// // Copyright (c) 2017 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #ifdef WIN32 #define NOMINMAX #define WIN32_LEAN_AND_MEAN #include #define VK_USE_PLATFORM_WIN32_KHR #include #pragma warning(push, 4) #pragma warning(disable: 4127) // warning C4127: conditional expression is constant #pragma warning(disable: 4100) // warning C4100: '...': unreferenced formal parameter #pragma warning(disable: 4189) // warning C4189: '...': local variable is initialized but not referenced #define VMA_IMPLEMENTATION #include "vk_mem_alloc.h" #pragma warning(pop) #define MATHFU_COMPILE_WITHOUT_SIMD_SUPPORT #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ERR_GUARD_VULKAN(Expr) do { VkResult res__ = (Expr); if (res__ < 0) assert(0); } while(0) static const char* const SHADER_PATH1 = "./"; static const char* const SHADER_PATH2 = "../bin/"; static const wchar_t* const WINDOW_CLASS_NAME = L"VULKAN_MEMORY_ALLOCATOR_SAMPLE"; static const char* const VALIDATION_LAYER_NAME = "VK_LAYER_LUNARG_standard_validation"; static const char* const APP_TITLE_A = "Vulkan Memory Allocator Sample 1.0"; static const wchar_t* const APP_TITLE_W = L"Vulkan Memory Allocator Sample 1.0"; static const bool VSYNC = true; static const uint32_t COMMAND_BUFFER_COUNT = 2; static bool g_EnableValidationLayer = true; static HINSTANCE g_hAppInstance; static HWND g_hWnd; static LONG g_SizeX = 1280, g_SizeY = 720; static VkInstance g_hVulkanInstance; static VkSurfaceKHR g_hSurface; static VkPhysicalDevice g_hPhysicalDevice; static VkQueue g_hPresentQueue; static VkSurfaceFormatKHR g_SurfaceFormat; static VkExtent2D g_Extent; static VkSwapchainKHR g_hSwapchain; static std::vector g_SwapchainImages; static std::vector g_SwapchainImageViews; static std::vector g_Framebuffers; static VkCommandPool g_hCommandPool; static VkCommandBuffer g_MainCommandBuffers[COMMAND_BUFFER_COUNT]; static VkFence g_MainCommandBufferExecutedFances[COMMAND_BUFFER_COUNT]; static uint32_t g_NextCommandBufferIndex; static VkSemaphore g_hImageAvailableSemaphore; static VkSemaphore g_hRenderFinishedSemaphore; static uint32_t g_GraphicsQueueFamilyIndex = UINT_MAX; static uint32_t g_PresentQueueFamilyIndex = UINT_MAX; static VkDescriptorSetLayout g_hDescriptorSetLayout; static VkDescriptorPool g_hDescriptorPool; static VkDescriptorSet g_hDescriptorSet; // Automatically destroyed with m_DescriptorPool. static VkSampler g_hSampler; static VkFormat g_DepthFormat; static VkImage g_hDepthImage; static VmaAllocation g_hDepthImageAlloc; static VkImageView g_hDepthImageView; static VkSurfaceCapabilitiesKHR g_SurfaceCapabilities; static std::vector g_SurfaceFormats; static std::vector g_PresentModes; static PFN_vkCreateDebugReportCallbackEXT g_pvkCreateDebugReportCallbackEXT; static PFN_vkDebugReportMessageEXT g_pvkDebugReportMessageEXT; static PFN_vkDestroyDebugReportCallbackEXT g_pvkDestroyDebugReportCallbackEXT; static VkDebugReportCallbackEXT g_hCallback; static VkDevice g_hDevice; static VmaAllocator g_hAllocator; static VkQueue g_hGraphicsQueue; static VkCommandBuffer g_hTemporaryCommandBuffer; static VkPipelineLayout g_hPipelineLayout; static VkRenderPass g_hRenderPass; static VkPipeline g_hPipeline; static VkBuffer g_hVertexBuffer; static VmaAllocation g_hVertexBufferAlloc; static VkBuffer g_hIndexBuffer; static VmaAllocation g_hIndexBufferAlloc; static uint32_t g_VertexCount; static uint32_t g_IndexCount; static VkImage g_hTextureImage; static VmaAllocation g_hTextureImageAlloc; static VkImageView g_hTextureImageView; static void BeginSingleTimeCommands() { VkCommandBufferBeginInfo cmdBufBeginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO }; cmdBufBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; ERR_GUARD_VULKAN( vkBeginCommandBuffer(g_hTemporaryCommandBuffer, &cmdBufBeginInfo) ); } static void EndSingleTimeCommands() { ERR_GUARD_VULKAN( vkEndCommandBuffer(g_hTemporaryCommandBuffer) ); VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO }; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &g_hTemporaryCommandBuffer; ERR_GUARD_VULKAN( vkQueueSubmit(g_hGraphicsQueue, 1, &submitInfo, VK_NULL_HANDLE) ); ERR_GUARD_VULKAN( vkQueueWaitIdle(g_hGraphicsQueue) ); } static void LoadShader(std::vector& out, const char* fileName) { std::ifstream file(std::string(SHADER_PATH1) + fileName, std::ios::ate | std::ios::binary); if(file.is_open() == false) file.open(std::string(SHADER_PATH2) + fileName, std::ios::ate | std::ios::binary); assert(file.is_open()); size_t fileSize = (size_t)file.tellg(); if(fileSize > 0) { out.resize(fileSize); file.seekg(0); file.read(out.data(), fileSize); file.close(); } else out.clear(); } VKAPI_ATTR VkBool32 VKAPI_CALL MyDebugReportCallback( VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage, void* pUserData) { printf("%s \xBA %s\n", pLayerPrefix, pMessage); if((flags == VK_DEBUG_REPORT_WARNING_BIT_EXT) || (flags == VK_DEBUG_REPORT_ERROR_BIT_EXT)) { OutputDebugStringA(pMessage); OutputDebugStringA("\n"); } return VK_FALSE; } static VkSurfaceFormatKHR ChooseSurfaceFormat() { assert(!g_SurfaceFormats.empty()); if((g_SurfaceFormats.size() == 1) && (g_SurfaceFormats[0].format == VK_FORMAT_UNDEFINED)) { VkSurfaceFormatKHR result = { VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR }; return result; } for(const auto& format : g_SurfaceFormats) { if((format.format == VK_FORMAT_B8G8R8A8_UNORM) && (format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR)) { return format; } } return g_SurfaceFormats[0]; } VkPresentModeKHR ChooseSwapPresentMode() { VkPresentModeKHR preferredMode = VSYNC ? VK_PRESENT_MODE_MAILBOX_KHR : VK_PRESENT_MODE_IMMEDIATE_KHR; if(std::find(g_PresentModes.begin(), g_PresentModes.end(), preferredMode) != g_PresentModes.end()) { return preferredMode; } return VK_PRESENT_MODE_FIFO_KHR; } static VkExtent2D ChooseSwapExtent() { if(g_SurfaceCapabilities.currentExtent.width != UINT_MAX) return g_SurfaceCapabilities.currentExtent; VkExtent2D result = { std::max(g_SurfaceCapabilities.minImageExtent.width, std::min(g_SurfaceCapabilities.maxImageExtent.width, (uint32_t)g_SizeX)), std::max(g_SurfaceCapabilities.minImageExtent.height, std::min(g_SurfaceCapabilities.maxImageExtent.height, (uint32_t)g_SizeY)) }; return result; } struct Vertex { float pos[3]; float color[3]; float texCoord[2]; }; static void CreateMesh() { assert(g_hAllocator); static Vertex vertices[] = { // -X { { -1.f, -1.f, -1.f}, {1.0f, 0.0f, 0.0f}, {0.f, 0.f} }, { { -1.f, -1.f, 1.f}, {1.0f, 0.0f, 0.0f}, {1.f, 0.f} }, { { -1.f, 1.f, -1.f}, {1.0f, 0.0f, 0.0f}, {0.f, 1.f} }, { { -1.f, 1.f, 1.f}, {1.0f, 0.0f, 0.0f}, {1.f, 1.f} }, // +X { { 1.f, -1.f, 1.f}, {0.0f, 1.0f, 0.0f}, {0.f, 0.f} }, { { 1.f, -1.f, -1.f}, {0.0f, 1.0f, 0.0f}, {1.f, 0.f} }, { { 1.f, 1.f, 1.f}, {0.0f, 1.0f, 0.0f}, {0.f, 1.f} }, { { 1.f, 1.f, -1.f}, {0.0f, 1.0f, 0.0f}, {1.f, 1.f} }, // -Z { { 1.f, -1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {0.f, 0.f} }, { {-1.f, -1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {1.f, 0.f} }, { { 1.f, 1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {0.f, 1.f} }, { {-1.f, 1.f, -1.f}, {0.0f, 0.0f, 1.0f}, {1.f, 1.f} }, // +Z { {-1.f, -1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {0.f, 0.f} }, { { 1.f, -1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {1.f, 0.f} }, { {-1.f, 1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {0.f, 1.f} }, { { 1.f, 1.f, 1.f}, {1.0f, 1.0f, 0.0f}, {1.f, 1.f} }, // -Y { {-1.f, -1.f, -1.f}, {0.0f, 1.0f, 1.0f}, {0.f, 0.f} }, { { 1.f, -1.f, -1.f}, {0.0f, 1.0f, 1.0f}, {1.f, 0.f} }, { {-1.f, -1.f, 1.f}, {0.0f, 1.0f, 1.0f}, {0.f, 1.f} }, { { 1.f, -1.f, 1.f}, {0.0f, 1.0f, 1.0f}, {1.f, 1.f} }, // +Y { { 1.f, 1.f, -1.f}, {1.0f, 0.0f, 1.0f}, {0.f, 0.f} }, { {-1.f, 1.f, -1.f}, {1.0f, 0.0f, 1.0f}, {1.f, 0.f} }, { { 1.f, 1.f, 1.f}, {1.0f, 0.0f, 1.0f}, {0.f, 1.f} }, { {-1.f, 1.f, 1.f}, {1.0f, 0.0f, 1.0f}, {1.f, 1.f} }, }; static uint16_t indices[] = { 0, 1, 2, 3, USHRT_MAX, 4, 5, 6, 7, USHRT_MAX, 8, 9, 10, 11, USHRT_MAX, 12, 13, 14, 15, USHRT_MAX, 16, 17, 18, 19, USHRT_MAX, 20, 21, 22, 23, USHRT_MAX, }; size_t vertexBufferSize = sizeof(Vertex) * _countof(vertices); size_t indexBufferSize = sizeof(uint16_t) * _countof(indices); g_IndexCount = (uint32_t)_countof(indices); // Create vertex buffer VkBufferCreateInfo vbInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; vbInfo.size = vertexBufferSize; vbInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; vbInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VmaAllocationCreateInfo vbAllocCreateInfo = {}; vbAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; vbAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer stagingVertexBuffer = VK_NULL_HANDLE; VmaAllocation stagingVertexBufferAlloc = VK_NULL_HANDLE; VmaAllocationInfo stagingVertexBufferAllocInfo = {}; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &vbInfo, &vbAllocCreateInfo, &stagingVertexBuffer, &stagingVertexBufferAlloc, &stagingVertexBufferAllocInfo) ); memcpy(stagingVertexBufferAllocInfo.pMappedData, vertices, vertexBufferSize); // No need to flush stagingVertexBuffer memory because CPU_ONLY memory is always HOST_COHERENT. vbInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT; vbAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; vbAllocCreateInfo.flags = 0; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &vbInfo, &vbAllocCreateInfo, &g_hVertexBuffer, &g_hVertexBufferAlloc, nullptr) ); // Create index buffer VkBufferCreateInfo ibInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; ibInfo.size = indexBufferSize; ibInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; ibInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VmaAllocationCreateInfo ibAllocCreateInfo = {}; ibAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; ibAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer stagingIndexBuffer = VK_NULL_HANDLE; VmaAllocation stagingIndexBufferAlloc = VK_NULL_HANDLE; VmaAllocationInfo stagingIndexBufferAllocInfo = {}; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &ibInfo, &ibAllocCreateInfo, &stagingIndexBuffer, &stagingIndexBufferAlloc, &stagingIndexBufferAllocInfo) ); memcpy(stagingIndexBufferAllocInfo.pMappedData, indices, indexBufferSize); // No need to flush stagingIndexBuffer memory because CPU_ONLY memory is always HOST_COHERENT. ibInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT; ibAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; ibAllocCreateInfo.flags = 0; ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &ibInfo, &ibAllocCreateInfo, &g_hIndexBuffer, &g_hIndexBufferAlloc, nullptr) ); // Copy buffers BeginSingleTimeCommands(); VkBufferCopy vbCopyRegion = {}; vbCopyRegion.srcOffset = 0; vbCopyRegion.dstOffset = 0; vbCopyRegion.size = vbInfo.size; vkCmdCopyBuffer(g_hTemporaryCommandBuffer, stagingVertexBuffer, g_hVertexBuffer, 1, &vbCopyRegion); VkBufferCopy ibCopyRegion = {}; ibCopyRegion.srcOffset = 0; ibCopyRegion.dstOffset = 0; ibCopyRegion.size = ibInfo.size; vkCmdCopyBuffer(g_hTemporaryCommandBuffer, stagingIndexBuffer, g_hIndexBuffer, 1, &ibCopyRegion); EndSingleTimeCommands(); vmaDestroyBuffer(g_hAllocator, stagingIndexBuffer, stagingIndexBufferAlloc); vmaDestroyBuffer(g_hAllocator, stagingVertexBuffer, stagingVertexBufferAlloc); } static void ImageBarrier( VkImage image, VkImageAspectFlags aspectMask, uint32_t mipLevelCount, VkImageLayout oldLayout, VkImageLayout newLayout, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask) { BeginSingleTimeCommands(); VkImageMemoryBarrier imgMemBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER }; imgMemBarrier.oldLayout = oldLayout; imgMemBarrier.newLayout = newLayout; imgMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgMemBarrier.image = image; imgMemBarrier.subresourceRange.aspectMask = aspectMask; imgMemBarrier.subresourceRange.baseMipLevel = 0; imgMemBarrier.subresourceRange.levelCount = mipLevelCount; imgMemBarrier.subresourceRange.baseArrayLayer = 0; imgMemBarrier.subresourceRange.layerCount = 1; imgMemBarrier.srcAccessMask = srcAccessMask; imgMemBarrier.dstAccessMask = dstAccessMask; vkCmdPipelineBarrier( g_hTemporaryCommandBuffer, srcStageMask, dstStageMask, 0, 0, nullptr, 0, nullptr, 1, &imgMemBarrier); EndSingleTimeCommands(); } static void CreateTexture(uint32_t sizeX, uint32_t sizeY) { // Create Image const VkDeviceSize imageSize = sizeX * sizeY * 4; VkImageCreateInfo stagingImageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; stagingImageInfo.imageType = VK_IMAGE_TYPE_2D; stagingImageInfo.extent.width = sizeX; stagingImageInfo.extent.height = sizeY; stagingImageInfo.extent.depth = 1; stagingImageInfo.mipLevels = 1; stagingImageInfo.arrayLayers = 1; stagingImageInfo.format = VK_FORMAT_R8G8B8A8_UNORM; stagingImageInfo.tiling = VK_IMAGE_TILING_LINEAR; stagingImageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; stagingImageInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; stagingImageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; stagingImageInfo.samples = VK_SAMPLE_COUNT_1_BIT; stagingImageInfo.flags = 0; VmaAllocationCreateInfo stagingImageAllocCreateInfo = {}; stagingImageAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY; stagingImageAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT; VkImage stagingImage = VK_NULL_HANDLE; VmaAllocation stagingImageAlloc = VK_NULL_HANDLE; VmaAllocationInfo stagingImageAllocInfo = {}; ERR_GUARD_VULKAN( vmaCreateImage(g_hAllocator, &stagingImageInfo, &stagingImageAllocCreateInfo, &stagingImage, &stagingImageAlloc, &stagingImageAllocInfo) ); VkImageSubresource imageSubresource = {}; imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageSubresource.mipLevel = 0; imageSubresource.arrayLayer = 0; VkSubresourceLayout imageLayout = {}; vkGetImageSubresourceLayout(g_hDevice, stagingImage, &imageSubresource, &imageLayout); char* const pMipLevelData = (char*)stagingImageAllocInfo.pMappedData + imageLayout.offset; uint8_t* pRowData = (uint8_t*)pMipLevelData; for(uint32_t y = 0; y < sizeY; ++y) { uint32_t* pPixelData = (uint32_t*)pRowData; for(uint32_t x = 0; x < sizeY; ++x) { *pPixelData = ((x & 0x18) == 0x08 ? 0x000000FF : 0x00000000) | ((x & 0x18) == 0x10 ? 0x0000FFFF : 0x00000000) | ((y & 0x18) == 0x08 ? 0x0000FF00 : 0x00000000) | ((y & 0x18) == 0x10 ? 0x00FF0000 : 0x00000000); ++pPixelData; } pRowData += imageLayout.rowPitch; } // No need to flush stagingImage memory because CPU_ONLY memory is always HOST_COHERENT. // Create g_hTextureImage in GPU memory. VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; imageInfo.imageType = VK_IMAGE_TYPE_2D; imageInfo.extent.width = sizeX; imageInfo.extent.height = sizeY; imageInfo.extent.depth = 1; imageInfo.mipLevels = 1; imageInfo.arrayLayers = 1; imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM; imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageInfo.flags = 0; VmaAllocationCreateInfo imageAllocCreateInfo = {}; imageAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; ERR_GUARD_VULKAN( vmaCreateImage(g_hAllocator, &imageInfo, &imageAllocCreateInfo, &g_hTextureImage, &g_hTextureImageAlloc, nullptr) ); // Transition image layouts, copy image. BeginSingleTimeCommands(); VkImageMemoryBarrier imgMemBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER }; imgMemBarrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; imgMemBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; imgMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgMemBarrier.image = stagingImage; imgMemBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgMemBarrier.subresourceRange.baseMipLevel = 0; imgMemBarrier.subresourceRange.levelCount = 1; imgMemBarrier.subresourceRange.baseArrayLayer = 0; imgMemBarrier.subresourceRange.layerCount = 1; imgMemBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; imgMemBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; vkCmdPipelineBarrier( g_hTemporaryCommandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imgMemBarrier); imgMemBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgMemBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgMemBarrier.image = g_hTextureImage; imgMemBarrier.srcAccessMask = 0; imgMemBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; vkCmdPipelineBarrier( g_hTemporaryCommandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imgMemBarrier); VkImageCopy imageCopy = {}; imageCopy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageCopy.srcSubresource.baseArrayLayer = 0; imageCopy.srcSubresource.mipLevel = 0; imageCopy.srcSubresource.layerCount = 1; imageCopy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageCopy.dstSubresource.baseArrayLayer = 0; imageCopy.dstSubresource.mipLevel = 0; imageCopy.dstSubresource.layerCount = 1; imageCopy.srcOffset.x = 0; imageCopy.srcOffset.y = 0; imageCopy.srcOffset.z = 0; imageCopy.dstOffset.x = 0; imageCopy.dstOffset.y = 0; imageCopy.dstOffset.z = 0; imageCopy.extent.width = sizeX; imageCopy.extent.height = sizeY; imageCopy.extent.depth = 1; vkCmdCopyImage( g_hTemporaryCommandBuffer, stagingImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, g_hTextureImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageCopy); imgMemBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imgMemBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imgMemBarrier.image = g_hTextureImage; imgMemBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; imgMemBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; vkCmdPipelineBarrier( g_hTemporaryCommandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 1, &imgMemBarrier); EndSingleTimeCommands(); vmaDestroyImage(g_hAllocator, stagingImage, stagingImageAlloc); // Create ImageView VkImageViewCreateInfo textureImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO }; textureImageViewInfo.image = g_hTextureImage; textureImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; textureImageViewInfo.format = VK_FORMAT_R8G8B8A8_UNORM; textureImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; textureImageViewInfo.subresourceRange.baseMipLevel = 0; textureImageViewInfo.subresourceRange.levelCount = 1; textureImageViewInfo.subresourceRange.baseArrayLayer = 0; textureImageViewInfo.subresourceRange.layerCount = 1; ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &textureImageViewInfo, nullptr, &g_hTextureImageView) ); } struct UniformBufferObject { mathfu::vec4_packed ModelViewProj[4]; }; static void RegisterDebugCallbacks() { g_pvkCreateDebugReportCallbackEXT = reinterpret_cast (vkGetInstanceProcAddr(g_hVulkanInstance, "vkCreateDebugReportCallbackEXT")); g_pvkDebugReportMessageEXT = reinterpret_cast (vkGetInstanceProcAddr(g_hVulkanInstance, "vkDebugReportMessageEXT")); g_pvkDestroyDebugReportCallbackEXT = reinterpret_cast (vkGetInstanceProcAddr(g_hVulkanInstance, "vkDestroyDebugReportCallbackEXT")); assert(g_pvkCreateDebugReportCallbackEXT); assert(g_pvkDebugReportMessageEXT); assert(g_pvkDestroyDebugReportCallbackEXT); VkDebugReportCallbackCreateInfoEXT callbackCreateInfo; callbackCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; callbackCreateInfo.pNext = nullptr; callbackCreateInfo.flags = //VK_DEBUG_REPORT_INFORMATION_BIT_EXT | VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT /*| VK_DEBUG_REPORT_DEBUG_BIT_EXT*/; callbackCreateInfo.pfnCallback = &MyDebugReportCallback; callbackCreateInfo.pUserData = nullptr; ERR_GUARD_VULKAN( g_pvkCreateDebugReportCallbackEXT(g_hVulkanInstance, &callbackCreateInfo, nullptr, &g_hCallback) ); } static bool IsLayerSupported(const VkLayerProperties* pProps, size_t propCount, const char* pLayerName) { const VkLayerProperties* propsEnd = pProps + propCount; return std::find_if( pProps, propsEnd, [pLayerName](const VkLayerProperties& prop) -> bool { return strcmp(pLayerName, prop.layerName) == 0; }) != propsEnd; } static VkFormat FindSupportedFormat( const std::vector& candidates, VkImageTiling tiling, VkFormatFeatureFlags features) { for (VkFormat format : candidates) { VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(g_hPhysicalDevice, format, &props); if ((tiling == VK_IMAGE_TILING_LINEAR) && ((props.linearTilingFeatures & features) == features)) { return format; } else if ((tiling == VK_IMAGE_TILING_OPTIMAL) && ((props.optimalTilingFeatures & features) == features)) { return format; } } return VK_FORMAT_UNDEFINED; } static VkFormat FindDepthFormat() { std::vector formats; formats.push_back(VK_FORMAT_D32_SFLOAT); formats.push_back(VK_FORMAT_D32_SFLOAT_S8_UINT); formats.push_back(VK_FORMAT_D24_UNORM_S8_UINT); return FindSupportedFormat( formats, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); } static void CreateSwapchain() { // Query surface formats. ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceCapabilitiesKHR(g_hPhysicalDevice, g_hSurface, &g_SurfaceCapabilities) ); uint32_t formatCount = 0; ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceFormatsKHR(g_hPhysicalDevice, g_hSurface, &formatCount, nullptr) ); g_SurfaceFormats.resize(formatCount); ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfaceFormatsKHR(g_hPhysicalDevice, g_hSurface, &formatCount, g_SurfaceFormats.data()) ); uint32_t presentModeCount = 0; ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfacePresentModesKHR(g_hPhysicalDevice, g_hSurface, &presentModeCount, nullptr) ); g_PresentModes.resize(presentModeCount); ERR_GUARD_VULKAN( vkGetPhysicalDeviceSurfacePresentModesKHR(g_hPhysicalDevice, g_hSurface, &presentModeCount, g_PresentModes.data()) ); // Create swap chain g_SurfaceFormat = ChooseSurfaceFormat(); VkPresentModeKHR presentMode = ChooseSwapPresentMode(); g_Extent = ChooseSwapExtent(); uint32_t imageCount = g_SurfaceCapabilities.minImageCount + 1; if((g_SurfaceCapabilities.maxImageCount > 0) && (imageCount > g_SurfaceCapabilities.maxImageCount)) { imageCount = g_SurfaceCapabilities.maxImageCount; } VkSwapchainCreateInfoKHR swapChainInfo = { VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR }; swapChainInfo.surface = g_hSurface; swapChainInfo.minImageCount = imageCount; swapChainInfo.imageFormat = g_SurfaceFormat.format; swapChainInfo.imageColorSpace = g_SurfaceFormat.colorSpace; swapChainInfo.imageExtent = g_Extent; swapChainInfo.imageArrayLayers = 1; swapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; swapChainInfo.preTransform = g_SurfaceCapabilities.currentTransform; swapChainInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; swapChainInfo.presentMode = presentMode; swapChainInfo.clipped = VK_TRUE; swapChainInfo.oldSwapchain = g_hSwapchain; uint32_t queueFamilyIndices[] = { g_GraphicsQueueFamilyIndex, g_PresentQueueFamilyIndex }; if(g_PresentQueueFamilyIndex != g_GraphicsQueueFamilyIndex) { swapChainInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; swapChainInfo.queueFamilyIndexCount = 2; swapChainInfo.pQueueFamilyIndices = queueFamilyIndices; } else { swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; } VkSwapchainKHR hNewSwapchain = VK_NULL_HANDLE; ERR_GUARD_VULKAN( vkCreateSwapchainKHR(g_hDevice, &swapChainInfo, nullptr, &hNewSwapchain) ); if(g_hSwapchain != VK_NULL_HANDLE) vkDestroySwapchainKHR(g_hDevice, g_hSwapchain, nullptr); g_hSwapchain = hNewSwapchain; // Retrieve swapchain images. uint32_t swapchainImageCount = 0; ERR_GUARD_VULKAN( vkGetSwapchainImagesKHR(g_hDevice, g_hSwapchain, &swapchainImageCount, nullptr) ); g_SwapchainImages.resize(swapchainImageCount); ERR_GUARD_VULKAN( vkGetSwapchainImagesKHR(g_hDevice, g_hSwapchain, &swapchainImageCount, g_SwapchainImages.data()) ); // Create swapchain image views. for(size_t i = g_SwapchainImageViews.size(); i--; ) vkDestroyImageView(g_hDevice, g_SwapchainImageViews[i], nullptr); g_SwapchainImageViews.clear(); VkImageViewCreateInfo swapchainImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO }; g_SwapchainImageViews.resize(swapchainImageCount); for(uint32_t i = 0; i < swapchainImageCount; ++i) { swapchainImageViewInfo.image = g_SwapchainImages[i]; swapchainImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; swapchainImageViewInfo.format = g_SurfaceFormat.format; swapchainImageViewInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; swapchainImageViewInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; swapchainImageViewInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; swapchainImageViewInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; swapchainImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; swapchainImageViewInfo.subresourceRange.baseMipLevel = 0; swapchainImageViewInfo.subresourceRange.levelCount = 1; swapchainImageViewInfo.subresourceRange.baseArrayLayer = 0; swapchainImageViewInfo.subresourceRange.layerCount = 1; ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &swapchainImageViewInfo, nullptr, &g_SwapchainImageViews[i]) ); } // Create depth buffer g_DepthFormat = FindDepthFormat(); assert(g_DepthFormat != VK_FORMAT_UNDEFINED); VkImageCreateInfo depthImageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; depthImageInfo.imageType = VK_IMAGE_TYPE_2D; depthImageInfo.extent.width = g_Extent.width; depthImageInfo.extent.height = g_Extent.height; depthImageInfo.extent.depth = 1; depthImageInfo.mipLevels = 1; depthImageInfo.arrayLayers = 1; depthImageInfo.format = g_DepthFormat; depthImageInfo.tiling = VK_IMAGE_TILING_OPTIMAL; depthImageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; depthImageInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; depthImageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; depthImageInfo.samples = VK_SAMPLE_COUNT_1_BIT; depthImageInfo.flags = 0; VmaAllocationCreateInfo depthImageAllocCreateInfo = {}; depthImageAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; ERR_GUARD_VULKAN( vmaCreateImage(g_hAllocator, &depthImageInfo, &depthImageAllocCreateInfo, &g_hDepthImage, &g_hDepthImageAlloc, nullptr) ); VkImageViewCreateInfo depthImageViewInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO }; depthImageViewInfo.image = g_hDepthImage; depthImageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; depthImageViewInfo.format = g_DepthFormat; depthImageViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; depthImageViewInfo.subresourceRange.baseMipLevel = 0; depthImageViewInfo.subresourceRange.levelCount = 1; depthImageViewInfo.subresourceRange.baseArrayLayer = 0; depthImageViewInfo.subresourceRange.layerCount = 1; ERR_GUARD_VULKAN( vkCreateImageView(g_hDevice, &depthImageViewInfo, nullptr, &g_hDepthImageView) ); // Transition image layout of g_hDepthImage. BeginSingleTimeCommands(); VkImageMemoryBarrier imgMemBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER }; imgMemBarrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgMemBarrier.newLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; imgMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imgMemBarrier.image = g_hDepthImage; imgMemBarrier.subresourceRange.aspectMask = g_DepthFormat == VK_FORMAT_D32_SFLOAT ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; imgMemBarrier.subresourceRange.baseMipLevel = 0; imgMemBarrier.subresourceRange.levelCount = 1; imgMemBarrier.subresourceRange.baseArrayLayer = 0; imgMemBarrier.subresourceRange.layerCount = 1; imgMemBarrier.srcAccessMask = 0; imgMemBarrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; vkCmdPipelineBarrier( g_hTemporaryCommandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, 0, 0, nullptr, 0, nullptr, 1, &imgMemBarrier); EndSingleTimeCommands(); // Create pipeline layout { if(g_hPipelineLayout != VK_NULL_HANDLE) { vkDestroyPipelineLayout(g_hDevice, g_hPipelineLayout, nullptr); g_hPipelineLayout = VK_NULL_HANDLE; } VkPushConstantRange pushConstantRanges[1]; ZeroMemory(&pushConstantRanges, sizeof pushConstantRanges); pushConstantRanges[0].offset = 0; pushConstantRanges[0].size = sizeof(UniformBufferObject); pushConstantRanges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; VkDescriptorSetLayout descriptorSetLayouts[] = { g_hDescriptorSetLayout }; VkPipelineLayoutCreateInfo pipelineLayoutInfo = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; pipelineLayoutInfo.setLayoutCount = 1; pipelineLayoutInfo.pSetLayouts = descriptorSetLayouts; pipelineLayoutInfo.pushConstantRangeCount = 1; pipelineLayoutInfo.pPushConstantRanges = pushConstantRanges; ERR_GUARD_VULKAN( vkCreatePipelineLayout(g_hDevice, &pipelineLayoutInfo, nullptr, &g_hPipelineLayout) ); } // Create render pass { if(g_hRenderPass != VK_NULL_HANDLE) { vkDestroyRenderPass(g_hDevice, g_hRenderPass, nullptr); g_hRenderPass = VK_NULL_HANDLE; } VkAttachmentDescription attachments[2]; ZeroMemory(attachments, sizeof(attachments)); attachments[0].format = g_SurfaceFormat.format; attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; attachments[1].format = g_DepthFormat; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorAttachmentRef = {}; colorAttachmentRef.attachment = 0; colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthStencilAttachmentRef = {}; depthStencilAttachmentRef.attachment = 1; depthStencilAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpassDesc = {}; subpassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDesc.colorAttachmentCount = 1; subpassDesc.pColorAttachments = &colorAttachmentRef; subpassDesc.pDepthStencilAttachment = &depthStencilAttachmentRef; VkRenderPassCreateInfo renderPassInfo = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO }; renderPassInfo.attachmentCount = (uint32_t)_countof(attachments); renderPassInfo.pAttachments = attachments; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpassDesc; renderPassInfo.dependencyCount = 0; ERR_GUARD_VULKAN( vkCreateRenderPass(g_hDevice, &renderPassInfo, nullptr, &g_hRenderPass) ); } // Create pipeline { std::vector vertShaderCode; LoadShader(vertShaderCode, "Shader.vert.spv"); VkShaderModuleCreateInfo shaderModuleInfo = { VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO }; shaderModuleInfo.codeSize = vertShaderCode.size(); shaderModuleInfo.pCode = (const uint32_t*)vertShaderCode.data(); VkShaderModule hVertShaderModule = VK_NULL_HANDLE; ERR_GUARD_VULKAN( vkCreateShaderModule(g_hDevice, &shaderModuleInfo, nullptr, &hVertShaderModule) ); std::vector hFragShaderCode; LoadShader(hFragShaderCode, "Shader.frag.spv"); shaderModuleInfo.codeSize = hFragShaderCode.size(); shaderModuleInfo.pCode = (const uint32_t*)hFragShaderCode.data(); VkShaderModule fragShaderModule = VK_NULL_HANDLE; ERR_GUARD_VULKAN( vkCreateShaderModule(g_hDevice, &shaderModuleInfo, nullptr, &fragShaderModule) ); VkPipelineShaderStageCreateInfo vertPipelineShaderStageInfo = { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO }; vertPipelineShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; vertPipelineShaderStageInfo.module = hVertShaderModule; vertPipelineShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo fragPipelineShaderStageInfo = { VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO }; fragPipelineShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; fragPipelineShaderStageInfo.module = fragShaderModule; fragPipelineShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo pipelineShaderStageInfos[] = { vertPipelineShaderStageInfo, fragPipelineShaderStageInfo }; VkVertexInputBindingDescription bindingDescription = {}; bindingDescription.binding = 0; bindingDescription.stride = sizeof(Vertex); bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; VkVertexInputAttributeDescription attributeDescriptions[3]; ZeroMemory(attributeDescriptions, sizeof(attributeDescriptions)); attributeDescriptions[0].binding = 0; attributeDescriptions[0].location = 0; attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT; attributeDescriptions[0].offset = offsetof(Vertex, pos); attributeDescriptions[1].binding = 0; attributeDescriptions[1].location = 1; attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT; attributeDescriptions[1].offset = offsetof(Vertex, color); attributeDescriptions[2].binding = 0; attributeDescriptions[2].location = 2; attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT; attributeDescriptions[2].offset = offsetof(Vertex, texCoord); VkPipelineVertexInputStateCreateInfo pipelineVertexInputStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO }; pipelineVertexInputStateInfo.vertexBindingDescriptionCount = 1; pipelineVertexInputStateInfo.pVertexBindingDescriptions = &bindingDescription; pipelineVertexInputStateInfo.vertexAttributeDescriptionCount = _countof(attributeDescriptions); pipelineVertexInputStateInfo.pVertexAttributeDescriptions = attributeDescriptions; VkPipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO }; pipelineInputAssemblyStateInfo.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; pipelineInputAssemblyStateInfo.primitiveRestartEnable = VK_TRUE; VkViewport viewport = {}; viewport.x = 0.f; viewport.y = 0.f; viewport.width = (float)g_Extent.width; viewport.height = (float)g_Extent.height; viewport.minDepth = 0.f; viewport.maxDepth = 1.f; VkRect2D scissor = {}; scissor.offset.x = 0; scissor.offset.y = 0; scissor.extent = g_Extent; VkPipelineViewportStateCreateInfo pipelineViewportStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO }; pipelineViewportStateInfo.viewportCount = 1; pipelineViewportStateInfo.pViewports = &viewport; pipelineViewportStateInfo.scissorCount = 1; pipelineViewportStateInfo.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO }; pipelineRasterizationStateInfo.depthClampEnable = VK_FALSE; pipelineRasterizationStateInfo.rasterizerDiscardEnable = VK_FALSE; pipelineRasterizationStateInfo.polygonMode = VK_POLYGON_MODE_FILL; pipelineRasterizationStateInfo.lineWidth = 1.f; pipelineRasterizationStateInfo.cullMode = VK_CULL_MODE_BACK_BIT; pipelineRasterizationStateInfo.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; pipelineRasterizationStateInfo.depthBiasEnable = VK_FALSE; pipelineRasterizationStateInfo.depthBiasConstantFactor = 0.f; pipelineRasterizationStateInfo.depthBiasClamp = 0.f; pipelineRasterizationStateInfo.depthBiasSlopeFactor = 0.f; VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO }; pipelineMultisampleStateInfo.sampleShadingEnable = VK_FALSE; pipelineMultisampleStateInfo.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; pipelineMultisampleStateInfo.minSampleShading = 1.f; pipelineMultisampleStateInfo.pSampleMask = nullptr; pipelineMultisampleStateInfo.alphaToCoverageEnable = VK_FALSE; pipelineMultisampleStateInfo.alphaToOneEnable = VK_FALSE; VkPipelineColorBlendAttachmentState pipelineColorBlendAttachmentState = {}; pipelineColorBlendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; pipelineColorBlendAttachmentState.blendEnable = VK_FALSE; pipelineColorBlendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional pipelineColorBlendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional pipelineColorBlendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; // Optional pipelineColorBlendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional pipelineColorBlendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional pipelineColorBlendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; // Optional VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO }; pipelineColorBlendStateInfo.logicOpEnable = VK_FALSE; pipelineColorBlendStateInfo.logicOp = VK_LOGIC_OP_COPY; pipelineColorBlendStateInfo.attachmentCount = 1; pipelineColorBlendStateInfo.pAttachments = &pipelineColorBlendAttachmentState; VkPipelineDepthStencilStateCreateInfo depthStencilStateInfo = { VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO }; depthStencilStateInfo.depthTestEnable = VK_TRUE; depthStencilStateInfo.depthWriteEnable = VK_TRUE; depthStencilStateInfo.depthCompareOp = VK_COMPARE_OP_LESS; depthStencilStateInfo.depthBoundsTestEnable = VK_FALSE; depthStencilStateInfo.stencilTestEnable = VK_FALSE; VkGraphicsPipelineCreateInfo pipelineInfo = { VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO }; pipelineInfo.stageCount = 2; pipelineInfo.pStages = pipelineShaderStageInfos; pipelineInfo.pVertexInputState = &pipelineVertexInputStateInfo; pipelineInfo.pInputAssemblyState = &pipelineInputAssemblyStateInfo; pipelineInfo.pViewportState = &pipelineViewportStateInfo; pipelineInfo.pRasterizationState = &pipelineRasterizationStateInfo; pipelineInfo.pMultisampleState = &pipelineMultisampleStateInfo; pipelineInfo.pDepthStencilState = &depthStencilStateInfo; pipelineInfo.pColorBlendState = &pipelineColorBlendStateInfo; pipelineInfo.pDynamicState = nullptr; pipelineInfo.layout = g_hPipelineLayout; pipelineInfo.renderPass = g_hRenderPass; pipelineInfo.subpass = 0; pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; pipelineInfo.basePipelineIndex = -1; ERR_GUARD_VULKAN( vkCreateGraphicsPipelines( g_hDevice, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &g_hPipeline) ); vkDestroyShaderModule(g_hDevice, fragShaderModule, nullptr); vkDestroyShaderModule(g_hDevice, hVertShaderModule, nullptr); } // Create frambuffers for(size_t i = g_Framebuffers.size(); i--; ) vkDestroyFramebuffer(g_hDevice, g_Framebuffers[i], nullptr); g_Framebuffers.clear(); g_Framebuffers.resize(g_SwapchainImageViews.size()); for(size_t i = 0; i < g_SwapchainImages.size(); ++i) { VkImageView attachments[] = { g_SwapchainImageViews[i], g_hDepthImageView }; VkFramebufferCreateInfo framebufferInfo = { VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO }; framebufferInfo.renderPass = g_hRenderPass; framebufferInfo.attachmentCount = (uint32_t)_countof(attachments); framebufferInfo.pAttachments = attachments; framebufferInfo.width = g_Extent.width; framebufferInfo.height = g_Extent.height; framebufferInfo.layers = 1; ERR_GUARD_VULKAN( vkCreateFramebuffer(g_hDevice, &framebufferInfo, nullptr, &g_Framebuffers[i]) ); } // Create semaphores if(g_hImageAvailableSemaphore != VK_NULL_HANDLE) { vkDestroySemaphore(g_hDevice, g_hImageAvailableSemaphore, nullptr); g_hImageAvailableSemaphore = VK_NULL_HANDLE; } if(g_hRenderFinishedSemaphore != VK_NULL_HANDLE) { vkDestroySemaphore(g_hDevice, g_hRenderFinishedSemaphore, nullptr); g_hRenderFinishedSemaphore = VK_NULL_HANDLE; } VkSemaphoreCreateInfo semaphoreInfo = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO }; ERR_GUARD_VULKAN( vkCreateSemaphore(g_hDevice, &semaphoreInfo, nullptr, &g_hImageAvailableSemaphore) ); ERR_GUARD_VULKAN( vkCreateSemaphore(g_hDevice, &semaphoreInfo, nullptr, &g_hRenderFinishedSemaphore) ); } static void DestroySwapchain(bool destroyActualSwapchain) { if(g_hImageAvailableSemaphore != VK_NULL_HANDLE) { vkDestroySemaphore(g_hDevice, g_hImageAvailableSemaphore, nullptr); g_hImageAvailableSemaphore = VK_NULL_HANDLE; } if(g_hRenderFinishedSemaphore != VK_NULL_HANDLE) { vkDestroySemaphore(g_hDevice, g_hRenderFinishedSemaphore, nullptr); g_hRenderFinishedSemaphore = VK_NULL_HANDLE; } for(size_t i = g_Framebuffers.size(); i--; ) vkDestroyFramebuffer(g_hDevice, g_Framebuffers[i], nullptr); g_Framebuffers.clear(); if(g_hDepthImageView != VK_NULL_HANDLE) { vkDestroyImageView(g_hDevice, g_hDepthImageView, nullptr); g_hDepthImageView = VK_NULL_HANDLE; } if(g_hDepthImage != VK_NULL_HANDLE) { vmaDestroyImage(g_hAllocator, g_hDepthImage, g_hDepthImageAlloc); g_hDepthImage = VK_NULL_HANDLE; } if(g_hPipeline != VK_NULL_HANDLE) { vkDestroyPipeline(g_hDevice, g_hPipeline, nullptr); g_hPipeline = VK_NULL_HANDLE; } if(g_hRenderPass != VK_NULL_HANDLE) { vkDestroyRenderPass(g_hDevice, g_hRenderPass, nullptr); g_hRenderPass = VK_NULL_HANDLE; } if(g_hPipelineLayout != VK_NULL_HANDLE) { vkDestroyPipelineLayout(g_hDevice, g_hPipelineLayout, nullptr); g_hPipelineLayout = VK_NULL_HANDLE; } for(size_t i = g_SwapchainImageViews.size(); i--; ) vkDestroyImageView(g_hDevice, g_SwapchainImageViews[i], nullptr); g_SwapchainImageViews.clear(); if(destroyActualSwapchain && (g_hSwapchain != VK_NULL_HANDLE)) { vkDestroySwapchainKHR(g_hDevice, g_hSwapchain, nullptr); g_hSwapchain = VK_NULL_HANDLE; } } static void InitializeApplication() { uint32_t instanceLayerPropCount = 0; ERR_GUARD_VULKAN( vkEnumerateInstanceLayerProperties(&instanceLayerPropCount, nullptr) ); std::vector instanceLayerProps(instanceLayerPropCount); if(instanceLayerPropCount > 0) { ERR_GUARD_VULKAN( vkEnumerateInstanceLayerProperties(&instanceLayerPropCount, instanceLayerProps.data()) ); } if(g_EnableValidationLayer == true) { if(IsLayerSupported(instanceLayerProps.data(), instanceLayerProps.size(), VALIDATION_LAYER_NAME) == false) { printf("Layer \"%s\" not supported.", VALIDATION_LAYER_NAME); g_EnableValidationLayer = false; } } std::vector instanceExtensions; instanceExtensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME); instanceExtensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); std::vector instanceLayers; if(g_EnableValidationLayer == true) { instanceLayers.push_back(VALIDATION_LAYER_NAME); instanceExtensions.push_back("VK_EXT_debug_report"); } VkApplicationInfo appInfo = { VK_STRUCTURE_TYPE_APPLICATION_INFO }; appInfo.pApplicationName = APP_TITLE_A; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "Adam Sawicki Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; VkInstanceCreateInfo instInfo = { VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO }; instInfo.pApplicationInfo = &appInfo; instInfo.enabledExtensionCount = static_cast(instanceExtensions.size()); instInfo.ppEnabledExtensionNames = instanceExtensions.data(); instInfo.enabledLayerCount = static_cast(instanceLayers.size()); instInfo.ppEnabledLayerNames = instanceLayers.data(); ERR_GUARD_VULKAN( vkCreateInstance(&instInfo, NULL, &g_hVulkanInstance) ); // Create VkSurfaceKHR. VkWin32SurfaceCreateInfoKHR surfaceInfo = { VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR }; surfaceInfo.hinstance = g_hAppInstance; surfaceInfo.hwnd = g_hWnd; VkResult result = vkCreateWin32SurfaceKHR(g_hVulkanInstance, &surfaceInfo, NULL, &g_hSurface); assert(result == VK_SUCCESS); if(g_EnableValidationLayer == true) RegisterDebugCallbacks(); // Find physical device uint32_t deviceCount = 0; ERR_GUARD_VULKAN( vkEnumeratePhysicalDevices(g_hVulkanInstance, &deviceCount, nullptr) ); assert(deviceCount > 0); std::vector physicalDevices(deviceCount); ERR_GUARD_VULKAN( vkEnumeratePhysicalDevices(g_hVulkanInstance, &deviceCount, physicalDevices.data()) ); g_hPhysicalDevice = physicalDevices[0]; // Query for features VkPhysicalDeviceProperties physicalDeviceProperties = {}; vkGetPhysicalDeviceProperties(g_hPhysicalDevice, &physicalDeviceProperties); //VkPhysicalDeviceFeatures physicalDeviceFreatures = {}; //vkGetPhysicalDeviceFeatures(g_PhysicalDevice, &physicalDeviceFreatures); // Find queue family index uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(g_hPhysicalDevice, &queueFamilyCount, nullptr); assert(queueFamilyCount > 0); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(g_hPhysicalDevice, &queueFamilyCount, queueFamilies.data()); for(uint32_t i = 0; (i < queueFamilyCount) && (g_GraphicsQueueFamilyIndex == UINT_MAX || g_PresentQueueFamilyIndex == UINT_MAX); ++i) { if(queueFamilies[i].queueCount > 0) { if((g_GraphicsQueueFamilyIndex != 0) && ((queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)) { g_GraphicsQueueFamilyIndex = i; } VkBool32 surfaceSupported = 0; VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(g_hPhysicalDevice, i, g_hSurface, &surfaceSupported); if((res >= 0) && (surfaceSupported == VK_TRUE)) { g_PresentQueueFamilyIndex = i; } } } assert(g_GraphicsQueueFamilyIndex != UINT_MAX); // Create logical device const float queuePriority = 1.f; VkDeviceQueueCreateInfo deviceQueueCreateInfo[2] = { VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO }; deviceQueueCreateInfo[0].queueFamilyIndex = g_GraphicsQueueFamilyIndex; deviceQueueCreateInfo[0].queueCount = 1; deviceQueueCreateInfo[0].pQueuePriorities = &queuePriority; deviceQueueCreateInfo[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; deviceQueueCreateInfo[1].queueFamilyIndex = g_PresentQueueFamilyIndex; deviceQueueCreateInfo[1].queueCount = 1; deviceQueueCreateInfo[1].pQueuePriorities = &queuePriority; VkPhysicalDeviceFeatures deviceFeatures = {}; deviceFeatures.fillModeNonSolid = VK_TRUE; deviceFeatures.samplerAnisotropy = VK_TRUE; std::vector enabledDeviceExtensions; enabledDeviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); VkDeviceCreateInfo deviceCreateInfo = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO }; deviceCreateInfo.enabledLayerCount = 0; deviceCreateInfo.ppEnabledLayerNames = nullptr; deviceCreateInfo.enabledExtensionCount = (uint32_t)enabledDeviceExtensions.size(); deviceCreateInfo.ppEnabledExtensionNames = enabledDeviceExtensions.data(); deviceCreateInfo.queueCreateInfoCount = g_PresentQueueFamilyIndex != g_GraphicsQueueFamilyIndex ? 2 : 1; deviceCreateInfo.pQueueCreateInfos = deviceQueueCreateInfo; deviceCreateInfo.pEnabledFeatures = &deviceFeatures; ERR_GUARD_VULKAN( vkCreateDevice(g_hPhysicalDevice, &deviceCreateInfo, nullptr, &g_hDevice) ); // Create memory allocator VmaAllocatorCreateInfo allocatorInfo = {}; allocatorInfo.physicalDevice = g_hPhysicalDevice; allocatorInfo.device = g_hDevice; ERR_GUARD_VULKAN( vmaCreateAllocator(&allocatorInfo, &g_hAllocator) ); // Retrieve queue (doesn't need to be destroyed) vkGetDeviceQueue(g_hDevice, g_GraphicsQueueFamilyIndex, 0, &g_hGraphicsQueue); vkGetDeviceQueue(g_hDevice, g_PresentQueueFamilyIndex, 0, &g_hPresentQueue); assert(g_hGraphicsQueue); assert(g_hPresentQueue); // Create command pool VkCommandPoolCreateInfo commandPoolInfo = { VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO }; commandPoolInfo.queueFamilyIndex = g_GraphicsQueueFamilyIndex; commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; ERR_GUARD_VULKAN( vkCreateCommandPool(g_hDevice, &commandPoolInfo, nullptr, &g_hCommandPool) ); VkCommandBufferAllocateInfo commandBufferInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO }; commandBufferInfo.commandPool = g_hCommandPool; commandBufferInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; commandBufferInfo.commandBufferCount = COMMAND_BUFFER_COUNT; ERR_GUARD_VULKAN( vkAllocateCommandBuffers(g_hDevice, &commandBufferInfo, g_MainCommandBuffers) ); VkFenceCreateInfo fenceInfo = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO }; fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; for(size_t i = 0; i < COMMAND_BUFFER_COUNT; ++i) { ERR_GUARD_VULKAN( vkCreateFence(g_hDevice, &fenceInfo, nullptr, &g_MainCommandBufferExecutedFances[i]) ); } commandBufferInfo.commandBufferCount = 1; ERR_GUARD_VULKAN( vkAllocateCommandBuffers(g_hDevice, &commandBufferInfo, &g_hTemporaryCommandBuffer) ); // Create texture sampler VkSamplerCreateInfo samplerInfo = { VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samplerInfo.magFilter = VK_FILTER_LINEAR; samplerInfo.minFilter = VK_FILTER_LINEAR; samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.anisotropyEnable = VK_TRUE; samplerInfo.maxAnisotropy = 16; samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK; samplerInfo.unnormalizedCoordinates = VK_FALSE; samplerInfo.compareEnable = VK_FALSE; samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS; samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerInfo.mipLodBias = 0.f; samplerInfo.minLod = 0.f; samplerInfo.maxLod = FLT_MAX; ERR_GUARD_VULKAN( vkCreateSampler(g_hDevice, &samplerInfo, nullptr, &g_hSampler) ); CreateTexture(128, 128); CreateMesh(); VkDescriptorSetLayoutBinding samplerLayoutBinding = {}; samplerLayoutBinding.binding = 1; samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; samplerLayoutBinding.descriptorCount = 1; samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; VkDescriptorSetLayoutCreateInfo descriptorSetLayoutInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO }; descriptorSetLayoutInfo.bindingCount = 1; descriptorSetLayoutInfo.pBindings = &samplerLayoutBinding; ERR_GUARD_VULKAN( vkCreateDescriptorSetLayout(g_hDevice, &descriptorSetLayoutInfo, nullptr, &g_hDescriptorSetLayout) ); // Create descriptor pool VkDescriptorPoolSize descriptorPoolSizes[2]; ZeroMemory(descriptorPoolSizes, sizeof(descriptorPoolSizes)); descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; descriptorPoolSizes[0].descriptorCount = 1; descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; descriptorPoolSizes[1].descriptorCount = 1; VkDescriptorPoolCreateInfo descriptorPoolInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO }; descriptorPoolInfo.poolSizeCount = (uint32_t)_countof(descriptorPoolSizes); descriptorPoolInfo.pPoolSizes = descriptorPoolSizes; descriptorPoolInfo.maxSets = 1; ERR_GUARD_VULKAN( vkCreateDescriptorPool(g_hDevice, &descriptorPoolInfo, nullptr, &g_hDescriptorPool) ); // Create descriptor set layout VkDescriptorSetLayout descriptorSetLayouts[] = { g_hDescriptorSetLayout }; VkDescriptorSetAllocateInfo descriptorSetInfo = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO }; descriptorSetInfo.descriptorPool = g_hDescriptorPool; descriptorSetInfo.descriptorSetCount = 1; descriptorSetInfo.pSetLayouts = descriptorSetLayouts; ERR_GUARD_VULKAN( vkAllocateDescriptorSets(g_hDevice, &descriptorSetInfo, &g_hDescriptorSet) ); VkDescriptorImageInfo descriptorImageInfo = {}; descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; descriptorImageInfo.imageView = g_hTextureImageView; descriptorImageInfo.sampler = g_hSampler; VkWriteDescriptorSet writeDescriptorSet = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET }; writeDescriptorSet.dstSet = g_hDescriptorSet; writeDescriptorSet.dstBinding = 1; writeDescriptorSet.dstArrayElement = 0; writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writeDescriptorSet.descriptorCount = 1; writeDescriptorSet.pImageInfo = &descriptorImageInfo; vkUpdateDescriptorSets(g_hDevice, 1, &writeDescriptorSet, 0, nullptr); CreateSwapchain(); } static void FinalizeApplication() { vkDeviceWaitIdle(g_hDevice); DestroySwapchain(true); if(g_hDescriptorPool != VK_NULL_HANDLE) { vkDestroyDescriptorPool(g_hDevice, g_hDescriptorPool, nullptr); g_hDescriptorPool = VK_NULL_HANDLE; } if(g_hDescriptorSetLayout != VK_NULL_HANDLE) { vkDestroyDescriptorSetLayout(g_hDevice, g_hDescriptorSetLayout, nullptr); g_hDescriptorSetLayout = VK_NULL_HANDLE; } if(g_hTextureImageView != VK_NULL_HANDLE) { vkDestroyImageView(g_hDevice, g_hTextureImageView, nullptr); g_hTextureImageView = VK_NULL_HANDLE; } if(g_hTextureImage != VK_NULL_HANDLE) { vmaDestroyImage(g_hAllocator, g_hTextureImage, g_hTextureImageAlloc); g_hTextureImage = VK_NULL_HANDLE; } if(g_hIndexBuffer != VK_NULL_HANDLE) { vmaDestroyBuffer(g_hAllocator, g_hIndexBuffer, g_hIndexBufferAlloc); g_hIndexBuffer = VK_NULL_HANDLE; } if(g_hVertexBuffer != VK_NULL_HANDLE) { vmaDestroyBuffer(g_hAllocator, g_hVertexBuffer, g_hVertexBufferAlloc); g_hVertexBuffer = VK_NULL_HANDLE; } if(g_hSampler != VK_NULL_HANDLE) { vkDestroySampler(g_hDevice, g_hSampler, nullptr); g_hSampler = VK_NULL_HANDLE; } for(size_t i = COMMAND_BUFFER_COUNT; i--; ) { if(g_MainCommandBufferExecutedFances[i] != VK_NULL_HANDLE) { vkDestroyFence(g_hDevice, g_MainCommandBufferExecutedFances[i], nullptr); g_MainCommandBufferExecutedFances[i] = VK_NULL_HANDLE; } } if(g_MainCommandBuffers[0] != VK_NULL_HANDLE) { vkFreeCommandBuffers(g_hDevice, g_hCommandPool, COMMAND_BUFFER_COUNT, g_MainCommandBuffers); ZeroMemory(g_MainCommandBuffers, sizeof(g_MainCommandBuffers)); } if(g_hTemporaryCommandBuffer != VK_NULL_HANDLE) { vkFreeCommandBuffers(g_hDevice, g_hCommandPool, 1, &g_hTemporaryCommandBuffer); g_hTemporaryCommandBuffer = VK_NULL_HANDLE; } if(g_hCommandPool != VK_NULL_HANDLE) { vkDestroyCommandPool(g_hDevice, g_hCommandPool, nullptr); g_hCommandPool = VK_NULL_HANDLE; } if(g_hAllocator != VK_NULL_HANDLE) { vmaDestroyAllocator(g_hAllocator); g_hAllocator = nullptr; } if(g_hDevice != VK_NULL_HANDLE) { vkDestroyDevice(g_hDevice, nullptr); g_hDevice = nullptr; } if(g_pvkDestroyDebugReportCallbackEXT && g_hCallback != VK_NULL_HANDLE) { g_pvkDestroyDebugReportCallbackEXT(g_hVulkanInstance, g_hCallback, nullptr); g_hCallback = VK_NULL_HANDLE; } if(g_hSurface != VK_NULL_HANDLE) { vkDestroySurfaceKHR(g_hVulkanInstance, g_hSurface, NULL); g_hSurface = VK_NULL_HANDLE; } if(g_hVulkanInstance != VK_NULL_HANDLE) { vkDestroyInstance(g_hVulkanInstance, NULL); g_hVulkanInstance = VK_NULL_HANDLE; } } static void PrintAllocatorStats() { #if VMA_STATS_STRING_ENABLED char* statsString = nullptr; vmaBuildStatsString(g_hAllocator, &statsString, true); printf("%s\n", statsString); vmaFreeStatsString(g_hAllocator, statsString); #endif } static void RecreateSwapChain() { vkDeviceWaitIdle(g_hDevice); DestroySwapchain(false); CreateSwapchain(); } static void DrawFrame() { // Begin main command buffer size_t cmdBufIndex = (g_NextCommandBufferIndex++) % COMMAND_BUFFER_COUNT; VkCommandBuffer hCommandBuffer = g_MainCommandBuffers[cmdBufIndex]; VkFence hCommandBufferExecutedFence = g_MainCommandBufferExecutedFances[cmdBufIndex]; ERR_GUARD_VULKAN( vkWaitForFences(g_hDevice, 1, &hCommandBufferExecutedFence, VK_TRUE, UINT64_MAX) ); ERR_GUARD_VULKAN( vkResetFences(g_hDevice, 1, &hCommandBufferExecutedFence) ); VkCommandBufferBeginInfo commandBufferBeginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO }; commandBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; ERR_GUARD_VULKAN( vkBeginCommandBuffer(hCommandBuffer, &commandBufferBeginInfo) ); // Acquire swapchain image uint32_t imageIndex = 0; VkResult res = vkAcquireNextImageKHR(g_hDevice, g_hSwapchain, UINT64_MAX, g_hImageAvailableSemaphore, VK_NULL_HANDLE, &imageIndex); if(res == VK_ERROR_OUT_OF_DATE_KHR) { RecreateSwapChain(); return; } else if(res < 0) { ERR_GUARD_VULKAN(res); } // Record geometry pass VkClearValue clearValues[2]; ZeroMemory(clearValues, sizeof(clearValues)); clearValues[0].color.float32[0] = 0.25f; clearValues[0].color.float32[1] = 0.25f; clearValues[0].color.float32[2] = 0.5f; clearValues[0].color.float32[3] = 1.0f; clearValues[1].depthStencil.depth = 1.0f; VkRenderPassBeginInfo renderPassBeginInfo = { VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO }; renderPassBeginInfo.renderPass = g_hRenderPass; renderPassBeginInfo.framebuffer = g_Framebuffers[imageIndex]; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent = g_Extent; renderPassBeginInfo.clearValueCount = (uint32_t)_countof(clearValues); renderPassBeginInfo.pClearValues = clearValues; vkCmdBeginRenderPass(hCommandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline( hCommandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_hPipeline); mathfu::mat4 view = mathfu::mat4::LookAt( mathfu::kZeros3f, mathfu::vec3(0.f, -2.f, 4.f), mathfu::kAxisY3f); mathfu::mat4 proj = mathfu::mat4::Perspective( 1.0471975511966f, // 60 degrees (float)g_Extent.width / (float)g_Extent.height, 0.1f, 1000.f, -1.f); //proj[1][1] *= -1.f; mathfu::mat4 viewProj = proj * view; vkCmdBindDescriptorSets( hCommandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_hPipelineLayout, 0, 1, &g_hDescriptorSet, 0, nullptr); float rotationAngle = (float)GetTickCount() * 0.001f * (float)M_PI * 0.2f; mathfu::mat3 model_3 = mathfu::mat3::RotationY(rotationAngle); mathfu::mat4 model_4 = mathfu::mat4( model_3(0, 0), model_3(0, 1), model_3(0, 2), 0.f, model_3(1, 0), model_3(1, 1), model_3(1, 2), 0.f, model_3(2, 0), model_3(2, 1), model_3(2, 2), 0.f, 0.f, 0.f, 0.f, 1.f); mathfu::mat4 modelViewProj = viewProj * model_4; UniformBufferObject ubo = {}; modelViewProj.Pack(ubo.ModelViewProj); vkCmdPushConstants(hCommandBuffer, g_hPipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(UniformBufferObject), &ubo); VkBuffer vertexBuffers[] = { g_hVertexBuffer }; VkDeviceSize offsets[] = { 0 }; vkCmdBindVertexBuffers(hCommandBuffer, 0, 1, vertexBuffers, offsets); vkCmdBindIndexBuffer(hCommandBuffer, g_hIndexBuffer, 0, VK_INDEX_TYPE_UINT16); vkCmdDrawIndexed(hCommandBuffer, g_IndexCount, 1, 0, 0, 0); vkCmdEndRenderPass(hCommandBuffer); vkEndCommandBuffer(hCommandBuffer); // Submit command buffer VkSemaphore submitWaitSemaphores[] = { g_hImageAvailableSemaphore }; VkPipelineStageFlags submitWaitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; VkSemaphore submitSignalSemaphores[] = { g_hRenderFinishedSemaphore }; VkSubmitInfo submitInfo = { VK_STRUCTURE_TYPE_SUBMIT_INFO }; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = submitWaitSemaphores; submitInfo.pWaitDstStageMask = submitWaitStages; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &hCommandBuffer; submitInfo.signalSemaphoreCount = _countof(submitSignalSemaphores); submitInfo.pSignalSemaphores = submitSignalSemaphores; ERR_GUARD_VULKAN( vkQueueSubmit(g_hGraphicsQueue, 1, &submitInfo, hCommandBufferExecutedFence) ); VkSemaphore presentWaitSemaphores[] = { g_hRenderFinishedSemaphore }; VkSwapchainKHR swapchains[] = { g_hSwapchain }; VkPresentInfoKHR presentInfo = { VK_STRUCTURE_TYPE_PRESENT_INFO_KHR }; presentInfo.waitSemaphoreCount = _countof(presentWaitSemaphores); presentInfo.pWaitSemaphores = presentWaitSemaphores; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = swapchains; presentInfo.pImageIndices = &imageIndex; presentInfo.pResults = nullptr; res = vkQueuePresentKHR(g_hPresentQueue, &presentInfo); if(res == VK_ERROR_OUT_OF_DATE_KHR) { RecreateSwapChain(); } else ERR_GUARD_VULKAN(res); } static void HandlePossibleSizeChange() { RECT clientRect; GetClientRect(g_hWnd, &clientRect); LONG newSizeX = clientRect.right - clientRect.left; LONG newSizeY = clientRect.bottom - clientRect.top; if((newSizeX > 0) && (newSizeY > 0) && ((newSizeX != g_SizeX) || (newSizeY != g_SizeY))) { g_SizeX = newSizeX; g_SizeY = newSizeY; RecreateSwapChain(); } } static LRESULT WINAPI WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) { switch(msg) { case WM_CREATE: // This is intentionally assigned here because we are now inside CreateWindow, before it returns. g_hWnd = hWnd; InitializeApplication(); PrintAllocatorStats(); return 0; case WM_DESTROY: FinalizeApplication(); PostQuitMessage(0); return 0; // This prevents app from freezing when left Alt is pressed // (which normally enters modal menu loop). case WM_SYSKEYDOWN: case WM_SYSKEYUP: return 0; case WM_SIZE: if((wParam == SIZE_MAXIMIZED) || (wParam == SIZE_RESTORED)) HandlePossibleSizeChange(); return 0; case WM_EXITSIZEMOVE: HandlePossibleSizeChange(); return 0; case WM_KEYDOWN: if(wParam == VK_ESCAPE) PostMessage(hWnd, WM_CLOSE, 0, 0); return 0; default: break; } return DefWindowProc(hWnd, msg, wParam, lParam); } int main() { g_hAppInstance = (HINSTANCE)GetModuleHandle(NULL); WNDCLASSEX wndClassDesc = { sizeof(WNDCLASSEX) }; wndClassDesc.style = CS_VREDRAW | CS_HREDRAW | CS_DBLCLKS; wndClassDesc.hbrBackground = NULL; wndClassDesc.hCursor = LoadCursor(NULL, IDC_CROSS); wndClassDesc.hIcon = LoadIcon(NULL, IDI_APPLICATION); wndClassDesc.hInstance = g_hAppInstance; wndClassDesc.lpfnWndProc = WndProc; wndClassDesc.lpszClassName = WINDOW_CLASS_NAME; const ATOM hWndClass = RegisterClassEx(&wndClassDesc); assert(hWndClass); const DWORD style = WS_VISIBLE | WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX | WS_MAXIMIZEBOX | WS_THICKFRAME; const DWORD exStyle = 0; RECT rect = { 0, 0, g_SizeX, g_SizeY }; AdjustWindowRectEx(&rect, style, FALSE, exStyle); CreateWindowEx( exStyle, WINDOW_CLASS_NAME, APP_TITLE_W, style, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, g_hAppInstance, NULL); MSG msg; for(;;) { if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { if(msg.message == WM_QUIT) break; TranslateMessage(&msg); DispatchMessage(&msg); } if(g_hDevice != VK_NULL_HANDLE) DrawFrame(); } return 0; } #else // #ifdef WIN32 #define VMA_IMPLEMENTATION #include "vk_mem_alloc.h" int main() { } #endif // #ifdef WIN32