mirror of
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.git
synced 2024-11-27 00:44:35 +00:00
Further refactoring of defragmentation.
This commit is contained in:
parent
a114419b23
commit
a9f030d7ba
@ -5587,6 +5587,15 @@ private:
|
||||
VmaAllocation* pAllocation);
|
||||
|
||||
VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
|
||||
|
||||
VkResult ApplyDefragmentationMovesCpu(
|
||||
const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves);
|
||||
|
||||
/*
|
||||
Used during defragmentation. pDefragmentationStats is optional. It's in/out
|
||||
- updated with new data.
|
||||
*/
|
||||
void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats);
|
||||
};
|
||||
|
||||
struct VmaPool_T
|
||||
@ -11031,6 +11040,154 @@ VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIn
|
||||
return VK_SUCCESS;
|
||||
}
|
||||
|
||||
VkResult VmaBlockVector::ApplyDefragmentationMovesCpu(
|
||||
const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves)
|
||||
{
|
||||
const size_t blockCount = m_Blocks.size();
|
||||
const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex);
|
||||
|
||||
enum BLOCK_FLAG
|
||||
{
|
||||
BLOCK_FLAG_USED = 0x00000001,
|
||||
BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002,
|
||||
};
|
||||
|
||||
struct BlockInfo
|
||||
{
|
||||
uint32_t flags;
|
||||
void* pMappedData;
|
||||
};
|
||||
VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> >
|
||||
blockInfo(blockCount, VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks()));
|
||||
memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo));
|
||||
|
||||
// Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
|
||||
const size_t moveCount = moves.size();
|
||||
for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
|
||||
{
|
||||
const VmaDefragmentationMove& move = moves[moveIndex];
|
||||
blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED;
|
||||
blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED;
|
||||
}
|
||||
|
||||
VkResult res = VK_SUCCESS;
|
||||
|
||||
// Go over all blocks. Get mapped pointer or map if necessary.
|
||||
for(size_t blockIndex = 0; (res >= 0) && (blockIndex < blockCount); ++blockIndex)
|
||||
{
|
||||
BlockInfo& currBlockInfo = blockInfo[blockIndex];
|
||||
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
||||
if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0)
|
||||
{
|
||||
currBlockInfo.pMappedData = pBlock->GetMappedData();
|
||||
// It is not originally mapped - map it.
|
||||
if(currBlockInfo.pMappedData == VMA_NULL)
|
||||
{
|
||||
res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData);
|
||||
if(res == VK_SUCCESS)
|
||||
{
|
||||
currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Go over all moves. Do actual data transfer.
|
||||
if(res >= 0)
|
||||
{
|
||||
const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
|
||||
VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
|
||||
|
||||
for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
|
||||
{
|
||||
const VmaDefragmentationMove& move = moves[moveIndex];
|
||||
|
||||
const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex];
|
||||
const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex];
|
||||
|
||||
VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData);
|
||||
|
||||
// Invalidate source.
|
||||
if(isNonCoherent)
|
||||
{
|
||||
VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex];
|
||||
memRange.memory = pSrcBlock->GetDeviceMemory();
|
||||
memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize);
|
||||
memRange.size = VMA_MIN(
|
||||
VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize),
|
||||
pSrcBlock->m_pMetadata->GetSize() - memRange.offset);
|
||||
(*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
|
||||
}
|
||||
|
||||
// THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
|
||||
memcpy(
|
||||
reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset,
|
||||
reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset,
|
||||
static_cast<size_t>(move.size));
|
||||
|
||||
if(IsCorruptionDetectionEnabled())
|
||||
{
|
||||
VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN);
|
||||
VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size);
|
||||
}
|
||||
|
||||
// Flush destination.
|
||||
if(isNonCoherent)
|
||||
{
|
||||
VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex];
|
||||
memRange.memory = pDstBlock->GetDeviceMemory();
|
||||
memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize);
|
||||
memRange.size = VMA_MIN(
|
||||
VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize),
|
||||
pDstBlock->m_pMetadata->GetSize() - memRange.offset);
|
||||
(*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation.
|
||||
// Regardless of res >= 0.
|
||||
for(size_t blockIndex = blockCount; blockIndex--; )
|
||||
{
|
||||
const BlockInfo& currBlockInfo = blockInfo[blockIndex];
|
||||
if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0)
|
||||
{
|
||||
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
||||
pBlock->Unmap(m_hAllocator, 1);
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats)
|
||||
{
|
||||
m_HasEmptyBlock = false;
|
||||
for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
|
||||
{
|
||||
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
||||
if(pBlock->m_pMetadata->IsEmpty())
|
||||
{
|
||||
if(m_Blocks.size() > m_MinBlockCount)
|
||||
{
|
||||
if(pDefragmentationStats != VMA_NULL)
|
||||
{
|
||||
++pDefragmentationStats->deviceMemoryBlocksFreed;
|
||||
pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize();
|
||||
}
|
||||
|
||||
VmaVectorRemove(m_Blocks, blockIndex);
|
||||
pBlock->Destroy(m_hAllocator);
|
||||
vma_delete(m_hAllocator, pBlock);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_HasEmptyBlock = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if VMA_STATS_STRING_ENABLED
|
||||
|
||||
void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
|
||||
@ -11114,125 +11271,6 @@ VkResult VmaBlockVector::Defragment(
|
||||
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > moves =
|
||||
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >(VmaStlAllocator<VmaDefragmentationMove>(m_hAllocator->GetAllocationCallbacks()));
|
||||
VkResult res = m_pDefragmentationAlgorithm->Defragment(moves, maxBytesToMove, maxAllocationsToMove);
|
||||
if(res < 0)
|
||||
{
|
||||
return res;
|
||||
}
|
||||
|
||||
if(res >= VK_SUCCESS)
|
||||
{
|
||||
const size_t blockCount = m_Blocks.size();
|
||||
const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex);
|
||||
|
||||
enum BLOCK_FLAG
|
||||
{
|
||||
BLOCK_FLAG_USED = 0x00000001,
|
||||
BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002,
|
||||
};
|
||||
|
||||
struct BlockInfo
|
||||
{
|
||||
uint32_t flags;
|
||||
void* pMappedData;
|
||||
};
|
||||
VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> >
|
||||
blockInfo(blockCount, VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks()));
|
||||
memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo));
|
||||
|
||||
// Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
|
||||
const size_t moveCount = moves.size();
|
||||
for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
|
||||
{
|
||||
const VmaDefragmentationMove& move = moves[moveIndex];
|
||||
blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED;
|
||||
blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED;
|
||||
}
|
||||
|
||||
// Go over all blocks. Get mapped pointer or map if necessary.
|
||||
for(size_t blockIndex = 0; (res >= 0) && (blockIndex < blockCount); ++blockIndex)
|
||||
{
|
||||
BlockInfo& currBlockInfo = blockInfo[blockIndex];
|
||||
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
||||
if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0)
|
||||
{
|
||||
currBlockInfo.pMappedData = pBlock->GetMappedData();
|
||||
// It is not originally mapped - map it.
|
||||
if(currBlockInfo.pMappedData == VMA_NULL)
|
||||
{
|
||||
res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData);
|
||||
if(res == VK_SUCCESS)
|
||||
{
|
||||
currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Go over all moves. Do actual data transfer.
|
||||
if(res >= 0)
|
||||
{
|
||||
const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
|
||||
VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
|
||||
|
||||
for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
|
||||
{
|
||||
const VmaDefragmentationMove& move = moves[moveIndex];
|
||||
|
||||
const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex];
|
||||
const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex];
|
||||
|
||||
VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData);
|
||||
|
||||
// Invalidate source.
|
||||
if(isNonCoherent)
|
||||
{
|
||||
VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex];
|
||||
memRange.memory = pSrcBlock->GetDeviceMemory();
|
||||
memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize);
|
||||
memRange.size = VMA_MIN(
|
||||
VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize),
|
||||
pSrcBlock->m_pMetadata->GetSize() - memRange.offset);
|
||||
(*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
|
||||
}
|
||||
|
||||
// THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
|
||||
memcpy(
|
||||
reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset,
|
||||
reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset,
|
||||
static_cast<size_t>(move.size));
|
||||
|
||||
if(IsCorruptionDetectionEnabled())
|
||||
{
|
||||
VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN);
|
||||
VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size);
|
||||
}
|
||||
|
||||
// Flush destination.
|
||||
if(isNonCoherent)
|
||||
{
|
||||
VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex];
|
||||
memRange.memory = pDstBlock->GetDeviceMemory();
|
||||
memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize);
|
||||
memRange.size = VMA_MIN(
|
||||
VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize),
|
||||
pDstBlock->m_pMetadata->GetSize() - memRange.offset);
|
||||
(*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation.
|
||||
// Regardless of res >= 0.
|
||||
for(size_t blockIndex = blockCount; blockIndex--; )
|
||||
{
|
||||
const BlockInfo& currBlockInfo = blockInfo[blockIndex];
|
||||
if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0)
|
||||
{
|
||||
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
||||
pBlock->Unmap(m_hAllocator, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Accumulate statistics.
|
||||
if(pDefragmentationStats != VMA_NULL)
|
||||
@ -11247,33 +11285,14 @@ VkResult VmaBlockVector::Defragment(
|
||||
maxAllocationsToMove -= allocationsMoved;
|
||||
}
|
||||
|
||||
// Free empty blocks.
|
||||
if(res >= 0)
|
||||
if(res >= VK_SUCCESS)
|
||||
{
|
||||
m_HasEmptyBlock = false;
|
||||
for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
|
||||
{
|
||||
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
||||
if(pBlock->m_pMetadata->IsEmpty())
|
||||
{
|
||||
if(m_Blocks.size() > m_MinBlockCount)
|
||||
{
|
||||
if(pDefragmentationStats != VMA_NULL)
|
||||
{
|
||||
++pDefragmentationStats->deviceMemoryBlocksFreed;
|
||||
pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize();
|
||||
}
|
||||
res = ApplyDefragmentationMovesCpu(moves);
|
||||
}
|
||||
|
||||
VmaVectorRemove(m_Blocks, blockIndex);
|
||||
pBlock->Destroy(m_hAllocator);
|
||||
vma_delete(m_hAllocator, pBlock);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_HasEmptyBlock = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(res >= VK_SUCCESS)
|
||||
{
|
||||
FreeEmptyBlocks(pDefragmentationStats);
|
||||
}
|
||||
|
||||
// Destroy defragmentation algorithm object.
|
||||
|
Loading…
Reference in New Issue
Block a user