence(const FenceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Fence fence;
Result result = static_cast<Result>(vkCreateFence(m_device, reinterpret_cast<const VkFenceCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkFence*>(&fence)));
return createResultValue(result, fence, "vk::Device::createFence");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createFence(const FenceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Fence* pFence) const
{
return static_cast<Result>(vkCreateFence(m_device, reinterpret_cast<const VkFenceCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkFence*>(pFence)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<Fence>>::type createFence(const FenceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Fence> fence(ptrMemberFnc<Device, Fence, Optional<const AllocationCallbacks>>(&Device::destroyFence), *this, allocator);
Result result = static_cast<Result>(vkCreateFence(m_device, reinterpret_cast<const VkFenceCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkFence*>(&fence)));
return createResultValue(result, fence, "vk::Device::createFence");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyFence(Fence fence, const AllocationCallbacks* pAllocator) const
{
vkDestroyFence(m_device, static_cast<VkFence>(fence), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyFence(Fence fence, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyFence(m_device, static_cast<VkFence>(fence), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result resetFences(uint32_t fenceCount, const Fence* pFences) const
{
return static_cast<Result>(vkResetFences(m_device, fenceCount, reinterpret_cast<const VkFence*>(pFences)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type resetFences(ArrayProxy<const Fence> fences) const
{
Result result = static_cast<Result>(vkResetFences(m_device, fences.size(), reinterpret_cast<const VkFence*>(fences.data())));
return createResultValue(result, "vk::Device::resetFences");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result getFenceStatus(Fence fence) const
{
return static_cast<Result>(vkGetFenceStatus(m_device, static_cast<VkFence>(fence)));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result getFenceStatus(Fence fence) const
{
Result result = static_cast<Result>(vkGetFenceStatus(m_device, static_cast<VkFence>(fence)));
return createResultValue(result, "vk::Device::getFenceStatus", { Result::eSuccess, Result::eNotReady });
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result waitForFences(uint32_t fenceCount, const Fence* pFences, Bool32 waitAll, uint64_t timeout) const
{
return static_cast<Result>(vkWaitForFences(m_device, fenceCount, reinterpret_cast<const VkFence*>(pFences), waitAll, timeout));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result waitForFences(ArrayProxy<const Fence> fences, Bool32 waitAll, uint64_t timeout) const
{
Result result = static_cast<Result>(vkWaitForFences(m_device, fences.size(), reinterpret_cast<const VkFence*>(fences.data()), waitAll, timeout));
return createResultValue(result, "vk::Device::waitForFences", { Result::eSuccess, Result::eTimeout });
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createSemaphore(const SemaphoreCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Semaphore* pSemaphore) const
{
return static_cast<Result>(vkCreateSemaphore(m_device, reinterpret_cast<const VkSemaphoreCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSemaphore*>(pSemaphore)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Semaphore>::type createSemaphore(const SemaphoreCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Semaphore semaphore;
Result result = static_cast<Result>(vkCreateSemaphore(m_device, reinterpret_cast<const VkSemaphoreCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSemaphore*>(&semaphore)));
return createResultValue(result, semaphore, "vk::Device::createSemaphore");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createSemaphore(const SemaphoreCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<Semaphore>* pSemaphore) const
{
return static_cast<Result>(vkCreateSemaphore(m_device, reinterpret_cast<const VkSemaphoreCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSemaphore*>(pSemaphore)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<Semaphore>>::type createSemaphore(const SemaphoreCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Semaphore> semaphore(ptrMemberFnc<Device, Semaphore, Optional<const AllocationCallbacks>>(&Device::destroySemaphore), *this, allocator);
Result result = static_cast<Result>(vkCreateSemaphore(m_device, reinterpret_cast<const VkSemaphoreCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSemaphore*>(&semaphore)));
return createResultValue(result, semaphore, "vk::Device::createSemaphore");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroySemaphore(Semaphore semaphore, const AllocationCallbacks* pAllocator) const
{
vkDestroySemaphore(m_device, static_cast<VkSemaphore>(semaphore), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySemaphore(Semaphore semaphore, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroySemaphore(m_device, static_cast<VkSemaphore>(semaphore), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createEvent(const EventCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Event* pEvent) const
{
return static_cast<Result>(vkCreateEvent(m_device, reinterpret_cast<const VkEventCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkEvent*>(pEvent)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Event>::type createEvent(const EventCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Event event;
Result result = static_cast<Result>(vkCreateEvent(m_device, reinterpret_cast<const VkEventCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkEvent*>(&event)));
return createResultValue(result, event, "vk::Device::createEvent");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createEvent(const EventCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<Event>* pEvent) const
{
return static_cast<Result>(vkCreateEvent(m_device, reinterpret_cast<const VkEventCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkEvent*>(pEvent)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<Event>>::type createEvent(const EventCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Event> event(ptrMemberFnc<Device, Event, Optional<const AllocationCallbacks>>(&Device::destroyEvent), *this, allocator);
Result result = static_cast<Result>(vkCreateEvent(m_device, reinterpret_cast<const VkEventCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkEvent*>(&event)));
return createResultValue(result, event, "vk::Device::createEvent");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyEvent(Event event, const AllocationCallbacks* pAllocator) const
{
vkDestroyEvent(m_device, static_cast<VkEvent>(event), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyEvent(Event event, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyEvent(m_device, static_cast<VkEvent>(event), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result getEventStatus(Event event) const
{
return static_cast<Result>(vkGetEventStatus(m_device, static_cast<VkEvent>(event)));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result getEventStatus(Event event) const
{
Result result = static_cast<Result>(vkGetEventStatus(m_device, static_cast<VkEvent>(event)));
return createResultValue(result, "vk::Device::getEventStatus", { Result::eEventSet, Result::eEventReset });
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result setEvent(Event event) const
{
return static_cast<Result>(vkSetEvent(m_device, static_cast<VkEvent>(event)));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type setEvent(Event event) const
{
Result result = static_cast<Result>(vkSetEvent(m_device, static_cast<VkEvent>(event)));
return createResultValue(result, "vk::Device::setEvent");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result resetEvent(Event event) const
{
return static_cast<Result>(vkResetEvent(m_device, static_cast<VkEvent>(event)));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type resetEvent(Event event) const
{
Result result = static_cast<Result>(vkResetEvent(m_device, static_cast<VkEvent>(event)));
return createResultValue(result, "vk::Device::resetEvent");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createQueryPool(const QueryPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, QueryPool* pQueryPool) const
{
return static_cast<Result>(vkCreateQueryPool(m_device, reinterpret_cast<const VkQueryPoolCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkQueryPool*>(pQueryPool)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<QueryPool>::type createQueryPool(const QueryPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
QueryPool queryPool;
Result result = static_cast<Result>(vkCreateQueryPool(m_device, reinterpret_cast<const VkQueryPoolCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkQueryPool*>(&queryPool)));
return createResultValue(result, queryPool, "vk::Device::createQueryPool");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createQueryPool(const QueryPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<QueryPool>* pQueryPool) const
{
return static_cast<Result>(vkCreateQueryPool(m_device, reinterpret_cast<const VkQueryPoolCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkQueryPool*>(pQueryPool)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<QueryPool>>::type createQueryPool(const QueryPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<QueryPool> queryPool(ptrMemberFnc<Device, QueryPool, Optional<const AllocationCallbacks>>(&Device::destroyQueryPool), *this, allocator);
Result result = static_cast<Result>(vkCreateQueryPool(m_device, reinterpret_cast<const VkQueryPoolCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkQueryPool*>(&queryPool)));
return createResultValue(result, queryPool, "vk::Device::createQueryPool");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyQueryPool(QueryPool queryPool, const AllocationCallbacks* pAllocator) const
{
vkDestroyQueryPool(m_device, static_cast<VkQueryPool>(queryPool), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyQueryPool(QueryPool queryPool, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyQueryPool(m_device, static_cast<VkQueryPool>(queryPool), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getQueryPoolResults(QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, size_t dataSize, void* pData, DeviceSize stride, QueryResultFlags flags) const
{
return static_cast<Result>(vkGetQueryPoolResults(m_device, static_cast<VkQueryPool>(queryPool), firstQuery, queryCount, dataSize, pData, stride, static_cast<VkQueryResultFlags>(flags)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename T>
Result getQueryPoolResults(QueryPool queryPool, uint32_t firstQuery, uint32_t queryCount, ArrayProxy<T> data, DeviceSize stride, QueryResultFlags flags) const
{
Result result = static_cast<Result>(vkGetQueryPoolResults(m_device, static_cast<VkQueryPool>(queryPool), firstQuery, queryCount, data.size() * sizeof(T), reinterpret_cast<void*>(data.data()), stride, static_cast<VkQueryResultFlags>(flags)));
return createResultValue(result, "vk::Device::getQueryPoolResults", { Result::eSuccess, Result::eNotReady });
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createBuffer(const BufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Buffer* pBuffer) const
{
return static_cast<Result>(vkCreateBuffer(m_device, reinterpret_cast<const VkBufferCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkBuffer*>(pBuffer)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Buffer>::type createBuffer(const BufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Buffer buffer;
Result result = static_cast<Result>(vkCreateBuffer(m_device, reinterpret_cast<const VkBufferCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkBuffer*>(&buffer)));
return createResultValue(result, buffer, "vk::Device::createBuffer");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createBuffer(const BufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<Buffer>* buffer) const
{
return static_cast<Result>(vkCreateBuffer(m_device, reinterpret_cast<const VkBufferCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkBuffer*>(&buffer->get())));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Buffer>::type createBuffer(const BufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
auto buffer = scoped_handle<Buffer>(ptrMemberFnc<Device, Buffer, Optional<const AllocationCallbacks>>(&Device::destroyBuffer), *this, allocator);
Result result = static_cast<Result>(vkCreateBuffer(m_device, reinterpret_cast<const VkBufferCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkBuffer*>(&buffer)));
return createResultValue(result, buffer, "vk::Device::createBuffer");
}
#endif
void destroyBuffer(Buffer buffer, const AllocationCallbacks* pAllocator) const
{
vkDestroyBuffer(m_device, static_cast<VkBuffer>(buffer), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyBuffer(Buffer buffer, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyBuffer(m_device, static_cast<VkBuffer>(buffer), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createBufferView(const BufferViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, BufferView* pView) const
{
return static_cast<Result>(vkCreateBufferView(m_device, reinterpret_cast<const VkBufferViewCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkBufferView*>(pView)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<BufferView>::type createBufferView(const BufferViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
BufferView view;
Result result = static_cast<Result>(vkCreateBufferView(m_device, reinterpret_cast<const VkBufferViewCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkBufferView*>(&view)));
return createResultValue(result, view, "vk::Device::createBufferView");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createBufferView(const BufferViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<BufferView>* pView) const
{
return static_cast<Result>(vkCreateBufferView(m_device, reinterpret_cast<const VkBufferViewCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkBufferView*>(&pView->get())));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<BufferView>>::type createBufferView(const BufferViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<BufferView> view(ptrMemberFnc<Device, BufferView, Optional<const AllocationCallbacks>>(&Device::destroyBufferView), *this, allocator);
Result result = static_cast<Result>(vkCreateBufferView(m_device, reinterpret_cast<const VkBufferViewCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkBufferView*>(&view)));
return createResultValue(result, view, "vk::Device::createBufferView");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyBufferView(BufferView bufferView, const AllocationCallbacks* pAllocator) const
{
vkDestroyBufferView(m_device, static_cast<VkBufferView>(bufferView), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyBufferView(BufferView bufferView, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyBufferView(m_device, static_cast<VkBufferView>(bufferView), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createImage(const ImageCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Image* pImage) const
{
return static_cast<Result>(vkCreateImage(m_device, reinterpret_cast<const VkImageCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkImage*>(pImage)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Image>::type createImage(const ImageCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Image image;
Result result = static_cast<Result>(vkCreateImage(m_device, reinterpret_cast<const VkImageCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkImage*>(&image)));
return createResultValue(result, image, "vk::Device::createImage");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createImage(const ImageCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<Image>& image) const
{
return static_cast<Result>(vkCreateImage(m_device, reinterpret_cast<const VkImageCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkImage*>(&image)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<Image>>::type createImage(const ImageCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Image> image(ptrMemberFnc<Device, Image, Optional<const AllocationCallbacks>>(&Device::destroyImage), *this, allocator);
Result result = static_cast<Result>(vkCreateImage(m_device, reinterpret_cast<const VkImageCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkImage*>(&image)));
return createResultValue(result, image, "vk::Device::createImage");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif
void destroyImage(Image image, const AllocationCallbacks* pAllocator) const
{
vkDestroyImage(m_device, static_cast<VkImage>(image), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyImage(Image image, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyImage(m_device, static_cast<VkImage>(image), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getImageSubresourceLayout(Image image, const ImageSubresource* pSubresource, SubresourceLayout* pLayout) const
{
vkGetImageSubresourceLayout(m_device, static_cast<VkImage>(image), reinterpret_cast<const VkImageSubresource*>(pSubresource), reinterpret_cast<VkSubresourceLayout*>(pLayout));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
SubresourceLayout getImageSubresourceLayout(Image image, const ImageSubresource & subresource) const
{
SubresourceLayout layout;
vkGetImageSubresourceLayout(m_device, static_cast<VkImage>(image), reinterpret_cast<const VkImageSubresource*>(&subresource), reinterpret_cast<VkSubresourceLayout*>(&layout));
return layout;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createImageView(const ImageViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ImageView* pView) const
{
return static_cast<Result>(vkCreateImageView(m_device, reinterpret_cast<const VkImageViewCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkImageView*>(pView)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ImageView>::type createImageView(const ImageViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
ImageView view;
Result result = static_cast<Result>(vkCreateImageView(m_device, reinterpret_cast<const VkImageViewCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkImageView*>(&view)));
return createResultValue(result, view, "vk::Device::createImageView");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createImageView(const ImageViewCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<ImageView>& view) const
{
return static_cast<Result>(vkCreateImageView(m_device, reinterpret_cast<const VkImageViewCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkImageView*>(&view)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<ImageView>>::type createImageView(const ImageViewCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
auto view = scoped_handle<ImageView>(ptrMemberFnc<Device, ImageView, Optional<const AllocationCallbacks>>(&Device::destroyImageView), *this, allocator);
Result result = static_cast<Result>(vkCreateImageView(m_device, reinterpret_cast<const VkImageViewCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkImageView*>(&view)));
return createResultValue(result, view, "vk::Device::createImageView");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyImageView(ImageView imageView, const AllocationCallbacks* pAllocator) const
{
vkDestroyImageView(m_device, static_cast<VkImageView>(imageView), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyImageView(ImageView imageView, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyImageView(m_device, static_cast<VkImageView>(imageView), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createShaderModule(const ShaderModuleCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, ShaderModule* pShaderModule) const
{
return static_cast<Result>(vkCreateShaderModule(m_device, reinterpret_cast<const VkShaderModuleCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkShaderModule*>(pShaderModule)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ShaderModule>::type createShaderModule(const ShaderModuleCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
ShaderModule shaderModule;
Result result = static_cast<Result>(vkCreateShaderModule(m_device, reinterpret_cast<const VkShaderModuleCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkShaderModule*>(&shaderModule)));
return createResultValue(result, shaderModule, "vk::Device::createShaderModule");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createShaderModule(const ShaderModuleCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<ShaderModule>* pShaderModule) const
{
return static_cast<Result>(vkCreateShaderModule(m_device, reinterpret_cast<const VkShaderModuleCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkShaderModule*>(pShaderModule)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<ShaderModule>>::type createShaderModule(const ShaderModuleCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<ShaderModule> shaderModule(ptrMemberFnc<Device, ShaderModule, Optional<const AllocationCallbacks>>(&Device::destroyShaderModule), *this, allocator);
Result result = static_cast<Result>(vkCreateShaderModule(m_device, reinterpret_cast<const VkShaderModuleCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkShaderModule*>(&shaderModule)));
return createResultValue(result, shaderModule, "vk::Device::createShaderModule");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyShaderModule(ShaderModule shaderModule, const AllocationCallbacks* pAllocator) const
{
vkDestroyShaderModule(m_device, static_cast<VkShaderModule>(shaderModule), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyShaderModule(ShaderModule shaderModule, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyShaderModule(m_device, static_cast<VkShaderModule>(shaderModule), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createPipelineCache(const PipelineCacheCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineCache* pPipelineCache) const
{
return static_cast<Result>(vkCreatePipelineCache(m_device, reinterpret_cast<const VkPipelineCacheCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkPipelineCache*>(pPipelineCache)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<PipelineCache>::type createPipelineCache(const PipelineCacheCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
PipelineCache pipelineCache;
Result result = static_cast<Result>(vkCreatePipelineCache(m_device, reinterpret_cast<const VkPipelineCacheCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipelineCache*>(&pipelineCache)));
return createResultValue(result, pipelineCache, "vk::Device::createPipelineCache");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createPipelineCache(const PipelineCacheCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<PipelineCache>* pPipelineCache) const
{
return static_cast<Result>(vkCreatePipelineCache(m_device, reinterpret_cast<const VkPipelineCacheCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkPipelineCache*>(pPipelineCache)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<PipelineCache>>::type createPipelineCache(const PipelineCacheCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<PipelineCache> pipelineCache(ptrMemberFnc<Device, PipelineCache, Optional<const AllocationCallbacks>>(&Device::destroyPipelineCache), *this, allocator);
Result result = static_cast<Result>(vkCreatePipelineCache(m_device, reinterpret_cast<const VkPipelineCacheCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipelineCache*>(&pipelineCache)));
return createResultValue(result, pipelineCache, "vk::Device::createPipelineCache");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyPipelineCache(PipelineCache pipelineCache, const AllocationCallbacks* pAllocator) const
{
vkDestroyPipelineCache(m_device, static_cast<VkPipelineCache>(pipelineCache), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyPipelineCache(PipelineCache pipelineCache, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyPipelineCache(m_device, static_cast<VkPipelineCache>(pipelineCache), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getPipelineCacheData(PipelineCache pipelineCache, size_t* pDataSize, void* pData) const
{
return static_cast<Result>(vkGetPipelineCacheData(m_device, static_cast<VkPipelineCache>(pipelineCache), pDataSize, pData));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<uint8_t>>
typename ResultValueType<std::vector<uint8_t, Allocator>>::type getPipelineCacheData(PipelineCache pipelineCache) const
{
std::vector<uint8_t, Allocator> data;
size_t dataSize;
Result result;
do
{
result = static_cast<Result>(vkGetPipelineCacheData(m_device, static_cast<VkPipelineCache>(pipelineCache), &dataSize, nullptr));
if ((result == Result::eSuccess) && dataSize)
{
data.resize(dataSize);
result = static_cast<Result>(vkGetPipelineCacheData(m_device, static_cast<VkPipelineCache>(pipelineCache), &dataSize, reinterpret_cast<void*>(data.data())));
}
} while (result == Result::eIncomplete);
assert(dataSize <= data.size());
data.resize(dataSize);
return createResultValue(result, data, "vk::Device::getPipelineCacheData");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result mergePipelineCaches(PipelineCache dstCache, uint32_t srcCacheCount, const PipelineCache* pSrcCaches) const
{
return static_cast<Result>(vkMergePipelineCaches(m_device, static_cast<VkPipelineCache>(dstCache), srcCacheCount, reinterpret_cast<const VkPipelineCache*>(pSrcCaches)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type mergePipelineCaches(PipelineCache dstCache, ArrayProxy<const PipelineCache> srcCaches) const
{
Result result = static_cast<Result>(vkMergePipelineCaches(m_device, static_cast<VkPipelineCache>(dstCache), srcCaches.size(), reinterpret_cast<const VkPipelineCache*>(srcCaches.data())));
return createResultValue(result, "vk::Device::mergePipelineCaches");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createGraphicsPipelines(PipelineCache pipelineCache, uint32_t createInfoCount, const GraphicsPipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines) const
{
return static_cast<Result>(vkCreateGraphicsPipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), createInfoCount, reinterpret_cast<const VkGraphicsPipelineCreateInfo*>(pCreateInfos), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkPipeline*>(pipelines)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<Pipeline>>
typename ResultValueType<std::vector<Pipeline, Allocator>>::type createGraphicsPipelines(PipelineCache pipelineCache, ArrayProxy<const GraphicsPipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator = nullptr) const
{
std::vector<Pipeline, Allocator> pipelines(createInfos.size());
Result result = static_cast<Result>(vkCreateGraphicsPipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), createInfos.size(), reinterpret_cast<const VkGraphicsPipelineCreateInfo*>(createInfos.data()), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipeline*>(pipelines.data())));
return createResultValue(result, pipelines, "vk::Device::createGraphicsPipelines");
}
ResultValueType<Pipeline>::type createGraphicsPipeline(PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Pipeline pipeline;
Result result = static_cast<Result>(vkCreateGraphicsPipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), 1, reinterpret_cast<const VkGraphicsPipelineCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipeline*>(&pipeline)));
return createResultValue(result, pipeline, "vk::Device::createGraphicsPipeline");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createGraphicsPipelines(PipelineCache pipelineCache, uint32_t createInfoCount, const GraphicsPipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, scoped_handle<Pipeline>* pPipelines) const
{
Pipeline* pPipelinesRaw = new Pipeline[createInfoCount];
auto result = static_cast<Result>(vkCreateGraphicsPipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), createInfoCount, reinterpret_cast<const VkGraphicsPipelineCreateInfo*>(pCreateInfos), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkPipeline*>(pPipelinesRaw)));
if (result == Result::eSuccess)
for (uint32_t i = 0; i < createInfoCount; i++)
pPipelines[i] = pPipelinesRaw[i];
delete[] pPipelinesRaw;
return result;
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<scoped_handle<Pipeline>>>
typename ResultValueType<std::vector<scoped_handle<Pipeline>, Allocator>>::type createGraphicsPipelines(PipelineCache pipelineCache, ArrayProxy<const GraphicsPipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator = nullptr) const
{
std::vector<Pipeline> pipelinesRaw(createInfos.size());
Result result = static_cast<Result>(vkCreateGraphicsPipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), createInfos.size(), reinterpret_cast<const VkGraphicsPipelineCreateInfo*>(createInfos.data()), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipeline*>(pipelinesRaw.data())));
std::vector<scoped_handle<Pipeline>, Allocator> pipelines(createInfos.size());
std::transform(pipelinesRaw.begin(), pipelinesRaw.end(), pipelines.begin(), [this, &allocator](Pipeline p) {return scoped_handle<Pipeline>(ptrMemberFnc<Device, Pipeline, Optional<const AllocationCallbacks>>(&Device::destroyPipeline), *this, allocator, p); });
return createResultValue(result, pipelines, "vk::Device::createGraphicsPipelines");
}
ResultValueType<scoped_handle<Pipeline>>::type createGraphicsPipeline(PipelineCache pipelineCache, const GraphicsPipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Pipeline> pipeline(ptrMemberFnc<Device, Pipeline, Optional<const AllocationCallbacks>>(&Device::destroyPipeline), *this, allocator);
Result result = static_cast<Result>(vkCreateGraphicsPipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), 1, reinterpret_cast<const VkGraphicsPipelineCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipeline*>(&pipeline)));
return createResultValue(result, pipeline, "vk::Device::createGraphicsPipeline");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createComputePipelines(PipelineCache pipelineCache, uint32_t createInfoCount, const ComputePipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, Pipeline* pPipelines) const
{
return static_cast<Result>(vkCreateComputePipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), createInfoCount, reinterpret_cast<const VkComputePipelineCreateInfo*>(pCreateInfos), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkPipeline*>(pPipelines)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<Pipeline>>
typename ResultValueType<std::vector<Pipeline, Allocator>>::type createComputePipelines(PipelineCache pipelineCache, ArrayProxy<const ComputePipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator = nullptr) const
{
std::vector<Pipeline, Allocator> pipelines(createInfos.size());
Result result = static_cast<Result>(vkCreateComputePipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), createInfos.size(), reinterpret_cast<const VkComputePipelineCreateInfo*>(createInfos.data()), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipeline*>(pipelines.data())));
return createResultValue(result, pipelines, "vk::Device::createComputePipelines");
}
ResultValueType<Pipeline>::type createComputePipeline(PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Pipeline pipeline;
Result result = static_cast<Result>(vkCreateComputePipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), 1, reinterpret_cast<const VkComputePipelineCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipeline*>(&pipeline)));
return createResultValue(result, pipeline, "vk::Device::createComputePipeline");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createComputePipelines(PipelineCache pipelineCache, uint32_t createInfoCount, const ComputePipelineCreateInfo* pCreateInfos, const AllocationCallbacks* pAllocator, scoped_handle<Pipeline>* pPipelines) const
{
Pipeline* pPipelinesRaw = new Pipeline[createInfoCount];
auto result = static_cast<Result>(vkCreateComputePipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), createInfoCount, reinterpret_cast<const VkComputePipelineCreateInfo*>(pCreateInfos), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkPipeline*>(pPipelines)));
if (result == Result::eSuccess)
for (uint32_t i = 0; i < createInfoCount; i++)
pPipelines[i] = pPipelinesRaw[i];
delete[] pPipelinesRaw;
return result;
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<scoped_handle<Pipeline>>>
typename ResultValueType<std::vector<scoped_handle<Pipeline>, Allocator>>::type createComputePipelines(PipelineCache pipelineCache, ArrayProxy<const ComputePipelineCreateInfo> createInfos, Optional<const AllocationCallbacks> allocator = nullptr) const
{
std::vector<Pipeline> pipelinesRaw(createInfos.size());
Result result = static_cast<Result>(vkCreateComputePipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), createInfos.size(), reinterpret_cast<const VkComputePipelineCreateInfo*>(createInfos.data()), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipeline*>(pipelinesRaw.data())));
std::vector<scoped_handle<Pipeline>, Allocator> pipelines(createInfos.size());
std::transform(pipelinesRaw.begin(), pipelinesRaw.end(), pipelines.begin(), [this, &allocator](Pipeline p) {return scoped_handle<Pipeline>(ptrMemberFnc<Device, Pipeline, Optional<const AllocationCallbacks>>(&Device::destroyPipeline), *this, allocator, p); });
return createResultValue(result, pipelines, "vk::Device::createComputePipelines");
}
ResultValueType<scoped_handle<Pipeline>>::type createComputePipeline(PipelineCache pipelineCache, const ComputePipelineCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Pipeline> pipeline(ptrMemberFnc<Device, Pipeline, Optional<const AllocationCallbacks>>(&Device::destroyPipeline), *this, allocator);
Result result = static_cast<Result>(vkCreateComputePipelines(m_device, static_cast<VkPipelineCache>(pipelineCache), 1, reinterpret_cast<const VkComputePipelineCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipeline*>(&pipeline)));
return createResultValue(result, pipeline, "vk::Device::createComputePipeline");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyPipeline(Pipeline pipeline, const AllocationCallbacks* pAllocator) const
{
vkDestroyPipeline(m_device, static_cast<VkPipeline>(pipeline), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyPipeline(Pipeline pipeline, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyPipeline(m_device, static_cast<VkPipeline>(pipeline), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createPipelineLayout(const PipelineLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, PipelineLayout* pPipelineLayout) const
{
return static_cast<Result>(vkCreatePipelineLayout(m_device, reinterpret_cast<const VkPipelineLayoutCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkPipelineLayout*>(pPipelineLayout)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<PipelineLayout>::type createPipelineLayout(const PipelineLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
PipelineLayout pipelineLayout;
Result result = static_cast<Result>(vkCreatePipelineLayout(m_device, reinterpret_cast<const VkPipelineLayoutCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipelineLayout*>(&pipelineLayout)));
return createResultValue(result, pipelineLayout, "vk::Device::createPipelineLayout");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createPipelineLayout(const PipelineLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<PipelineLayout>* pPipelineLayout) const
{
return static_cast<Result>(vkCreatePipelineLayout(m_device, reinterpret_cast<const VkPipelineLayoutCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkPipelineLayout*>(pPipelineLayout)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<PipelineLayout>>::type createPipelineLayout(const PipelineLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<PipelineLayout> pipelineLayout(ptrMemberFnc<Device, PipelineLayout, Optional<const AllocationCallbacks>>(&Device::destroyPipelineLayout), *this, allocator);
Result result = static_cast<Result>(vkCreatePipelineLayout(m_device, reinterpret_cast<const VkPipelineLayoutCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkPipelineLayout*>(&pipelineLayout)));
return createResultValue(result, pipelineLayout, "vk::Device::createPipelineLayout");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyPipelineLayout(PipelineLayout pipelineLayout, const AllocationCallbacks* pAllocator) const
{
vkDestroyPipelineLayout(m_device, static_cast<VkPipelineLayout>(pipelineLayout), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyPipelineLayout(PipelineLayout pipelineLayout, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyPipelineLayout(m_device, static_cast<VkPipelineLayout>(pipelineLayout), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createSampler(const SamplerCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Sampler* pSampler) const
{
return static_cast<Result>(vkCreateSampler(m_device, reinterpret_cast<const VkSamplerCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSampler*>(pSampler)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Sampler>::type createSampler(const SamplerCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Sampler sampler;
Result result = static_cast<Result>(vkCreateSampler(m_device, reinterpret_cast<const VkSamplerCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSampler*>(&sampler)));
return createResultValue(result, sampler, "vk::Device::createSampler");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createSampler(const SamplerCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<Sampler>* pSampler) const
{
return static_cast<Result>(vkCreateSampler(m_device, reinterpret_cast<const VkSamplerCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSampler*>(pSampler)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<Sampler>>::type createSampler(const SamplerCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Sampler> sampler(ptrMemberFnc<Device, Sampler, Optional<const AllocationCallbacks>>(&Device::destroySampler), m_device, allocator);
Result result = static_cast<Result>(vkCreateSampler(m_device, reinterpret_cast<const VkSamplerCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSampler*>(&sampler)));
return createResultValue(result, sampler, "vk::Device::createSampler");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif
void destroySampler(Sampler sampler, const AllocationCallbacks* pAllocator) const
{
vkDestroySampler(m_device, static_cast<VkSampler>(sampler), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySampler(Sampler sampler, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroySampler(m_device, static_cast<VkSampler>(sampler), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDescriptorSetLayout(const DescriptorSetLayoutCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorSetLayout* pSetLayout) const
{
return static_cast<Result>(vkCreateDescriptorSetLayout(m_device, reinterpret_cast<const VkDescriptorSetLayoutCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDescriptorSetLayout*>(pSetLayout)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DescriptorSetLayout>::type createDescriptorSetLayout(const DescriptorSetLayoutCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
DescriptorSetLayout setLayout;
Result result = static_cast<Result>(vkCreateDescriptorSetLayout(m_device, reinterpret_cast<const VkDescriptorSetLayoutCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDescriptorSetLayout*>(&setLayout)));
return createResultValue(result, setLayout, "vk::Device::createDescriptorSetLayout");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyDescriptorSetLayout(DescriptorSetLayout descriptorSetLayout, const AllocationCallbacks* pAllocator) const
{
vkDestroyDescriptorSetLayout(m_device, static_cast<VkDescriptorSetLayout>(descriptorSetLayout), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyDescriptorSetLayout(DescriptorSetLayout descriptorSetLayout, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyDescriptorSetLayout(m_device, static_cast<VkDescriptorSetLayout>(descriptorSetLayout), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createDescriptorPool(const DescriptorPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, DescriptorPool* pDescriptorPool) const
{
return static_cast<Result>(vkCreateDescriptorPool(m_device, reinterpret_cast<const VkDescriptorPoolCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDescriptorPool*>(pDescriptorPool)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DescriptorPool>::type createDescriptorPool(const DescriptorPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
DescriptorPool descriptorPool;
Result result = static_cast<Result>(vkCreateDescriptorPool(m_device, reinterpret_cast<const VkDescriptorPoolCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDescriptorPool*>(&descriptorPool)));
return createResultValue(result, descriptorPool, "vk::Device::createDescriptorPool");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createDescriptorPool(const DescriptorPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<DescriptorPool>* pDescriptorPool) const
{
return static_cast<Result>(vkCreateDescriptorPool(m_device, reinterpret_cast<const VkDescriptorPoolCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDescriptorPool*>(pDescriptorPool)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<DescriptorPool>>::type createDescriptorPool(const DescriptorPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<DescriptorPool> descriptorPool(ptrMemberFnc<Device, DescriptorPool, Optional< const AllocationCallbacks>>(&Device::destroyDescriptorPool), m_device, allocator);
Result result = static_cast<Result>(vkCreateDescriptorPool(m_device, reinterpret_cast<const VkDescriptorPoolCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDescriptorPool*>(&descriptorPool)));
return createResultValue(result, descriptorPool, "vk::Device::createDescriptorPool");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif
void destroyDescriptorPool(DescriptorPool descriptorPool, const AllocationCallbacks* pAllocator) const
{
vkDestroyDescriptorPool(m_device, static_cast<VkDescriptorPool>(descriptorPool), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyDescriptorPool(DescriptorPool descriptorPool, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyDescriptorPool(m_device, static_cast<VkDescriptorPool>(descriptorPool), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result resetDescriptorPool(DescriptorPool descriptorPool, DescriptorPoolResetFlags flags) const
{
return static_cast<Result>(vkResetDescriptorPool(m_device, static_cast<VkDescriptorPool>(descriptorPool), static_cast<VkDescriptorPoolResetFlags>(flags)));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type resetDescriptorPool(DescriptorPool descriptorPool, DescriptorPoolResetFlags flags = DescriptorPoolResetFlags()) const
{
Result result = static_cast<Result>(vkResetDescriptorPool(m_device, static_cast<VkDescriptorPool>(descriptorPool), static_cast<VkDescriptorPoolResetFlags>(flags)));
return createResultValue(result, "vk::Device::resetDescriptorPool");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result allocateDescriptorSets(const DescriptorSetAllocateInfo* pAllocateInfo, DescriptorSet* pDescriptorSets) const
{
return static_cast<Result>(vkAllocateDescriptorSets(m_device, reinterpret_cast<const VkDescriptorSetAllocateInfo*>(pAllocateInfo), reinterpret_cast<VkDescriptorSet*>(pDescriptorSets)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DescriptorSet>>
typename ResultValueType<std::vector<DescriptorSet, Allocator>>::type allocateDescriptorSets(const DescriptorSetAllocateInfo & allocateInfo) const
{
std::vector<DescriptorSet, Allocator> descriptorSets(allocateInfo.descriptorSetCount);
Result result = static_cast<Result>(vkAllocateDescriptorSets(m_device, reinterpret_cast<const VkDescriptorSetAllocateInfo*>(&allocateInfo), reinterpret_cast<VkDescriptorSet*>(descriptorSets.data())));
return createResultValue(result, descriptorSets, "vk::Device::allocateDescriptorSets");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result freeDescriptorSets(DescriptorPool descriptorPool, uint32_t descriptorSetCount, const DescriptorSet* pDescriptorSets) const
{
return static_cast<Result>(vkFreeDescriptorSets(m_device, static_cast<VkDescriptorPool>(descriptorPool), descriptorSetCount, reinterpret_cast<const VkDescriptorSet*>(pDescriptorSets)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type freeDescriptorSets(DescriptorPool descriptorPool, ArrayProxy<const DescriptorSet> descriptorSets) const
{
Result result = static_cast<Result>(vkFreeDescriptorSets(m_device, static_cast<VkDescriptorPool>(descriptorPool), descriptorSets.size(), reinterpret_cast<const VkDescriptorSet*>(descriptorSets.data())));
return createResultValue(result, "vk::Device::freeDescriptorSets");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void updateDescriptorSets(uint32_t descriptorWriteCount, const WriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const CopyDescriptorSet* pDescriptorCopies) const
{
vkUpdateDescriptorSets(m_device, descriptorWriteCount, reinterpret_cast<const VkWriteDescriptorSet*>(pDescriptorWrites), descriptorCopyCount, reinterpret_cast<const VkCopyDescriptorSet*>(pDescriptorCopies));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void updateDescriptorSets(ArrayProxy<const WriteDescriptorSet> descriptorWrites, ArrayProxy<const CopyDescriptorSet> descriptorCopies) const
{
vkUpdateDescriptorSets(m_device, descriptorWrites.size(), reinterpret_cast<const VkWriteDescriptorSet*>(descriptorWrites.data()), descriptorCopies.size(), reinterpret_cast<const VkCopyDescriptorSet*>(descriptorCopies.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createFramebuffer(const FramebufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Framebuffer* pFramebuffer) const
{
return static_cast<Result>(vkCreateFramebuffer(m_device, reinterpret_cast<const VkFramebufferCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkFramebuffer*>(pFramebuffer)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Framebuffer>::type createFramebuffer(const FramebufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Framebuffer framebuffer;
Result result = static_cast<Result>(vkCreateFramebuffer(m_device, reinterpret_cast<const VkFramebufferCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkFramebuffer*>(&framebuffer)));
return createResultValue(result, framebuffer, "vk::Device::createFramebuffer");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createFramebuffer(const FramebufferCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<Framebuffer> framebuffer) const
{
return static_cast<Result>(vkCreateFramebuffer(m_device, reinterpret_cast<const VkFramebufferCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkFramebuffer*>(&framebuffer)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<Framebuffer>>::type createFramebuffer(const FramebufferCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Framebuffer> framebuffer(ptrMemberFnc<Device, Framebuffer, Optional<const AllocationCallbacks>>(&Device::destroyFramebuffer), *this, allocator);
Result result = static_cast<Result>(vkCreateFramebuffer(m_device, reinterpret_cast<const VkFramebufferCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkFramebuffer*>(&framebuffer)));
return createResultValue(result, framebuffer, "vk::Device::createFramebuffer");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyFramebuffer(Framebuffer framebuffer, const AllocationCallbacks* pAllocator) const
{
vkDestroyFramebuffer(m_device, static_cast<VkFramebuffer>(framebuffer), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyFramebuffer(Framebuffer framebuffer, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyFramebuffer(m_device, static_cast<VkFramebuffer>(framebuffer), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createRenderPass(const RenderPassCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, RenderPass* pRenderPass) const
{
return static_cast<Result>(vkCreateRenderPass(m_device, reinterpret_cast<const VkRenderPassCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkRenderPass*>(pRenderPass)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<RenderPass>::type createRenderPass(const RenderPassCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
RenderPass renderPass;
Result result = static_cast<Result>(vkCreateRenderPass(m_device, reinterpret_cast<const VkRenderPassCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkRenderPass*>(&renderPass)));
return createResultValue(result, renderPass, "vk::Device::createRenderPass");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createRenderPass(const RenderPassCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<RenderPass>* pRenderPass) const
{
return static_cast<Result>(vkCreateRenderPass(m_device, reinterpret_cast<const VkRenderPassCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkRenderPass*>(&pRenderPass->get())));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<RenderPass>>::type createRenderPass(const RenderPassCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<RenderPass> renderPass(ptrMemberFnc < Device, RenderPass, Optional<const AllocationCallbacks>>(&Device::destroyRenderPass), *this, allocator);
Result result = static_cast<Result>(vkCreateRenderPass(m_device, reinterpret_cast<const VkRenderPassCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkRenderPass*>(&renderPass)));
return createResultValue(result, renderPass, "vk::Device::createRenderPass");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyRenderPass(RenderPass renderPass, const AllocationCallbacks* pAllocator) const
{
vkDestroyRenderPass(m_device, static_cast<VkRenderPass>(renderPass), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyRenderPass(RenderPass renderPass, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyRenderPass(m_device, static_cast<VkRenderPass>(renderPass), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getRenderAreaGranularity(RenderPass renderPass, Extent2D* pGranularity) const
{
vkGetRenderAreaGranularity(m_device, static_cast<VkRenderPass>(renderPass), reinterpret_cast<VkExtent2D*>(pGranularity));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
Extent2D getRenderAreaGranularity(RenderPass renderPass) const
{
Extent2D granularity;
vkGetRenderAreaGranularity(m_device, static_cast<VkRenderPass>(renderPass), reinterpret_cast<VkExtent2D*>(&granularity));
return granularity;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createCommandPool(const CommandPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, CommandPool* pCommandPool) const
{
return static_cast<Result>(vkCreateCommandPool(m_device, reinterpret_cast<const VkCommandPoolCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkCommandPool*>(pCommandPool)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<CommandPool>::type createCommandPool(const CommandPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
CommandPool commandPool;
Result result = static_cast<Result>(vkCreateCommandPool(m_device, reinterpret_cast<const VkCommandPoolCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkCommandPool*>(&commandPool)));
return createResultValue(result, commandPool, "vk::Device::createCommandPool");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createCommandPool(const CommandPoolCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<CommandPool>* pCommandPool) const
{
return static_cast<Result>(vkCreateCommandPool(m_device, reinterpret_cast<const VkCommandPoolCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkCommandPool*>(&pCommandPool->get())));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<CommandPool>>::type createCommandPool(const CommandPoolCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<CommandPool> commandPool(ptrMemberFnc<Device, CommandPool, Optional<const AllocationCallbacks>>(&Device::destroyCommandPool), *this, allocator);
Result result = static_cast<Result>(vkCreateCommandPool(m_device, reinterpret_cast<const VkCommandPoolCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkCommandPool*>(&commandPool)));
return createResultValue(result, commandPool, "vk::Device::createCommandPool");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroyCommandPool(CommandPool commandPool, const AllocationCallbacks* pAllocator) const
{
vkDestroyCommandPool(m_device, static_cast<VkCommandPool>(commandPool), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyCommandPool(CommandPool commandPool, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyCommandPool(m_device, static_cast<VkCommandPool>(commandPool), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
Result resetCommandPool(CommandPool commandPool, CommandPoolResetFlags flags) const
{
return static_cast<Result>(vkResetCommandPool(m_device, static_cast<VkCommandPool>(commandPool), static_cast<VkCommandPoolResetFlags>(flags)));
}
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<void>::type resetCommandPool(CommandPool commandPool, CommandPoolResetFlags flags) const
{
Result result = static_cast<Result>(vkResetCommandPool(m_device, static_cast<VkCommandPool>(commandPool), static_cast<VkCommandPoolResetFlags>(flags)));
return createResultValue(result, "vk::Device::resetCommandPool");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result allocateCommandBuffers(const CommandBufferAllocateInfo* pAllocateInfo, CommandBuffer* pCommandBuffers) const
{
return static_cast<Result>(vkAllocateCommandBuffers(m_device, reinterpret_cast<const VkCommandBufferAllocateInfo*>(pAllocateInfo), reinterpret_cast<VkCommandBuffer*>(pCommandBuffers)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<CommandBuffer>>
typename ResultValueType<std::vector<CommandBuffer, Allocator>>::type allocateCommandBuffers(const CommandBufferAllocateInfo & allocateInfo) const
{
std::vector<CommandBuffer, Allocator> commandBuffers(allocateInfo.commandBufferCount);
Result result = static_cast<Result>(vkAllocateCommandBuffers(m_device, reinterpret_cast<const VkCommandBufferAllocateInfo*>(&allocateInfo), reinterpret_cast<VkCommandBuffer*>(commandBuffers.data())));
return createResultValue(result, commandBuffers, "vk::Device::allocateCommandBuffers");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void freeCommandBuffers(CommandPool commandPool, uint32_t commandBufferCount, const CommandBuffer* pCommandBuffers) const
{
vkFreeCommandBuffers(m_device, static_cast<VkCommandPool>(commandPool), commandBufferCount, reinterpret_cast<const VkCommandBuffer*>(pCommandBuffers));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void freeCommandBuffers(CommandPool commandPool, ArrayProxy<const CommandBuffer> commandBuffers) const
{
vkFreeCommandBuffers(m_device, static_cast<VkCommandPool>(commandPool), commandBuffers.size(), reinterpret_cast<const VkCommandBuffer*>(commandBuffers.data()));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createSharedSwapchainsKHR(uint32_t swapchainCount, const SwapchainCreateInfoKHR* pCreateInfos, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchains) const
{
return static_cast<Result>(vkCreateSharedSwapchainsKHR(m_device, swapchainCount, reinterpret_cast<const VkSwapchainCreateInfoKHR*>(pCreateInfos), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSwapchainKHR*>(pSwapchains)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SwapchainKHR>>
typename ResultValueType<std::vector<SwapchainKHR, Allocator>>::type createSharedSwapchainsKHR(ArrayProxy<const SwapchainCreateInfoKHR> createInfos, Optional<const AllocationCallbacks> allocator = nullptr) const
{
std::vector<SwapchainKHR, Allocator> swapchains(createInfos.size());
Result result = static_cast<Result>(vkCreateSharedSwapchainsKHR(m_device, createInfos.size(), reinterpret_cast<const VkSwapchainCreateInfoKHR*>(createInfos.data()), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSwapchainKHR*>(swapchains.data())));
return createResultValue(result, swapchains, "vk::Device::createSharedSwapchainsKHR");
}
ResultValueType<SwapchainKHR>::type createSharedSwapchainKHR(const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SwapchainKHR swapchain;
Result result = static_cast<Result>(vkCreateSharedSwapchainsKHR(m_device, 1, reinterpret_cast<const VkSwapchainCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSwapchainKHR*>(&swapchain)));
return createResultValue(result, swapchain, "vk::Device::createSharedSwapchainKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createSharedSwapchainsKHR(uint32_t swapchainCount, const SwapchainCreateInfoKHR* pCreateInfos, const AllocationCallbacks* pAllocator, scoped_handle<SwapchainKHR>* pSwapchains) const
{
return static_cast<Result>(vkCreateSharedSwapchainsKHR(m_device, swapchainCount, reinterpret_cast<const VkSwapchainCreateInfoKHR*>(pCreateInfos), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSwapchainKHR*>(pSwapchains)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<scoped_handle<SwapchainKHR>>>
typename ResultValueType<std::vector<scoped_handle<SwapchainKHR>, Allocator>>::type createSharedSwapchainsKHR(ArrayProxy<const SwapchainCreateInfoKHR> createInfos, Optional<const AllocationCallbacks> allocator = nullptr) const
{
std::vector<scoped_handle<SwapchainKHR>, Allocator> swapchains(createInfos.size(), scoped_handle<SwapchainKHR>(ptrMemberFnc<Device, SwapchainKHR, Optional<const AllocationCallbacks>>(&Device::destroySwapchainKHR), m_device, allocator, false));
Result result = static_cast<Result>(vkCreateSharedSwapchainsKHR(m_device, createInfos.size(), reinterpret_cast<const VkSwapchainCreateInfoKHR*>(createInfos.data()), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSwapchainKHR*>(swapchains.data())));
return createResultValue(result, swapchains, "vk::Device::createSharedSwapchainsKHR");
}
ResultValueType<scoped_handle<SwapchainKHR>>::type createSharedSwapchainKHR(const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<SwapchainKHR> swapchain(ptrMemberFnc<Device, SwapchainKHR, Optional<const AllocationCallbacks>>(&Device::destroySwapchainKHR), m_device, allocator);
Result result = static_cast<Result>(vkCreateSharedSwapchainsKHR(m_device, 1, reinterpret_cast<const VkSwapchainCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSwapchainKHR*>(&swapchain)));
return createResultValue(result, swapchain, "vk::Device::createSharedSwapchainKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createSwapchainKHR(const SwapchainCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SwapchainKHR* pSwapchain) const
{
return static_cast<Result>(vkCreateSwapchainKHR(m_device, reinterpret_cast<const VkSwapchainCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSwapchainKHR*>(pSwapchain)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SwapchainKHR>::type createSwapchainKHR(const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SwapchainKHR swapchain;
Result result = static_cast<Result>(vkCreateSwapchainKHR(m_device, reinterpret_cast<const VkSwapchainCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSwapchainKHR*>(&swapchain)));
return createResultValue(result, swapchain, "vk::Device::createSwapchainKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createSwapchainKHR(const SwapchainCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<SwapchainKHR>* pSwapchain) const
{
return static_cast<Result>(vkCreateSwapchainKHR(m_device, reinterpret_cast<const VkSwapchainCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSwapchainKHR*>(pSwapchain)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<SwapchainKHR>>::type createSwapchainKHR(const SwapchainCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<SwapchainKHR> swapchain(ptrMemberFnc<Device, SwapchainKHR, Optional<const AllocationCallbacks>>(&Device::destroySwapchainKHR), *this, allocator);
Result result = static_cast<Result>(vkCreateSwapchainKHR(m_device, reinterpret_cast<const VkSwapchainCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSwapchainKHR*>(&swapchain)));
return createResultValue(result, swapchain, "vk::Device::createSwapchainKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
void destroySwapchainKHR(SwapchainKHR swapchain, const AllocationCallbacks* pAllocator) const
{
vkDestroySwapchainKHR(m_device, static_cast<VkSwapchainKHR>(swapchain), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySwapchainKHR(SwapchainKHR swapchain, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroySwapchainKHR(m_device, static_cast<VkSwapchainKHR>(swapchain), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSwapchainImagesKHR(SwapchainKHR swapchain, uint32_t* pSwapchainImageCount, Image* pSwapchainImages) const
{
return static_cast<Result>(vkGetSwapchainImagesKHR(m_device, static_cast<VkSwapchainKHR>(swapchain), pSwapchainImageCount, reinterpret_cast<VkImage*>(pSwapchainImages)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<Image>>
typename ResultValueType<std::vector<Image, Allocator>>::type getSwapchainImagesKHR(SwapchainKHR swapchain) const
{
std::vector<Image, Allocator> swapchainImages;
uint32_t swapchainImageCount;
Result result;
do
{
result = static_cast<Result>(vkGetSwapchainImagesKHR(m_device, static_cast<VkSwapchainKHR>(swapchain), &swapchainImageCount, nullptr));
if ((result == Result::eSuccess) && swapchainImageCount)
{
swapchainImages.resize(swapchainImageCount);
result = static_cast<Result>(vkGetSwapchainImagesKHR(m_device, static_cast<VkSwapchainKHR>(swapchain), &swapchainImageCount, reinterpret_cast<VkImage*>(swapchainImages.data())));
}
} while (result == Result::eIncomplete);
assert(swapchainImageCount <= swapchainImages.size());
swapchainImages.resize(swapchainImageCount);
return createResultValue(result, swapchainImages, "vk::Device::getSwapchainImagesKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result acquireNextImageKHR(SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence, uint32_t* pImageIndex) const
{
return static_cast<Result>(vkAcquireNextImageKHR(m_device, static_cast<VkSwapchainKHR>(swapchain), timeout, static_cast<VkSemaphore>(semaphore), static_cast<VkFence>(fence), pImageIndex));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValue<uint32_t> acquireNextImageKHR(SwapchainKHR swapchain, uint64_t timeout, Semaphore semaphore, Fence fence) const
{
uint32_t imageIndex;
Result result = static_cast<Result>(vkAcquireNextImageKHR(m_device, static_cast<VkSwapchainKHR>(swapchain), timeout, static_cast<VkSemaphore>(semaphore), static_cast<VkFence>(fence), &imageIndex));
return createResultValue(result, imageIndex, "vk::Device::acquireNextImageKHR", { Result::eSuccess, Result::eTimeout, Result::eNotReady, Result::eSuboptimalKHR });
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result debugMarkerSetObjectNameEXT(DebugMarkerObjectNameInfoEXT* pNameInfo) const
{
return static_cast<Result>(vkDebugMarkerSetObjectNameEXT(m_device, reinterpret_cast<VkDebugMarkerObjectNameInfoEXT*>(pNameInfo)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DebugMarkerObjectNameInfoEXT>::type debugMarkerSetObjectNameEXT() const
{
DebugMarkerObjectNameInfoEXT nameInfo;
Result result = static_cast<Result>(vkDebugMarkerSetObjectNameEXT(m_device, reinterpret_cast<VkDebugMarkerObjectNameInfoEXT*>(&nameInfo)));
return createResultValue(result, nameInfo, "vk::Device::debugMarkerSetObjectNameEXT");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result debugMarkerSetObjectTagEXT(DebugMarkerObjectTagInfoEXT* pTagInfo) const
{
return static_cast<Result>(vkDebugMarkerSetObjectTagEXT(m_device, reinterpret_cast<VkDebugMarkerObjectTagInfoEXT*>(pTagInfo)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DebugMarkerObjectTagInfoEXT>::type debugMarkerSetObjectTagEXT() const
{
DebugMarkerObjectTagInfoEXT tagInfo;
Result result = static_cast<Result>(vkDebugMarkerSetObjectTagEXT(m_device, reinterpret_cast<VkDebugMarkerObjectTagInfoEXT*>(&tagInfo)));
return createResultValue(result, tagInfo, "vk::Device::debugMarkerSetObjectTagEXT");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkDevice() const
{
return m_device;
}
explicit operator bool() const
{
return m_device != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_device == VK_NULL_HANDLE;
}
private:
VkDevice m_device;
};
static_assert(sizeof(Device) == sizeof(VkDevice), "handle and wrapper have different size!");
class PhysicalDevice
{
public:
PhysicalDevice()
: m_physicalDevice(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
PhysicalDevice(VkPhysicalDevice physicalDevice)
: m_physicalDevice(physicalDevice)
{}
PhysicalDevice& operator=(VkPhysicalDevice physicalDevice)
{
m_physicalDevice = physicalDevice;
return *this;
}
#endif
bool operator==(PhysicalDevice const &rhs) const
{
return m_physicalDevice == rhs.m_physicalDevice;
}
bool operator!=(PhysicalDevice const &rhs) const
{
return m_physicalDevice != rhs.m_physicalDevice;
}
bool operator<(PhysicalDevice const &rhs) const
{
return m_physicalDevice < rhs.m_physicalDevice;
}
void getProperties(PhysicalDeviceProperties* pProperties) const
{
vkGetPhysicalDeviceProperties(m_physicalDevice, reinterpret_cast<VkPhysicalDeviceProperties*>(pProperties));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceProperties getProperties() const
{
PhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(m_physicalDevice, reinterpret_cast<VkPhysicalDeviceProperties*>(&properties));
return properties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getQueueFamilyProperties(uint32_t* pQueueFamilyPropertyCount, QueueFamilyProperties* pQueueFamilyProperties) const
{
vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, pQueueFamilyPropertyCount, reinterpret_cast<VkQueueFamilyProperties*>(pQueueFamilyProperties));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<QueueFamilyProperties>>
std::vector<QueueFamilyProperties, Allocator> getQueueFamilyProperties() const
{
std::vector<QueueFamilyProperties, Allocator> queueFamilyProperties;
uint32_t queueFamilyPropertyCount;
vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, &queueFamilyPropertyCount, nullptr);
queueFamilyProperties.resize(queueFamilyPropertyCount);
vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, &queueFamilyPropertyCount, reinterpret_cast<VkQueueFamilyProperties*>(queueFamilyProperties.data()));
return queueFamilyProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getMemoryProperties(PhysicalDeviceMemoryProperties* pMemoryProperties) const
{
vkGetPhysicalDeviceMemoryProperties(m_physicalDevice, reinterpret_cast<VkPhysicalDeviceMemoryProperties*>(pMemoryProperties));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceMemoryProperties getMemoryProperties() const
{
PhysicalDeviceMemoryProperties memoryProperties;
vkGetPhysicalDeviceMemoryProperties(m_physicalDevice, reinterpret_cast<VkPhysicalDeviceMemoryProperties*>(&memoryProperties));
return memoryProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getFeatures(PhysicalDeviceFeatures* pFeatures) const
{
vkGetPhysicalDeviceFeatures(m_physicalDevice, reinterpret_cast<VkPhysicalDeviceFeatures*>(pFeatures));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PhysicalDeviceFeatures getFeatures() const
{
PhysicalDeviceFeatures features;
vkGetPhysicalDeviceFeatures(m_physicalDevice, reinterpret_cast<VkPhysicalDeviceFeatures*>(&features));
return features;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getFormatProperties(Format format, FormatProperties* pFormatProperties) const
{
vkGetPhysicalDeviceFormatProperties(m_physicalDevice, static_cast<VkFormat>(format), reinterpret_cast<VkFormatProperties*>(pFormatProperties));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
FormatProperties getFormatProperties(Format format) const
{
FormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(m_physicalDevice, static_cast<VkFormat>(format), reinterpret_cast<VkFormatProperties*>(&formatProperties));
return formatProperties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getImageFormatProperties(Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags, ImageFormatProperties* pImageFormatProperties) const
{
return static_cast<Result>(vkGetPhysicalDeviceImageFormatProperties(m_physicalDevice, static_cast<VkFormat>(format), static_cast<VkImageType>(type), static_cast<VkImageTiling>(tiling), static_cast<VkImageUsageFlags>(usage), static_cast<VkImageCreateFlags>(flags), reinterpret_cast<VkImageFormatProperties*>(pImageFormatProperties)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<ImageFormatProperties>::type getImageFormatProperties(Format format, ImageType type, ImageTiling tiling, ImageUsageFlags usage, ImageCreateFlags flags) const
{
ImageFormatProperties imageFormatProperties;
Result result = static_cast<Result>(vkGetPhysicalDeviceImageFormatProperties(m_physicalDevice, static_cast<VkFormat>(format), static_cast<VkImageType>(type), static_cast<VkImageTiling>(tiling), static_cast<VkImageUsageFlags>(usage), static_cast<VkImageCreateFlags>(flags), reinterpret_cast<VkImageFormatProperties*>(&imageFormatProperties)));
return createResultValue(result, imageFormatProperties, "vk::PhysicalDevice::getImageFormatProperties");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_SCOPED_HANDLING
Result createDevice(const DeviceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Device* pDevice) const
{
return static_cast<Result>(vkCreateDevice(m_physicalDevice, reinterpret_cast<const VkDeviceCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDevice*>(pDevice)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Device>::type createDevice(const DeviceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
Device device;
Result result = static_cast<Result>(vkCreateDevice(m_physicalDevice, reinterpret_cast<const VkDeviceCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDevice*>(&device)));
return createResultValue(result, device, "vk::PhysicalDevice::createDevice");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#else
Result createDevice(const DeviceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, scoped_handle<Device>& Device) const
{
return static_cast<Result>(vkCreateDevice(m_physicalDevice, reinterpret_cast<const VkDeviceCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDevice*>(&Device)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<scoped_handle<Device>>::type createDevice(const DeviceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
scoped_handle<Device> device([](Device& d) {d.destroy(); });
Result result = static_cast<Result>(vkCreateDevice(m_physicalDevice, reinterpret_cast<const VkDeviceCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDevice*>(&device)));
return createResultValue(result, device, "vk::PhysicalDevice::createDevice");
}
#endif
#endif /*VULKAN_HPP_DISABLE_SCOPED_HANDLING*/
Result enumerateDeviceLayerProperties(uint32_t* pPropertyCount, LayerProperties* pProperties) const
{
return static_cast<Result>(vkEnumerateDeviceLayerProperties(m_physicalDevice, pPropertyCount, reinterpret_cast<VkLayerProperties*>(pProperties)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<LayerProperties>>
typename ResultValueType<std::vector<LayerProperties, Allocator>>::type enumerateDeviceLayerProperties() const
{
std::vector<LayerProperties, Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>(vkEnumerateDeviceLayerProperties(m_physicalDevice, &propertyCount, nullptr));
if ((result == Result::eSuccess) && propertyCount)
{
properties.resize(propertyCount);
result = static_cast<Result>(vkEnumerateDeviceLayerProperties(m_physicalDevice, &propertyCount, reinterpret_cast<VkLayerProperties*>(properties.data())));
}
} while (result == Result::eIncomplete);
assert(propertyCount <= properties.size());
properties.resize(propertyCount);
return createResultValue(result, properties, "vk::PhysicalDevice::enumerateDeviceLayerProperties");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result enumerateDeviceExtensionProperties(const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties) const
{
return static_cast<Result>(vkEnumerateDeviceExtensionProperties(m_physicalDevice, pLayerName, pPropertyCount, reinterpret_cast<VkExtensionProperties*>(pProperties)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<ExtensionProperties>>
typename ResultValueType<std::vector<ExtensionProperties, Allocator>>::type enumerateDeviceExtensionProperties(Optional<const std::string> layerName = nullptr) const
{
std::vector<ExtensionProperties, Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>(vkEnumerateDeviceExtensionProperties(m_physicalDevice, layerName ? layerName->c_str() : nullptr, &propertyCount, nullptr));
if ((result == Result::eSuccess) && propertyCount)
{
properties.resize(propertyCount);
result = static_cast<Result>(vkEnumerateDeviceExtensionProperties(m_physicalDevice, layerName ? layerName->c_str() : nullptr, &propertyCount, reinterpret_cast<VkExtensionProperties*>(properties.data())));
}
} while (result == Result::eIncomplete);
assert(propertyCount <= properties.size());
properties.resize(propertyCount);
return createResultValue(result, properties, "vk::PhysicalDevice::enumerateDeviceExtensionProperties");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void getSparseImageFormatProperties(Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling, uint32_t* pPropertyCount, SparseImageFormatProperties* pProperties) const
{
vkGetPhysicalDeviceSparseImageFormatProperties(m_physicalDevice, static_cast<VkFormat>(format), static_cast<VkImageType>(type), static_cast<VkSampleCountFlagBits>(samples), static_cast<VkImageUsageFlags>(usage), static_cast<VkImageTiling>(tiling), pPropertyCount, reinterpret_cast<VkSparseImageFormatProperties*>(pProperties));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SparseImageFormatProperties>>
std::vector<SparseImageFormatProperties, Allocator> getSparseImageFormatProperties(Format format, ImageType type, SampleCountFlagBits samples, ImageUsageFlags usage, ImageTiling tiling) const
{
std::vector<SparseImageFormatProperties, Allocator> properties;
uint32_t propertyCount;
vkGetPhysicalDeviceSparseImageFormatProperties(m_physicalDevice, static_cast<VkFormat>(format), static_cast<VkImageType>(type), static_cast<VkSampleCountFlagBits>(samples), static_cast<VkImageUsageFlags>(usage), static_cast<VkImageTiling>(tiling), &propertyCount, nullptr);
properties.resize(propertyCount);
vkGetPhysicalDeviceSparseImageFormatProperties(m_physicalDevice, static_cast<VkFormat>(format), static_cast<VkImageType>(type), static_cast<VkSampleCountFlagBits>(samples), static_cast<VkImageUsageFlags>(usage), static_cast<VkImageTiling>(tiling), &propertyCount, reinterpret_cast<VkSparseImageFormatProperties*>(properties.data()));
return properties;
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayPropertiesKHR(uint32_t* pPropertyCount, DisplayPropertiesKHR* pProperties) const
{
return static_cast<Result>(vkGetPhysicalDeviceDisplayPropertiesKHR(m_physicalDevice, pPropertyCount, reinterpret_cast<VkDisplayPropertiesKHR*>(pProperties)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DisplayPropertiesKHR>>
typename ResultValueType<std::vector<DisplayPropertiesKHR, Allocator>>::type getDisplayPropertiesKHR() const
{
std::vector<DisplayPropertiesKHR, Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>(vkGetPhysicalDeviceDisplayPropertiesKHR(m_physicalDevice, &propertyCount, nullptr));
if ((result == Result::eSuccess) && propertyCount)
{
properties.resize(propertyCount);
result = static_cast<Result>(vkGetPhysicalDeviceDisplayPropertiesKHR(m_physicalDevice, &propertyCount, reinterpret_cast<VkDisplayPropertiesKHR*>(properties.data())));
}
} while (result == Result::eIncomplete);
assert(propertyCount <= properties.size());
properties.resize(propertyCount);
return createResultValue(result, properties, "vk::PhysicalDevice::getDisplayPropertiesKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayPlanePropertiesKHR(uint32_t* pPropertyCount, DisplayPlanePropertiesKHR* pProperties) const
{
return static_cast<Result>(vkGetPhysicalDeviceDisplayPlanePropertiesKHR(m_physicalDevice, pPropertyCount, reinterpret_cast<VkDisplayPlanePropertiesKHR*>(pProperties)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DisplayPlanePropertiesKHR>>
typename ResultValueType<std::vector<DisplayPlanePropertiesKHR, Allocator>>::type getDisplayPlanePropertiesKHR() const
{
std::vector<DisplayPlanePropertiesKHR, Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>(vkGetPhysicalDeviceDisplayPlanePropertiesKHR(m_physicalDevice, &propertyCount, nullptr));
if ((result == Result::eSuccess) && propertyCount)
{
properties.resize(propertyCount);
result = static_cast<Result>(vkGetPhysicalDeviceDisplayPlanePropertiesKHR(m_physicalDevice, &propertyCount, reinterpret_cast<VkDisplayPlanePropertiesKHR*>(properties.data())));
}
} while (result == Result::eIncomplete);
assert(propertyCount <= properties.size());
properties.resize(propertyCount);
return createResultValue(result, properties, "vk::PhysicalDevice::getDisplayPlanePropertiesKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayPlaneSupportedDisplaysKHR(uint32_t planeIndex, uint32_t* pDisplayCount, DisplayKHR* pDisplays) const
{
return static_cast<Result>(vkGetDisplayPlaneSupportedDisplaysKHR(m_physicalDevice, planeIndex, pDisplayCount, reinterpret_cast<VkDisplayKHR*>(pDisplays)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DisplayKHR>>
typename ResultValueType<std::vector<DisplayKHR, Allocator>>::type getDisplayPlaneSupportedDisplaysKHR(uint32_t planeIndex) const
{
std::vector<DisplayKHR, Allocator> displays;
uint32_t displayCount;
Result result;
do
{
result = static_cast<Result>(vkGetDisplayPlaneSupportedDisplaysKHR(m_physicalDevice, planeIndex, &displayCount, nullptr));
if ((result == Result::eSuccess) && displayCount)
{
displays.resize(displayCount);
result = static_cast<Result>(vkGetDisplayPlaneSupportedDisplaysKHR(m_physicalDevice, planeIndex, &displayCount, reinterpret_cast<VkDisplayKHR*>(displays.data())));
}
} while (result == Result::eIncomplete);
assert(displayCount <= displays.size());
displays.resize(displayCount);
return createResultValue(result, displays, "vk::PhysicalDevice::getDisplayPlaneSupportedDisplaysKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayModePropertiesKHR(DisplayKHR display, uint32_t* pPropertyCount, DisplayModePropertiesKHR* pProperties) const
{
return static_cast<Result>(vkGetDisplayModePropertiesKHR(m_physicalDevice, static_cast<VkDisplayKHR>(display), pPropertyCount, reinterpret_cast<VkDisplayModePropertiesKHR*>(pProperties)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<DisplayModePropertiesKHR>>
typename ResultValueType<std::vector<DisplayModePropertiesKHR, Allocator>>::type getDisplayModePropertiesKHR(DisplayKHR display) const
{
std::vector<DisplayModePropertiesKHR, Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>(vkGetDisplayModePropertiesKHR(m_physicalDevice, static_cast<VkDisplayKHR>(display), &propertyCount, nullptr));
if ((result == Result::eSuccess) && propertyCount)
{
properties.resize(propertyCount);
result = static_cast<Result>(vkGetDisplayModePropertiesKHR(m_physicalDevice, static_cast<VkDisplayKHR>(display), &propertyCount, reinterpret_cast<VkDisplayModePropertiesKHR*>(properties.data())));
}
} while (result == Result::eIncomplete);
assert(propertyCount <= properties.size());
properties.resize(propertyCount);
return createResultValue(result, properties, "vk::PhysicalDevice::getDisplayModePropertiesKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDisplayModeKHR(DisplayKHR display, const DisplayModeCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, DisplayModeKHR* pMode) const
{
return static_cast<Result>(vkCreateDisplayModeKHR(m_physicalDevice, static_cast<VkDisplayKHR>(display), reinterpret_cast<const VkDisplayModeCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDisplayModeKHR*>(pMode)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DisplayModeKHR>::type createDisplayModeKHR(DisplayKHR display, const DisplayModeCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
DisplayModeKHR mode;
Result result = static_cast<Result>(vkCreateDisplayModeKHR(m_physicalDevice, static_cast<VkDisplayKHR>(display), reinterpret_cast<const VkDisplayModeCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDisplayModeKHR*>(&mode)));
return createResultValue(result, mode, "vk::PhysicalDevice::createDisplayModeKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getDisplayPlaneCapabilitiesKHR(DisplayModeKHR mode, uint32_t planeIndex, DisplayPlaneCapabilitiesKHR* pCapabilities) const
{
return static_cast<Result>(vkGetDisplayPlaneCapabilitiesKHR(m_physicalDevice, static_cast<VkDisplayModeKHR>(mode), planeIndex, reinterpret_cast<VkDisplayPlaneCapabilitiesKHR*>(pCapabilities)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DisplayPlaneCapabilitiesKHR>::type getDisplayPlaneCapabilitiesKHR(DisplayModeKHR mode, uint32_t planeIndex) const
{
DisplayPlaneCapabilitiesKHR capabilities;
Result result = static_cast<Result>(vkGetDisplayPlaneCapabilitiesKHR(m_physicalDevice, static_cast<VkDisplayModeKHR>(mode), planeIndex, reinterpret_cast<VkDisplayPlaneCapabilitiesKHR*>(&capabilities)));
return createResultValue(result, capabilities, "vk::PhysicalDevice::getDisplayPlaneCapabilitiesKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_MIR_KHR
Bool32 getMirPresentationSupportKHR(uint32_t queueFamilyIndex, MirConnection* connection) const
{
return vkGetPhysicalDeviceMirPresentationSupportKHR(m_physicalDevice, queueFamilyIndex, connection);
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_MIR_KHR
Bool32 getMirPresentationSupportKHR(uint32_t queueFamilyIndex, MirConnection & connection) const
{
return vkGetPhysicalDeviceMirPresentationSupportKHR(m_physicalDevice, queueFamilyIndex, &connection);
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfaceSupportKHR(uint32_t queueFamilyIndex, SurfaceKHR surface, Bool32* pSupported) const
{
return static_cast<Result>(vkGetPhysicalDeviceSurfaceSupportKHR(m_physicalDevice, queueFamilyIndex, static_cast<VkSurfaceKHR>(surface), pSupported));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<Bool32>::type getSurfaceSupportKHR(uint32_t queueFamilyIndex, SurfaceKHR surface) const
{
Bool32 supported;
Result result = static_cast<Result>(vkGetPhysicalDeviceSurfaceSupportKHR(m_physicalDevice, queueFamilyIndex, static_cast<VkSurfaceKHR>(surface), &supported));
return createResultValue(result, supported, "vk::PhysicalDevice::getSurfaceSupportKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfaceCapabilitiesKHR(SurfaceKHR surface, SurfaceCapabilitiesKHR* pSurfaceCapabilities) const
{
return static_cast<Result>(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(m_physicalDevice, static_cast<VkSurfaceKHR>(surface), reinterpret_cast<VkSurfaceCapabilitiesKHR*>(pSurfaceCapabilities)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceCapabilitiesKHR>::type getSurfaceCapabilitiesKHR(SurfaceKHR surface) const
{
SurfaceCapabilitiesKHR surfaceCapabilities;
Result result = static_cast<Result>(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(m_physicalDevice, static_cast<VkSurfaceKHR>(surface), reinterpret_cast<VkSurfaceCapabilitiesKHR*>(&surfaceCapabilities)));
return createResultValue(result, surfaceCapabilities, "vk::PhysicalDevice::getSurfaceCapabilitiesKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfaceFormatsKHR(SurfaceKHR surface, uint32_t* pSurfaceFormatCount, SurfaceFormatKHR* pSurfaceFormats) const
{
return static_cast<Result>(vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, static_cast<VkSurfaceKHR>(surface), pSurfaceFormatCount, reinterpret_cast<VkSurfaceFormatKHR*>(pSurfaceFormats)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<SurfaceFormatKHR>>
typename ResultValueType<std::vector<SurfaceFormatKHR, Allocator>>::type getSurfaceFormatsKHR(SurfaceKHR surface) const
{
std::vector<SurfaceFormatKHR, Allocator> surfaceFormats;
uint32_t surfaceFormatCount;
Result result;
do
{
result = static_cast<Result>(vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, static_cast<VkSurfaceKHR>(surface), &surfaceFormatCount, nullptr));
if ((result == Result::eSuccess) && surfaceFormatCount)
{
surfaceFormats.resize(surfaceFormatCount);
result = static_cast<Result>(vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, static_cast<VkSurfaceKHR>(surface), &surfaceFormatCount, reinterpret_cast<VkSurfaceFormatKHR*>(surfaceFormats.data())));
}
} while (result == Result::eIncomplete);
assert(surfaceFormatCount <= surfaceFormats.size());
surfaceFormats.resize(surfaceFormatCount);
return createResultValue(result, surfaceFormats, "vk::PhysicalDevice::getSurfaceFormatsKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result getSurfacePresentModesKHR(SurfaceKHR surface, uint32_t* pPresentModeCount, PresentModeKHR* pPresentModes) const
{
return static_cast<Result>(vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, static_cast<VkSurfaceKHR>(surface), pPresentModeCount, reinterpret_cast<VkPresentModeKHR*>(pPresentModes)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<PresentModeKHR>>
typename ResultValueType<std::vector<PresentModeKHR, Allocator>>::type getSurfacePresentModesKHR(SurfaceKHR surface) const
{
std::vector<PresentModeKHR, Allocator> presentModes;
uint32_t presentModeCount;
Result result;
do
{
result = static_cast<Result>(vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, static_cast<VkSurfaceKHR>(surface), &presentModeCount, nullptr));
if ((result == Result::eSuccess) && presentModeCount)
{
presentModes.resize(presentModeCount);
result = static_cast<Result>(vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, static_cast<VkSurfaceKHR>(surface), &presentModeCount, reinterpret_cast<VkPresentModeKHR*>(presentModes.data())));
}
} while (result == Result::eIncomplete);
assert(presentModeCount <= presentModes.size());
presentModes.resize(presentModeCount);
return createResultValue(result, presentModes, "vk::PhysicalDevice::getSurfacePresentModesKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
Bool32 getWaylandPresentationSupportKHR(uint32_t queueFamilyIndex, struct wl_display* display) const
{
return vkGetPhysicalDeviceWaylandPresentationSupportKHR(m_physicalDevice, queueFamilyIndex, display);
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
Bool32 getWaylandPresentationSupportKHR(uint32_t queueFamilyIndex, struct wl_display & display) const
{
return vkGetPhysicalDeviceWaylandPresentationSupportKHR(m_physicalDevice, queueFamilyIndex, &display);
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_WIN32_KHR
Bool32 getWin32PresentationSupportKHR(uint32_t queueFamilyIndex) const
{
return vkGetPhysicalDeviceWin32PresentationSupportKHR(m_physicalDevice, queueFamilyIndex);
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#endif /*!VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_WIN32_KHR
Bool32 getWin32PresentationSupportKHR(uint32_t queueFamilyIndex) const
{
return vkGetPhysicalDeviceWin32PresentationSupportKHR(m_physicalDevice, queueFamilyIndex);
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
Bool32 getXlibPresentationSupportKHR(uint32_t queueFamilyIndex, Display* dpy, VisualID visualID) const
{
return vkGetPhysicalDeviceXlibPresentationSupportKHR(m_physicalDevice, queueFamilyIndex, dpy, visualID);
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_XLIB_KHR
Bool32 getXlibPresentationSupportKHR(uint32_t queueFamilyIndex, Display & dpy, VisualID visualID) const
{
return vkGetPhysicalDeviceXlibPresentationSupportKHR(m_physicalDevice, queueFamilyIndex, &dpy, visualID);
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_XCB_KHR
Bool32 getXcbPresentationSupportKHR(uint32_t queueFamilyIndex, xcb_connection_t* connection, xcb_visualid_t visual_id) const
{
return vkGetPhysicalDeviceXcbPresentationSupportKHR(m_physicalDevice, queueFamilyIndex, connection, visual_id);
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_XCB_KHR
Bool32 getXcbPresentationSupportKHR(uint32_t queueFamilyIndex, xcb_connection_t & connection, xcb_visualid_t visual_id) const
{
return vkGetPhysicalDeviceXcbPresentationSupportKHR(m_physicalDevice, queueFamilyIndex, &connection, visual_id);
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkPhysicalDevice() const
{
return m_physicalDevice;
}
explicit operator bool() const
{
return m_physicalDevice != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_physicalDevice == VK_NULL_HANDLE;
}
private:
VkPhysicalDevice m_physicalDevice;
};
static_assert(sizeof(PhysicalDevice) == sizeof(VkPhysicalDevice), "handle and wrapper have different size!");
class Instance
{
public:
Instance()
: m_instance(VK_NULL_HANDLE)
{}
#if defined(VULKAN_HPP_TYPESAFE_CONVERSION)
Instance(VkInstance instance)
: m_instance(instance)
{}
Instance& operator=(VkInstance instance)
{
m_instance = instance;
return *this;
}
#endif
bool operator==(Instance const &rhs) const
{
return m_instance == rhs.m_instance;
}
bool operator!=(Instance const &rhs) const
{
return m_instance != rhs.m_instance;
}
bool operator<(Instance const &rhs) const
{
return m_instance < rhs.m_instance;
}
void destroy(const AllocationCallbacks* pAllocator) const
{
vkDestroyInstance(m_instance, reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroy(Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyInstance(m_instance, reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result enumeratePhysicalDevices(uint32_t* pPhysicalDeviceCount, PhysicalDevice* pPhysicalDevices) const
{
return static_cast<Result>(vkEnumeratePhysicalDevices(m_instance, pPhysicalDeviceCount, reinterpret_cast<VkPhysicalDevice*>(pPhysicalDevices)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<PhysicalDevice>>
typename ResultValueType<std::vector<PhysicalDevice, Allocator>>::type enumeratePhysicalDevices() const
{
std::vector<PhysicalDevice, Allocator> physicalDevices;
uint32_t physicalDeviceCount;
Result result;
do
{
result = static_cast<Result>(vkEnumeratePhysicalDevices(m_instance, &physicalDeviceCount, nullptr));
if ((result == Result::eSuccess) && physicalDeviceCount)
{
physicalDevices.resize(physicalDeviceCount);
result = static_cast<Result>(vkEnumeratePhysicalDevices(m_instance, &physicalDeviceCount, reinterpret_cast<VkPhysicalDevice*>(physicalDevices.data())));
}
} while (result == Result::eIncomplete);
assert(physicalDeviceCount <= physicalDevices.size());
physicalDevices.resize(physicalDeviceCount);
return createResultValue(result, physicalDevices, "vk::Instance::enumeratePhysicalDevices");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
PFN_vkVoidFunction getProcAddr(const char* pName) const
{
return vkGetInstanceProcAddr(m_instance, pName);
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
PFN_vkVoidFunction getProcAddr(const std::string & name) const
{
return vkGetInstanceProcAddr(m_instance, name.c_str());
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_ANDROID_KHR
Result createAndroidSurfaceKHR(const AndroidSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface) const
{
return static_cast<Result>(vkCreateAndroidSurfaceKHR(m_instance, reinterpret_cast<const VkAndroidSurfaceCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSurfaceKHR*>(pSurface)));
}
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_ANDROID_KHR
ResultValueType<SurfaceKHR>::type createAndroidSurfaceKHR(const AndroidSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SurfaceKHR surface;
Result result = static_cast<Result>(vkCreateAndroidSurfaceKHR(m_instance, reinterpret_cast<const VkAndroidSurfaceCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSurfaceKHR*>(&surface)));
return createResultValue(result, surface, "vk::Instance::createAndroidSurfaceKHR");
}
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDisplayPlaneSurfaceKHR(const DisplaySurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface) const
{
return static_cast<Result>(vkCreateDisplayPlaneSurfaceKHR(m_instance, reinterpret_cast<const VkDisplaySurfaceCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSurfaceKHR*>(pSurface)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<SurfaceKHR>::type createDisplayPlaneSurfaceKHR(const DisplaySurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SurfaceKHR surface;
Result result = static_cast<Result>(vkCreateDisplayPlaneSurfaceKHR(m_instance, reinterpret_cast<const VkDisplaySurfaceCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSurfaceKHR*>(&surface)));
return createResultValue(result, surface, "vk::Instance::createDisplayPlaneSurfaceKHR");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_MIR_KHR
Result createMirSurfaceKHR(const MirSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface) const
{
return static_cast<Result>(vkCreateMirSurfaceKHR(m_instance, reinterpret_cast<const VkMirSurfaceCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSurfaceKHR*>(pSurface)));
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_MIR_KHR
ResultValueType<SurfaceKHR>::type createMirSurfaceKHR(const MirSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SurfaceKHR surface;
Result result = static_cast<Result>(vkCreateMirSurfaceKHR(m_instance, reinterpret_cast<const VkMirSurfaceCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSurfaceKHR*>(&surface)));
return createResultValue(result, surface, "vk::Instance::createMirSurfaceKHR");
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroySurfaceKHR(SurfaceKHR surface, const AllocationCallbacks* pAllocator) const
{
vkDestroySurfaceKHR(m_instance, static_cast<VkSurfaceKHR>(surface), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroySurfaceKHR(SurfaceKHR surface, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroySurfaceKHR(m_instance, static_cast<VkSurfaceKHR>(surface), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
Result createWaylandSurfaceKHR(const WaylandSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface) const
{
return static_cast<Result>(vkCreateWaylandSurfaceKHR(m_instance, reinterpret_cast<const VkWaylandSurfaceCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSurfaceKHR*>(pSurface)));
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
ResultValueType<SurfaceKHR>::type createWaylandSurfaceKHR(const WaylandSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SurfaceKHR surface;
Result result = static_cast<Result>(vkCreateWaylandSurfaceKHR(m_instance, reinterpret_cast<const VkWaylandSurfaceCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSurfaceKHR*>(&surface)));
return createResultValue(result, surface, "vk::Instance::createWaylandSurfaceKHR");
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
Result createWin32SurfaceKHR(const Win32SurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface) const
{
return static_cast<Result>(vkCreateWin32SurfaceKHR(m_instance, reinterpret_cast<const VkWin32SurfaceCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSurfaceKHR*>(pSurface)));
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_WIN32_KHR
ResultValueType<SurfaceKHR>::type createWin32SurfaceKHR(const Win32SurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SurfaceKHR surface;
Result result = static_cast<Result>(vkCreateWin32SurfaceKHR(m_instance, reinterpret_cast<const VkWin32SurfaceCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSurfaceKHR*>(&surface)));
return createResultValue(result, surface, "vk::Instance::createWin32SurfaceKHR");
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
Result createXlibSurfaceKHR(const XlibSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface) const
{
return static_cast<Result>(vkCreateXlibSurfaceKHR(m_instance, reinterpret_cast<const VkXlibSurfaceCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSurfaceKHR*>(pSurface)));
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_XLIB_KHR
ResultValueType<SurfaceKHR>::type createXlibSurfaceKHR(const XlibSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SurfaceKHR surface;
Result result = static_cast<Result>(vkCreateXlibSurfaceKHR(m_instance, reinterpret_cast<const VkXlibSurfaceCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSurfaceKHR*>(&surface)));
return createResultValue(result, surface, "vk::Instance::createXlibSurfaceKHR");
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#ifdef VK_USE_PLATFORM_XCB_KHR
Result createXcbSurfaceKHR(const XcbSurfaceCreateInfoKHR* pCreateInfo, const AllocationCallbacks* pAllocator, SurfaceKHR* pSurface) const
{
return static_cast<Result>(vkCreateXcbSurfaceKHR(m_instance, reinterpret_cast<const VkXcbSurfaceCreateInfoKHR*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkSurfaceKHR*>(pSurface)));
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
#ifdef VK_USE_PLATFORM_XCB_KHR
ResultValueType<SurfaceKHR>::type createXcbSurfaceKHR(const XcbSurfaceCreateInfoKHR & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
SurfaceKHR surface;
Result result = static_cast<Result>(vkCreateXcbSurfaceKHR(m_instance, reinterpret_cast<const VkXcbSurfaceCreateInfoKHR*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkSurfaceKHR*>(&surface)));
return createResultValue(result, surface, "vk::Instance::createXcbSurfaceKHR");
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
Result createDebugReportCallbackEXT(const DebugReportCallbackCreateInfoEXT* pCreateInfo, const AllocationCallbacks* pAllocator, DebugReportCallbackEXT* pCallback) const
{
return static_cast<Result>(vkCreateDebugReportCallbackEXT(m_instance, reinterpret_cast<const VkDebugReportCallbackCreateInfoEXT*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkDebugReportCallbackEXT*>(pCallback)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
ResultValueType<DebugReportCallbackEXT>::type createDebugReportCallbackEXT(const DebugReportCallbackCreateInfoEXT & createInfo, Optional<const AllocationCallbacks> allocator = nullptr) const
{
DebugReportCallbackEXT callback;
Result result = static_cast<Result>(vkCreateDebugReportCallbackEXT(m_instance, reinterpret_cast<const VkDebugReportCallbackCreateInfoEXT*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkDebugReportCallbackEXT*>(&callback)));
return createResultValue(result, callback, "vk::Instance::createDebugReportCallbackEXT");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void destroyDebugReportCallbackEXT(DebugReportCallbackEXT callback, const AllocationCallbacks* pAllocator) const
{
vkDestroyDebugReportCallbackEXT(m_instance, static_cast<VkDebugReportCallbackEXT>(callback), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void destroyDebugReportCallbackEXT(DebugReportCallbackEXT callback, Optional<const AllocationCallbacks> allocator = nullptr) const
{
vkDestroyDebugReportCallbackEXT(m_instance, static_cast<VkDebugReportCallbackEXT>(callback), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)));
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
void debugReportMessageEXT(DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage) const
{
vkDebugReportMessageEXT(m_instance, static_cast<VkDebugReportFlagsEXT>(flags), static_cast<VkDebugReportObjectTypeEXT>(objectType), object, location, messageCode, pLayerPrefix, pMessage);
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
void debugReportMessageEXT(DebugReportFlagsEXT flags, DebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const std::string & layerPrefix, const std::string & message) const
{
vkDebugReportMessageEXT(m_instance, static_cast<VkDebugReportFlagsEXT>(flags), static_cast<VkDebugReportObjectTypeEXT>(objectType), object, location, messageCode, layerPrefix.c_str(), message.c_str());
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
#if !defined(VULKAN_HPP_TYPESAFE_CONVERSION)
explicit
#endif
operator VkInstance() const
{
return m_instance;
}
explicit operator bool() const
{
return m_instance != VK_NULL_HANDLE;
}
bool operator!() const
{
return m_instance == VK_NULL_HANDLE;
}
private:
VkInstance m_instance;
};
static_assert(sizeof(Instance) == sizeof(VkInstance), "handle and wrapper have different size!");
enum class DebugReportErrorEXT
{
eNone = VK_DEBUG_REPORT_ERROR_NONE_EXT,
eCallbackRef = VK_DEBUG_REPORT_ERROR_CALLBACK_REF_EXT
};
enum class RasterizationOrderAMD
{
eStrict = VK_RASTERIZATION_ORDER_STRICT_AMD,
eRelaxed = VK_RASTERIZATION_ORDER_RELAXED_AMD
};
struct PipelineRasterizationStateRasterizationOrderAMD
{
PipelineRasterizationStateRasterizationOrderAMD(RasterizationOrderAMD rasterizationOrder_ = RasterizationOrderAMD::eStrict)
: sType(StructureType::ePipelineRasterizationStateRasterizationOrderAMD)
, pNext(nullptr)
, rasterizationOrder(rasterizationOrder_)
{
}
PipelineRasterizationStateRasterizationOrderAMD(VkPipelineRasterizationStateRasterizationOrderAMD const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineRasterizationStateRasterizationOrderAMD));
}
PipelineRasterizationStateRasterizationOrderAMD& operator=(VkPipelineRasterizationStateRasterizationOrderAMD const & rhs)
{
memcpy(this, &rhs, sizeof(PipelineRasterizationStateRasterizationOrderAMD));
return *this;
}
PipelineRasterizationStateRasterizationOrderAMD& setSType(StructureType sType_)
{
sType = sType_;
return *this;
}
PipelineRasterizationStateRasterizationOrderAMD& setPNext(const void* pNext_)
{
pNext = pNext_;
return *this;
}
PipelineRasterizationStateRasterizationOrderAMD& setRasterizationOrder(RasterizationOrderAMD rasterizationOrder_)
{
rasterizationOrder = rasterizationOrder_;
return *this;
}
operator const VkPipelineRasterizationStateRasterizationOrderAMD&() const
{
return *reinterpret_cast<const VkPipelineRasterizationStateRasterizationOrderAMD*>(this);
}
bool operator==(PipelineRasterizationStateRasterizationOrderAMD const& rhs) const
{
return (sType == rhs.sType)
&& (pNext == rhs.pNext)
&& (rasterizationOrder == rhs.rasterizationOrder);
}
bool operator!=(PipelineRasterizationStateRasterizationOrderAMD const& rhs) const
{
return !operator==(rhs);
}
private:
StructureType sType;
public:
const void* pNext;
RasterizationOrderAMD rasterizationOrder;
};
static_assert(sizeof(PipelineRasterizationStateRasterizationOrderAMD) == sizeof(VkPipelineRasterizationStateRasterizationOrderAMD), "struct and wrapper have different size!");
inline Result createInstance(const InstanceCreateInfo* pCreateInfo, const AllocationCallbacks* pAllocator, Instance* pInstance)
{
return static_cast<Result>(vkCreateInstance(reinterpret_cast<const VkInstanceCreateInfo*>(pCreateInfo), reinterpret_cast<const VkAllocationCallbacks*>(pAllocator), reinterpret_cast<VkInstance*>(pInstance)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
inline ResultValueType<Instance>::type createInstance(const InstanceCreateInfo & createInfo, Optional<const AllocationCallbacks> allocator = nullptr)
{
Instance instance;
Result result = static_cast<Result>(vkCreateInstance(reinterpret_cast<const VkInstanceCreateInfo*>(&createInfo), reinterpret_cast<const VkAllocationCallbacks*>(static_cast<const AllocationCallbacks*>(allocator)), reinterpret_cast<VkInstance*>(&instance)));
return createResultValue(result, instance, "vk::createInstance");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
inline Result enumerateInstanceLayerProperties(uint32_t* pPropertyCount, LayerProperties* pProperties)
{
return static_cast<Result>(vkEnumerateInstanceLayerProperties(pPropertyCount, reinterpret_cast<VkLayerProperties*>(pProperties)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<LayerProperties>>
typename ResultValueType<std::vector<LayerProperties, Allocator>>::type enumerateInstanceLayerProperties()
{
std::vector<LayerProperties, Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>(vkEnumerateInstanceLayerProperties(&propertyCount, nullptr));
if ((result == Result::eSuccess) && propertyCount)
{
properties.resize(propertyCount);
result = static_cast<Result>(vkEnumerateInstanceLayerProperties(&propertyCount, reinterpret_cast<VkLayerProperties*>(properties.data())));
}
} while (result == Result::eIncomplete);
assert(propertyCount <= properties.size());
properties.resize(propertyCount);
return createResultValue(result, properties, "vk::enumerateInstanceLayerProperties");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
inline Result enumerateInstanceExtensionProperties(const char* pLayerName, uint32_t* pPropertyCount, ExtensionProperties* pProperties)
{
return static_cast<Result>(vkEnumerateInstanceExtensionProperties(pLayerName, pPropertyCount, reinterpret_cast<VkExtensionProperties*>(pProperties)));
}
#ifndef VULKAN_HPP_DISABLE_ENHANCED_MODE
template <typename Allocator = std::allocator<ExtensionProperties>>
typename ResultValueType<std::vector<ExtensionProperties, Allocator>>::type enumerateInstanceExtensionProperties(Optional<const std::string> layerName = nullptr)
{
std::vector<ExtensionProperties, Allocator> properties;
uint32_t propertyCount;
Result result;
do
{
result = static_cast<Result>(vkEnumerateInstanceExtensionProperties(layerName ? layerName->c_str() : nullptr, &propertyCount, nullptr));
if ((result == Result::eSuccess) && propertyCount)
{
properties.resize(propertyCount);
result = static_cast<Result>(vkEnumerateInstanceExtensionProperties(layerName ? layerName->c_str() : nullptr, &propertyCount, reinterpret_cast<VkExtensionProperties*>(properties.data())));
}
} while (result == Result::eIncomplete);
assert(propertyCount <= properties.size());
properties.resize(propertyCount);
return createResultValue(result, properties, "vk::enumerateInstanceExtensionProperties");
}
#endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/
inline std::string to_string(FramebufferCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(FramebufferCreateFlags)
{
return "{}";
}
inline std::string to_string(QueryPoolCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(QueryPoolCreateFlags)
{
return "{}";
}
inline std::string to_string(RenderPassCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(RenderPassCreateFlags)
{
return "{}";
}
inline std::string to_string(SamplerCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(SamplerCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineLayoutCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineLayoutCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineCacheCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineCacheCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineDepthStencilStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineDepthStencilStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineDynamicStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineDynamicStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineColorBlendStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineColorBlendStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineMultisampleStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineMultisampleStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineRasterizationStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineRasterizationStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineViewportStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineViewportStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineTessellationStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineTessellationStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineInputAssemblyStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineInputAssemblyStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineVertexInputStateCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineVertexInputStateCreateFlags)
{
return "{}";
}
inline std::string to_string(PipelineShaderStageCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(PipelineShaderStageCreateFlags)
{
return "{}";
}
inline std::string to_string(DescriptorSetLayoutCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(DescriptorSetLayoutCreateFlags)
{
return "{}";
}
inline std::string to_string(BufferViewCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(BufferViewCreateFlags)
{
return "{}";
}
inline std::string to_string(InstanceCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(InstanceCreateFlags)
{
return "{}";
}
inline std::string to_string(DeviceCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(DeviceCreateFlags)
{
return "{}";
}
inline std::string to_string(DeviceQueueCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(DeviceQueueCreateFlags)
{
return "{}";
}
inline std::string to_string(ImageViewCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(ImageViewCreateFlags)
{
return "{}";
}
inline std::string to_string(SemaphoreCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(SemaphoreCreateFlags)
{
return "{}";
}
inline std::string to_string(ShaderModuleCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(ShaderModuleCreateFlags)
{
return "{}";
}
inline std::string to_string(EventCreateFlagBits)
{
return "(void)";
}
inline std::string to_string(EventCreateFlags)
{
return "{}";
}
inline std::string to_string(MemoryMapFlagBits)
{
return "(void)";
}
inline std::string to_string(MemoryMapFlags)
{
return "{}";
}
inline std::string to_string(SubpassDescriptionFlagBits)
{
return "(void)";
}
inline std::string to_string(SubpassDescriptionFlags)
{
return "{}";
}
inline std::string to_string(DescriptorPoolResetFlagBits)
{
return "(void)";
}
inline std::string to_string(DescriptorPoolResetFlags)
{
return "{}";
}
inline std::string to_string(SwapchainCreateFlagBitsKHR)
{
return "(void)";
}
inline std::string to_string(SwapchainCreateFlagsKHR)
{
return "{}";
}
inline std::string to_string(DisplayModeCreateFlagBitsKHR)
{
return "(void)";
}
inline std::string to_string(DisplayModeCreateFlagsKHR)
{
return "{}";
}
inline std::string to_string(DisplaySurfaceCreateFlagBitsKHR)
{
return "(void)";
}
inline std::string to_string(DisplaySurfaceCreateFlagsKHR)
{
return "{}";
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
inline std::string to_string(AndroidSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_ANDROID_KHR
inline std::string to_string(AndroidSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_ANDROID_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
inline std::string to_string(MirSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_MIR_KHR
inline std::string to_string(MirSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_MIR_KHR*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
inline std::string to_string(WaylandSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
inline std::string to_string(WaylandSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_WAYLAND_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
inline std::string to_string(Win32SurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_WIN32_KHR
inline std::string to_string(Win32SurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_WIN32_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
inline std::string to_string(XlibSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XLIB_KHR
inline std::string to_string(XlibSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_XLIB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
inline std::string to_string(XcbSurfaceCreateFlagBitsKHR)
{
return "(void)";
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
#ifdef VK_USE_PLATFORM_XCB_KHR
inline std::string to_string(XcbSurfaceCreateFlagsKHR)
{
return "{}";
}
#endif /*VK_USE_PLATFORM_XCB_KHR*/
inline std::string to_string(ImageLayout value)
{
switch (value)
{
case ImageLayout::eUndefined: return "Undefined";
case ImageLayout::eGeneral: return "General";
case ImageLayout::eColorAttachmentOptimal: return "ColorAttachmentOptimal";
case ImageLayout::eDepthStencilAttachmentOptimal: return "DepthStencilAttachmentOptimal";
case ImageLayout::eDepthStencilReadOnlyOptimal: return "DepthStencilReadOnlyOptimal";
case ImageLayout::eShaderReadOnlyOptimal: return "ShaderReadOnlyOptimal";
case ImageLayout::eTransferSrcOptimal: return "TransferSrcOptimal";
case ImageLayout::eTransferDstOptimal: return "TransferDstOptimal";
case ImageLayout::ePreinitialized: return "Preinitialized";
case ImageLayout::ePresentSrcKHR: return "PresentSrcKHR";
default: return "invalid";
}
}
inline std::string to_string(AttachmentLoadOp value)
{
switch (value)
{
case AttachmentLoadOp::eLoad: return "Load";
case AttachmentLoadOp::eClear: return "Clear";
case AttachmentLoadOp::eDontCare: return "DontCare";
default: return "invalid";
}
}
inline std::string to_string(AttachmentStoreOp value)
{
switch (value)
{
case AttachmentStoreOp::eStore: return "Store";
case AttachmentStoreOp::eDontCare: return "DontCare";
default: return "invalid";
}
}
inline std::string to_string(ImageType value)
{
switch (value)
{
case ImageType::e1D: return "1D";
case ImageType::e2D: return "2D";
case ImageType::e3D: return "3D";
default: return "invalid";
}
}
inline std::string to_string(ImageTiling value)
{
switch (value)
{
case ImageTiling::eOptimal: return "Optimal";
case ImageTiling::eLinear: return "Linear";
default: return "invalid";
}
}
inline std::string to_string(ImageViewType value)
{
switch (value)
{
case ImageViewType::e1D: return "1D";
case ImageViewType::e2D: return "2D";
case ImageViewType::e3D: return "3D";
case ImageViewType::eCube: return "Cube";
case ImageViewType::e1DArray: return "1DArray";
case ImageViewType::e2DArray: return "2DArray";
case ImageViewType::eCubeArray: return "CubeArray";
default: return "invalid";
}
}
inline std::string to_string(CommandBufferLevel value)
{
switch (value)
{
case CommandBufferLevel::ePrimary: return "Primary";
case CommandBufferLevel::eSecondary: return "Secondary";
default: return "invalid";
}
}
inline std::string to_string(ComponentSwizzle value)
{
switch (value)
{
case ComponentSwizzle::eIdentity: return "Identity";
case ComponentSwizzle::eZero: return "Zero";
case ComponentSwizzle::eOne: return "One";
case ComponentSwizzle::eR: return "R";
case ComponentSwizzle::eG: return "G";
case ComponentSwizzle::eB: return "B";
case ComponentSwizzle::eA: return "A";
default: return "invalid";
}
}
inline std::string to_string(DescriptorType value)
{
switch (value)
{
case DescriptorType::eSampler: return "Sampler";
case DescriptorType::eCombinedImageSampler: return "CombinedImageSampler";
case DescriptorType::eSampledImage: return "SampledImage";
case DescriptorType::eStorageImage: return "StorageImage";
case DescriptorType::eUniformTexelBuffer: return "UniformTexelBuffer";
case DescriptorType::eStorageTexelBuffer: return "StorageTexelBuffer";
case DescriptorType::eUniformBuffer: return "UniformBuffer";
case DescriptorType::eStorageBuffer: return "StorageBuffer";
case DescriptorType::eUniformBufferDynamic: return "UniformBufferDynamic";
case DescriptorType::eStorageBufferDynamic: return "StorageBufferDynamic";
case DescriptorType::eInputAttachment: return "InputAttachment";
default: return "invalid";
}
}
inline std::string to_string(QueryType value)
{
switch (value)
{
case QueryType::eOcclusion: return "Occlusion";
case QueryType::ePipelineStatistics: return "PipelineStatistics";
case QueryType::eTimestamp: return "Timestamp";
default: return "invalid";
}
}
inline std::string to_string(BorderColor value)
{
switch (value)
{
case BorderColor::eFloatTransparentBlack: return "FloatTransparentBlack";
case BorderColor::eIntTransparentBlack: return "IntTransparentBlack";
case BorderColor::eFloatOpaqueBlack: return "FloatOpaqueBlack";
case BorderColor::eIntOpaqueBlack: return "IntOpaqueBlack";
case BorderColor::eFloatOpaqueWhite: return "FloatOpaqueWhite";
case BorderColor::eIntOpaqueWhite: return "IntOpaqueWhite";
default: return "invalid";
}
}
inline std::string to_string(PipelineBindPoint value)
{
switch (value)
{
case PipelineBindPoint::eGraphics: return "Graphics";
case PipelineBindPoint::eCompute: return "Compute";
default: return "invalid";
}
}
inline std::string to_string(PipelineCacheHeaderVersion value)
{
switch (value)
{
case PipelineCacheHeaderVersion::eOne: return "One";
default: return "invalid";
}
}
inline std::string to_string(PrimitiveTopology value)
{
switch (value)
{
case PrimitiveTopology::ePointList: return "PointList";
case PrimitiveTopology::eLineList: return "LineList";
case PrimitiveTopology::eLineStrip: return "LineStrip";
case PrimitiveTopology::eTriangleList: return "TriangleList";
case PrimitiveTopology::eTriangleStrip: return "TriangleStrip";
case PrimitiveTopology::eTriangleFan: return "TriangleFan";
case PrimitiveTopology::eLineListWithAdjacency: return "LineListWithAdjacency";
case PrimitiveTopology::eLineStripWithAdjacency: return "LineStripWithAdjacency";
case PrimitiveTopology::eTriangleListWithAdjacency: return "TriangleListWithAdjacency";
case PrimitiveTopology::eTriangleStripWithAdjacency: return "TriangleStripWithAdjacency";
case PrimitiveTopology::ePatchList: return "PatchList";
default: return "invalid";
}
}
inline std::string to_string(SharingMode value)
{
switch (value)
{
case SharingMode::eExclusive: return "Exclusive";
case SharingMode::eConcurrent: return "Concurrent";
default: return "invalid";
}
}
inline std::string to_string(IndexType value)
{
switch (value)
{
case IndexType::eUint16: return "Uint16";
case IndexType::eUint32: return "Uint32";
default: return "invalid";
}
}
inline std::string to_string(Filter value)
{
switch (value)
{
case Filter::eNearest: return "Nearest";
case Filter::eLinear: return "Linear";
case Filter::eCubicIMG: return "CubicIMG";
default: return "invalid";
}
}
inline std::string to_string(SamplerMipmapMode value)
{
switch (value)
{
case SamplerMipmapMode::eNearest: return "Nearest";
case SamplerMipmapMode::eLinear: return "Linear";
default: return "invalid";
}
}
inline std::string to_string(SamplerAddressMode value)
{
switch (value)
{
case SamplerAddressMode::eRepeat: return "Repeat";
case SamplerAddressMode::eMirroredRepeat: return "MirroredRepeat";
case SamplerAddressMode::eClampToEdge: return "ClampToEdge";
case SamplerAddressMode::eClampToBorder: return "ClampToBorder";
case SamplerAddressMode::eMirrorClampToEdge: return "MirrorClampToEdge";
default: return "invalid";
}
}
inline std::string to_string(CompareOp value)
{
switch (value)
{
case CompareOp::eNever: return "Never";
case CompareOp::eLess: return "Less";
case CompareOp::eEqual: return "Equal";
case CompareOp::eLessOrEqual: return "LessOrEqual";
case CompareOp::eGreater: return "Greater";
case CompareOp::eNotEqual: return "NotEqual";
case CompareOp::eGreaterOrEqual: return "GreaterOrEqual";
case CompareOp::eAlways: return "Always";
default: return "invalid";
}
}
inline std::string to_string(PolygonMode value)
{
switch (value)
{
case PolygonMode::eFill: return "Fill";
case PolygonMode::eLine: return "Line";
case PolygonMode::ePoint: return "Point";
default: return "invalid";
}
}
inline std::string to_string(CullModeFlagBits value)
{
switch (value)
{
case CullModeFlagBits::eNone: return "None";
case CullModeFlagBits::eFront: return "Front";
case CullModeFlagBits::eBack: return "Back";
case CullModeFlagBits::eFrontAndBack: return "FrontAndBack";
default: return "invalid";
}
}
inline std::string to_string(CullModeFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CullModeFlagBits::eNone) result += "None | ";
if (value & CullModeFlagBits::eFront) result += "Front | ";
if (value & CullModeFlagBits::eBack) result += "Back | ";
if (value & CullModeFlagBits::eFrontAndBack) result += "FrontAndBack | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(FrontFace value)
{
switch (value)
{
case FrontFace::eCounterClockwise: return "CounterClockwise";
case FrontFace::eClockwise: return "Clockwise";
default: return "invalid";
}
}
inline std::string to_string(BlendFactor value)
{
switch (value)
{
case BlendFactor::eZero: return "Zero";
case BlendFactor::eOne: return "One";
case BlendFactor::eSrcColor: return "SrcColor";
case BlendFactor::eOneMinusSrcColor: return "OneMinusSrcColor";
case BlendFactor::eDstColor: return "DstColor";
case BlendFactor::eOneMinusDstColor: return "OneMinusDstColor";
case BlendFactor::eSrcAlpha: return "SrcAlpha";
case BlendFactor::eOneMinusSrcAlpha: return "OneMinusSrcAlpha";
case BlendFactor::eDstAlpha: return "DstAlpha";
case BlendFactor::eOneMinusDstAlpha: return "OneMinusDstAlpha";
case BlendFactor::eConstantColor: return "ConstantColor";
case BlendFactor::eOneMinusConstantColor: return "OneMinusConstantColor";
case BlendFactor::eConstantAlpha: return "ConstantAlpha";
case BlendFactor::eOneMinusConstantAlpha: return "OneMinusConstantAlpha";
case BlendFactor::eSrcAlphaSaturate: return "SrcAlphaSaturate";
case BlendFactor::eSrc1Color: return "Src1Color";
case BlendFactor::eOneMinusSrc1Color: return "OneMinusSrc1Color";
case BlendFactor::eSrc1Alpha: return "Src1Alpha";
case BlendFactor::eOneMinusSrc1Alpha: return "OneMinusSrc1Alpha";
default: return "invalid";
}
}
inline std::string to_string(BlendOp value)
{
switch (value)
{
case BlendOp::eAdd: return "Add";
case BlendOp::eSubtract: return "Subtract";
case BlendOp::eReverseSubtract: return "ReverseSubtract";
case BlendOp::eMin: return "Min";
case BlendOp::eMax: return "Max";
default: return "invalid";
}
}
inline std::string to_string(StencilOp value)
{
switch (value)
{
case StencilOp::eKeep: return "Keep";
case StencilOp::eZero: return "Zero";
case StencilOp::eReplace: return "Replace";
case StencilOp::eIncrementAndClamp: return "IncrementAndClamp";
case StencilOp::eDecrementAndClamp: return "DecrementAndClamp";
case StencilOp::eInvert: return "Invert";
case StencilOp::eIncrementAndWrap: return "IncrementAndWrap";
case StencilOp::eDecrementAndWrap: return "DecrementAndWrap";
default: return "invalid";
}
}
inline std::string to_string(LogicOp value)
{
switch (value)
{
case LogicOp::eClear: return "Clear";
case LogicOp::eAnd: return "And";
case LogicOp::eAndReverse: return "AndReverse";
case LogicOp::eCopy: return "Copy";
case LogicOp::eAndInverted: return "AndInverted";
case LogicOp::eNoOp: return "NoOp";
case LogicOp::eXor: return "Xor";
case LogicOp::eOr: return "Or";
case LogicOp::eNor: return "Nor";
case LogicOp::eEquivalent: return "Equivalent";
case LogicOp::eInvert: return "Invert";
case LogicOp::eOrReverse: return "OrReverse";
case LogicOp::eCopyInverted: return "CopyInverted";
case LogicOp::eOrInverted: return "OrInverted";
case LogicOp::eNand: return "Nand";
case LogicOp::eSet: return "Set";
default: return "invalid";
}
}
inline std::string to_string(InternalAllocationType value)
{
switch (value)
{
case InternalAllocationType::eExecutable: return "Executable";
default: return "invalid";
}
}
inline std::string to_string(SystemAllocationScope value)
{
switch (value)
{
case SystemAllocationScope::eCommand: return "Command";
case SystemAllocationScope::eObject: return "Object";
case SystemAllocationScope::eCache: return "Cache";
case SystemAllocationScope::eDevice: return "Device";
case SystemAllocationScope::eInstance: return "Instance";
default: return "invalid";
}
}
inline std::string to_string(PhysicalDeviceType value)
{
switch (value)
{
case PhysicalDeviceType::eOther: return "Other";
case PhysicalDeviceType::eIntegratedGpu: return "IntegratedGpu";
case PhysicalDeviceType::eDiscreteGpu: return "DiscreteGpu";
case PhysicalDeviceType::eVirtualGpu: return "VirtualGpu";
case PhysicalDeviceType::eCpu: return "Cpu";
default: return "invalid";
}
}
inline std::string to_string(VertexInputRate value)
{
switch (value)
{
case VertexInputRate::eVertex: return "Vertex";
case VertexInputRate::eInstance: return "Instance";
default: return "invalid";
}
}
inline std::string to_string(Format value)
{
switch (value)
{
case Format::eUndefined: return "Undefined";
case Format::eR4G4UnormPack8: return "R4G4UnormPack8";
case Format::eR4G4B4A4UnormPack16: return "R4G4B4A4UnormPack16";
case Format::eB4G4R4A4UnormPack16: return "B4G4R4A4UnormPack16";
case Format::eR5G6B5UnormPack16: return "R5G6B5UnormPack16";
case Format::eB5G6R5UnormPack16: return "B5G6R5UnormPack16";
case Format::eR5G5B5A1UnormPack16: return "R5G5B5A1UnormPack16";
case Format::eB5G5R5A1UnormPack16: return "B5G5R5A1UnormPack16";
case Format::eA1R5G5B5UnormPack16: return "A1R5G5B5UnormPack16";
case Format::eR8Unorm: return "R8Unorm";
case Format::eR8Snorm: return "R8Snorm";
case Format::eR8Uscaled: return "R8Uscaled";
case Format::eR8Sscaled: return "R8Sscaled";
case Format::eR8Uint: return "R8Uint";
case Format::eR8Sint: return "R8Sint";
case Format::eR8Srgb: return "R8Srgb";
case Format::eR8G8Unorm: return "R8G8Unorm";
case Format::eR8G8Snorm: return "R8G8Snorm";
case Format::eR8G8Uscaled: return "R8G8Uscaled";
case Format::eR8G8Sscaled: return "R8G8Sscaled";
case Format::eR8G8Uint: return "R8G8Uint";
case Format::eR8G8Sint: return "R8G8Sint";
case Format::eR8G8Srgb: return "R8G8Srgb";
case Format::eR8G8B8Unorm: return "R8G8B8Unorm";
case Format::eR8G8B8Snorm: return "R8G8B8Snorm";
case Format::eR8G8B8Uscaled: return "R8G8B8Uscaled";
case Format::eR8G8B8Sscaled: return "R8G8B8Sscaled";
case Format::eR8G8B8Uint: return "R8G8B8Uint";
case Format::eR8G8B8Sint: return "R8G8B8Sint";
case Format::eR8G8B8Srgb: return "R8G8B8Srgb";
case Format::eB8G8R8Unorm: return "B8G8R8Unorm";
case Format::eB8G8R8Snorm: return "B8G8R8Snorm";
case Format::eB8G8R8Uscaled: return "B8G8R8Uscaled";
case Format::eB8G8R8Sscaled: return "B8G8R8Sscaled";
case Format::eB8G8R8Uint: return "B8G8R8Uint";
case Format::eB8G8R8Sint: return "B8G8R8Sint";
case Format::eB8G8R8Srgb: return "B8G8R8Srgb";
case Format::eR8G8B8A8Unorm: return "R8G8B8A8Unorm";
case Format::eR8G8B8A8Snorm: return "R8G8B8A8Snorm";
case Format::eR8G8B8A8Uscaled: return "R8G8B8A8Uscaled";
case Format::eR8G8B8A8Sscaled: return "R8G8B8A8Sscaled";
case Format::eR8G8B8A8Uint: return "R8G8B8A8Uint";
case Format::eR8G8B8A8Sint: return "R8G8B8A8Sint";
case Format::eR8G8B8A8Srgb: return "R8G8B8A8Srgb";
case Format::eB8G8R8A8Unorm: return "B8G8R8A8Unorm";
case Format::eB8G8R8A8Snorm: return "B8G8R8A8Snorm";
case Format::eB8G8R8A8Uscaled: return "B8G8R8A8Uscaled";
case Format::eB8G8R8A8Sscaled: return "B8G8R8A8Sscaled";
case Format::eB8G8R8A8Uint: return "B8G8R8A8Uint";
case Format::eB8G8R8A8Sint: return "B8G8R8A8Sint";
case Format::eB8G8R8A8Srgb: return "B8G8R8A8Srgb";
case Format::eA8B8G8R8UnormPack32: return "A8B8G8R8UnormPack32";
case Format::eA8B8G8R8SnormPack32: return "A8B8G8R8SnormPack32";
case Format::eA8B8G8R8UscaledPack32: return "A8B8G8R8UscaledPack32";
case Format::eA8B8G8R8SscaledPack32: return "A8B8G8R8SscaledPack32";
case Format::eA8B8G8R8UintPack32: return "A8B8G8R8UintPack32";
case Format::eA8B8G8R8SintPack32: return "A8B8G8R8SintPack32";
case Format::eA8B8G8R8SrgbPack32: return "A8B8G8R8SrgbPack32";
case Format::eA2R10G10B10UnormPack32: return "A2R10G10B10UnormPack32";
case Format::eA2R10G10B10SnormPack32: return "A2R10G10B10SnormPack32";
case Format::eA2R10G10B10UscaledPack32: return "A2R10G10B10UscaledPack32";
case Format::eA2R10G10B10SscaledPack32: return "A2R10G10B10SscaledPack32";
case Format::eA2R10G10B10UintPack32: return "A2R10G10B10UintPack32";
case Format::eA2R10G10B10SintPack32: return "A2R10G10B10SintPack32";
case Format::eA2B10G10R10UnormPack32: return "A2B10G10R10UnormPack32";
case Format::eA2B10G10R10SnormPack32: return "A2B10G10R10SnormPack32";
case Format::eA2B10G10R10UscaledPack32: return "A2B10G10R10UscaledPack32";
case Format::eA2B10G10R10SscaledPack32: return "A2B10G10R10SscaledPack32";
case Format::eA2B10G10R10UintPack32: return "A2B10G10R10UintPack32";
case Format::eA2B10G10R10SintPack32: return "A2B10G10R10SintPack32";
case Format::eR16Unorm: return "R16Unorm";
case Format::eR16Snorm: return "R16Snorm";
case Format::eR16Uscaled: return "R16Uscaled";
case Format::eR16Sscaled: return "R16Sscaled";
case Format::eR16Uint: return "R16Uint";
case Format::eR16Sint: return "R16Sint";
case Format::eR16Sfloat: return "R16Sfloat";
case Format::eR16G16Unorm: return "R16G16Unorm";
case Format::eR16G16Snorm: return "R16G16Snorm";
case Format::eR16G16Uscaled: return "R16G16Uscaled";
case Format::eR16G16Sscaled: return "R16G16Sscaled";
case Format::eR16G16Uint: return "R16G16Uint";
case Format::eR16G16Sint: return "R16G16Sint";
case Format::eR16G16Sfloat: return "R16G16Sfloat";
case Format::eR16G16B16Unorm: return "R16G16B16Unorm";
case Format::eR16G16B16Snorm: return "R16G16B16Snorm";
case Format::eR16G16B16Uscaled: return "R16G16B16Uscaled";
case Format::eR16G16B16Sscaled: return "R16G16B16Sscaled";
case Format::eR16G16B16Uint: return "R16G16B16Uint";
case Format::eR16G16B16Sint: return "R16G16B16Sint";
case Format::eR16G16B16Sfloat: return "R16G16B16Sfloat";
case Format::eR16G16B16A16Unorm: return "R16G16B16A16Unorm";
case Format::eR16G16B16A16Snorm: return "R16G16B16A16Snorm";
case Format::eR16G16B16A16Uscaled: return "R16G16B16A16Uscaled";
case Format::eR16G16B16A16Sscaled: return "R16G16B16A16Sscaled";
case Format::eR16G16B16A16Uint: return "R16G16B16A16Uint";
case Format::eR16G16B16A16Sint: return "R16G16B16A16Sint";
case Format::eR16G16B16A16Sfloat: return "R16G16B16A16Sfloat";
case Format::eR32Uint: return "R32Uint";
case Format::eR32Sint: return "R32Sint";
case Format::eR32Sfloat: return "R32Sfloat";
case Format::eR32G32Uint: return "R32G32Uint";
case Format::eR32G32Sint: return "R32G32Sint";
case Format::eR32G32Sfloat: return "R32G32Sfloat";
case Format::eR32G32B32Uint: return "R32G32B32Uint";
case Format::eR32G32B32Sint: return "R32G32B32Sint";
case Format::eR32G32B32Sfloat: return "R32G32B32Sfloat";
case Format::eR32G32B32A32Uint: return "R32G32B32A32Uint";
case Format::eR32G32B32A32Sint: return "R32G32B32A32Sint";
case Format::eR32G32B32A32Sfloat: return "R32G32B32A32Sfloat";
case Format::eR64Uint: return "R64Uint";
case Format::eR64Sint: return "R64Sint";
case Format::eR64Sfloat: return "R64Sfloat";
case Format::eR64G64Uint: return "R64G64Uint";
case Format::eR64G64Sint: return "R64G64Sint";
case Format::eR64G64Sfloat: return "R64G64Sfloat";
case Format::eR64G64B64Uint: return "R64G64B64Uint";
case Format::eR64G64B64Sint: return "R64G64B64Sint";
case Format::eR64G64B64Sfloat: return "R64G64B64Sfloat";
case Format::eR64G64B64A64Uint: return "R64G64B64A64Uint";
case Format::eR64G64B64A64Sint: return "R64G64B64A64Sint";
case Format::eR64G64B64A64Sfloat: return "R64G64B64A64Sfloat";
case Format::eB10G11R11UfloatPack32: return "B10G11R11UfloatPack32";
case Format::eE5B9G9R9UfloatPack32: return "E5B9G9R9UfloatPack32";
case Format::eD16Unorm: return "D16Unorm";
case Format::eX8D24UnormPack32: return "X8D24UnormPack32";
case Format::eD32Sfloat: return "D32Sfloat";
case Format::eS8Uint: return "S8Uint";
case Format::eD16UnormS8Uint: return "D16UnormS8Uint";
case Format::eD24UnormS8Uint: return "D24UnormS8Uint";
case Format::eD32SfloatS8Uint: return "D32SfloatS8Uint";
case Format::eBc1RgbUnormBlock: return "Bc1RgbUnormBlock";
case Format::eBc1RgbSrgbBlock: return "Bc1RgbSrgbBlock";
case Format::eBc1RgbaUnormBlock: return "Bc1RgbaUnormBlock";
case Format::eBc1RgbaSrgbBlock: return "Bc1RgbaSrgbBlock";
case Format::eBc2UnormBlock: return "Bc2UnormBlock";
case Format::eBc2SrgbBlock: return "Bc2SrgbBlock";
case Format::eBc3UnormBlock: return "Bc3UnormBlock";
case Format::eBc3SrgbBlock: return "Bc3SrgbBlock";
case Format::eBc4UnormBlock: return "Bc4UnormBlock";
case Format::eBc4SnormBlock: return "Bc4SnormBlock";
case Format::eBc5UnormBlock: return "Bc5UnormBlock";
case Format::eBc5SnormBlock: return "Bc5SnormBlock";
case Format::eBc6HUfloatBlock: return "Bc6HUfloatBlock";
case Format::eBc6HSfloatBlock: return "Bc6HSfloatBlock";
case Format::eBc7UnormBlock: return "Bc7UnormBlock";
case Format::eBc7SrgbBlock: return "Bc7SrgbBlock";
case Format::eEtc2R8G8B8UnormBlock: return "Etc2R8G8B8UnormBlock";
case Format::eEtc2R8G8B8SrgbBlock: return "Etc2R8G8B8SrgbBlock";
case Format::eEtc2R8G8B8A1UnormBlock: return "Etc2R8G8B8A1UnormBlock";
case Format::eEtc2R8G8B8A1SrgbBlock: return "Etc2R8G8B8A1SrgbBlock";
case Format::eEtc2R8G8B8A8UnormBlock: return "Etc2R8G8B8A8UnormBlock";
case Format::eEtc2R8G8B8A8SrgbBlock: return "Etc2R8G8B8A8SrgbBlock";
case Format::eEacR11UnormBlock: return "EacR11UnormBlock";
case Format::eEacR11SnormBlock: return "EacR11SnormBlock";
case Format::eEacR11G11UnormBlock: return "EacR11G11UnormBlock";
case Format::eEacR11G11SnormBlock: return "EacR11G11SnormBlock";
case Format::eAstc4x4UnormBlock: return "Astc4x4UnormBlock";
case Format::eAstc4x4SrgbBlock: return "Astc4x4SrgbBlock";
case Format::eAstc5x4UnormBlock: return "Astc5x4UnormBlock";
case Format::eAstc5x4SrgbBlock: return "Astc5x4SrgbBlock";
case Format::eAstc5x5UnormBlock: return "Astc5x5UnormBlock";
case Format::eAstc5x5SrgbBlock: return "Astc5x5SrgbBlock";
case Format::eAstc6x5UnormBlock: return "Astc6x5UnormBlock";
case Format::eAstc6x5SrgbBlock: return "Astc6x5SrgbBlock";
case Format::eAstc6x6UnormBlock: return "Astc6x6UnormBlock";
case Format::eAstc6x6SrgbBlock: return "Astc6x6SrgbBlock";
case Format::eAstc8x5UnormBlock: return "Astc8x5UnormBlock";
case Format::eAstc8x5SrgbBlock: return "Astc8x5SrgbBlock";
case Format::eAstc8x6UnormBlock: return "Astc8x6UnormBlock";
case Format::eAstc8x6SrgbBlock: return "Astc8x6SrgbBlock";
case Format::eAstc8x8UnormBlock: return "Astc8x8UnormBlock";
case Format::eAstc8x8SrgbBlock: return "Astc8x8SrgbBlock";
case Format::eAstc10x5UnormBlock: return "Astc10x5UnormBlock";
case Format::eAstc10x5SrgbBlock: return "Astc10x5SrgbBlock";
case Format::eAstc10x6UnormBlock: return "Astc10x6UnormBlock";
case Format::eAstc10x6SrgbBlock: return "Astc10x6SrgbBlock";
case Format::eAstc10x8UnormBlock: return "Astc10x8UnormBlock";
case Format::eAstc10x8SrgbBlock: return "Astc10x8SrgbBlock";
case Format::eAstc10x10UnormBlock: return "Astc10x10UnormBlock";
case Format::eAstc10x10SrgbBlock: return "Astc10x10SrgbBlock";
case Format::eAstc12x10UnormBlock: return "Astc12x10UnormBlock";
case Format::eAstc12x10SrgbBlock: return "Astc12x10SrgbBlock";
case Format::eAstc12x12UnormBlock: return "Astc12x12UnormBlock";
case Format::eAstc12x12SrgbBlock: return "Astc12x12SrgbBlock";
default: return "invalid";
}
}
inline std::string to_string(StructureType value)
{
switch (value)
{
case StructureType::eApplicationInfo: return "ApplicationInfo";
case StructureType::eInstanceCreateInfo: return "InstanceCreateInfo";
case StructureType::eDeviceQueueCreateInfo: return "DeviceQueueCreateInfo";
case StructureType::eDeviceCreateInfo: return "DeviceCreateInfo";
case StructureType::eSubmitInfo: return "SubmitInfo";
case StructureType::eMemoryAllocateInfo: return "MemoryAllocateInfo";
case StructureType::eMappedMemoryRange: return "MappedMemoryRange";
case StructureType::eBindSparseInfo: return "BindSparseInfo";
case StructureType::eFenceCreateInfo: return "FenceCreateInfo";
case StructureType::eSemaphoreCreateInfo: return "SemaphoreCreateInfo";
case StructureType::eEventCreateInfo: return "EventCreateInfo";
case StructureType::eQueryPoolCreateInfo: return "QueryPoolCreateInfo";
case StructureType::eBufferCreateInfo: return "BufferCreateInfo";
case StructureType::eBufferViewCreateInfo: return "BufferViewCreateInfo";
case StructureType::eImageCreateInfo: return "ImageCreateInfo";
case StructureType::eImageViewCreateInfo: return "ImageViewCreateInfo";
case StructureType::eShaderModuleCreateInfo: return "ShaderModuleCreateInfo";
case StructureType::ePipelineCacheCreateInfo: return "PipelineCacheCreateInfo";
case StructureType::ePipelineShaderStageCreateInfo: return "PipelineShaderStageCreateInfo";
case StructureType::ePipelineVertexInputStateCreateInfo: return "PipelineVertexInputStateCreateInfo";
case StructureType::ePipelineInputAssemblyStateCreateInfo: return "PipelineInputAssemblyStateCreateInfo";
case StructureType::ePipelineTessellationStateCreateInfo: return "PipelineTessellationStateCreateInfo";
case StructureType::ePipelineViewportStateCreateInfo: return "PipelineViewportStateCreateInfo";
case StructureType::ePipelineRasterizationStateCreateInfo: return "PipelineRasterizationStateCreateInfo";
case StructureType::ePipelineMultisampleStateCreateInfo: return "PipelineMultisampleStateCreateInfo";
case StructureType::ePipelineDepthStencilStateCreateInfo: return "PipelineDepthStencilStateCreateInfo";
case StructureType::ePipelineColorBlendStateCreateInfo: return "PipelineColorBlendStateCreateInfo";
case StructureType::ePipelineDynamicStateCreateInfo: return "PipelineDynamicStateCreateInfo";
case StructureType::eGraphicsPipelineCreateInfo: return "GraphicsPipelineCreateInfo";
case StructureType::eComputePipelineCreateInfo: return "ComputePipelineCreateInfo";
case StructureType::ePipelineLayoutCreateInfo: return "PipelineLayoutCreateInfo";
case StructureType::eSamplerCreateInfo: return "SamplerCreateInfo";
case StructureType::eDescriptorSetLayoutCreateInfo: return "DescriptorSetLayoutCreateInfo";
case StructureType::eDescriptorPoolCreateInfo: return "DescriptorPoolCreateInfo";
case StructureType::eDescriptorSetAllocateInfo: return "DescriptorSetAllocateInfo";
case StructureType::eWriteDescriptorSet: return "WriteDescriptorSet";
case StructureType::eCopyDescriptorSet: return "CopyDescriptorSet";
case StructureType::eFramebufferCreateInfo: return "FramebufferCreateInfo";
case StructureType::eRenderPassCreateInfo: return "RenderPassCreateInfo";
case StructureType::eCommandPoolCreateInfo: return "CommandPoolCreateInfo";
case StructureType::eCommandBufferAllocateInfo: return "CommandBufferAllocateInfo";
case StructureType::eCommandBufferInheritanceInfo: return "CommandBufferInheritanceInfo";
case StructureType::eCommandBufferBeginInfo: return "CommandBufferBeginInfo";
case StructureType::eRenderPassBeginInfo: return "RenderPassBeginInfo";
case StructureType::eBufferMemoryBarrier: return "BufferMemoryBarrier";
case StructureType::eImageMemoryBarrier: return "ImageMemoryBarrier";
case StructureType::eMemoryBarrier: return "MemoryBarrier";
case StructureType::eLoaderInstanceCreateInfo: return "LoaderInstanceCreateInfo";
case StructureType::eLoaderDeviceCreateInfo: return "LoaderDeviceCreateInfo";
case StructureType::eSwapchainCreateInfoKHR: return "SwapchainCreateInfoKHR";
case StructureType::ePresentInfoKHR: return "PresentInfoKHR";
case StructureType::eDisplayModeCreateInfoKHR: return "DisplayModeCreateInfoKHR";
case StructureType::eDisplaySurfaceCreateInfoKHR: return "DisplaySurfaceCreateInfoKHR";
case StructureType::eDisplayPresentInfoKHR: return "DisplayPresentInfoKHR";
case StructureType::eXlibSurfaceCreateInfoKHR: return "XlibSurfaceCreateInfoKHR";
case StructureType::eXcbSurfaceCreateInfoKHR: return "XcbSurfaceCreateInfoKHR";
case StructureType::eWaylandSurfaceCreateInfoKHR: return "WaylandSurfaceCreateInfoKHR";
case StructureType::eMirSurfaceCreateInfoKHR: return "MirSurfaceCreateInfoKHR";
case StructureType::eAndroidSurfaceCreateInfoKHR: return "AndroidSurfaceCreateInfoKHR";
case StructureType::eWin32SurfaceCreateInfoKHR: return "Win32SurfaceCreateInfoKHR";
case StructureType::eDebugReportCallbackCreateInfoEXT: return "DebugReportCallbackCreateInfoEXT";
case StructureType::ePipelineRasterizationStateRasterizationOrderAMD: return "PipelineRasterizationStateRasterizationOrderAMD";
case StructureType::eDebugMarkerObjectNameInfoEXT: return "DebugMarkerObjectNameInfoEXT";
case StructureType::eDebugMarkerObjectTagInfoEXT: return "DebugMarkerObjectTagInfoEXT";
case StructureType::eDebugMarkerMarkerInfoEXT: return "DebugMarkerMarkerInfoEXT";
case StructureType::eDedicatedAllocationImageCreateInfoNV: return "DedicatedAllocationImageCreateInfoNV";
case StructureType::eDedicatedAllocationBufferCreateInfoNV: return "DedicatedAllocationBufferCreateInfoNV";
case StructureType::eDedicatedAllocationMemoryAllocateInfoNV: return "DedicatedAllocationMemoryAllocateInfoNV";
default: return "invalid";
}
}
inline std::string to_string(SubpassContents value)
{
switch (value)
{
case SubpassContents::eInline: return "Inline";
case SubpassContents::eSecondaryCommandBuffers: return "SecondaryCommandBuffers";
default: return "invalid";
}
}
inline std::string to_string(DynamicState value)
{
switch (value)
{
case DynamicState::eViewport: return "Viewport";
case DynamicState::eScissor: return "Scissor";
case DynamicState::eLineWidth: return "LineWidth";
case DynamicState::eDepthBias: return "DepthBias";
case DynamicState::eBlendConstants: return "BlendConstants";
case DynamicState::eDepthBounds: return "DepthBounds";
case DynamicState::eStencilCompareMask: return "StencilCompareMask";
case DynamicState::eStencilWriteMask: return "StencilWriteMask";
case DynamicState::eStencilReference: return "StencilReference";
default: return "invalid";
}
}
inline std::string to_string(QueueFlagBits value)
{
switch (value)
{
case QueueFlagBits::eGraphics: return "Graphics";
case QueueFlagBits::eCompute: return "Compute";
case QueueFlagBits::eTransfer: return "Transfer";
case QueueFlagBits::eSparseBinding: return "SparseBinding";
default: return "invalid";
}
}
inline std::string to_string(QueueFlags value)
{
if (!value) return "{}";
std::string result;
if (value & QueueFlagBits::eGraphics) result += "Graphics | ";
if (value & QueueFlagBits::eCompute) result += "Compute | ";
if (value & QueueFlagBits::eTransfer) result += "Transfer | ";
if (value & QueueFlagBits::eSparseBinding) result += "SparseBinding | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(MemoryPropertyFlagBits value)
{
switch (value)
{
case MemoryPropertyFlagBits::eDeviceLocal: return "DeviceLocal";
case MemoryPropertyFlagBits::eHostVisible: return "HostVisible";
case MemoryPropertyFlagBits::eHostCoherent: return "HostCoherent";
case MemoryPropertyFlagBits::eHostCached: return "HostCached";
case MemoryPropertyFlagBits::eLazilyAllocated: return "LazilyAllocated";
default: return "invalid";
}
}
inline std::string to_string(MemoryPropertyFlags value)
{
if (!value) return "{}";
std::string result;
if (value & MemoryPropertyFlagBits::eDeviceLocal) result += "DeviceLocal | ";
if (value & MemoryPropertyFlagBits::eHostVisible) result += "HostVisible | ";
if (value & MemoryPropertyFlagBits::eHostCoherent) result += "HostCoherent | ";
if (value & MemoryPropertyFlagBits::eHostCached) result += "HostCached | ";
if (value & MemoryPropertyFlagBits::eLazilyAllocated) result += "LazilyAllocated | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(MemoryHeapFlagBits value)
{
switch (value)
{
case MemoryHeapFlagBits::eDeviceLocal: return "DeviceLocal";
default: return "invalid";
}
}
inline std::string to_string(MemoryHeapFlags value)
{
if (!value) return "{}";
std::string result;
if (value & MemoryHeapFlagBits::eDeviceLocal) result += "DeviceLocal | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(AccessFlagBits value)
{
switch (value)
{
case AccessFlagBits::eIndirectCommandRead: return "IndirectCommandRead";
case AccessFlagBits::eIndexRead: return "IndexRead";
case AccessFlagBits::eVertexAttributeRead: return "VertexAttributeRead";
case AccessFlagBits::eUniformRead: return "UniformRead";
case AccessFlagBits::eInputAttachmentRead: return "InputAttachmentRead";
case AccessFlagBits::eShaderRead: return "ShaderRead";
case AccessFlagBits::eShaderWrite: return "ShaderWrite";
case AccessFlagBits::eColorAttachmentRead: return "ColorAttachmentRead";
case AccessFlagBits::eColorAttachmentWrite: return "ColorAttachmentWrite";
case AccessFlagBits::eDepthStencilAttachmentRead: return "DepthStencilAttachmentRead";
case AccessFlagBits::eDepthStencilAttachmentWrite: return "DepthStencilAttachmentWrite";
case AccessFlagBits::eTransferRead: return "TransferRead";
case AccessFlagBits::eTransferWrite: return "TransferWrite";
case AccessFlagBits::eHostRead: return "HostRead";
case AccessFlagBits::eHostWrite: return "HostWrite";
case AccessFlagBits::eMemoryRead: return "MemoryRead";
case AccessFlagBits::eMemoryWrite: return "MemoryWrite";
default: return "invalid";
}
}
inline std::string to_string(AccessFlags value)
{
if (!value) return "{}";
std::string result;
if (value & AccessFlagBits::eIndirectCommandRead) result += "IndirectCommandRead | ";
if (value & AccessFlagBits::eIndexRead) result += "IndexRead | ";
if (value & AccessFlagBits::eVertexAttributeRead) result += "VertexAttributeRead | ";
if (value & AccessFlagBits::eUniformRead) result += "UniformRead | ";
if (value & AccessFlagBits::eInputAttachmentRead) result += "InputAttachmentRead | ";
if (value & AccessFlagBits::eShaderRead) result += "ShaderRead | ";
if (value & AccessFlagBits::eShaderWrite) result += "ShaderWrite | ";
if (value & AccessFlagBits::eColorAttachmentRead) result += "ColorAttachmentRead | ";
if (value & AccessFlagBits::eColorAttachmentWrite) result += "ColorAttachmentWrite | ";
if (value & AccessFlagBits::eDepthStencilAttachmentRead) result += "DepthStencilAttachmentRead | ";
if (value & AccessFlagBits::eDepthStencilAttachmentWrite) result += "DepthStencilAttachmentWrite | ";
if (value & AccessFlagBits::eTransferRead) result += "TransferRead | ";
if (value & AccessFlagBits::eTransferWrite) result += "TransferWrite | ";
if (value & AccessFlagBits::eHostRead) result += "HostRead | ";
if (value & AccessFlagBits::eHostWrite) result += "HostWrite | ";
if (value & AccessFlagBits::eMemoryRead) result += "MemoryRead | ";
if (value & AccessFlagBits::eMemoryWrite) result += "MemoryWrite | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(BufferUsageFlagBits value)
{
switch (value)
{
case BufferUsageFlagBits::eTransferSrc: return "TransferSrc";
case BufferUsageFlagBits::eTransferDst: return "TransferDst";
case BufferUsageFlagBits::eUniformTexelBuffer: return "UniformTexelBuffer";
case BufferUsageFlagBits::eStorageTexelBuffer: return "StorageTexelBuffer";
case BufferUsageFlagBits::eUniformBuffer: return "UniformBuffer";
case BufferUsageFlagBits::eStorageBuffer: return "StorageBuffer";
case BufferUsageFlagBits::eIndexBuffer: return "IndexBuffer";
case BufferUsageFlagBits::eVertexBuffer: return "VertexBuffer";
case BufferUsageFlagBits::eIndirectBuffer: return "IndirectBuffer";
default: return "invalid";
}
}
inline std::string to_string(BufferUsageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & BufferUsageFlagBits::eTransferSrc) result += "TransferSrc | ";
if (value & BufferUsageFlagBits::eTransferDst) result += "TransferDst | ";
if (value & BufferUsageFlagBits::eUniformTexelBuffer) result += "UniformTexelBuffer | ";
if (value & BufferUsageFlagBits::eStorageTexelBuffer) result += "StorageTexelBuffer | ";
if (value & BufferUsageFlagBits::eUniformBuffer) result += "UniformBuffer | ";
if (value & BufferUsageFlagBits::eStorageBuffer) result += "StorageBuffer | ";
if (value & BufferUsageFlagBits::eIndexBuffer) result += "IndexBuffer | ";
if (value & BufferUsageFlagBits::eVertexBuffer) result += "VertexBuffer | ";
if (value & BufferUsageFlagBits::eIndirectBuffer) result += "IndirectBuffer | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(BufferCreateFlagBits value)
{
switch (value)
{
case BufferCreateFlagBits::eSparseBinding: return "SparseBinding";
case BufferCreateFlagBits::eSparseResidency: return "SparseResidency";
case BufferCreateFlagBits::eSparseAliased: return "SparseAliased";
default: return "invalid";
}
}
inline std::string to_string(BufferCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & BufferCreateFlagBits::eSparseBinding) result += "SparseBinding | ";
if (value & BufferCreateFlagBits::eSparseResidency) result += "SparseResidency | ";
if (value & BufferCreateFlagBits::eSparseAliased) result += "SparseAliased | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(ShaderStageFlagBits value)
{
switch (value)
{
case ShaderStageFlagBits::eVertex: return "Vertex";
case ShaderStageFlagBits::eTessellationControl: return "TessellationControl";
case ShaderStageFlagBits::eTessellationEvaluation: return "TessellationEvaluation";
case ShaderStageFlagBits::eGeometry: return "Geometry";
case ShaderStageFlagBits::eFragment: return "Fragment";
case ShaderStageFlagBits::eCompute: return "Compute";
case ShaderStageFlagBits::eAllGraphics: return "AllGraphics";
case ShaderStageFlagBits::eAll: return "All";
default: return "invalid";
}
}
inline std::string to_string(ShaderStageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ShaderStageFlagBits::eVertex) result += "Vertex | ";
if (value & ShaderStageFlagBits::eTessellationControl) result += "TessellationControl | ";
if (value & ShaderStageFlagBits::eTessellationEvaluation) result += "TessellationEvaluation | ";
if (value & ShaderStageFlagBits::eGeometry) result += "Geometry | ";
if (value & ShaderStageFlagBits::eFragment) result += "Fragment | ";
if (value & ShaderStageFlagBits::eCompute) result += "Compute | ";
if (value & ShaderStageFlagBits::eAllGraphics) result += "AllGraphics | ";
if (value & ShaderStageFlagBits::eAll) result += "All | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(ImageUsageFlagBits value)
{
switch (value)
{
case ImageUsageFlagBits::eTransferSrc: return "TransferSrc";
case ImageUsageFlagBits::eTransferDst: return "TransferDst";
case ImageUsageFlagBits::eSampled: return "Sampled";
case ImageUsageFlagBits::eStorage: return "Storage";
case ImageUsageFlagBits::eColorAttachment: return "ColorAttachment";
case ImageUsageFlagBits::eDepthStencilAttachment: return "DepthStencilAttachment";
case ImageUsageFlagBits::eTransientAttachment: return "TransientAttachment";
case ImageUsageFlagBits::eInputAttachment: return "InputAttachment";
default: return "invalid";
}
}
inline std::string to_string(ImageUsageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ImageUsageFlagBits::eTransferSrc) result += "TransferSrc | ";
if (value & ImageUsageFlagBits::eTransferDst) result += "TransferDst | ";
if (value & ImageUsageFlagBits::eSampled) result += "Sampled | ";
if (value & ImageUsageFlagBits::eStorage) result += "Storage | ";
if (value & ImageUsageFlagBits::eColorAttachment) result += "ColorAttachment | ";
if (value & ImageUsageFlagBits::eDepthStencilAttachment) result += "DepthStencilAttachment | ";
if (value & ImageUsageFlagBits::eTransientAttachment) result += "TransientAttachment | ";
if (value & ImageUsageFlagBits::eInputAttachment) result += "InputAttachment | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(ImageCreateFlagBits value)
{
switch (value)
{
case ImageCreateFlagBits::eSparseBinding: return "SparseBinding";
case ImageCreateFlagBits::eSparseResidency: return "SparseResidency";
case ImageCreateFlagBits::eSparseAliased: return "SparseAliased";
case ImageCreateFlagBits::eMutableFormat: return "MutableFormat";
case ImageCreateFlagBits::eCubeCompatible: return "CubeCompatible";
default: return "invalid";
}
}
inline std::string to_string(ImageCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ImageCreateFlagBits::eSparseBinding) result += "SparseBinding | ";
if (value & ImageCreateFlagBits::eSparseResidency) result += "SparseResidency | ";
if (value & ImageCreateFlagBits::eSparseAliased) result += "SparseAliased | ";
if (value & ImageCreateFlagBits::eMutableFormat) result += "MutableFormat | ";
if (value & ImageCreateFlagBits::eCubeCompatible) result += "CubeCompatible | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(PipelineCreateFlagBits value)
{
switch (value)
{
case PipelineCreateFlagBits::eDisableOptimization: return "DisableOptimization";
case PipelineCreateFlagBits::eAllowDerivatives: return "AllowDerivatives";
case PipelineCreateFlagBits::eDerivative: return "Derivative";
default: return "invalid";
}
}
inline std::string to_string(PipelineCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & PipelineCreateFlagBits::eDisableOptimization) result += "DisableOptimization | ";
if (value & PipelineCreateFlagBits::eAllowDerivatives) result += "AllowDerivatives | ";
if (value & PipelineCreateFlagBits::eDerivative) result += "Derivative | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(ColorComponentFlagBits value)
{
switch (value)
{
case ColorComponentFlagBits::eR: return "R";
case ColorComponentFlagBits::eG: return "G";
case ColorComponentFlagBits::eB: return "B";
case ColorComponentFlagBits::eA: return "A";
default: return "invalid";
}
}
inline std::string to_string(ColorComponentFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ColorComponentFlagBits::eR) result += "R | ";
if (value & ColorComponentFlagBits::eG) result += "G | ";
if (value & ColorComponentFlagBits::eB) result += "B | ";
if (value & ColorComponentFlagBits::eA) result += "A | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(FenceCreateFlagBits value)
{
switch (value)
{
case FenceCreateFlagBits::eSignaled: return "Signaled";
default: return "invalid";
}
}
inline std::string to_string(FenceCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & FenceCreateFlagBits::eSignaled) result += "Signaled | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(FormatFeatureFlagBits value)
{
switch (value)
{
case FormatFeatureFlagBits::eSampledImage: return "SampledImage";
case FormatFeatureFlagBits::eStorageImage: return "StorageImage";
case FormatFeatureFlagBits::eStorageImageAtomic: return "StorageImageAtomic";
case FormatFeatureFlagBits::eUniformTexelBuffer: return "UniformTexelBuffer";
case FormatFeatureFlagBits::eStorageTexelBuffer: return "StorageTexelBuffer";
case FormatFeatureFlagBits::eStorageTexelBufferAtomic: return "StorageTexelBufferAtomic";
case FormatFeatureFlagBits::eVertexBuffer: return "VertexBuffer";
case FormatFeatureFlagBits::eColorAttachment: return "ColorAttachment";
case FormatFeatureFlagBits::eColorAttachmentBlend: return "ColorAttachmentBlend";
case FormatFeatureFlagBits::eDepthStencilAttachment: return "DepthStencilAttachment";
case FormatFeatureFlagBits::eBlitSrc: return "BlitSrc";
case FormatFeatureFlagBits::eBlitDst: return "BlitDst";
case FormatFeatureFlagBits::eSampledImageFilterLinear: return "SampledImageFilterLinear";
case FormatFeatureFlagBits::eSampledImageFilterCubicIMG: return "SampledImageFilterCubicIMG";
default: return "invalid";
}
}
inline std::string to_string(FormatFeatureFlags value)
{
if (!value) return "{}";
std::string result;
if (value & FormatFeatureFlagBits::eSampledImage) result += "SampledImage | ";
if (value & FormatFeatureFlagBits::eStorageImage) result += "StorageImage | ";
if (value & FormatFeatureFlagBits::eStorageImageAtomic) result += "StorageImageAtomic | ";
if (value & FormatFeatureFlagBits::eUniformTexelBuffer) result += "UniformTexelBuffer | ";
if (value & FormatFeatureFlagBits::eStorageTexelBuffer) result += "StorageTexelBuffer | ";
if (value & FormatFeatureFlagBits::eStorageTexelBufferAtomic) result += "StorageTexelBufferAtomic | ";
if (value & FormatFeatureFlagBits::eVertexBuffer) result += "VertexBuffer | ";
if (value & FormatFeatureFlagBits::eColorAttachment) result += "ColorAttachment | ";
if (value & FormatFeatureFlagBits::eColorAttachmentBlend) result += "ColorAttachmentBlend | ";
if (value & FormatFeatureFlagBits::eDepthStencilAttachment) result += "DepthStencilAttachment | ";
if (value & FormatFeatureFlagBits::eBlitSrc) result += "BlitSrc | ";
if (value & FormatFeatureFlagBits::eBlitDst) result += "BlitDst | ";
if (value & FormatFeatureFlagBits::eSampledImageFilterLinear) result += "SampledImageFilterLinear | ";
if (value & FormatFeatureFlagBits::eSampledImageFilterCubicIMG) result += "SampledImageFilterCubicIMG | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(QueryControlFlagBits value)
{
switch (value)
{
case QueryControlFlagBits::ePrecise: return "Precise";
default: return "invalid";
}
}
inline std::string to_string(QueryControlFlags value)
{
if (!value) return "{}";
std::string result;
if (value & QueryControlFlagBits::ePrecise) result += "Precise | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(QueryResultFlagBits value)
{
switch (value)
{
case QueryResultFlagBits::e64: return "64";
case QueryResultFlagBits::eWait: return "Wait";
case QueryResultFlagBits::eWithAvailability: return "WithAvailability";
case QueryResultFlagBits::ePartial: return "Partial";
default: return "invalid";
}
}
inline std::string to_string(QueryResultFlags value)
{
if (!value) return "{}";
std::string result;
if (value & QueryResultFlagBits::e64) result += "64 | ";
if (value & QueryResultFlagBits::eWait) result += "Wait | ";
if (value & QueryResultFlagBits::eWithAvailability) result += "WithAvailability | ";
if (value & QueryResultFlagBits::ePartial) result += "Partial | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(CommandBufferUsageFlagBits value)
{
switch (value)
{
case CommandBufferUsageFlagBits::eOneTimeSubmit: return "OneTimeSubmit";
case CommandBufferUsageFlagBits::eRenderPassContinue: return "RenderPassContinue";
case CommandBufferUsageFlagBits::eSimultaneousUse: return "SimultaneousUse";
default: return "invalid";
}
}
inline std::string to_string(CommandBufferUsageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CommandBufferUsageFlagBits::eOneTimeSubmit) result += "OneTimeSubmit | ";
if (value & CommandBufferUsageFlagBits::eRenderPassContinue) result += "RenderPassContinue | ";
if (value & CommandBufferUsageFlagBits::eSimultaneousUse) result += "SimultaneousUse | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(QueryPipelineStatisticFlagBits value)
{
switch (value)
{
case QueryPipelineStatisticFlagBits::eInputAssemblyVertices: return "InputAssemblyVertices";
case QueryPipelineStatisticFlagBits::eInputAssemblyPrimitives: return "InputAssemblyPrimitives";
case QueryPipelineStatisticFlagBits::eVertexShaderInvocations: return "VertexShaderInvocations";
case QueryPipelineStatisticFlagBits::eGeometryShaderInvocations: return "GeometryShaderInvocations";
case QueryPipelineStatisticFlagBits::eGeometryShaderPrimitives: return "GeometryShaderPrimitives";
case QueryPipelineStatisticFlagBits::eClippingInvocations: return "ClippingInvocations";
case QueryPipelineStatisticFlagBits::eClippingPrimitives: return "ClippingPrimitives";
case QueryPipelineStatisticFlagBits::eFragmentShaderInvocations: return "FragmentShaderInvocations";
case QueryPipelineStatisticFlagBits::eTessellationControlShaderPatches: return "TessellationControlShaderPatches";
case QueryPipelineStatisticFlagBits::eTessellationEvaluationShaderInvocations: return "TessellationEvaluationShaderInvocations";
case QueryPipelineStatisticFlagBits::eComputeShaderInvocations: return "ComputeShaderInvocations";
default: return "invalid";
}
}
inline std::string to_string(QueryPipelineStatisticFlags value)
{
if (!value) return "{}";
std::string result;
if (value & QueryPipelineStatisticFlagBits::eInputAssemblyVertices) result += "InputAssemblyVertices | ";
if (value & QueryPipelineStatisticFlagBits::eInputAssemblyPrimitives) result += "InputAssemblyPrimitives | ";
if (value & QueryPipelineStatisticFlagBits::eVertexShaderInvocations) result += "VertexShaderInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eGeometryShaderInvocations) result += "GeometryShaderInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eGeometryShaderPrimitives) result += "GeometryShaderPrimitives | ";
if (value & QueryPipelineStatisticFlagBits::eClippingInvocations) result += "ClippingInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eClippingPrimitives) result += "ClippingPrimitives | ";
if (value & QueryPipelineStatisticFlagBits::eFragmentShaderInvocations) result += "FragmentShaderInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eTessellationControlShaderPatches) result += "TessellationControlShaderPatches | ";
if (value & QueryPipelineStatisticFlagBits::eTessellationEvaluationShaderInvocations) result += "TessellationEvaluationShaderInvocations | ";
if (value & QueryPipelineStatisticFlagBits::eComputeShaderInvocations) result += "ComputeShaderInvocations | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(ImageAspectFlagBits value)
{
switch (value)
{
case ImageAspectFlagBits::eColor: return "Color";
case ImageAspectFlagBits::eDepth: return "Depth";
case ImageAspectFlagBits::eStencil: return "Stencil";
case ImageAspectFlagBits::eMetadata: return "Metadata";
default: return "invalid";
}
}
inline std::string to_string(ImageAspectFlags value)
{
if (!value) return "{}";
std::string result;
if (value & ImageAspectFlagBits::eColor) result += "Color | ";
if (value & ImageAspectFlagBits::eDepth) result += "Depth | ";
if (value & ImageAspectFlagBits::eStencil) result += "Stencil | ";
if (value & ImageAspectFlagBits::eMetadata) result += "Metadata | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(SparseImageFormatFlagBits value)
{
switch (value)
{
case SparseImageFormatFlagBits::eSingleMiptail: return "SingleMiptail";
case SparseImageFormatFlagBits::eAlignedMipSize: return "AlignedMipSize";
case SparseImageFormatFlagBits::eNonstandardBlockSize: return "NonstandardBlockSize";
default: return "invalid";
}
}
inline std::string to_string(SparseImageFormatFlags value)
{
if (!value) return "{}";
std::string result;
if (value & SparseImageFormatFlagBits::eSingleMiptail) result += "SingleMiptail | ";
if (value & SparseImageFormatFlagBits::eAlignedMipSize) result += "AlignedMipSize | ";
if (value & SparseImageFormatFlagBits::eNonstandardBlockSize) result += "NonstandardBlockSize | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(SparseMemoryBindFlagBits value)
{
switch (value)
{
case SparseMemoryBindFlagBits::eMetadata: return "Metadata";
default: return "invalid";
}
}
inline std::string to_string(SparseMemoryBindFlags value)
{
if (!value) return "{}";
std::string result;
if (value & SparseMemoryBindFlagBits::eMetadata) result += "Metadata | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(PipelineStageFlagBits value)
{
switch (value)
{
case PipelineStageFlagBits::eTopOfPipe: return "TopOfPipe";
case PipelineStageFlagBits::eDrawIndirect: return "DrawIndirect";
case PipelineStageFlagBits::eVertexInput: return "VertexInput";
case PipelineStageFlagBits::eVertexShader: return "VertexShader";
case PipelineStageFlagBits::eTessellationControlShader: return "TessellationControlShader";
case PipelineStageFlagBits::eTessellationEvaluationShader: return "TessellationEvaluationShader";
case PipelineStageFlagBits::eGeometryShader: return "GeometryShader";
case PipelineStageFlagBits::eFragmentShader: return "FragmentShader";
case PipelineStageFlagBits::eEarlyFragmentTests: return "EarlyFragmentTests";
case PipelineStageFlagBits::eLateFragmentTests: return "LateFragmentTests";
case PipelineStageFlagBits::eColorAttachmentOutput: return "ColorAttachmentOutput";
case PipelineStageFlagBits::eComputeShader: return "ComputeShader";
case PipelineStageFlagBits::eTransfer: return "Transfer";
case PipelineStageFlagBits::eBottomOfPipe: return "BottomOfPipe";
case PipelineStageFlagBits::eHost: return "Host";
case PipelineStageFlagBits::eAllGraphics: return "AllGraphics";
case PipelineStageFlagBits::eAllCommands: return "AllCommands";
default: return "invalid";
}
}
inline std::string to_string(PipelineStageFlags value)
{
if (!value) return "{}";
std::string result;
if (value & PipelineStageFlagBits::eTopOfPipe) result += "TopOfPipe | ";
if (value & PipelineStageFlagBits::eDrawIndirect) result += "DrawIndirect | ";
if (value & PipelineStageFlagBits::eVertexInput) result += "VertexInput | ";
if (value & PipelineStageFlagBits::eVertexShader) result += "VertexShader | ";
if (value & PipelineStageFlagBits::eTessellationControlShader) result += "TessellationControlShader | ";
if (value & PipelineStageFlagBits::eTessellationEvaluationShader) result += "TessellationEvaluationShader | ";
if (value & PipelineStageFlagBits::eGeometryShader) result += "GeometryShader | ";
if (value & PipelineStageFlagBits::eFragmentShader) result += "FragmentShader | ";
if (value & PipelineStageFlagBits::eEarlyFragmentTests) result += "EarlyFragmentTests | ";
if (value & PipelineStageFlagBits::eLateFragmentTests) result += "LateFragmentTests | ";
if (value & PipelineStageFlagBits::eColorAttachmentOutput) result += "ColorAttachmentOutput | ";
if (value & PipelineStageFlagBits::eComputeShader) result += "ComputeShader | ";
if (value & PipelineStageFlagBits::eTransfer) result += "Transfer | ";
if (value & PipelineStageFlagBits::eBottomOfPipe) result += "BottomOfPipe | ";
if (value & PipelineStageFlagBits::eHost) result += "Host | ";
if (value & PipelineStageFlagBits::eAllGraphics) result += "AllGraphics | ";
if (value & PipelineStageFlagBits::eAllCommands) result += "AllCommands | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(CommandPoolCreateFlagBits value)
{
switch (value)
{
case CommandPoolCreateFlagBits::eTransient: return "Transient";
case CommandPoolCreateFlagBits::eResetCommandBuffer: return "ResetCommandBuffer";
default: return "invalid";
}
}
inline std::string to_string(CommandPoolCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CommandPoolCreateFlagBits::eTransient) result += "Transient | ";
if (value & CommandPoolCreateFlagBits::eResetCommandBuffer) result += "ResetCommandBuffer | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(CommandPoolResetFlagBits value)
{
switch (value)
{
case CommandPoolResetFlagBits::eReleaseResources: return "ReleaseResources";
default: return "invalid";
}
}
inline std::string to_string(CommandPoolResetFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CommandPoolResetFlagBits::eReleaseResources) result += "ReleaseResources | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(CommandBufferResetFlagBits value)
{
switch (value)
{
case CommandBufferResetFlagBits::eReleaseResources: return "ReleaseResources";
default: return "invalid";
}
}
inline std::string to_string(CommandBufferResetFlags value)
{
if (!value) return "{}";
std::string result;
if (value & CommandBufferResetFlagBits::eReleaseResources) result += "ReleaseResources | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(SampleCountFlagBits value)
{
switch (value)
{
case SampleCountFlagBits::e1: return "1";
case SampleCountFlagBits::e2: return "2";
case SampleCountFlagBits::e4: return "4";
case SampleCountFlagBits::e8: return "8";
case SampleCountFlagBits::e16: return "16";
case SampleCountFlagBits::e32: return "32";
case SampleCountFlagBits::e64: return "64";
default: return "invalid";
}
}
inline std::string to_string(SampleCountFlags value)
{
if (!value) return "{}";
std::string result;
if (value & SampleCountFlagBits::e1) result += "1 | ";
if (value & SampleCountFlagBits::e2) result += "2 | ";
if (value & SampleCountFlagBits::e4) result += "4 | ";
if (value & SampleCountFlagBits::e8) result += "8 | ";
if (value & SampleCountFlagBits::e16) result += "16 | ";
if (value & SampleCountFlagBits::e32) result += "32 | ";
if (value & SampleCountFlagBits::e64) result += "64 | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(AttachmentDescriptionFlagBits value)
{
switch (value)
{
case AttachmentDescriptionFlagBits::eMayAlias: return "MayAlias";
default: return "invalid";
}
}
inline std::string to_string(AttachmentDescriptionFlags value)
{
if (!value) return "{}";
std::string result;
if (value & AttachmentDescriptionFlagBits::eMayAlias) result += "MayAlias | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(StencilFaceFlagBits value)
{
switch (value)
{
case StencilFaceFlagBits::eFront: return "Front";
case StencilFaceFlagBits::eBack: return "Back";
case StencilFaceFlagBits::eVkStencilFrontAndBack: return "VkStencilFrontAndBack";
default: return "invalid";
}
}
inline std::string to_string(StencilFaceFlags value)
{
if (!value) return "{}";
std::string result;
if (value & StencilFaceFlagBits::eFront) result += "Front | ";
if (value & StencilFaceFlagBits::eBack) result += "Back | ";
if (value & StencilFaceFlagBits::eVkStencilFrontAndBack) result += "VkStencilFrontAndBack | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(DescriptorPoolCreateFlagBits value)
{
switch (value)
{
case DescriptorPoolCreateFlagBits::eFreeDescriptorSet: return "FreeDescriptorSet";
default: return "invalid";
}
}
inline std::string to_string(DescriptorPoolCreateFlags value)
{
if (!value) return "{}";
std::string result;
if (value & DescriptorPoolCreateFlagBits::eFreeDescriptorSet) result += "FreeDescriptorSet | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(DependencyFlagBits value)
{
switch (value)
{
case DependencyFlagBits::eByRegion: return "ByRegion";
default: return "invalid";
}
}
inline std::string to_string(DependencyFlags value)
{
if (!value) return "{}";
std::string result;
if (value & DependencyFlagBits::eByRegion) result += "ByRegion | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(PresentModeKHR value)
{
switch (value)
{
case PresentModeKHR::eImmediate: return "Immediate";
case PresentModeKHR::eMailbox: return "Mailbox";
case PresentModeKHR::eFifo: return "Fifo";
case PresentModeKHR::eFifoRelaxed: return "FifoRelaxed";
default: return "invalid";
}
}
inline std::string to_string(ColorSpaceKHR value)
{
switch (value)
{
case ColorSpaceKHR::eSrgbNonlinear: return "SrgbNonlinear";
default: return "invalid";
}
}
inline std::string to_string(DisplayPlaneAlphaFlagBitsKHR value)
{
switch (value)
{
case DisplayPlaneAlphaFlagBitsKHR::eOpaque: return "Opaque";
case DisplayPlaneAlphaFlagBitsKHR::eGlobal: return "Global";
case DisplayPlaneAlphaFlagBitsKHR::ePerPixel: return "PerPixel";
case DisplayPlaneAlphaFlagBitsKHR::ePerPixelPremultiplied: return "PerPixelPremultiplied";
default: return "invalid";
}
}
inline std::string to_string(DisplayPlaneAlphaFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & DisplayPlaneAlphaFlagBitsKHR::eOpaque) result += "Opaque | ";
if (value & DisplayPlaneAlphaFlagBitsKHR::eGlobal) result += "Global | ";
if (value & DisplayPlaneAlphaFlagBitsKHR::ePerPixel) result += "PerPixel | ";
if (value & DisplayPlaneAlphaFlagBitsKHR::ePerPixelPremultiplied) result += "PerPixelPremultiplied | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(CompositeAlphaFlagBitsKHR value)
{
switch (value)
{
case CompositeAlphaFlagBitsKHR::eOpaque: return "Opaque";
case CompositeAlphaFlagBitsKHR::ePreMultiplied: return "PreMultiplied";
case CompositeAlphaFlagBitsKHR::ePostMultiplied: return "PostMultiplied";
case CompositeAlphaFlagBitsKHR::eInherit: return "Inherit";
default: return "invalid";
}
}
inline std::string to_string(CompositeAlphaFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & CompositeAlphaFlagBitsKHR::eOpaque) result += "Opaque | ";
if (value & CompositeAlphaFlagBitsKHR::ePreMultiplied) result += "PreMultiplied | ";
if (value & CompositeAlphaFlagBitsKHR::ePostMultiplied) result += "PostMultiplied | ";
if (value & CompositeAlphaFlagBitsKHR::eInherit) result += "Inherit | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(SurfaceTransformFlagBitsKHR value)
{
switch (value)
{
case SurfaceTransformFlagBitsKHR::eIdentity: return "Identity";
case SurfaceTransformFlagBitsKHR::eRotate90: return "Rotate90";
case SurfaceTransformFlagBitsKHR::eRotate180: return "Rotate180";
case SurfaceTransformFlagBitsKHR::eRotate270: return "Rotate270";
case SurfaceTransformFlagBitsKHR::eHorizontalMirror: return "HorizontalMirror";
case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate90: return "HorizontalMirrorRotate90";
case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate180: return "HorizontalMirrorRotate180";
case SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate270: return "HorizontalMirrorRotate270";
case SurfaceTransformFlagBitsKHR::eInherit: return "Inherit";
default: return "invalid";
}
}
inline std::string to_string(SurfaceTransformFlagsKHR value)
{
if (!value) return "{}";
std::string result;
if (value & SurfaceTransformFlagBitsKHR::eIdentity) result += "Identity | ";
if (value & SurfaceTransformFlagBitsKHR::eRotate90) result += "Rotate90 | ";
if (value & SurfaceTransformFlagBitsKHR::eRotate180) result += "Rotate180 | ";
if (value & SurfaceTransformFlagBitsKHR::eRotate270) result += "Rotate270 | ";
if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirror) result += "HorizontalMirror | ";
if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate90) result += "HorizontalMirrorRotate90 | ";
if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate180) result += "HorizontalMirrorRotate180 | ";
if (value & SurfaceTransformFlagBitsKHR::eHorizontalMirrorRotate270) result += "HorizontalMirrorRotate270 | ";
if (value & SurfaceTransformFlagBitsKHR::eInherit) result += "Inherit | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(DebugReportFlagBitsEXT value)
{
switch (value)
{
case DebugReportFlagBitsEXT::eInformation: return "Information";
case DebugReportFlagBitsEXT::eWarning: return "Warning";
case DebugReportFlagBitsEXT::ePerformanceWarning: return "PerformanceWarning";
case DebugReportFlagBitsEXT::eError: return "Error";
case DebugReportFlagBitsEXT::eDebug: return "Debug";
default: return "invalid";
}
}
inline std::string to_string(DebugReportFlagsEXT value)
{
if (!value) return "{}";
std::string result;
if (value & DebugReportFlagBitsEXT::eInformation) result += "Information | ";
if (value & DebugReportFlagBitsEXT::eWarning) result += "Warning | ";
if (value & DebugReportFlagBitsEXT::ePerformanceWarning) result += "PerformanceWarning | ";
if (value & DebugReportFlagBitsEXT::eError) result += "Error | ";
if (value & DebugReportFlagBitsEXT::eDebug) result += "Debug | ";
return "{" + result.substr(0, result.size() - 3) + "}";
}
inline std::string to_string(DebugReportObjectTypeEXT value)
{
switch (value)
{
case DebugReportObjectTypeEXT::eUnknown: return "Unknown";
case DebugReportObjectTypeEXT::eInstance: return "Instance";
case DebugReportObjectTypeEXT::ePhysicalDevice: return "PhysicalDevice";
case DebugReportObjectTypeEXT::eDevice: return "Device";
case DebugReportObjectTypeEXT::eQueue: return "Queue";
case DebugReportObjectTypeEXT::eSemaphore: return "Semaphore";
case DebugReportObjectTypeEXT::eCommandBuffer: return "CommandBuffer";
case DebugReportObjectTypeEXT::eFence: return "Fence";
case DebugReportObjectTypeEXT::eDeviceMemory: return "DeviceMemory";
case DebugReportObjectTypeEXT::eBuffer: return "Buffer";
case DebugReportObjectTypeEXT::eImage: return "Image";
case DebugReportObjectTypeEXT::eEvent: return "Event";
case DebugReportObjectTypeEXT::eQueryPool: return "QueryPool";
case DebugReportObjectTypeEXT::eBufferView: return "BufferView";
case DebugReportObjectTypeEXT::eImageView: return "ImageView";
case DebugReportObjectTypeEXT::eShaderModule: return "ShaderModule";
case DebugReportObjectTypeEXT::ePipelineCache: return "PipelineCache";
case DebugReportObjectTypeEXT::ePipelineLayout: return "PipelineLayout";
case DebugReportObjectTypeEXT::eRenderPass: return "RenderPass";
case DebugReportObjectTypeEXT::ePipeline: return "Pipeline";
case DebugReportObjectTypeEXT::eDescriptorSetLayout: return "DescriptorSetLayout";
case DebugReportObjectTypeEXT::eSampler: return "Sampler";
case DebugReportObjectTypeEXT::eDescriptorPool: return "DescriptorPool";
case DebugReportObjectTypeEXT::eDescriptorSet: return "DescriptorSet";
case DebugReportObjectTypeEXT::eFramebuffer: return "Framebuffer";
case DebugReportObjectTypeEXT::eCommandPool: return "CommandPool";
case DebugReportObjectTypeEXT::eSurfaceKhr: return "SurfaceKhr";
case DebugReportObjectTypeEXT::eSwapchainKhr: return "SwapchainKhr";
case DebugReportObjectTypeEXT::eDebugReport: return "DebugReport";
default: return "invalid";
}
}
inline std::string to_string(DebugReportErrorEXT value)
{
switch (value)
{
case DebugReportErrorEXT::eNone: return "None";
case DebugReportErrorEXT::eCallbackRef: return "CallbackRef";
default: return "invalid";
}
}
inline std::string to_string(RasterizationOrderAMD value)
{
switch (value)
{
case RasterizationOrderAMD::eStrict: return "Strict";
case RasterizationOrderAMD::eRelaxed: return "Relaxed";
default: return "invalid";
}
}
} // namespace vk
#endif