// // Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H #define AMD_VULKAN_MEMORY_ALLOCATOR_H /** \mainpage Vulkan Memory Allocator Version 3.0.0-development Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. \n License: MIT API documentation divided into groups: [Modules](modules.html) \section main_table_of_contents Table of contents - User guide - \subpage quick_start - [Project setup](@ref quick_start_project_setup) - [Initialization](@ref quick_start_initialization) - [Resource allocation](@ref quick_start_resource_allocation) - \subpage choosing_memory_type - [Usage](@ref choosing_memory_type_usage) - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations) - \subpage memory_mapping - [Mapping functions](@ref memory_mapping_mapping_functions) - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) - [Cache flush and invalidate](@ref memory_mapping_cache_control) - \subpage staying_within_budget - [Querying for budget](@ref staying_within_budget_querying_for_budget) - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage) - \subpage resource_aliasing - \subpage custom_memory_pools - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) - [Linear allocation algorithm](@ref linear_algorithm) - [Free-at-once](@ref linear_algorithm_free_at_once) - [Stack](@ref linear_algorithm_stack) - [Double stack](@ref linear_algorithm_double_stack) - [Ring buffer](@ref linear_algorithm_ring_buffer) - [Buddy allocation algorithm](@ref buddy_algorithm) - \subpage defragmentation - [Defragmenting CPU memory](@ref defragmentation_cpu) - [Defragmenting GPU memory](@ref defragmentation_gpu) - [Additional notes](@ref defragmentation_additional_notes) - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm) - \subpage statistics - [Numeric statistics](@ref statistics_numeric_statistics) - [JSON dump](@ref statistics_json_dump) - \subpage allocation_annotation - [Allocation user data](@ref allocation_user_data) - [Allocation names](@ref allocation_names) - \subpage virtual_allocator - \subpage debugging_memory_usage - [Memory initialization](@ref debugging_memory_usage_initialization) - [Margins](@ref debugging_memory_usage_margins) - [Corruption detection](@ref debugging_memory_usage_corruption_detection) - \subpage opengl_interop - \subpage usage_patterns - [GPU-only resource](@ref usage_patterns_gpu_only) - [Staging copy for upload](@ref usage_patterns_staging_copy_upload) - [Readback](@ref usage_patterns_readback) - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading) - [Other use cases](@ref usage_patterns_other_use_cases) - \subpage configuration - [Pointers to Vulkan functions](@ref config_Vulkan_functions) - [Custom host memory allocator](@ref custom_memory_allocator) - [Device memory allocation callbacks](@ref allocation_callbacks) - [Device heap memory limit](@ref heap_memory_limit) - \subpage vk_khr_dedicated_allocation - \subpage enabling_buffer_device_address - \subpage vk_amd_device_coherent_memory - \subpage general_considerations - [Thread safety](@ref general_considerations_thread_safety) - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) - [Allocation algorithm](@ref general_considerations_allocation_algorithm) - [Features not supported](@ref general_considerations_features_not_supported) \section main_see_also See also - [**Product page on GPUOpen**](https://gpuopen.com/gaming-product/vulkan-memory-allocator/) - [**Source repository on GitHub**](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) \defgroup group_init Library initialization \brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object. \defgroup group_alloc Memory allocation \brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images. Most basic ones being: vmaCreateBuffer(), vmaCreateImage(). \defgroup group_virtual Virtual allocator \brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm for user-defined purpose without allocating any real GPU memory. \defgroup group_stats Statistics \brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format. */ #ifdef __cplusplus extern "C" { #endif #ifndef VULKAN_H_ #include #endif // Define this macro to declare maximum supported Vulkan version in format AAABBBCCC, // where AAA = major, BBB = minor, CCC = patch. // If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion. #if !defined(VMA_VULKAN_VERSION) #if defined(VK_VERSION_1_3) #define VMA_VULKAN_VERSION 1003000 #elif defined(VK_VERSION_1_2) #define VMA_VULKAN_VERSION 1002000 #elif defined(VK_VERSION_1_1) #define VMA_VULKAN_VERSION 1001000 #else #define VMA_VULKAN_VERSION 1000000 #endif #endif #if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; extern PFN_vkAllocateMemory vkAllocateMemory; extern PFN_vkFreeMemory vkFreeMemory; extern PFN_vkMapMemory vkMapMemory; extern PFN_vkUnmapMemory vkUnmapMemory; extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; extern PFN_vkBindBufferMemory vkBindBufferMemory; extern PFN_vkBindImageMemory vkBindImageMemory; extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; extern PFN_vkCreateBuffer vkCreateBuffer; extern PFN_vkDestroyBuffer vkDestroyBuffer; extern PFN_vkCreateImage vkCreateImage; extern PFN_vkDestroyImage vkDestroyImage; extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; #if VMA_VULKAN_VERSION >= 1001000 extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; extern PFN_vkBindImageMemory2 vkBindImageMemory2; extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; #endif // #if VMA_VULKAN_VERSION >= 1001000 #endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES #if !defined(VMA_DEDICATED_ALLOCATION) #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation #define VMA_DEDICATED_ALLOCATION 1 #else #define VMA_DEDICATED_ALLOCATION 0 #endif #endif #if !defined(VMA_BIND_MEMORY2) #if VK_KHR_bind_memory2 #define VMA_BIND_MEMORY2 1 #else #define VMA_BIND_MEMORY2 0 #endif #endif #if !defined(VMA_MEMORY_BUDGET) #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) #define VMA_MEMORY_BUDGET 1 #else #define VMA_MEMORY_BUDGET 0 #endif #endif // Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers. #if !defined(VMA_BUFFER_DEVICE_ADDRESS) #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000 #define VMA_BUFFER_DEVICE_ADDRESS 1 #else #define VMA_BUFFER_DEVICE_ADDRESS 0 #endif #endif // Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers. #if !defined(VMA_MEMORY_PRIORITY) #if VK_EXT_memory_priority #define VMA_MEMORY_PRIORITY 1 #else #define VMA_MEMORY_PRIORITY 0 #endif #endif // Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers. #if !defined(VMA_EXTERNAL_MEMORY) #if VK_KHR_external_memory #define VMA_EXTERNAL_MEMORY 1 #else #define VMA_EXTERNAL_MEMORY 0 #endif #endif // Define these macros to decorate all public functions with additional code, // before and after returned type, appropriately. This may be useful for // exporting the functions when compiling VMA as a separate library. Example: // #define VMA_CALL_PRE __declspec(dllexport) // #define VMA_CALL_POST __cdecl #ifndef VMA_CALL_PRE #define VMA_CALL_PRE #endif #ifndef VMA_CALL_POST #define VMA_CALL_POST #endif // Define this macro to decorate pointers with an attribute specifying the // length of the array they point to if they are not null. // // The length may be one of // - The name of another parameter in the argument list where the pointer is declared // - The name of another member in the struct where the pointer is declared // - The name of a member of a struct type, meaning the value of that member in // the context of the call. For example // VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"), // this means the number of memory heaps available in the device associated // with the VmaAllocator being dealt with. #ifndef VMA_LEN_IF_NOT_NULL #define VMA_LEN_IF_NOT_NULL(len) #endif // The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang. // see: https://clang.llvm.org/docs/AttributeReference.html#nullable #ifndef VMA_NULLABLE #ifdef __clang__ #define VMA_NULLABLE _Nullable #else #define VMA_NULLABLE #endif #endif // The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang. // see: https://clang.llvm.org/docs/AttributeReference.html#nonnull #ifndef VMA_NOT_NULL #ifdef __clang__ #define VMA_NOT_NULL _Nonnull #else #define VMA_NOT_NULL #endif #endif // If non-dispatchable handles are represented as pointers then we can give // then nullability annotations #ifndef VMA_NOT_NULL_NON_DISPATCHABLE #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL #else #define VMA_NOT_NULL_NON_DISPATCHABLE #endif #endif #ifndef VMA_NULLABLE_NON_DISPATCHABLE #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE #else #define VMA_NULLABLE_NON_DISPATCHABLE #endif #endif #ifndef VMA_STATS_STRING_ENABLED #define VMA_STATS_STRING_ENABLED 1 #endif //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // // INTERFACE // //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE. #ifndef _VMA_ENUM_DECLARATIONS /** \addtogroup group_init @{ */ /// Flags for created #VmaAllocator. typedef enum VmaAllocatorCreateFlagBits { /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. Using this flag may increase performance because internal mutexes are not used. */ VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, /** \brief Enables usage of VK_KHR_dedicated_allocation extension. The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. Using this extension will automatically allocate dedicated blocks of memory for some buffers and images instead of suballocating place for them out of bigger memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag) when it is recommended by the driver. It may improve performance on some GPUs. You may set this flag only if you found out that following device extensions are supported, you enabled them while creating Vulkan device passed as VmaAllocatorCreateInfo::device, and you want them to be used internally by this library: - VK_KHR_get_memory_requirements2 (device extension) - VK_KHR_dedicated_allocation (device extension) When this flag is set, you can experience following warnings reported by Vulkan validation layer. You can ignore them. > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. */ VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, /** Enables usage of VK_KHR_bind_memory2 extension. The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. You may set this flag only if you found out that this device extension is supported, you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, and you want it to be used internally by this library. The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, which allow to pass a chain of `pNext` structures while binding. This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). */ VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, /** Enables usage of VK_EXT_memory_budget extension. You may set this flag only if you found out that this device extension is supported, you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, and you want it to be used internally by this library, along with another instance extension VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). The extension provides query for current memory usage and budget, which will probably be more accurate than an estimation used by the library otherwise. */ VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, /** Enables usage of VK_AMD_device_coherent_memory extension. You may set this flag only if you: - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device, - want it to be used internally by this library. The extension and accompanying device feature provide access to memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags. They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR. When the extension is not enabled, such memory types are still enumerated, but their usage is illegal. To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type, returning `VK_ERROR_FEATURE_NOT_PRESENT`. */ VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010, /** Enables usage of "buffer device address" feature, which allows you to use function `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader. You may set this flag only if you: 1. (For Vulkan version < 1.2) Found as available and enabled device extension VK_KHR_buffer_device_address. This extension is promoted to core Vulkan 1.2. 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`. When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA. The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to allocated memory blocks wherever it might be needed. For more information, see documentation chapter \ref enabling_buffer_device_address. */ VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020, /** Enables usage of VK_EXT_memory_priority extension in the library. You may set this flag only if you found available and enabled this device extension, along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`, while creating Vulkan device passed as VmaAllocatorCreateInfo::device. When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored. A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. Larger values are higher priority. The granularity of the priorities is implementation-dependent. It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`. The value to be used for default priority is 0.5. For more details, see the documentation of the VK_EXT_memory_priority extension. */ VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040, VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF } VmaAllocatorCreateFlagBits; typedef VkFlags VmaAllocatorCreateFlags; /** @} */ /** \addtogroup group_alloc @{ */ /// \brief Intended usage of the allocated memory. typedef enum VmaMemoryUsage { /** No intended memory usage specified. Use other members of VmaAllocationCreateInfo to specify your requirements. */ VMA_MEMORY_USAGE_UNKNOWN = 0, /** \deprecated Obsolete, preserved for backward compatibility. Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. */ VMA_MEMORY_USAGE_GPU_ONLY = 1, /** \deprecated Obsolete, preserved for backward compatibility. Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`. */ VMA_MEMORY_USAGE_CPU_ONLY = 2, /** \deprecated Obsolete, preserved for backward compatibility. Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. */ VMA_MEMORY_USAGE_CPU_TO_GPU = 3, /** \deprecated Obsolete, preserved for backward compatibility. Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`. */ VMA_MEMORY_USAGE_GPU_TO_CPU = 4, /** \deprecated Obsolete, preserved for backward compatibility. Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. */ VMA_MEMORY_USAGE_CPU_COPY = 5, /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. */ VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, /** Selects best memory type automatically. This flag is recommended for most common use cases. When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT in VmaAllocationCreateInfo::flags. It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() and not with generic memory allocation functions. */ VMA_MEMORY_USAGE_AUTO = 7, /** Selects best memory type automatically with preference for GPU (device) memory. When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT in VmaAllocationCreateInfo::flags. It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() and not with generic memory allocation functions. */ VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8, /** Selects best memory type automatically with preference for CPU (host) memory. When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT in VmaAllocationCreateInfo::flags. It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() and not with generic memory allocation functions. */ VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9, VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF } VmaMemoryUsage; /// Flags to be passed as VmaAllocationCreateInfo::flags. typedef enum VmaAllocationCreateFlagBits { /** \brief Set this flag if the allocation should have its own memory block. Use it for special, big resources, like fullscreen images used as attachments. */ VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. If new allocation cannot be placed in any of the existing blocks, allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */ VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. It is valid to use this flag for allocation made from memory type that is not `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is useful if you need an allocation that is efficient to use on GPU (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that support it (e.g. Intel GPU). */ VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, /// \deprecated Removed. Do not use. VMA_ALLOCATION_CREATE_RESERVED_1_BIT = 0x00000008, /// \deprecated Removed. Do not use. VMA_ALLOCATION_CREATE_RESERVED_2_BIT = 0x00000010, /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a null-terminated string. Instead of copying pointer value, a local copy of the string is made and stored in allocation's `pUserData`. The string is automatically freed together with the allocation. It is also used in vmaBuildStatsString(). */ VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, /** Allocation will be created from upper stack in a double stack pool. This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. */ VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, /** Create both buffer/image and allocation, but don't bind them together. It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). Otherwise it is ignored. */ VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, /** Create allocation only if additional device memory required for it, if any, won't exceed memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. */ VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, /** \brief Set this flag if the allocated memory will have aliasing resources. Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified. Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors. */ VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200, /** Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT). - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value, you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect. - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`. This includes allocations created in \ref custom_memory_pools. Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number, never read or accessed randomly, so a memory type can be selected that is uncached and write-combined. \warning Violating this declaration may work correctly, but will likely be very slow. Watch out for implicit reads introduces by doing e.g. `pMappedData[i] += x;` Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once. */ VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400, /** Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT). - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value, you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect. - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`. This includes allocations created in \ref custom_memory_pools. Declares that mapped memory can be read, written, and accessed in random order, so a `HOST_CACHED` memory type is preferred. */ VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800, /** Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT, it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected if it may improve performance. By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and issue an explicit transfer to write/read your data. To prepare for this possibility, don't forget to add appropriate flags like `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image. */ VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000, /** Allocation strategy that chooses smallest possible free range for the allocation to minimize memory usage and fragmentation, possibly at the expense of allocation time. */ VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000, /** Allocation strategy that chooses first suitable free range for the allocation - not necessarily in terms of the smallest offset but the one that is easiest and fastest to find to minimize allocation time, possibly at the expense of allocation quality. */ VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000, /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT. */ VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT. */ VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, /** A bit mask to extract only `STRATEGY` bits from entire set of flags. */ VMA_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT | VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF } VmaAllocationCreateFlagBits; typedef VkFlags VmaAllocationCreateFlags; /// Flags to be passed as VmaPoolCreateInfo::flags. typedef enum VmaPoolCreateFlagBits { /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. This is an optional optimization flag. If you always allocate using vmaCreateBuffer(), vmaCreateImage(), vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator knows exact type of your allocations so it can handle Buffer-Image Granularity in the optimal way. If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), exact type of such allocations is not known, so allocator must be conservative in handling Buffer-Image Granularity, which can lead to suboptimal allocation (wasted memory). In that case, if you can make sure you always allocate only buffers and linear images or only optimal images out of this pool, use this flag to make allocator disregard Buffer-Image Granularity and so make allocations faster and more optimal. */ VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, /** \brief Enables alternative, linear allocation algorithm in this pool. Specify this flag to enable linear allocation algorithm, which always creates new allocations after last one and doesn't reuse space from allocations freed in between. It trades memory consumption for simplified algorithm and data structure, which has better performance and uses less memory for metadata. By using this flag, you can achieve behavior of free-at-once, stack, ring buffer, and double stack. For details, see documentation chapter \ref linear_algorithm. */ VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, /** \brief Enables alternative, buddy allocation algorithm in this pool. It operates on a tree of blocks, each having size that is a power of two and a half of its parent's size. Comparing to default algorithm, this one provides faster allocation and deallocation and decreased external fragmentation, at the expense of more memory wasted (internal fragmentation). For details, see documentation chapter \ref buddy_algorithm. */ VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008, /** \brief Enables alternative, Two-Level Segregated Fit (TLSF) allocation algorithm in this pool. This algorithm is based on 2-level lists dividing address space into smaller chunks. The first level is aligned to power of two which serves as buckets for requested memory to fall into, and the second level is lineary subdivided into lists of free memory. This algorithm aims to achieve bounded response time even in the worst case scenario. Allocation time can be sometimes slightly longer than compared to other algorithms but in return the application can avoid stalls in case of fragmentation, giving predictable results, suitable for real-time use cases. */ VMA_POOL_CREATE_TLSF_ALGORITHM_BIT = 0x00000010, /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. */ VMA_POOL_CREATE_ALGORITHM_MASK = VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT | VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT | VMA_POOL_CREATE_TLSF_ALGORITHM_BIT, VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF } VmaPoolCreateFlagBits; /// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits. typedef VkFlags VmaPoolCreateFlags; /// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use. typedef enum VmaDefragmentationFlagBits { VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1, VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF } VmaDefragmentationFlagBits; typedef VkFlags VmaDefragmentationFlags; /** @} */ /** \addtogroup group_virtual @{ */ /// Flags to be passed as VmaVirtualBlockCreateInfo::flags. typedef enum VmaVirtualBlockCreateFlagBits { /** \brief Enables alternative, linear allocation algorithm in this virtual block. Specify this flag to enable linear allocation algorithm, which always creates new allocations after last one and doesn't reuse space from allocations freed in between. It trades memory consumption for simplified algorithm and data structure, which has better performance and uses less memory for metadata. By using this flag, you can achieve behavior of free-at-once, stack, ring buffer, and double stack. For details, see documentation chapter \ref linear_algorithm. */ VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001, /** \brief Enables alternative, buddy allocation algorithm in this virtual block. It operates on a tree of blocks, each having size that is a power of two and a half of its parent's size. Comparing to default algorithm, this one provides faster allocation and deallocation and decreased external fragmentation, at the expense of more memory wasted (internal fragmentation). For details, see documentation chapter \ref buddy_algorithm. */ VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT = 0x00000002, /** \brief Enables alternative, TLSF allocation algorithm in virtual block. This algorithm is based on 2-level lists dividing address space into smaller chunks. The first level is aligned to power of two which serves as buckets for requested memory to fall into, and the second level is lineary subdivided into lists of free memory. This algorithm aims to achieve bounded response time even in the worst case scenario. Allocation time can be sometimes slightly longer than compared to other algorithms but in return the application can avoid stalls in case of fragmentation, giving predictable results, suitable for real-time use cases. */ VMA_VIRTUAL_BLOCK_CREATE_TLSF_ALGORITHM_BIT = 0x00000004, /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags. */ VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK = VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT | VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT | VMA_VIRTUAL_BLOCK_CREATE_TLSF_ALGORITHM_BIT, VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF } VmaVirtualBlockCreateFlagBits; /// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits. typedef VkFlags VmaVirtualBlockCreateFlags; /// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. typedef enum VmaVirtualAllocationCreateFlagBits { /** \brief Allocation will be created from upper stack in a double stack pool. This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag. */ VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT, /** \brief Allocation strategy that tries to minimize memory usage. */ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, /** \brief Allocation strategy that tries to minimize allocation time. */ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags. These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits. */ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK, VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF } VmaVirtualAllocationCreateFlagBits; /// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits. typedef VkFlags VmaVirtualAllocationCreateFlags; /** @} */ #endif // _VMA_ENUM_DECLARATIONS #ifndef _VMA_DATA_TYPES_DECLARATIONS /** \addtogroup group_init @{ */ /** \struct VmaAllocator \brief Represents main object of this library initialized. Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. Call function vmaDestroyAllocator() to destroy it. It is recommended to create just one object of this type per `VkDevice` object, right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. */ VK_DEFINE_HANDLE(VmaAllocator) /** @} */ /** \addtogroup group_alloc @{ */ /** \struct VmaPool \brief Represents custom memory pool Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. Call function vmaDestroyPool() to destroy it. For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). */ VK_DEFINE_HANDLE(VmaPool) /** \struct VmaAllocation \brief Represents single memory allocation. It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type plus unique offset. There are multiple ways to create such object. You need to fill structure VmaAllocationCreateInfo. For more information see [Choosing memory type](@ref choosing_memory_type). Although the library provides convenience functions that create Vulkan buffer or image, allocate memory for it and bind them together, binding of the allocation to a buffer or an image is out of scope of the allocation itself. Allocation object can exist without buffer/image bound, binding can be done manually by the user, and destruction of it can be done independently of destruction of the allocation. The object also remembers its size and some other information. To retrieve this information, use function vmaGetAllocationInfo() and inspect returned structure VmaAllocationInfo. */ VK_DEFINE_HANDLE(VmaAllocation) /** \struct VmaDefragmentationContext \brief Represents Opaque object that represents started defragmentation process. Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it. Call function vmaDefragmentationEnd() to destroy it. */ VK_DEFINE_HANDLE(VmaDefragmentationContext) /** @} */ /** \addtogroup group_virtual @{ */ /** \struct VmaVirtualAllocation \brief Represents single memory allocation done inside VmaVirtualBlock. Use it as a unique identifier to virtual allocation within the single block. Use value `VK_NULL_HANDLE` to represent a null/invalid allocation. */ VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation); /** @} */ /** \addtogroup group_virtual @{ */ /** \struct VmaVirtualBlock \brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory. Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it. For more information, see documentation chapter \ref virtual_allocator. This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally. */ VK_DEFINE_HANDLE(VmaVirtualBlock) /** @} */ /** \addtogroup group_init @{ */ /// Callback function called after successful vkAllocateMemory. typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)( VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryType, VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, VkDeviceSize size, void* VMA_NULLABLE pUserData); /// Callback function called before vkFreeMemory. typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)( VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryType, VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, VkDeviceSize size, void* VMA_NULLABLE pUserData); /** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. Provided for informative purpose, e.g. to gather statistics about number of allocations or total amount of memory allocated in Vulkan. Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. */ typedef struct VmaDeviceMemoryCallbacks { /// Optional, can be null. PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate; /// Optional, can be null. PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree; /// Optional, can be null. void* VMA_NULLABLE pUserData; } VmaDeviceMemoryCallbacks; /** \brief Pointers to some Vulkan functions - a subset used by the library. Used in VmaAllocatorCreateInfo::pVulkanFunctions. */ typedef struct VmaVulkanFunctions { /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr; /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr; PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties; PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties; PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory; PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory; PFN_vkMapMemory VMA_NULLABLE vkMapMemory; PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory; PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges; PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges; PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory; PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory; PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements; PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements; PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer; PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer; PFN_vkCreateImage VMA_NULLABLE vkCreateImage; PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage; PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer; #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR; /// Fetch "vkGetImageMemoryRequirements 2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR; #endif #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension. PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR; /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension. PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR; #endif #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR; #endif } VmaVulkanFunctions; /// Description of a Allocator to be created. typedef struct VmaAllocatorCreateInfo { /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. VmaAllocatorCreateFlags flags; /// Vulkan physical device. /** It must be valid throughout whole lifetime of created allocator. */ VkPhysicalDevice VMA_NOT_NULL physicalDevice; /// Vulkan device. /** It must be valid throughout whole lifetime of created allocator. */ VkDevice VMA_NOT_NULL device; /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. /** Set to 0 to use default, which is currently 256 MiB. */ VkDeviceSize preferredLargeHeapBlockSize; /// Custom CPU memory allocation callbacks. Optional. /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. /** Optional, can be null. */ const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks; /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on maximum number of bytes that can be allocated out of particular Vulkan memory heap. Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that heap. This is also the default in case of `pHeapSizeLimit` = NULL. If there is a limit defined for a heap: - If user tries to allocate more memory from that heap using this allocator, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the value of this limit will be reported instead when using vmaGetMemoryProperties(). Warning! Using this feature may not be equivalent to installing a GPU with smaller amount of memory, because graphics driver doesn't necessary fail new allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is exceeded. It may return success and just silently migrate some device memory blocks to system RAM. This driver behavior can also be controlled using VK_AMD_memory_overallocation_behavior extension. */ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit; /** \brief Pointers to Vulkan functions. Can be null. For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions). */ const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions; /** \brief Handle to Vulkan instance object. Starting from version 3.0.0 this member is no longer optional, it must be set! */ VkInstance VMA_NOT_NULL instance; /** \brief Optional. The highest version of Vulkan that the application is designed to use. It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. The patch version number specified is ignored. Only the major and minor versions are considered. It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`. Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation. Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. */ uint32_t vulkanApiVersion; #if VMA_EXTERNAL_MEMORY /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type. If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount` elements, defining external memory handle types of particular Vulkan memory type, to be passed using `VkExportMemoryAllocateInfoKHR`. Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type. This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL. */ const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes; #endif // #if VMA_EXTERNAL_MEMORY } VmaAllocatorCreateInfo; /// Information about existing #VmaAllocator object. typedef struct VmaAllocatorInfo { /** \brief Handle to Vulkan instance object. This is the same value as has been passed through VmaAllocatorCreateInfo::instance. */ VkInstance VMA_NOT_NULL instance; /** \brief Handle to Vulkan physical device object. This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice. */ VkPhysicalDevice VMA_NOT_NULL physicalDevice; /** \brief Handle to Vulkan device object. This is the same value as has been passed through VmaAllocatorCreateInfo::device. */ VkDevice VMA_NOT_NULL device; } VmaAllocatorInfo; /** @} */ /** \addtogroup group_stats @{ */ /// Calculated statistics of memory usage in entire allocator. typedef struct VmaStatInfo { /// Number of `VkDeviceMemory` Vulkan memory blocks allocated. uint32_t blockCount; /// Number of #VmaAllocation allocation objects allocated. uint32_t allocationCount; /// Number of free ranges of memory between allocations. uint32_t unusedRangeCount; /// Total number of bytes occupied by all allocations. VkDeviceSize usedBytes; /// Total number of bytes occupied by unused ranges. VkDeviceSize unusedBytes; VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax; VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax; } VmaStatInfo; /// General statistics from current state of Allocator. typedef struct VmaStats { VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES]; VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS]; VmaStatInfo total; } VmaStats; /// Statistics of current memory usage and available budget, in bytes, for specific memory heap. typedef struct VmaBudget { /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes. */ VkDeviceSize blockBytes; /** \brief Sum size of all allocations created in particular heap, in bytes. Usually less or equal than `blockBytes`. Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused - available for new allocations or wasted due to fragmentation. */ VkDeviceSize allocationBytes; /** \brief Estimated current memory usage of the program, in bytes. Fetched from system using `VK_EXT_memory_budget` extension if enabled. It might be different than `blockBytes` (usually higher) due to additional implicit objects also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or `VkDeviceMemory` blocks allocated outside of this library, if any. */ VkDeviceSize usage; /** \brief Estimated amount of memory available to the program, in bytes. Fetched from system using `VK_EXT_memory_budget` extension if enabled. It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors external to the program, like other programs also consuming system resources. Difference `budget - usage` is the amount of additional memory that can probably be allocated without problems. Exceeding the budget may result in various problems. */ VkDeviceSize budget; } VmaBudget; /** @} */ /** \addtogroup group_alloc @{ */ typedef struct VmaAllocationCreateInfo { /// Use #VmaAllocationCreateFlagBits enum. VmaAllocationCreateFlags flags; /** \brief Intended usage of memory. You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n If `pool` is not null, this member is ignored. */ VmaMemoryUsage usage; /** \brief Flags that must be set in a Memory Type chosen for an allocation. Leave 0 if you specify memory requirements in other way. \n If `pool` is not null, this member is ignored.*/ VkMemoryPropertyFlags requiredFlags; /** \brief Flags that preferably should be set in a memory type chosen for an allocation. Set to 0 if no additional flags are preferred. \n If `pool` is not null, this member is ignored. */ VkMemoryPropertyFlags preferredFlags; /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if it meets other requirements specified by this structure, with no further restrictions on memory type index. \n If `pool` is not null, this member is ignored. */ uint32_t memoryTypeBits; /** \brief Pool that this allocation should be created in. Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. */ VmaPool VMA_NULLABLE pool; /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either null or pointer to a null-terminated string. The string will be then copied to internal buffer, so it doesn't need to be valid after allocation call. */ void* VMA_NULLABLE pUserData; /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. Otherwise, it has the priority of a memory block where it is placed and this variable is ignored. */ float priority; } VmaAllocationCreateInfo; /// Describes parameter of created #VmaPool. typedef struct VmaPoolCreateInfo { /** \brief Vulkan memory type index to allocate this pool from. */ uint32_t memoryTypeIndex; /** \brief Use combination of #VmaPoolCreateFlagBits. */ VmaPoolCreateFlags flags; /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. Specify nonzero to set explicit, constant size of memory blocks used by this pool. Leave 0 to use default and let the library manage block sizes automatically. Sizes of particular blocks may vary. In this case, the pool will also support dedicated allocations. */ VkDeviceSize blockSize; /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. Set to 0 to have no preallocated blocks and allow the pool be completely empty. */ size_t minBlockCount; /** \brief Maximum number of blocks that can be allocated in this pool. Optional. Set to 0 to use default, which is `SIZE_MAX`, which means no limit. Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated throughout whole lifetime of this pool. */ size_t maxBlockCount; /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations. It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object. Otherwise, this variable is ignored. */ float priority; /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0. Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two. It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough, e.g. when doing interop with OpenGL. */ VkDeviceSize minAllocationAlignment; /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional. Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`. It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`. Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool. Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`, can be attached automatically by this library when using other, more convenient of its features. */ void* VMA_NULLABLE pMemoryAllocateNext; } VmaPoolCreateInfo; /** @} */ /** \addtogroup group_stats @{ */ /// Describes parameter of existing #VmaPool. typedef struct VmaPoolStats { /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes. */ VkDeviceSize size; /** \brief Total number of bytes in the pool not used by any #VmaAllocation. */ VkDeviceSize unusedSize; /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed. */ size_t allocationCount; /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation. */ size_t unusedRangeCount; /** \brief Number of `VkDeviceMemory` blocks allocated for this pool. */ size_t blockCount; } VmaPoolStats; /** @} */ /** \addtogroup group_alloc @{ */ /// Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). typedef struct VmaAllocationInfo { /** \brief Memory type index that this allocation was allocated from. It never changes. */ uint32_t memoryType; /** \brief Handle to Vulkan memory object. Same memory object can be shared by multiple allocations. It can change after call to vmaDefragment() if this allocation is passed to the function. */ VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory; /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation. You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image, not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation and apply this offset automatically. It can change after call to vmaDefragment() if this allocation is passed to the function. */ VkDeviceSize offset; /** \brief Size of this allocation, in bytes. It never changes. \note Allocation size returned in this variable may be greater than the size requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the allocation is accessible for operations on memory e.g. using a pointer after mapping with vmaMapMemory(), but operations on the resource e.g. using `vkCmdCopyBuffer` must be limited to the size of the resource. */ VkDeviceSize size; /** \brief Pointer to the beginning of this allocation as mapped data. If the allocation hasn't been mapped using vmaMapMemory() and hasn't been created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null. It can change after call to vmaMapMemory(), vmaUnmapMemory(). It can also change after call to vmaDefragment() if this allocation is passed to the function. */ void* VMA_NULLABLE pMappedData; /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). It can change after call to vmaSetAllocationUserData() for this allocation. */ void* VMA_NULLABLE pUserData; } VmaAllocationInfo; /** \brief Parameters for defragmentation. To be used with function vmaDefragmentationBegin(). */ typedef struct VmaDefragmentationInfo2 { /** \brief Reserved for future use. Should be 0. */ VmaDefragmentationFlags flags; /** \brief Number of allocations in `pAllocations` array. */ uint32_t allocationCount; /** \brief Pointer to array of allocations that can be defragmented. The array should have `allocationCount` elements. The array should not contain nulls. Elements in the array should be unique - same allocation cannot occur twice. All allocations not present in this array are considered non-moveable during this defragmentation. */ const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations; /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation. The array should have `allocationCount` elements. You can pass null if you are not interested in this information. */ VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged; /** \brief Numer of pools in `pPools` array. */ uint32_t poolCount; /** \brief Either null or pointer to array of pools to be defragmented. All the allocations in the specified pools can be moved during defragmentation and there is no way to check if they were really moved as in `pAllocationsChanged`, so you must query all the allocations in all these pools for new `VkDeviceMemory` and offset using vmaGetAllocationInfo() if you might need to recreate buffers and images bound to them. The array should have `poolCount` elements. The array should not contain nulls. Elements in the array should be unique - same pool cannot occur twice. Using this array is equivalent to specifying all allocations from the pools in `pAllocations`. It might be more efficient. */ const VmaPool VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(poolCount) pPools; /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`. `VK_WHOLE_SIZE` means no limit. */ VkDeviceSize maxCpuBytesToMove; /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`. `UINT32_MAX` means no limit. */ uint32_t maxCpuAllocationsToMove; /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`. `VK_WHOLE_SIZE` means no limit. */ VkDeviceSize maxGpuBytesToMove; /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`. `UINT32_MAX` means no limit. */ uint32_t maxGpuAllocationsToMove; /** \brief Optional. Command buffer where GPU copy commands will be posted. If not null, it must be a valid command buffer handle that supports Transfer queue type. It must be in the recording state and outside of a render pass instance. You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd(). Passing null means that only CPU defragmentation will be performed. */ VkCommandBuffer VMA_NULLABLE commandBuffer; } VmaDefragmentationInfo2; typedef struct VmaDefragmentationPassMoveInfo { VmaAllocation VMA_NOT_NULL allocation; VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory; VkDeviceSize offset; } VmaDefragmentationPassMoveInfo; /** \brief Parameters for incremental defragmentation steps. To be used with function vmaBeginDefragmentationPass(). */ typedef struct VmaDefragmentationPassInfo { uint32_t moveCount; VmaDefragmentationPassMoveInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(moveCount) pMoves; } VmaDefragmentationPassInfo; /** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment(). \deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. */ typedef struct VmaDefragmentationInfo { /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places. Default is `VK_WHOLE_SIZE`, which means no limit. */ VkDeviceSize maxBytesToMove; /** \brief Maximum number of allocations that can be moved to different place. Default is `UINT32_MAX`, which means no limit. */ uint32_t maxAllocationsToMove; } VmaDefragmentationInfo; /// Statistics returned by function vmaDefragment(). typedef struct VmaDefragmentationStats { /// Total number of bytes that have been copied while moving allocations to different places. VkDeviceSize bytesMoved; /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. VkDeviceSize bytesFreed; /// Number of allocations that have been moved to different places. uint32_t allocationsMoved; /// Number of empty `VkDeviceMemory` objects that have been released to the system. uint32_t deviceMemoryBlocksFreed; } VmaDefragmentationStats; /** @} */ /** \addtogroup group_virtual @{ */ /// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock(). typedef struct VmaVirtualBlockCreateInfo { /** \brief Total size of the virtual block. Sizes can be expressed in bytes or any units you want as long as you are consistent in using them. For example, if you allocate from some array of structures, 1 can mean single instance of entire structure. */ VkDeviceSize size; /** \brief Use combination of #VmaVirtualBlockCreateFlagBits. */ VmaVirtualBlockCreateFlags flags; /** \brief Custom CPU memory allocation callbacks. Optional. Optional, can be null. When specified, they will be used for all CPU-side memory allocations. */ const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; } VmaVirtualBlockCreateInfo; /// Parameters of created virtual allocation to be passed to vmaVirtualAllocate(). typedef struct VmaVirtualAllocationCreateInfo { /** \brief Size of the allocation. Cannot be zero. */ VkDeviceSize size; /** \brief Required alignment of the allocation. Optional. Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset. */ VkDeviceSize alignment; /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits. */ VmaVirtualAllocationCreateFlags flags; /** \brief Custom pointer to be associated with the allocation. Optional. It can be any value and can be used for user-defined purposes. It can be fetched or changed later. */ void* VMA_NULLABLE pUserData; } VmaVirtualAllocationCreateInfo; /// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo(). typedef struct VmaVirtualAllocationInfo { /** \brief Offset of the allocation. Offset at which the allocation was made. */ VkDeviceSize offset; /** \brief Size of the allocation. Same value as passed in VmaVirtualAllocationCreateInfo::size. */ VkDeviceSize size; /** \brief Custom pointer associated with the allocation. Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData(). */ void* VMA_NULLABLE pUserData; } VmaVirtualAllocationInfo; /** @} */ #endif // _VMA_DATA_TYPES_DECLARATIONS #ifndef _VMA_FUNCTION_HEADERS /** \addtogroup group_init @{ */ /// Creates #VmaAllocator object. VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo, VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator); /// Destroys allocator object. VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( VmaAllocator VMA_NULLABLE allocator); /** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc. It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to `VkPhysicalDevice`, `VkDevice` etc. every time using this function. */ VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo( VmaAllocator VMA_NOT_NULL allocator, VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo); /** PhysicalDeviceProperties are fetched from physicalDevice by the allocator. You can access it here, without fetching it again on your own. */ VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( VmaAllocator VMA_NOT_NULL allocator, const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties); /** PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. You can access it here, without fetching it again on your own. */ VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( VmaAllocator VMA_NOT_NULL allocator, const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties); /** \brief Given Memory Type Index, returns Property Flags of this memory type. This is just a convenience function. Same information can be obtained using vmaGetMemoryProperties(). */ VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryTypeIndex, VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); /** \brief Sets index of the current frame. */ VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( VmaAllocator VMA_NOT_NULL allocator, uint32_t frameIndex); /** @} */ /** \addtogroup group_stats @{ */ /** \brief Retrieves statistics from current state of the Allocator. This function is called "calculate" not "get" because it has to traverse all internal data structures, so it may be quite slow. For faster but more brief statistics suitable to be called every frame or every allocation, use vmaGetHeapBudgets(). Note that when using allocator from multiple threads, returned information may immediately become outdated. */ VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( VmaAllocator VMA_NOT_NULL allocator, VmaStats* VMA_NOT_NULL pStats); /** \brief Retrieves information about current memory budget for all memory heaps. \param allocator \param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used. This function is called "get" not "calculate" because it is very fast, suitable to be called every frame or every allocation. For more detailed statistics use vmaCalculateStats(). Note that when using allocator from multiple threads, returned information may immediately become outdated. */ VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( VmaAllocator VMA_NOT_NULL allocator, VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets); /** @} */ /** \addtogroup group_alloc @{ */ /** \brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. This algorithm tries to find a memory type that: - Is allowed by memoryTypeBits. - Contains all the flags from pAllocationCreateInfo->requiredFlags. - Matches intended usage. - Has as many flags from pAllocationCreateInfo->preferredFlags as possible. \return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result from this function or any other allocating function probably means that your device doesn't support any memory type with requested features for the specific type of resource you want to use it for. Please check parameters of your resource, like image layout (OPTIMAL versus LINEAR) or mip level count. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryTypeBits, const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, uint32_t* VMA_NOT_NULL pMemoryTypeIndex); /** \brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. It internally creates a temporary, dummy buffer that never has memory bound. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( VmaAllocator VMA_NOT_NULL allocator, const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, uint32_t* VMA_NOT_NULL pMemoryTypeIndex); /** \brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. It internally creates a temporary, dummy image that never has memory bound. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( VmaAllocator VMA_NOT_NULL allocator, const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, uint32_t* VMA_NOT_NULL pMemoryTypeIndex); /** \brief Allocates Vulkan device memory and creates #VmaPool object. \param allocator Allocator object. \param pCreateInfo Parameters of pool to create. \param[out] pPool Handle to created pool. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( VmaAllocator VMA_NOT_NULL allocator, const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo, VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool); /** \brief Destroys #VmaPool object and frees Vulkan device memory. */ VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NULLABLE pool); /** @} */ /** \addtogroup group_stats @{ */ /** \brief Retrieves statistics of existing #VmaPool object. \param allocator Allocator object. \param pool Pool object. \param[out] pPoolStats Statistics of specified pool. */ VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool, VmaPoolStats* VMA_NOT_NULL pPoolStats); /** @} */ /** \addtogroup group_alloc @{ */ /** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, `VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). Possible return values: - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. - `VK_SUCCESS` - corruption detection has been performed and succeeded. - `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. `VMA_ASSERT` is also fired in that case. - Other value: Error returned by Vulkan, e.g. memory mapping failure. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption( VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool); /** \brief Retrieves name of a custom pool. After the call `ppName` is either null or points to an internally-owned null-terminated string containing name of the pool that was previously set. The pointer becomes invalid when the pool is destroyed or its name is changed using vmaSetPoolName(). */ VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool, const char* VMA_NULLABLE* VMA_NOT_NULL ppName); /** \brief Sets name of a custom pool. `pName` can be either null or pointer to a null-terminated string with new name for the pool. Function makes internal copy of the string, so it can be changed or freed immediately after this call. */ VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool, const char* VMA_NULLABLE pName); /** \brief General purpose memory allocation. \param allocator \param pVkMemoryRequirements \param pCreateInfo \param[out] pAllocation Handle to allocated memory. \param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), vmaCreateBuffer(), vmaCreateImage() instead whenever possible. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( VmaAllocator VMA_NOT_NULL allocator, const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements, const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); /** \brief General purpose memory allocation for multiple allocation objects at once. \param allocator Allocator object. \param pVkMemoryRequirements Memory requirements for each allocation. \param pCreateInfo Creation parameters for each allocation. \param allocationCount Number of allocations to make. \param[out] pAllocations Pointer to array that will be filled with handles to created allocations. \param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. It is just a general purpose allocation function able to make multiple allocations at once. It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. All allocations are made using same parameters. All of them are created out of the same memory pool and type. If any allocation fails, all allocations already made within this function call are also freed, so that when returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( VmaAllocator VMA_NOT_NULL allocator, const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements, const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo, size_t allocationCount, VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo); /** \param allocator \param buffer \param pCreateInfo \param[out] pAllocation Handle to allocated memory. \param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). You should free the memory using vmaFreeMemory(). */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( VmaAllocator VMA_NOT_NULL allocator, VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); /// Function similar to vmaAllocateMemoryForBuffer(). VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( VmaAllocator VMA_NOT_NULL allocator, VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); /** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. */ VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( VmaAllocator VMA_NOT_NULL allocator, const VmaAllocation VMA_NULLABLE allocation); /** \brief Frees memory and destroys multiple allocations. Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), vmaAllocateMemoryPages() and other functions. It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. Allocations in `pAllocations` array can come from any memory pools and types. Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. */ VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( VmaAllocator VMA_NOT_NULL allocator, size_t allocationCount, const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations); /** \brief Returns current information about specified allocation. Current paramteres of given allocation are returned in `pAllocationInfo`. Although this function doesn't lock any mutex, so it should be quite efficient, you should avoid calling it too often. You can retrieve same VmaAllocationInfo structure while creating your resource, from function vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change (e.g. due to defragmentation). */ VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo); /** \brief Sets pUserData in given allocation to new value. If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT, pUserData must be either null, or pointer to a null-terminated string. The function makes local copy of the string and sets it as allocation's `pUserData`. String passed as pUserData doesn't need to be valid for whole lifetime of the allocation - you can free it after this call. String previously pointed by allocation's pUserData is freed from memory. If the flag was not used, the value of pointer `pUserData` is just copied to allocation's `pUserData`. It is opaque, so you can use it however you want - e.g. as a pointer, ordinal number or some handle to you own data. */ VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, void* VMA_NULLABLE pUserData); /** \brief Given an allocation, returns Property Flags of its memory type. This is just a convenience function. Same information can be obtained using vmaGetAllocationInfo() + vmaGetMemoryProperties(). */ VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); /** \brief Maps memory represented by given allocation and returns pointer to it. Maps memory represented by given allocation to make it accessible to CPU code. When succeeded, `*ppData` contains pointer to first byte of this memory. \warning If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is correctly offsetted to the beginning of region assigned to this particular allocation. Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block. You should not add VmaAllocationInfo::offset to it! Mapping is internally reference-counted and synchronized, so despite raw Vulkan function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` multiple times simultaneously, it is safe to call this function on allocations assigned to the same memory block. Actual Vulkan memory will be mapped on first mapping and unmapped on last unmapping. If the function succeeded, you must call vmaUnmapMemory() to unmap the allocation when mapping is no longer needed or before freeing the allocation, at the latest. It also safe to call this function multiple times on the same allocation. You must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). It is also safe to call this function on allocation created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. You must still call vmaUnmapMemory() same number of times as you called vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the "0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. This function fails when used on allocation made in memory type that is not `HOST_VISIBLE`. This function doesn't automatically flush or invalidate caches. If the allocation is made from a memory types that is not `HOST_COHERENT`, you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, void* VMA_NULLABLE* VMA_NOT_NULL ppData); /** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). For details, see description of vmaMapMemory(). This function doesn't automatically flush or invalidate caches. If the allocation is made from a memory types that is not `HOST_COHERENT`, you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. */ VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation); /** \brief Flushes memory of given allocation. Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. Unmap operation doesn't do that automatically. - `offset` must be relative to the beginning of allocation. - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. - `offset` and `size` don't have to be aligned. They are internally rounded down/up to multiply of `nonCoherentAtomSize`. - If `size` is 0, this call is ignored. - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, this call is ignored. Warning! `offset` and `size` are relative to the contents of given `allocation`. If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. Do not pass allocation's offset as `offset`!!! This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is called, otherwise `VK_SUCCESS`. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VkDeviceSize offset, VkDeviceSize size); /** \brief Invalidates memory of given allocation. Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. Map operation doesn't do that automatically. - `offset` must be relative to the beginning of allocation. - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. - `offset` and `size` don't have to be aligned. They are internally rounded down/up to multiply of `nonCoherentAtomSize`. - If `size` is 0, this call is ignored. - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, this call is ignored. Warning! `offset` and `size` are relative to the contents of given `allocation`. If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. Do not pass allocation's offset as `offset`!!! This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is called, otherwise `VK_SUCCESS`. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VkDeviceSize offset, VkDeviceSize size); /** \brief Flushes memory of given set of allocations. Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations. For more information, see documentation of vmaFlushAllocation(). \param allocator \param allocationCount \param allocations \param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. \param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is called, otherwise `VK_SUCCESS`. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( VmaAllocator VMA_NOT_NULL allocator, uint32_t allocationCount, const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); /** \brief Invalidates memory of given set of allocations. Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations. For more information, see documentation of vmaInvalidateAllocation(). \param allocator \param allocationCount \param allocations \param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero. \param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is called, otherwise `VK_SUCCESS`. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( VmaAllocator VMA_NOT_NULL allocator, uint32_t allocationCount, const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); /** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. \param allocator \param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, `VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). Possible return values: - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. - `VK_SUCCESS` - corruption detection has been performed and succeeded. - `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. `VMA_ASSERT` is also fired in that case. - Other value: Error returned by Vulkan, e.g. memory mapping failure. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryTypeBits); /** \brief Begins defragmentation process. \param allocator Allocator object. \param pInfo Structure filled with parameters of defragmentation. \param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information. \param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation. \return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error. Use this function instead of old, deprecated vmaDefragment(). Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd(): - You should not use any of allocations passed as `pInfo->pAllocations` or any allocations that belong to pools passed as `pInfo->pPools`, including calling vmaGetAllocationInfo(), or access their data. - Some mutexes protecting internal data structures may be locked, so trying to make or free any allocations, bind buffers or images, map memory, or launch another simultaneous defragmentation in between may cause stall (when done on another thread) or deadlock (when done on the same thread), unless you are 100% sure that defragmented allocations are in different pools. - Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined. They become valid after call to vmaDefragmentationEnd(). - If `pInfo->commandBuffer` is not null, you must submit that command buffer and make sure it finished execution before calling vmaDefragmentationEnd(). For more information and important limitations regarding defragmentation, see documentation chapter: [Defragmentation](@ref defragmentation). */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( VmaAllocator VMA_NOT_NULL allocator, const VmaDefragmentationInfo2* VMA_NOT_NULL pInfo, VmaDefragmentationStats* VMA_NULLABLE pStats, VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext); /** \brief Ends defragmentation process. Use this function to finish defragmentation started by vmaDefragmentationBegin(). It is safe to pass `context == null`. The function then does nothing. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( VmaAllocator VMA_NOT_NULL allocator, VmaDefragmentationContext VMA_NULLABLE context); VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( VmaAllocator VMA_NOT_NULL allocator, VmaDefragmentationContext VMA_NULLABLE context, VmaDefragmentationPassInfo* VMA_NOT_NULL pInfo); VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( VmaAllocator VMA_NOT_NULL allocator, VmaDefragmentationContext VMA_NULLABLE context); /** \brief Deprecated. Compacts memory by moving allocations. \param allocator \param pAllocations Array of allocations that can be moved during this compation. \param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays. \param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information. \param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values. \param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information. \return `VK_SUCCESS` if completed, negative error code in case of error. \deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead. This function works by moving allocations to different places (different `VkDeviceMemory` objects and/or different offsets) in order to optimize memory usage. Only allocations that are in `pAllocations` array can be moved. All other allocations are considered nonmovable in this call. Basic rules: - Only allocations made in memory types that have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flags can be compacted. You may pass other allocations but it makes no sense - these will never be moved. - Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations passed to this function that come from such pools are ignored. - Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or created as dedicated allocations for any other reason are also ignored. - Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT flag can be compacted. If not persistently mapped, memory will be mapped temporarily inside this function if needed. - You must not pass same #VmaAllocation object multiple times in `pAllocations` array. The function also frees empty `VkDeviceMemory` blocks. Warning: This function may be time-consuming, so you shouldn't call it too often (like after every resource creation/destruction). You can call it on special occasions (like when reloading a game level or when you just destroyed a lot of objects). Calling it every frame may be OK, but you should measure that on your platform. For more information, see [Defragmentation](@ref defragmentation) chapter. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( VmaAllocator VMA_NOT_NULL allocator, const VmaAllocation VMA_NOT_NULL* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, size_t allocationCount, VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged, const VmaDefragmentationInfo* VMA_NULLABLE pDefragmentationInfo, VmaDefragmentationStats* VMA_NULLABLE pDefragmentationStats); /** \brief Binds buffer to allocation. Binds specified buffer to region of memory represented by specified allocation. Gets `VkDeviceMemory` handle and offset from the allocation. If you want to create a buffer, allocate memory for it and bind them together separately, you should use this function for binding instead of standard `vkBindBufferMemory()`, because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously (which is illegal in Vulkan). It is recommended to use function vmaCreateBuffer() instead of this one. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer); /** \brief Binds buffer to allocation with additional parameters. \param allocator \param allocation \param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. \param buffer \param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. This function is similar to vmaBindBufferMemory(), but it provides additional parameters. If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VkDeviceSize allocationLocalOffset, VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, const void* VMA_NULLABLE pNext); /** \brief Binds image to allocation. Binds specified image to region of memory represented by specified allocation. Gets `VkDeviceMemory` handle and offset from the allocation. If you want to create an image, allocate memory for it and bind them together separately, you should use this function for binding instead of standard `vkBindImageMemory()`, because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously (which is illegal in Vulkan). It is recommended to use function vmaCreateImage() instead of this one. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VkImage VMA_NOT_NULL_NON_DISPATCHABLE image); /** \brief Binds image to allocation with additional parameters. \param allocator \param allocation \param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. \param image \param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. This function is similar to vmaBindImageMemory(), but it provides additional parameters. If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VkDeviceSize allocationLocalOffset, VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, const void* VMA_NULLABLE pNext); /** \param allocator \param pBufferCreateInfo \param pAllocationCreateInfo \param[out] pBuffer Buffer that was created. \param[out] pAllocation Allocation that was created. \param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). This function automatically: -# Creates buffer. -# Allocates appropriate memory for it. -# Binds the buffer with the memory. If any of these operations fail, buffer and allocation are not created, returned value is negative error code, *pBuffer and *pAllocation are null. If the function succeeded, you must destroy both buffer and allocation when you no longer need them using either convenience function vmaDestroyBuffer() or separately, using `vkDestroyBuffer()` and vmaFreeMemory(). If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, VK_KHR_dedicated_allocation extension is used internally to query driver whether it requires or prefers the new buffer to have dedicated allocation. If yes, and if dedicated allocation is possible (#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated allocation for this buffer, just like when using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. \note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer, although recommended as a good practice, is out of scope of this library and could be implemented by the user as a higher-level logic on top of VMA. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( VmaAllocator VMA_NOT_NULL allocator, const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); /** \brief Creates a buffer with additional minimum alignment. Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom, minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g. for interop with OpenGL. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( VmaAllocator VMA_NOT_NULL allocator, const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, VkDeviceSize minAlignment, VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); /** \brief Destroys Vulkan buffer and frees allocated memory. This is just a convenience function equivalent to: \code vkDestroyBuffer(device, buffer, allocationCallbacks); vmaFreeMemory(allocator, allocation); \endcode It it safe to pass null as buffer and/or allocation. */ VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( VmaAllocator VMA_NOT_NULL allocator, VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer, VmaAllocation VMA_NULLABLE allocation); /// Function similar to vmaCreateBuffer(). VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( VmaAllocator VMA_NOT_NULL allocator, const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage, VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); /** \brief Destroys Vulkan image and frees allocated memory. This is just a convenience function equivalent to: \code vkDestroyImage(device, image, allocationCallbacks); vmaFreeMemory(allocator, allocation); \endcode It it safe to pass null as image and/or allocation. */ VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( VmaAllocator VMA_NOT_NULL allocator, VkImage VMA_NULLABLE_NON_DISPATCHABLE image, VmaAllocation VMA_NULLABLE allocation); /** @} */ /** \addtogroup group_virtual @{ */ /** \brief Creates new #VmaVirtualBlock object. \param pCreateInfo Parameters for creation. \param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock); /** \brief Destroys #VmaVirtualBlock object. Please note that you should consciously handle virtual allocations that could remain unfreed in the block. You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock() if you are sure this is what you want. If you do neither, an assert is called. If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`, don't forget to free them. */ VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock( VmaVirtualBlock VMA_NULLABLE virtualBlock); /** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations. */ VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty( VmaVirtualBlock VMA_NOT_NULL virtualBlock); /** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer. */ VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo( VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo); /** \brief Allocates new virtual allocation inside given #VmaVirtualBlock. If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned (despite the function doesn't ever allocate actual GPU memory). `pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`. \param virtualBlock Virtual block \param pCreateInfo Parameters for the allocation \param[out] pAllocation Returned handle of the new allocation \param[out] pOffset Returned offset of the new allocation. Optional, can be null. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate( VmaVirtualBlock VMA_NOT_NULL virtualBlock, const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, VkDeviceSize* VMA_NULLABLE pOffset); /** \brief Frees virtual allocation inside given #VmaVirtualBlock. It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing. */ VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree( VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation); /** \brief Frees all virtual allocations inside given #VmaVirtualBlock. You must either call this function or free each virtual allocation individually with vmaVirtualFree() before destroying a virtual block. Otherwise, an assert is called. If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`, don't forget to free it as well. */ VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock( VmaVirtualBlock VMA_NOT_NULL virtualBlock); /** \brief Changes custom pointer associated with given virtual allocation. */ VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData( VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData); /** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock. */ VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStats( VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaStatInfo* VMA_NOT_NULL pStatInfo); /** @} */ #if VMA_STATS_STRING_ENABLED /** \addtogroup group_stats @{ */ /** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock. \param virtualBlock Virtual block. \param[out] ppStatsString Returned string. \param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStats(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces. Returned string must be freed using vmaFreeVirtualBlockStatsString(). */ VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString( VmaVirtualBlock VMA_NOT_NULL virtualBlock, char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, VkBool32 detailedMap); /// Frees a string returned by vmaBuildVirtualBlockStatsString(). VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString( VmaVirtualBlock VMA_NOT_NULL virtualBlock, char* VMA_NULLABLE pStatsString); /** \brief Builds and returns statistics as a null-terminated string in JSON format. \param allocator \param[out] ppStatsString Must be freed using vmaFreeStatsString() function. \param detailedMap */ VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( VmaAllocator VMA_NOT_NULL allocator, char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, VkBool32 detailedMap); VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( VmaAllocator VMA_NOT_NULL allocator, char* VMA_NULLABLE pStatsString); /** @} */ #endif // VMA_STATS_STRING_ENABLED #endif // _VMA_FUNCTION_HEADERS #ifdef __cplusplus } #endif #endif // AMD_VULKAN_MEMORY_ALLOCATOR_H //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // // IMPLEMENTATION // //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // For Visual Studio IntelliSense. #if defined(__cplusplus) && defined(__INTELLISENSE__) #define VMA_IMPLEMENTATION #endif #ifdef VMA_IMPLEMENTATION #undef VMA_IMPLEMENTATION #include #include #include #include #ifdef _MSC_VER #include // For functions like __popcnt, _BitScanForward etc. #endif /******************************************************************************* CONFIGURATION SECTION Define some of these macros before each #include of this header or change them here if you need other then default behavior depending on your environment. */ #ifndef _VMA_CONFIGURATION /* Define this macro to 1 to make the library fetch pointers to Vulkan functions internally, like: vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; */ #if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) #define VMA_STATIC_VULKAN_FUNCTIONS 1 #endif /* Define this macro to 1 to make the library fetch pointers to Vulkan functions internally, like: vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory"); To use this feature in new versions of VMA you now have to pass VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null. */ #if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS) #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 #endif #ifndef VMA_USE_STL_SHARED_MUTEX // Compiler conforms to C++17. #if __cplusplus >= 201703L #define VMA_USE_STL_SHARED_MUTEX 1 // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L #define VMA_USE_STL_SHARED_MUTEX 1 #else #define VMA_USE_STL_SHARED_MUTEX 0 #endif #endif /* Define this macro to include custom header files without having to edit this file directly, e.g.: // Inside of "my_vma_configuration_user_includes.h": #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT #include "my_custom_min.h" // for my_custom_min #include #include // Inside a different file, which includes "vk_mem_alloc.h": #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h" #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr) #define VMA_MIN(v1, v2) (my_custom_min(v1, v2)) #include "vk_mem_alloc.h" ... The following headers are used in this CONFIGURATION section only, so feel free to remove them if not needed. */ #if !defined(VMA_CONFIGURATION_USER_INCLUDES_H) #include // for assert #include // for min, max #include #else #include VMA_CONFIGURATION_USER_INCLUDES_H #endif #ifndef VMA_NULL // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. #define VMA_NULL nullptr #endif #if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) #include static void* vma_aligned_alloc(size_t alignment, size_t size) { // alignment must be >= sizeof(void*) if(alignment < sizeof(void*)) { alignment = sizeof(void*); } return memalign(alignment, size); } #elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) #include #if defined(__APPLE__) #include #endif static void* vma_aligned_alloc(size_t alignment, size_t size) { // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4) // Therefore, for now disable this specific exception until a proper solution is found. //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0)) //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0 // // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only // // with the MacOSX11.0 SDK in Xcode 12 (which is what adds // // MAC_OS_X_VERSION_10_16), even though the function is marked // // availabe for 10.15. That is why the preprocessor checks for 10.16 but // // the __builtin_available checks for 10.15. // // People who use C++17 could call aligned_alloc with the 10.15 SDK already. // if (__builtin_available(macOS 10.15, iOS 13, *)) // return aligned_alloc(alignment, size); //#endif //#endif // alignment must be >= sizeof(void*) if(alignment < sizeof(void*)) { alignment = sizeof(void*); } void *pointer; if(posix_memalign(&pointer, alignment, size) == 0) return pointer; return VMA_NULL; } #elif defined(_WIN32) static void* vma_aligned_alloc(size_t alignment, size_t size) { return _aligned_malloc(size, alignment); } #else static void* vma_aligned_alloc(size_t alignment, size_t size) { return aligned_alloc(alignment, size); } #endif #if defined(_WIN32) static void vma_aligned_free(void* ptr) { _aligned_free(ptr); } #else static void vma_aligned_free(void* VMA_NULLABLE ptr) { free(ptr); } #endif // If your compiler is not compatible with C++11 and definition of // aligned_alloc() function is missing, uncommeting following line may help: //#include // Normal assert to check for programmer's errors, especially in Debug configuration. #ifndef VMA_ASSERT #ifdef NDEBUG #define VMA_ASSERT(expr) #else #define VMA_ASSERT(expr) assert(expr) #endif #endif // Assert that will be called very often, like inside data structures e.g. operator[]. // Making it non-empty can make program slow. #ifndef VMA_HEAVY_ASSERT #ifdef NDEBUG #define VMA_HEAVY_ASSERT(expr) #else #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) #endif #endif #ifndef VMA_ALIGN_OF #define VMA_ALIGN_OF(type) (__alignof(type)) #endif #ifndef VMA_SYSTEM_ALIGNED_MALLOC #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size)) #endif #ifndef VMA_SYSTEM_ALIGNED_FREE // VMA_SYSTEM_FREE is the old name, but might have been defined by the user #if defined(VMA_SYSTEM_FREE) #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr) #else #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr) #endif #endif #ifndef VMA_BITSCAN_LSB // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask) #endif #ifndef VMA_BITSCAN_MSB // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask) #endif #ifndef VMA_MIN #define VMA_MIN(v1, v2) ((std::min)((v1), (v2))) #endif #ifndef VMA_MAX #define VMA_MAX(v1, v2) ((std::max)((v1), (v2))) #endif #ifndef VMA_SWAP #define VMA_SWAP(v1, v2) std::swap((v1), (v2)) #endif #ifndef VMA_SORT #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) #endif #ifndef VMA_DEBUG_LOG #define VMA_DEBUG_LOG(format, ...) /* #define VMA_DEBUG_LOG(format, ...) do { \ printf(format, __VA_ARGS__); \ printf("\n"); \ } while(false) */ #endif // Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. #if VMA_STATS_STRING_ENABLED static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num) { snprintf(outStr, strLen, "%u", static_cast(num)); } static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num) { snprintf(outStr, strLen, "%llu", static_cast(num)); } static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr) { snprintf(outStr, strLen, "%p", ptr); } #endif #ifndef VMA_MUTEX class VmaMutex { public: void Lock() { m_Mutex.lock(); } void Unlock() { m_Mutex.unlock(); } bool TryLock() { return m_Mutex.try_lock(); } private: std::mutex m_Mutex; }; #define VMA_MUTEX VmaMutex #endif // Read-write mutex, where "read" is shared access, "write" is exclusive access. #ifndef VMA_RW_MUTEX #if VMA_USE_STL_SHARED_MUTEX // Use std::shared_mutex from C++17. #include class VmaRWMutex { public: void LockRead() { m_Mutex.lock_shared(); } void UnlockRead() { m_Mutex.unlock_shared(); } bool TryLockRead() { return m_Mutex.try_lock_shared(); } void LockWrite() { m_Mutex.lock(); } void UnlockWrite() { m_Mutex.unlock(); } bool TryLockWrite() { return m_Mutex.try_lock(); } private: std::shared_mutex m_Mutex; }; #define VMA_RW_MUTEX VmaRWMutex #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 // Use SRWLOCK from WinAPI. // Minimum supported client = Windows Vista, server = Windows Server 2008. class VmaRWMutex { public: VmaRWMutex() { InitializeSRWLock(&m_Lock); } void LockRead() { AcquireSRWLockShared(&m_Lock); } void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } private: SRWLOCK m_Lock; }; #define VMA_RW_MUTEX VmaRWMutex #else // Less efficient fallback: Use normal mutex. class VmaRWMutex { public: void LockRead() { m_Mutex.Lock(); } void UnlockRead() { m_Mutex.Unlock(); } bool TryLockRead() { return m_Mutex.TryLock(); } void LockWrite() { m_Mutex.Lock(); } void UnlockWrite() { m_Mutex.Unlock(); } bool TryLockWrite() { return m_Mutex.TryLock(); } private: VMA_MUTEX m_Mutex; }; #define VMA_RW_MUTEX VmaRWMutex #endif // #if VMA_USE_STL_SHARED_MUTEX #endif // #ifndef VMA_RW_MUTEX /* If providing your own implementation, you need to implement a subset of std::atomic. */ #ifndef VMA_ATOMIC_UINT32 #include #define VMA_ATOMIC_UINT32 std::atomic #endif #ifndef VMA_ATOMIC_UINT64 #include #define VMA_ATOMIC_UINT64 std::atomic #endif #ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY /** Every allocation will have its own memory block. Define to 1 for debugging purposes only. */ #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) #endif #ifndef VMA_MIN_ALIGNMENT /** Minimum alignment of all allocations, in bytes. Set to more than 1 for debugging purposes. Must be power of two. */ #ifdef VMA_DEBUG_ALIGNMENT // Old name #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT #else #define VMA_MIN_ALIGNMENT (1) #endif #endif #ifndef VMA_DEBUG_MARGIN /** Minimum margin after every allocation, in bytes. Set nonzero for debugging purposes only. */ #define VMA_DEBUG_MARGIN (0) #endif #ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS /** Define this macro to 1 to automatically fill new allocations and destroyed allocations with some bit pattern. */ #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) #endif #ifndef VMA_DEBUG_DETECT_CORRUPTION /** Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to enable writing magic value to the margin after every allocation and validating it, so that memory corruptions (out-of-bounds writes) are detected. */ #define VMA_DEBUG_DETECT_CORRUPTION (0) #endif #ifndef VMA_DEBUG_GLOBAL_MUTEX /** Set this to 1 for debugging purposes only, to enable single mutex protecting all entry calls to the library. Can be useful for debugging multithreading issues. */ #define VMA_DEBUG_GLOBAL_MUTEX (0) #endif #ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY /** Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. Set to more than 1 for debugging purposes only. Must be power of two. */ #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) #endif #ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT /* Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount and return error instead of leaving up to Vulkan implementation what to do in such cases. */ #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0) #endif #ifndef VMA_SMALL_HEAP_MAX_SIZE /// Maximum size of a memory heap in Vulkan to consider it "small". #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) #endif #ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) #endif /* Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called or a persistently mapped allocation is created and destroyed several times in a row. It keeps additional +1 mapping of a device memory block to prevent calling actual vkMapMemory/vkUnmapMemory too many times, which may improve performance and help tools like RenderDOc. */ #ifndef VMA_MAPPING_HYSTERESIS_ENABLED #define VMA_MAPPING_HYSTERESIS_ENABLED 1 #endif #ifndef VMA_CLASS_NO_COPY #define VMA_CLASS_NO_COPY(className) \ private: \ className(const className&) = delete; \ className& operator=(const className&) = delete; #endif #define VMA_VALIDATE(cond) do { if(!(cond)) { \ VMA_ASSERT(0 && "Validation failed: " #cond); \ return false; \ } } while(false) /******************************************************************************* END OF CONFIGURATION */ #endif // _VMA_CONFIGURATION static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; // Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; // Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants. static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040; static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080; static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000; static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; static const uint32_t VMA_VENDOR_ID_AMD = 4098; // This one is tricky. Vulkan specification defines this code as available since // Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131. // See pull request #207. #define VK_ERROR_UNKNOWN_COPY ((VkResult)-13) #if VMA_STATS_STRING_ENABLED // Correspond to values of enum VmaSuballocationType. static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = { "FREE", "UNKNOWN", "BUFFER", "IMAGE_UNKNOWN", "IMAGE_LINEAR", "IMAGE_OPTIMAL", }; #endif static VkAllocationCallbacks VmaEmptyAllocationCallbacks = { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; #ifndef _VMA_ENUM_DECLARATIONS enum VmaSuballocationType { VMA_SUBALLOCATION_TYPE_FREE = 0, VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, VMA_SUBALLOCATION_TYPE_BUFFER = 2, VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF }; enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE }; enum class VmaAllocationRequestType { Normal, TLSF, // Used by "Linear" algorithm. UpperAddress, EndOf1st, EndOf2nd, }; #endif // _VMA_ENUM_DECLARATIONS #ifndef _VMA_FORWARD_DECLARATIONS // Opaque handle used by allocation algorithms to identify single allocation in any conforming way. VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle); struct VmaMutexLock; struct VmaMutexLockRead; struct VmaMutexLockWrite; template struct AtomicTransactionalIncrement; template struct VmaStlAllocator; template class VmaVector; template class VmaSmallVector; template class VmaPoolAllocator; template struct VmaListItem; template class VmaRawList; template class VmaList; template class VmaIntrusiveLinkedList; // Unused in this version #if 0 template struct VmaPair; template struct VmaPairFirstLess; template class VmaMap; #endif #if VMA_STATS_STRING_ENABLED class VmaStringBuilder; class VmaJsonWriter; #endif class VmaDeviceMemoryBlock; struct VmaDedicatedAllocationListItemTraits; class VmaDedicatedAllocationList; struct VmaSuballocation; struct VmaSuballocationOffsetLess; struct VmaSuballocationOffsetGreater; struct VmaSuballocationItemSizeLess; typedef VmaList> VmaSuballocationList; struct VmaAllocationRequest; class VmaBlockMetadata; class VmaBlockMetadata_Generic; class VmaBlockMetadata_Linear; class VmaBlockMetadata_Buddy; class VmaBlockMetadata_TLSF; class VmaBlockVector; struct VmaDefragmentationMove; class VmaDefragmentationAlgorithm; class VmaDefragmentationAlgorithm_Generic; class VmaDefragmentationAlgorithm_Fast; struct VmaPoolListItemTraits; struct VmaBlockDefragmentationContext; class VmaBlockVectorDefragmentationContext; struct VmaCurrentBudgetData; class VmaAllocationObjectAllocator; #endif // _VMA_FORWARD_DECLARATIONS #ifndef _VMA_FUNCTIONS // Returns number of bits set to 1 in (v). static inline uint32_t VmaCountBitsSet(uint32_t v) { #ifdef _MSC_VER return __popcnt(v); #elif defined __GNUC__ || defined __clang__ return static_cast(__builtin_popcount(v)); #else uint32_t c = v - ((v >> 1) & 0x55555555); c = ((c >> 2) & 0x33333333) + (c & 0x33333333); c = ((c >> 4) + c) & 0x0F0F0F0F; c = ((c >> 8) + c) & 0x00FF00FF; c = ((c >> 16) + c) & 0x0000FFFF; return c; #endif } static inline uint8_t VmaBitScanLSB(uint64_t mask) { #if defined(_MSC_VER) && defined(_WIN64) unsigned long pos; if (_BitScanForward64(&pos, mask)) return static_cast(pos); return UINT8_MAX; #elif defined __GNUC__ || defined __clang__ return static_cast(__builtin_ffsll(mask)) - 1U; #else uint8_t pos = 0; uint64_t bit = 1; do { if (mask & bit) return pos; bit <<= 1; } while (pos++ < 63); return UINT8_MAX; #endif } static inline uint8_t VmaBitScanLSB(uint32_t mask) { #ifdef _MSC_VER unsigned long pos; if (_BitScanForward(&pos, mask)) return static_cast(pos); return UINT8_MAX; #elif defined __GNUC__ || defined __clang__ return static_cast(__builtin_ffs(mask)) - 1U; #else uint8_t pos = 0; uint32_t bit = 1; do { if (mask & bit) return pos; bit <<= 1; } while (pos++ < 31); return UINT8_MAX; #endif } static inline uint8_t VmaBitScanMSB(uint64_t mask) { #if defined(_MSC_VER) && defined(_WIN64) unsigned long pos; if (_BitScanReverse64(&pos, mask)) return static_cast(pos); #elif defined __GNUC__ || defined __clang__ if (mask) return 63 - static_cast(__builtin_clzll(mask)); #else uint8_t pos = 63; uint64_t bit = 1ULL << 63; do { if (mask & bit) return pos; bit >>= 1; } while (pos-- > 0); #endif return UINT8_MAX; } static inline uint8_t VmaBitScanMSB(uint32_t mask) { #ifdef _MSC_VER unsigned long pos; if (_BitScanReverse(&pos, mask)) return static_cast(pos); #elif defined __GNUC__ || defined __clang__ if (mask) return 31 - static_cast(__builtin_clz(mask)); #else uint8_t pos = 31; uint32_t bit = 1UL << 31; do { if (mask & bit) return pos; bit >>= 1; } while (pos-- > 0); #endif return UINT8_MAX; } /* Returns true if given number is a power of two. T must be unsigned integer number or signed integer but always nonnegative. For 0 returns true. */ template inline bool VmaIsPow2(T x) { return (x & (x - 1)) == 0; } // Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. // Use types like uint32_t, uint64_t as T. template static inline T VmaAlignUp(T val, T alignment) { VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); return (val + alignment - 1) & ~(alignment - 1); } // Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8. // Use types like uint32_t, uint64_t as T. template static inline T VmaAlignDown(T val, T alignment) { VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); return val & ~(alignment - 1); } // Division with mathematical rounding to nearest number. template static inline T VmaRoundDiv(T x, T y) { return (x + (y / (T)2)) / y; } // Divide by 'y' and round up to nearest integer. template static inline T VmaDivideRoundingUp(T x, T y) { return (x + y - (T)1) / y; } // Returns smallest power of 2 greater or equal to v. static inline uint32_t VmaNextPow2(uint32_t v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } static inline uint64_t VmaNextPow2(uint64_t v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; v++; return v; } // Returns largest power of 2 less or equal to v. static inline uint32_t VmaPrevPow2(uint32_t v) { v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v = v ^ (v >> 1); return v; } static inline uint64_t VmaPrevPow2(uint64_t v) { v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; v = v ^ (v >> 1); return v; } static inline bool VmaStrIsEmpty(const char* pStr) { return pStr == VMA_NULL || *pStr == '\0'; } #if VMA_STATS_STRING_ENABLED static const char* VmaAlgorithmToStr(uint32_t algorithm) { switch (algorithm) { case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: return "Linear"; case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: return "Buddy"; case VMA_POOL_CREATE_TLSF_ALGORITHM_BIT: return "TLSF"; case 0: return "Default"; default: VMA_ASSERT(0); return ""; } } #endif // VMA_STATS_STRING_ENABLED #ifndef VMA_SORT template Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) { Iterator centerValue = end; --centerValue; Iterator insertIndex = beg; for (Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) { if (cmp(*memTypeIndex, *centerValue)) { if (insertIndex != memTypeIndex) { VMA_SWAP(*memTypeIndex, *insertIndex); } ++insertIndex; } } if (insertIndex != centerValue) { VMA_SWAP(*insertIndex, *centerValue); } return insertIndex; } template void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) { if (beg < end) { Iterator it = VmaQuickSortPartition(beg, end, cmp); VmaQuickSort(beg, it, cmp); VmaQuickSort(it + 1, end, cmp); } } #define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp) #endif // VMA_SORT /* Returns true if two memory blocks occupy overlapping pages. ResourceA must be in less memory offset than ResourceB. Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". */ static inline bool VmaBlocksOnSamePage( VkDeviceSize resourceAOffset, VkDeviceSize resourceASize, VkDeviceSize resourceBOffset, VkDeviceSize pageSize) { VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); VkDeviceSize resourceBStart = resourceBOffset; VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); return resourceAEndPage == resourceBStartPage; } /* Returns true if given suballocation types could conflict and must respect VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer or linear image and another one is optimal image. If type is unknown, behave conservatively. */ static inline bool VmaIsBufferImageGranularityConflict( VmaSuballocationType suballocType1, VmaSuballocationType suballocType2) { if (suballocType1 > suballocType2) { VMA_SWAP(suballocType1, suballocType2); } switch (suballocType1) { case VMA_SUBALLOCATION_TYPE_FREE: return false; case VMA_SUBALLOCATION_TYPE_UNKNOWN: return true; case VMA_SUBALLOCATION_TYPE_BUFFER: return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: return false; default: VMA_ASSERT(0); return true; } } static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) { #if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION uint32_t* pDst = (uint32_t*)((char*)pData + offset); const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); for (size_t i = 0; i < numberCount; ++i, ++pDst) { *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; } #else // no-op #endif } static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) { #if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); for (size_t i = 0; i < numberCount; ++i, ++pSrc) { if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) { return false; } } #endif return true; } /* Fills structure with parameters of an example buffer to be used for transfers during GPU memory defragmentation. */ static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) { memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. } /* Performs binary search and returns iterator to first element that is greater or equal to (key), according to comparison (cmp). Cmp should return true if first argument is less than second argument. Returned value is the found element, if present in the collection or place where new element with value (key) should be inserted. */ template static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp) { size_t down = 0, up = (end - beg); while (down < up) { const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation if (cmp(*(beg + mid), key)) { down = mid + 1; } else { up = mid; } } return beg + down; } template IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) { IterT it = VmaBinaryFindFirstNotLess( beg, end, value, cmp); if (it == end || (!cmp(*it, value) && !cmp(value, *it))) { return it; } return end; } /* Returns true if all pointers in the array are not-null and unique. Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. T must be pointer type, e.g. VmaAllocation, VmaPool. */ template static bool VmaValidatePointerArray(uint32_t count, const T* arr) { for (uint32_t i = 0; i < count; ++i) { const T iPtr = arr[i]; if (iPtr == VMA_NULL) { return false; } for (uint32_t j = i + 1; j < count; ++j) { if (iPtr == arr[j]) { return false; } } } return true; } template static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct) { newStruct->pNext = mainStruct->pNext; mainStruct->pNext = newStruct; } // This is the main algorithm that guides the selection of a memory type best for an allocation - // converts usage to required/preferred/not preferred flags. static bool FindMemoryPreferences( bool isIntegratedGPU, const VmaAllocationCreateInfo& allocCreateInfo, VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown. VkMemoryPropertyFlags& outRequiredFlags, VkMemoryPropertyFlags& outPreferredFlags, VkMemoryPropertyFlags& outNotPreferredFlags) { outRequiredFlags = allocCreateInfo.requiredFlags; outPreferredFlags = allocCreateInfo.preferredFlags; outNotPreferredFlags = 0; switch(allocCreateInfo.usage) { case VMA_MEMORY_USAGE_UNKNOWN: break; case VMA_MEMORY_USAGE_GPU_ONLY: if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) { outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; } break; case VMA_MEMORY_USAGE_CPU_ONLY: outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; break; case VMA_MEMORY_USAGE_CPU_TO_GPU: outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) { outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; } break; case VMA_MEMORY_USAGE_GPU_TO_CPU: outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; break; case VMA_MEMORY_USAGE_CPU_COPY: outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; break; case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; break; case VMA_MEMORY_USAGE_AUTO: case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE: case VMA_MEMORY_USAGE_AUTO_PREFER_HOST: { if(bufImgUsage == UINT32_MAX) { VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known."); return false; } // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same VK_BUFFER_IMAGE_TRANSFER*. const bool deviceAccess = (bufImgUsage & ~(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0; const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0; const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0; const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0; const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE; const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST; // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU. if(hostAccessRandom) { if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost) { // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL. // Omitting HOST_VISIBLE here is intentional. // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one. // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list. outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; } else { // Always CPU memory, cached. outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; } } // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined. else if(hostAccessSequentialWrite) { // Want uncached and write-combined. outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost) { outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; } else { outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame) if(deviceAccess) { // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory. if(preferHost) outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; else outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; } // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU) else { // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory. if(preferDevice) outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; else outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; } } } // No CPU access else { // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory if(deviceAccess) { outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; } // No direct GPU access, no CPU access, just transfers. // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or // a "swap file" copy to free some GPU memory (then better CPU memory). // Up to the user to decide. If no preferece, assume the former and choose GPU memory. if(preferHost) outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; else outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; } break; } default: VMA_ASSERT(0); } // Avoid DEVICE_COHERENT unless explicitly requested. if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) & (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0) { outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY; } return true; } //////////////////////////////////////////////////////////////////////////////// // Memory allocation static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) { void* result = VMA_NULL; if ((pAllocationCallbacks != VMA_NULL) && (pAllocationCallbacks->pfnAllocation != VMA_NULL)) { result = (*pAllocationCallbacks->pfnAllocation)( pAllocationCallbacks->pUserData, size, alignment, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); } else { result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); } VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed."); return result; } static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) { if ((pAllocationCallbacks != VMA_NULL) && (pAllocationCallbacks->pfnFree != VMA_NULL)) { (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); } else { VMA_SYSTEM_ALIGNED_FREE(ptr); } } template static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) { return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); } template static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) { return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); } #define vma_new(allocator, type) new(VmaAllocate(allocator))(type) #define vma_new_array(allocator, type, count) new(VmaAllocateArray((allocator), (count)))(type) template static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) { ptr->~T(); VmaFree(pAllocationCallbacks, ptr); } template static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) { if (ptr != VMA_NULL) { for (size_t i = count; i--; ) { ptr[i].~T(); } VmaFree(pAllocationCallbacks, ptr); } } static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) { if (srcStr != VMA_NULL) { const size_t len = strlen(srcStr); char* const result = vma_new_array(allocs, char, len + 1); memcpy(result, srcStr, len + 1); return result; } return VMA_NULL; } #if VMA_STATS_STRING_ENABLED static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen) { if (srcStr != VMA_NULL) { char* const result = vma_new_array(allocs, char, strLen + 1); memcpy(result, srcStr, strLen); result[strLen] = '\0'; return result; } return VMA_NULL; } #endif // VMA_STATS_STRING_ENABLED static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) { if (str != VMA_NULL) { const size_t len = strlen(str); vma_delete_array(allocs, str, len + 1); } } template size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) { const size_t indexToInsert = VmaBinaryFindFirstNotLess( vector.data(), vector.data() + vector.size(), value, CmpLess()) - vector.data(); VmaVectorInsert(vector, indexToInsert, value); return indexToInsert; } template bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) { CmpLess comparator; typename VectorT::iterator it = VmaBinaryFindFirstNotLess( vector.begin(), vector.end(), value, comparator); if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) { size_t indexToRemove = it - vector.begin(); VmaVectorRemove(vector, indexToRemove); return true; } return false; } #endif // _VMA_FUNCTIONS #ifndef _VMA_STAT_INFO_FUNCTIONS static void VmaInitStatInfo(VmaStatInfo& outInfo) { memset(&outInfo, 0, sizeof(outInfo)); outInfo.allocationSizeMin = UINT64_MAX; outInfo.unusedRangeSizeMin = UINT64_MAX; } // Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo. static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo) { inoutInfo.blockCount += srcInfo.blockCount; inoutInfo.allocationCount += srcInfo.allocationCount; inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount; inoutInfo.usedBytes += srcInfo.usedBytes; inoutInfo.unusedBytes += srcInfo.unusedBytes; inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin); inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax); inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin); inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax); } static void VmaAddStatInfoAllocation(VmaStatInfo& inoutInfo, VkDeviceSize size) { ++inoutInfo.allocationCount; inoutInfo.usedBytes += size; if (size < inoutInfo.allocationSizeMin) { inoutInfo.allocationSizeMin = size; } if (size > inoutInfo.allocationSizeMax) { inoutInfo.allocationSizeMax = size; } } static void VmaAddStatInfoUnusedRange(VmaStatInfo& inoutInfo, VkDeviceSize size) { ++inoutInfo.unusedRangeCount; inoutInfo.unusedBytes += size; if (size < inoutInfo.unusedRangeSizeMin) { inoutInfo.unusedRangeSizeMin = size; } if (size > inoutInfo.unusedRangeSizeMax) { inoutInfo.unusedRangeSizeMax = size; } } static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo) { inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ? VmaRoundDiv(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0; inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ? VmaRoundDiv(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0; } #endif // _VMA_STAT_INFO_FUNCTIONS #ifndef _VMA_MUTEX_LOCK // Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). struct VmaMutexLock { VMA_CLASS_NO_COPY(VmaMutexLock) public: VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : m_pMutex(useMutex ? &mutex : VMA_NULL) { if (m_pMutex) { m_pMutex->Lock(); } } ~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } } private: VMA_MUTEX* m_pMutex; }; // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. struct VmaMutexLockRead { VMA_CLASS_NO_COPY(VmaMutexLockRead) public: VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : m_pMutex(useMutex ? &mutex : VMA_NULL) { if (m_pMutex) { m_pMutex->LockRead(); } } ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } } private: VMA_RW_MUTEX* m_pMutex; }; // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. struct VmaMutexLockWrite { VMA_CLASS_NO_COPY(VmaMutexLockWrite) public: VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) : m_pMutex(useMutex ? &mutex : VMA_NULL) { if (m_pMutex) { m_pMutex->LockWrite(); } } ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } } private: VMA_RW_MUTEX* m_pMutex; }; #if VMA_DEBUG_GLOBAL_MUTEX static VMA_MUTEX gDebugGlobalMutex; #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); #else #define VMA_DEBUG_GLOBAL_MUTEX_LOCK #endif #endif // _VMA_MUTEX_LOCK #ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT // An object that increments given atomic but decrements it back in the destructor unless Commit() is called. template struct AtomicTransactionalIncrement { public: typedef std::atomic AtomicT; ~AtomicTransactionalIncrement() { if(m_Atomic) --(*m_Atomic); } void Commit() { m_Atomic = nullptr; } T Increment(AtomicT* atomic) { m_Atomic = atomic; return m_Atomic->fetch_add(1); } private: AtomicT* m_Atomic = nullptr; }; #endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT #ifndef _VMA_STL_ALLOCATOR // STL-compatible allocator. template struct VmaStlAllocator { const VkAllocationCallbacks* const m_pCallbacks; typedef T value_type; VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {} template VmaStlAllocator(const VmaStlAllocator& src) : m_pCallbacks(src.m_pCallbacks) {} VmaStlAllocator(const VmaStlAllocator&) = default; VmaStlAllocator& operator=(const VmaStlAllocator&) = delete; T* allocate(size_t n) { return VmaAllocateArray(m_pCallbacks, n); } void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } template bool operator==(const VmaStlAllocator& rhs) const { return m_pCallbacks == rhs.m_pCallbacks; } template bool operator!=(const VmaStlAllocator& rhs) const { return m_pCallbacks != rhs.m_pCallbacks; } }; #endif // _VMA_STL_ALLOCATOR #ifndef _VMA_VECTOR /* Class with interface compatible with subset of std::vector. T must be POD because constructors and destructors are not called and memcpy is used for these objects. */ template class VmaVector { public: typedef T value_type; typedef T* iterator; typedef const T* const_iterator; VmaVector(const AllocatorT& allocator); VmaVector(size_t count, const AllocatorT& allocator); // This version of the constructor is here for compatibility with pre-C++14 std::vector. // value is unused. VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {} VmaVector(const VmaVector& src); VmaVector& operator=(const VmaVector& rhs); ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); } bool empty() const { return m_Count == 0; } size_t size() const { return m_Count; } T* data() { return m_pArray; } T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } const T* data() const { return m_pArray; } const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } iterator begin() { return m_pArray; } iterator end() { return m_pArray + m_Count; } const_iterator cbegin() const { return m_pArray; } const_iterator cend() const { return m_pArray + m_Count; } const_iterator begin() const { return cbegin(); } const_iterator end() const { return cend(); } void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } void push_front(const T& src) { insert(0, src); } void push_back(const T& src); void reserve(size_t newCapacity, bool freeMemory = false); void resize(size_t newCount); void clear() { resize(0); } void shrink_to_fit(); void insert(size_t index, const T& src); void remove(size_t index); T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } private: AllocatorT m_Allocator; T* m_pArray; size_t m_Count; size_t m_Capacity; }; #ifndef _VMA_VECTOR_FUNCTIONS template VmaVector::VmaVector(const AllocatorT& allocator) : m_Allocator(allocator), m_pArray(VMA_NULL), m_Count(0), m_Capacity(0) {} template VmaVector::VmaVector(size_t count, const AllocatorT& allocator) : m_Allocator(allocator), m_pArray(count ? (T*)VmaAllocateArray(allocator.m_pCallbacks, count) : VMA_NULL), m_Count(count), m_Capacity(count) {} template VmaVector::VmaVector(const VmaVector& src) : m_Allocator(src.m_Allocator), m_pArray(src.m_Count ? (T*)VmaAllocateArray(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), m_Count(src.m_Count), m_Capacity(src.m_Count) { if (m_Count != 0) { memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); } } template VmaVector& VmaVector::operator=(const VmaVector& rhs) { if (&rhs != this) { resize(rhs.m_Count); if (m_Count != 0) { memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); } } return *this; } template void VmaVector::push_back(const T& src) { const size_t newIndex = size(); resize(newIndex + 1); m_pArray[newIndex] = src; } template void VmaVector::reserve(size_t newCapacity, bool freeMemory) { newCapacity = VMA_MAX(newCapacity, m_Count); if ((newCapacity < m_Capacity) && !freeMemory) { newCapacity = m_Capacity; } if (newCapacity != m_Capacity) { T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator, newCapacity) : VMA_NULL; if (m_Count != 0) { memcpy(newArray, m_pArray, m_Count * sizeof(T)); } VmaFree(m_Allocator.m_pCallbacks, m_pArray); m_Capacity = newCapacity; m_pArray = newArray; } } template void VmaVector::resize(size_t newCount) { size_t newCapacity = m_Capacity; if (newCount > m_Capacity) { newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); } if (newCapacity != m_Capacity) { T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; const size_t elementsToCopy = VMA_MIN(m_Count, newCount); if (elementsToCopy != 0) { memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); } VmaFree(m_Allocator.m_pCallbacks, m_pArray); m_Capacity = newCapacity; m_pArray = newArray; } m_Count = newCount; } template void VmaVector::shrink_to_fit() { if (m_Capacity > m_Count) { T* newArray = VMA_NULL; if (m_Count > 0) { newArray = VmaAllocateArray(m_Allocator.m_pCallbacks, m_Count); memcpy(newArray, m_pArray, m_Count * sizeof(T)); } VmaFree(m_Allocator.m_pCallbacks, m_pArray); m_Capacity = m_Count; m_pArray = newArray; } } template void VmaVector::insert(size_t index, const T& src) { VMA_HEAVY_ASSERT(index <= m_Count); const size_t oldCount = size(); resize(oldCount + 1); if (index < oldCount) { memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); } m_pArray[index] = src; } template void VmaVector::remove(size_t index) { VMA_HEAVY_ASSERT(index < m_Count); const size_t oldCount = size(); if (index < oldCount - 1) { memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); } resize(oldCount - 1); } #endif // _VMA_VECTOR_FUNCTIONS template static void VmaVectorInsert(VmaVector& vec, size_t index, const T& item) { vec.insert(index, item); } template static void VmaVectorRemove(VmaVector& vec, size_t index) { vec.remove(index); } #endif // _VMA_VECTOR #ifndef _VMA_SMALL_VECTOR /* This is a vector (a variable-sized array), optimized for the case when the array is small. It contains some number of elements in-place, which allows it to avoid heap allocation when the actual number of elements is below that threshold. This allows normal "small" cases to be fast without losing generality for large inputs. */ template class VmaSmallVector { public: typedef T value_type; typedef T* iterator; VmaSmallVector(const AllocatorT& allocator); VmaSmallVector(size_t count, const AllocatorT& allocator); template VmaSmallVector(const VmaSmallVector&) = delete; template VmaSmallVector& operator=(const VmaSmallVector&) = delete; ~VmaSmallVector() = default; bool empty() const { return m_Count == 0; } size_t size() const { return m_Count; } T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } iterator begin() { return data(); } iterator end() { return data() + m_Count; } void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } void push_front(const T& src) { insert(0, src); } void push_back(const T& src); void resize(size_t newCount, bool freeMemory = false); void clear(bool freeMemory = false); void insert(size_t index, const T& src); void remove(size_t index); T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } private: size_t m_Count; T m_StaticArray[N]; // Used when m_Size <= N VmaVector m_DynamicArray; // Used when m_Size > N }; #ifndef _VMA_SMALL_VECTOR_FUNCTIONS template VmaSmallVector::VmaSmallVector(const AllocatorT& allocator) : m_Count(0), m_DynamicArray(allocator) {} template VmaSmallVector::VmaSmallVector(size_t count, const AllocatorT& allocator) : m_Count(count), m_DynamicArray(count > N ? count : 0, allocator) {} template void VmaSmallVector::push_back(const T& src) { resize(m_Count + 1); data()[m_Count] = src; } template void VmaSmallVector::resize(size_t newCount, bool freeMemory) { if (newCount > N && m_Count > N) { // Any direction, staying in m_DynamicArray m_DynamicArray.resize(newCount); if (freeMemory) { m_DynamicArray.shrink_to_fit(); } } else if (newCount > N && m_Count <= N) { // Growing, moving from m_StaticArray to m_DynamicArray m_DynamicArray.resize(newCount); if (m_Count > 0) { memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T)); } } else if (newCount <= N && m_Count > N) { // Shrinking, moving from m_DynamicArray to m_StaticArray if (newCount > 0) { memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T)); } m_DynamicArray.resize(0); if (freeMemory) { m_DynamicArray.shrink_to_fit(); } } else { // Any direction, staying in m_StaticArray - nothing to do here } m_Count = newCount; } template void VmaSmallVector::clear(bool freeMemory) { m_DynamicArray.clear(); if (freeMemory) { m_DynamicArray.shrink_to_fit(); } m_Count = 0; } template void VmaSmallVector::insert(size_t index, const T& src) { VMA_HEAVY_ASSERT(index <= m_Count); const size_t oldCount = size(); resize(oldCount + 1); T* const dataPtr = data(); if (index < oldCount) { // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray. memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T)); } dataPtr[index] = src; } template void VmaSmallVector::remove(size_t index) { VMA_HEAVY_ASSERT(index < m_Count); const size_t oldCount = size(); if (index < oldCount - 1) { // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray. T* const dataPtr = data(); memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T)); } resize(oldCount - 1); } #endif // _VMA_SMALL_VECTOR_FUNCTIONS #endif // _VMA_SMALL_VECTOR #ifndef _VMA_POOL_ALLOCATOR /* Allocator for objects of type T using a list of arrays (pools) to speed up allocation. Number of elements that can be allocated is not bounded because allocator can create multiple blocks. */ template class VmaPoolAllocator { VMA_CLASS_NO_COPY(VmaPoolAllocator) public: VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); ~VmaPoolAllocator(); template T* Alloc(Types&&... args); void Free(T* ptr); private: union Item { uint32_t NextFreeIndex; alignas(T) char Value[sizeof(T)]; }; struct ItemBlock { Item* pItems; uint32_t Capacity; uint32_t FirstFreeIndex; }; const VkAllocationCallbacks* m_pAllocationCallbacks; const uint32_t m_FirstBlockCapacity; VmaVector> m_ItemBlocks; ItemBlock& CreateNewBlock(); }; #ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS template VmaPoolAllocator::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) : m_pAllocationCallbacks(pAllocationCallbacks), m_FirstBlockCapacity(firstBlockCapacity), m_ItemBlocks(VmaStlAllocator(pAllocationCallbacks)) { VMA_ASSERT(m_FirstBlockCapacity > 1); } template VmaPoolAllocator::~VmaPoolAllocator() { for (size_t i = m_ItemBlocks.size(); i--;) vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); m_ItemBlocks.clear(); } template template T* VmaPoolAllocator::Alloc(Types&&... args) { for (size_t i = m_ItemBlocks.size(); i--; ) { ItemBlock& block = m_ItemBlocks[i]; // This block has some free items: Use first one. if (block.FirstFreeIndex != UINT32_MAX) { Item* const pItem = &block.pItems[block.FirstFreeIndex]; block.FirstFreeIndex = pItem->NextFreeIndex; T* result = (T*)&pItem->Value; new(result)T(std::forward(args)...); // Explicit constructor call. return result; } } // No block has free item: Create new one and use it. ItemBlock& newBlock = CreateNewBlock(); Item* const pItem = &newBlock.pItems[0]; newBlock.FirstFreeIndex = pItem->NextFreeIndex; T* result = (T*)&pItem->Value; new(result) T(std::forward(args)...); // Explicit constructor call. return result; } template void VmaPoolAllocator::Free(T* ptr) { // Search all memory blocks to find ptr. for (size_t i = m_ItemBlocks.size(); i--; ) { ItemBlock& block = m_ItemBlocks[i]; // Casting to union. Item* pItemPtr; memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); // Check if pItemPtr is in address range of this block. if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) { ptr->~T(); // Explicit destructor call. const uint32_t index = static_cast(pItemPtr - block.pItems); pItemPtr->NextFreeIndex = block.FirstFreeIndex; block.FirstFreeIndex = index; return; } } VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); } template typename VmaPoolAllocator::ItemBlock& VmaPoolAllocator::CreateNewBlock() { const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; const ItemBlock newBlock = { vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), newBlockCapacity, 0 }; m_ItemBlocks.push_back(newBlock); // Setup singly-linked list of all free items in this block. for (uint32_t i = 0; i < newBlockCapacity - 1; ++i) newBlock.pItems[i].NextFreeIndex = i + 1; newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; return m_ItemBlocks.back(); } #endif // _VMA_POOL_ALLOCATOR_FUNCTIONS #endif // _VMA_POOL_ALLOCATOR #ifndef _VMA_RAW_LIST template struct VmaListItem { VmaListItem* pPrev; VmaListItem* pNext; T Value; }; // Doubly linked list. template class VmaRawList { VMA_CLASS_NO_COPY(VmaRawList) public: typedef VmaListItem ItemType; VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); // Intentionally not calling Clear, because that would be unnecessary // computations to return all items to m_ItemAllocator as free. ~VmaRawList() = default; size_t GetCount() const { return m_Count; } bool IsEmpty() const { return m_Count == 0; } ItemType* Front() { return m_pFront; } ItemType* Back() { return m_pBack; } const ItemType* Front() const { return m_pFront; } const ItemType* Back() const { return m_pBack; } ItemType* PushFront(); ItemType* PushBack(); ItemType* PushFront(const T& value); ItemType* PushBack(const T& value); void PopFront(); void PopBack(); // Item can be null - it means PushBack. ItemType* InsertBefore(ItemType* pItem); // Item can be null - it means PushFront. ItemType* InsertAfter(ItemType* pItem); ItemType* InsertBefore(ItemType* pItem, const T& value); ItemType* InsertAfter(ItemType* pItem, const T& value); void Clear(); void Remove(ItemType* pItem); private: const VkAllocationCallbacks* const m_pAllocationCallbacks; VmaPoolAllocator m_ItemAllocator; ItemType* m_pFront; ItemType* m_pBack; size_t m_Count; }; #ifndef _VMA_RAW_LIST_FUNCTIONS template VmaRawList::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) : m_pAllocationCallbacks(pAllocationCallbacks), m_ItemAllocator(pAllocationCallbacks, 128), m_pFront(VMA_NULL), m_pBack(VMA_NULL), m_Count(0) {} template VmaListItem* VmaRawList::PushFront() { ItemType* const pNewItem = m_ItemAllocator.Alloc(); pNewItem->pPrev = VMA_NULL; if (IsEmpty()) { pNewItem->pNext = VMA_NULL; m_pFront = pNewItem; m_pBack = pNewItem; m_Count = 1; } else { pNewItem->pNext = m_pFront; m_pFront->pPrev = pNewItem; m_pFront = pNewItem; ++m_Count; } return pNewItem; } template VmaListItem* VmaRawList::PushBack() { ItemType* const pNewItem = m_ItemAllocator.Alloc(); pNewItem->pNext = VMA_NULL; if(IsEmpty()) { pNewItem->pPrev = VMA_NULL; m_pFront = pNewItem; m_pBack = pNewItem; m_Count = 1; } else { pNewItem->pPrev = m_pBack; m_pBack->pNext = pNewItem; m_pBack = pNewItem; ++m_Count; } return pNewItem; } template VmaListItem* VmaRawList::PushFront(const T& value) { ItemType* const pNewItem = PushFront(); pNewItem->Value = value; return pNewItem; } template VmaListItem* VmaRawList::PushBack(const T& value) { ItemType* const pNewItem = PushBack(); pNewItem->Value = value; return pNewItem; } template void VmaRawList::PopFront() { VMA_HEAVY_ASSERT(m_Count > 0); ItemType* const pFrontItem = m_pFront; ItemType* const pNextItem = pFrontItem->pNext; if (pNextItem != VMA_NULL) { pNextItem->pPrev = VMA_NULL; } m_pFront = pNextItem; m_ItemAllocator.Free(pFrontItem); --m_Count; } template void VmaRawList::PopBack() { VMA_HEAVY_ASSERT(m_Count > 0); ItemType* const pBackItem = m_pBack; ItemType* const pPrevItem = pBackItem->pPrev; if(pPrevItem != VMA_NULL) { pPrevItem->pNext = VMA_NULL; } m_pBack = pPrevItem; m_ItemAllocator.Free(pBackItem); --m_Count; } template void VmaRawList::Clear() { if (IsEmpty() == false) { ItemType* pItem = m_pBack; while (pItem != VMA_NULL) { ItemType* const pPrevItem = pItem->pPrev; m_ItemAllocator.Free(pItem); pItem = pPrevItem; } m_pFront = VMA_NULL; m_pBack = VMA_NULL; m_Count = 0; } } template void VmaRawList::Remove(ItemType* pItem) { VMA_HEAVY_ASSERT(pItem != VMA_NULL); VMA_HEAVY_ASSERT(m_Count > 0); if(pItem->pPrev != VMA_NULL) { pItem->pPrev->pNext = pItem->pNext; } else { VMA_HEAVY_ASSERT(m_pFront == pItem); m_pFront = pItem->pNext; } if(pItem->pNext != VMA_NULL) { pItem->pNext->pPrev = pItem->pPrev; } else { VMA_HEAVY_ASSERT(m_pBack == pItem); m_pBack = pItem->pPrev; } m_ItemAllocator.Free(pItem); --m_Count; } template VmaListItem* VmaRawList::InsertBefore(ItemType* pItem) { if(pItem != VMA_NULL) { ItemType* const prevItem = pItem->pPrev; ItemType* const newItem = m_ItemAllocator.Alloc(); newItem->pPrev = prevItem; newItem->pNext = pItem; pItem->pPrev = newItem; if(prevItem != VMA_NULL) { prevItem->pNext = newItem; } else { VMA_HEAVY_ASSERT(m_pFront == pItem); m_pFront = newItem; } ++m_Count; return newItem; } else return PushBack(); } template VmaListItem* VmaRawList::InsertAfter(ItemType* pItem) { if(pItem != VMA_NULL) { ItemType* const nextItem = pItem->pNext; ItemType* const newItem = m_ItemAllocator.Alloc(); newItem->pNext = nextItem; newItem->pPrev = pItem; pItem->pNext = newItem; if(nextItem != VMA_NULL) { nextItem->pPrev = newItem; } else { VMA_HEAVY_ASSERT(m_pBack == pItem); m_pBack = newItem; } ++m_Count; return newItem; } else return PushFront(); } template VmaListItem* VmaRawList::InsertBefore(ItemType* pItem, const T& value) { ItemType* const newItem = InsertBefore(pItem); newItem->Value = value; return newItem; } template VmaListItem* VmaRawList::InsertAfter(ItemType* pItem, const T& value) { ItemType* const newItem = InsertAfter(pItem); newItem->Value = value; return newItem; } #endif // _VMA_RAW_LIST_FUNCTIONS #endif // _VMA_RAW_LIST #ifndef _VMA_LIST template class VmaList { VMA_CLASS_NO_COPY(VmaList) public: class reverse_iterator; class const_iterator; class const_reverse_iterator; class iterator { friend class VmaList; public: iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } iterator operator++(int) { iterator result = *this; ++*this; return result; } iterator operator--(int) { iterator result = *this; --*this; return result; } iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } iterator& operator--(); private: VmaRawList* m_pList; VmaListItem* m_pItem; iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} }; class reverse_iterator { friend class VmaList; public: reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; } reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; } reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } reverse_iterator& operator--(); private: VmaRawList* m_pList; VmaListItem* m_pItem; reverse_iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} }; class const_iterator { friend class VmaList; public: const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; } const_iterator operator--(int) { const_iterator result = *this; --* this; return result; } const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } const_iterator& operator--(); private: const VmaRawList* m_pList; const VmaListItem* m_pItem; const_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} }; class const_reverse_iterator { friend class VmaList; public: const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; } const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; } const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } const_reverse_iterator& operator--(); private: const VmaRawList* m_pList; const VmaListItem* m_pItem; const_reverse_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} }; VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {} bool empty() const { return m_RawList.IsEmpty(); } size_t size() const { return m_RawList.GetCount(); } iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } iterator end() { return iterator(&m_RawList, VMA_NULL); } const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } const_iterator begin() const { return cbegin(); } const_iterator end() const { return cend(); } reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); } reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); } const_reverse_iterator crbegin() { return const_reverse_iterator(&m_RawList, m_RawList.Back()); } const_reverse_iterator crend() { return const_reverse_iterator(&m_RawList, VMA_NULL); } const_reverse_iterator rbegin() const { return crbegin(); } const_reverse_iterator rend() const { return crend(); } void push_back(const T& value) { m_RawList.PushBack(value); } iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } void clear() { m_RawList.Clear(); } void erase(iterator it) { m_RawList.Remove(it.m_pItem); } private: VmaRawList m_RawList; }; #ifndef _VMA_LIST_FUNCTIONS template typename VmaList::iterator& VmaList::iterator::operator--() { if (m_pItem != VMA_NULL) { m_pItem = m_pItem->pPrev; } else { VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); m_pItem = m_pList->Back(); } return *this; } template typename VmaList::reverse_iterator& VmaList::reverse_iterator::operator--() { if (m_pItem != VMA_NULL) { m_pItem = m_pItem->pNext; } else { VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); m_pItem = m_pList->Front(); } return *this; } template typename VmaList::const_iterator& VmaList::const_iterator::operator--() { if (m_pItem != VMA_NULL) { m_pItem = m_pItem->pPrev; } else { VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); m_pItem = m_pList->Back(); } return *this; } template typename VmaList::const_reverse_iterator& VmaList::const_reverse_iterator::operator--() { if (m_pItem != VMA_NULL) { m_pItem = m_pItem->pNext; } else { VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); m_pItem = m_pList->Back(); } return *this; } #endif // _VMA_LIST_FUNCTIONS #endif // _VMA_LIST #ifndef _VMA_INTRUSIVE_LINKED_LIST /* Expected interface of ItemTypeTraits: struct MyItemTypeTraits { typedef MyItem ItemType; static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; } static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; } static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; } static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; } }; */ template class VmaIntrusiveLinkedList { public: typedef typename ItemTypeTraits::ItemType ItemType; static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); } static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); } // Movable, not copyable. VmaIntrusiveLinkedList() = default; VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src); VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete; VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src); VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete; ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); } size_t GetCount() const { return m_Count; } bool IsEmpty() const { return m_Count == 0; } ItemType* Front() { return m_Front; } ItemType* Back() { return m_Back; } const ItemType* Front() const { return m_Front; } const ItemType* Back() const { return m_Back; } void PushBack(ItemType* item); void PushFront(ItemType* item); ItemType* PopBack(); ItemType* PopFront(); // MyItem can be null - it means PushBack. void InsertBefore(ItemType* existingItem, ItemType* newItem); // MyItem can be null - it means PushFront. void InsertAfter(ItemType* existingItem, ItemType* newItem); void Remove(ItemType* item); void RemoveAll(); private: ItemType* m_Front = VMA_NULL; ItemType* m_Back = VMA_NULL; size_t m_Count = 0; }; #ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS template VmaIntrusiveLinkedList::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src) : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count) { src.m_Front = src.m_Back = VMA_NULL; src.m_Count = 0; } template VmaIntrusiveLinkedList& VmaIntrusiveLinkedList::operator=(VmaIntrusiveLinkedList&& src) { if (&src != this) { VMA_HEAVY_ASSERT(IsEmpty()); m_Front = src.m_Front; m_Back = src.m_Back; m_Count = src.m_Count; src.m_Front = src.m_Back = VMA_NULL; src.m_Count = 0; } return *this; } template void VmaIntrusiveLinkedList::PushBack(ItemType* item) { VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); if (IsEmpty()) { m_Front = item; m_Back = item; m_Count = 1; } else { ItemTypeTraits::AccessPrev(item) = m_Back; ItemTypeTraits::AccessNext(m_Back) = item; m_Back = item; ++m_Count; } } template void VmaIntrusiveLinkedList::PushFront(ItemType* item) { VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); if (IsEmpty()) { m_Front = item; m_Back = item; m_Count = 1; } else { ItemTypeTraits::AccessNext(item) = m_Front; ItemTypeTraits::AccessPrev(m_Front) = item; m_Front = item; ++m_Count; } } template typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopBack() { VMA_HEAVY_ASSERT(m_Count > 0); ItemType* const backItem = m_Back; ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem); if (prevItem != VMA_NULL) { ItemTypeTraits::AccessNext(prevItem) = VMA_NULL; } m_Back = prevItem; --m_Count; ItemTypeTraits::AccessPrev(backItem) = VMA_NULL; ItemTypeTraits::AccessNext(backItem) = VMA_NULL; return backItem; } template typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopFront() { VMA_HEAVY_ASSERT(m_Count > 0); ItemType* const frontItem = m_Front; ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem); if (nextItem != VMA_NULL) { ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL; } m_Front = nextItem; --m_Count; ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL; ItemTypeTraits::AccessNext(frontItem) = VMA_NULL; return frontItem; } template void VmaIntrusiveLinkedList::InsertBefore(ItemType* existingItem, ItemType* newItem) { VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); if (existingItem != VMA_NULL) { ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem); ItemTypeTraits::AccessPrev(newItem) = prevItem; ItemTypeTraits::AccessNext(newItem) = existingItem; ItemTypeTraits::AccessPrev(existingItem) = newItem; if (prevItem != VMA_NULL) { ItemTypeTraits::AccessNext(prevItem) = newItem; } else { VMA_HEAVY_ASSERT(m_Front == existingItem); m_Front = newItem; } ++m_Count; } else PushBack(newItem); } template void VmaIntrusiveLinkedList::InsertAfter(ItemType* existingItem, ItemType* newItem) { VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); if (existingItem != VMA_NULL) { ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem); ItemTypeTraits::AccessNext(newItem) = nextItem; ItemTypeTraits::AccessPrev(newItem) = existingItem; ItemTypeTraits::AccessNext(existingItem) = newItem; if (nextItem != VMA_NULL) { ItemTypeTraits::AccessPrev(nextItem) = newItem; } else { VMA_HEAVY_ASSERT(m_Back == existingItem); m_Back = newItem; } ++m_Count; } else return PushFront(newItem); } template void VmaIntrusiveLinkedList::Remove(ItemType* item) { VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0); if (ItemTypeTraits::GetPrev(item) != VMA_NULL) { ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item); } else { VMA_HEAVY_ASSERT(m_Front == item); m_Front = ItemTypeTraits::GetNext(item); } if (ItemTypeTraits::GetNext(item) != VMA_NULL) { ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item); } else { VMA_HEAVY_ASSERT(m_Back == item); m_Back = ItemTypeTraits::GetPrev(item); } ItemTypeTraits::AccessPrev(item) = VMA_NULL; ItemTypeTraits::AccessNext(item) = VMA_NULL; --m_Count; } template void VmaIntrusiveLinkedList::RemoveAll() { if (!IsEmpty()) { ItemType* item = m_Back; while (item != VMA_NULL) { ItemType* const prevItem = ItemTypeTraits::AccessPrev(item); ItemTypeTraits::AccessPrev(item) = VMA_NULL; ItemTypeTraits::AccessNext(item) = VMA_NULL; item = prevItem; } m_Front = VMA_NULL; m_Back = VMA_NULL; m_Count = 0; } } #endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS #endif // _VMA_INTRUSIVE_LINKED_LIST // Unused in this version. #if 0 #ifndef _VMA_PAIR template struct VmaPair { T1 first; T2 second; VmaPair() : first(), second() {} VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) {} }; template struct VmaPairFirstLess { bool operator()(const VmaPair& lhs, const VmaPair& rhs) const { return lhs.first < rhs.first; } bool operator()(const VmaPair& lhs, const FirstT& rhsFirst) const { return lhs.first < rhsFirst; } }; #endif // _VMA_PAIR #ifndef _VMA_MAP /* Class compatible with subset of interface of std::unordered_map. KeyT, ValueT must be POD because they will be stored in VmaVector. */ template class VmaMap { public: typedef VmaPair PairType; typedef PairType* iterator; VmaMap(const VmaStlAllocator& allocator) : m_Vector(allocator) {} iterator begin() { return m_Vector.begin(); } iterator end() { return m_Vector.end(); } void insert(const PairType& pair); iterator find(const KeyT& key); void erase(iterator it); private: VmaVector< PairType, VmaStlAllocator > m_Vector; }; #ifndef _VMA_MAP_FUNCTIONS template void VmaMap::insert(const PairType& pair) { const size_t indexToInsert = VmaBinaryFindFirstNotLess( m_Vector.data(), m_Vector.data() + m_Vector.size(), pair, VmaPairFirstLess()) - m_Vector.data(); VmaVectorInsert(m_Vector, indexToInsert, pair); } template VmaPair* VmaMap::find(const KeyT& key) { PairType* it = VmaBinaryFindFirstNotLess( m_Vector.data(), m_Vector.data() + m_Vector.size(), key, VmaPairFirstLess()); if ((it != m_Vector.end()) && (it->first == key)) { return it; } else { return m_Vector.end(); } } template void VmaMap::erase(iterator it) { VmaVectorRemove(m_Vector, it - m_Vector.begin()); } #endif // _VMA_MAP_FUNCTIONS #endif // _VMA_MAP #endif // #if 0 #if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED class VmaStringBuilder { public: VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator(allocationCallbacks)) {} ~VmaStringBuilder() = default; size_t GetLength() const { return m_Data.size(); } const char* GetData() const { return m_Data.data(); } void AddNewLine() { Add('\n'); } void Add(char ch) { m_Data.push_back(ch); } void Add(const char* pStr); void AddNumber(uint32_t num); void AddNumber(uint64_t num); void AddPointer(const void* ptr); private: VmaVector> m_Data; }; #ifndef _VMA_STRING_BUILDER_FUNCTIONS void VmaStringBuilder::Add(const char* pStr) { const size_t strLen = strlen(pStr); if (strLen > 0) { const size_t oldCount = m_Data.size(); m_Data.resize(oldCount + strLen); memcpy(m_Data.data() + oldCount, pStr, strLen); } } void VmaStringBuilder::AddNumber(uint32_t num) { char buf[11]; buf[10] = '\0'; char* p = &buf[10]; do { *--p = '0' + (num % 10); num /= 10; } while (num); Add(p); } void VmaStringBuilder::AddNumber(uint64_t num) { char buf[21]; buf[20] = '\0'; char* p = &buf[20]; do { *--p = '0' + (num % 10); num /= 10; } while (num); Add(p); } void VmaStringBuilder::AddPointer(const void* ptr) { char buf[21]; VmaPtrToStr(buf, sizeof(buf), ptr); Add(buf); } #endif //_VMA_STRING_BUILDER_FUNCTIONS #endif // _VMA_STRING_BUILDER #if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED /* Allows to conveniently build a correct JSON document to be written to the VmaStringBuilder passed to the constructor. */ class VmaJsonWriter { VMA_CLASS_NO_COPY(VmaJsonWriter) public: // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object. VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); ~VmaJsonWriter(); // Begins object by writing "{". // Inside an object, you must call pairs of WriteString and a value, e.g.: // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject(); // Will write: { "A": 1, "B": 2 } void BeginObject(bool singleLine = false); // Ends object by writing "}". void EndObject(); // Begins array by writing "[". // Inside an array, you can write a sequence of any values. void BeginArray(bool singleLine = false); // Ends array by writing "[". void EndArray(); // Writes a string value inside "". // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped. void WriteString(const char* pStr); // Begins writing a string value. // Call BeginString, ContinueString, ContinueString, ..., EndString instead of // WriteString to conveniently build the string content incrementally, made of // parts including numbers. void BeginString(const char* pStr = VMA_NULL); // Posts next part of an open string. void ContinueString(const char* pStr); // Posts next part of an open string. The number is converted to decimal characters. void ContinueString(uint32_t n); void ContinueString(uint64_t n); // Posts next part of an open string. Pointer value is converted to characters // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00 void ContinueString_Pointer(const void* ptr); // Ends writing a string value by writing '"'. void EndString(const char* pStr = VMA_NULL); // Writes a number value. void WriteNumber(uint32_t n); void WriteNumber(uint64_t n); // Writes a boolean value - false or true. void WriteBool(bool b); // Writes a null value. void WriteNull(); private: enum COLLECTION_TYPE { COLLECTION_TYPE_OBJECT, COLLECTION_TYPE_ARRAY, }; struct StackItem { COLLECTION_TYPE type; uint32_t valueCount; bool singleLineMode; }; static const char* const INDENT; VmaStringBuilder& m_SB; VmaVector< StackItem, VmaStlAllocator > m_Stack; bool m_InsideString; void BeginValue(bool isString); void WriteIndent(bool oneLess = false); }; const char* const VmaJsonWriter::INDENT = " "; #ifndef _VMA_JSON_WRITER_FUNCTIONS VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) : m_SB(sb), m_Stack(VmaStlAllocator(pAllocationCallbacks)), m_InsideString(false) {} VmaJsonWriter::~VmaJsonWriter() { VMA_ASSERT(!m_InsideString); VMA_ASSERT(m_Stack.empty()); } void VmaJsonWriter::BeginObject(bool singleLine) { VMA_ASSERT(!m_InsideString); BeginValue(false); m_SB.Add('{'); StackItem item; item.type = COLLECTION_TYPE_OBJECT; item.valueCount = 0; item.singleLineMode = singleLine; m_Stack.push_back(item); } void VmaJsonWriter::EndObject() { VMA_ASSERT(!m_InsideString); WriteIndent(true); m_SB.Add('}'); VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); m_Stack.pop_back(); } void VmaJsonWriter::BeginArray(bool singleLine) { VMA_ASSERT(!m_InsideString); BeginValue(false); m_SB.Add('['); StackItem item; item.type = COLLECTION_TYPE_ARRAY; item.valueCount = 0; item.singleLineMode = singleLine; m_Stack.push_back(item); } void VmaJsonWriter::EndArray() { VMA_ASSERT(!m_InsideString); WriteIndent(true); m_SB.Add(']'); VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); m_Stack.pop_back(); } void VmaJsonWriter::WriteString(const char* pStr) { BeginString(pStr); EndString(); } void VmaJsonWriter::BeginString(const char* pStr) { VMA_ASSERT(!m_InsideString); BeginValue(true); m_SB.Add('"'); m_InsideString = true; if (pStr != VMA_NULL && pStr[0] != '\0') { ContinueString(pStr); } } void VmaJsonWriter::ContinueString(const char* pStr) { VMA_ASSERT(m_InsideString); const size_t strLen = strlen(pStr); for (size_t i = 0; i < strLen; ++i) { char ch = pStr[i]; if (ch == '\\') { m_SB.Add("\\\\"); } else if (ch == '"') { m_SB.Add("\\\""); } else if (ch >= 32) { m_SB.Add(ch); } else switch (ch) { case '\b': m_SB.Add("\\b"); break; case '\f': m_SB.Add("\\f"); break; case '\n': m_SB.Add("\\n"); break; case '\r': m_SB.Add("\\r"); break; case '\t': m_SB.Add("\\t"); break; default: VMA_ASSERT(0 && "Character not currently supported."); break; } } } void VmaJsonWriter::ContinueString(uint32_t n) { VMA_ASSERT(m_InsideString); m_SB.AddNumber(n); } void VmaJsonWriter::ContinueString(uint64_t n) { VMA_ASSERT(m_InsideString); m_SB.AddNumber(n); } void VmaJsonWriter::ContinueString_Pointer(const void* ptr) { VMA_ASSERT(m_InsideString); m_SB.AddPointer(ptr); } void VmaJsonWriter::EndString(const char* pStr) { VMA_ASSERT(m_InsideString); if (pStr != VMA_NULL && pStr[0] != '\0') { ContinueString(pStr); } m_SB.Add('"'); m_InsideString = false; } void VmaJsonWriter::WriteNumber(uint32_t n) { VMA_ASSERT(!m_InsideString); BeginValue(false); m_SB.AddNumber(n); } void VmaJsonWriter::WriteNumber(uint64_t n) { VMA_ASSERT(!m_InsideString); BeginValue(false); m_SB.AddNumber(n); } void VmaJsonWriter::WriteBool(bool b) { VMA_ASSERT(!m_InsideString); BeginValue(false); m_SB.Add(b ? "true" : "false"); } void VmaJsonWriter::WriteNull() { VMA_ASSERT(!m_InsideString); BeginValue(false); m_SB.Add("null"); } void VmaJsonWriter::BeginValue(bool isString) { if (!m_Stack.empty()) { StackItem& currItem = m_Stack.back(); if (currItem.type == COLLECTION_TYPE_OBJECT && currItem.valueCount % 2 == 0) { VMA_ASSERT(isString); } if (currItem.type == COLLECTION_TYPE_OBJECT && currItem.valueCount % 2 != 0) { m_SB.Add(": "); } else if (currItem.valueCount > 0) { m_SB.Add(", "); WriteIndent(); } else { WriteIndent(); } ++currItem.valueCount; } } void VmaJsonWriter::WriteIndent(bool oneLess) { if (!m_Stack.empty() && !m_Stack.back().singleLineMode) { m_SB.AddNewLine(); size_t count = m_Stack.size(); if (count > 0 && oneLess) { --count; } for (size_t i = 0; i < count; ++i) { m_SB.Add(INDENT); } } } #endif // _VMA_JSON_WRITER_FUNCTIONS static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat) { json.BeginObject(); json.WriteString("Blocks"); json.WriteNumber(stat.blockCount); json.WriteString("Allocations"); json.WriteNumber(stat.allocationCount); json.WriteString("UnusedRanges"); json.WriteNumber(stat.unusedRangeCount); json.WriteString("UsedBytes"); json.WriteNumber(stat.usedBytes); json.WriteString("UnusedBytes"); json.WriteNumber(stat.unusedBytes); if (stat.allocationCount > 1) { json.WriteString("AllocationSize"); json.BeginObject(true); json.WriteString("Min"); json.WriteNumber(stat.allocationSizeMin); json.WriteString("Avg"); json.WriteNumber(stat.allocationSizeAvg); json.WriteString("Max"); json.WriteNumber(stat.allocationSizeMax); json.EndObject(); } if (stat.unusedRangeCount > 1) { json.WriteString("UnusedRangeSize"); json.BeginObject(true); json.WriteString("Min"); json.WriteNumber(stat.unusedRangeSizeMin); json.WriteString("Avg"); json.WriteNumber(stat.unusedRangeSizeAvg); json.WriteString("Max"); json.WriteNumber(stat.unusedRangeSizeMax); json.EndObject(); } json.EndObject(); } #endif // _VMA_JSON_WRITER #ifndef _VMA_MAPPING_HYSTERESIS class VmaMappingHysteresis { VMA_CLASS_NO_COPY(VmaMappingHysteresis) public: VmaMappingHysteresis() = default; uint32_t GetExtraMapping() const { return m_ExtraMapping; } // Call when Map was called. // Returns true if switched to extra +1 mapping reference count. bool PostMap() { #if VMA_MAPPING_HYSTERESIS_ENABLED if(m_ExtraMapping == 0) { ++m_MajorCounter; if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING) { m_ExtraMapping = 1; m_MajorCounter = 0; m_MinorCounter = 0; return true; } } else // m_ExtraMapping == 1 PostMinorCounter(); #endif // #if VMA_MAPPING_HYSTERESIS_ENABLED return false; } // Call when Unmap was called. void PostUnmap() { #if VMA_MAPPING_HYSTERESIS_ENABLED if(m_ExtraMapping == 0) ++m_MajorCounter; else // m_ExtraMapping == 1 PostMinorCounter(); #endif // #if VMA_MAPPING_HYSTERESIS_ENABLED } // Call when allocation was made from the memory block. void PostAlloc() { #if VMA_MAPPING_HYSTERESIS_ENABLED if(m_ExtraMapping == 1) ++m_MajorCounter; else // m_ExtraMapping == 0 PostMinorCounter(); #endif // #if VMA_MAPPING_HYSTERESIS_ENABLED } // Call when allocation was freed from the memory block. // Returns true if switched to extra -1 mapping reference count. bool PostFree() { #if VMA_MAPPING_HYSTERESIS_ENABLED if(m_ExtraMapping == 1) { ++m_MajorCounter; if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING && m_MajorCounter > m_MinorCounter + 1) { m_ExtraMapping = 0; m_MajorCounter = 0; m_MinorCounter = 0; return true; } } else // m_ExtraMapping == 0 PostMinorCounter(); #endif // #if VMA_MAPPING_HYSTERESIS_ENABLED return false; } private: static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7; uint32_t m_MinorCounter = 0; uint32_t m_MajorCounter = 0; uint32_t m_ExtraMapping = 0; // 0 or 1. void PostMinorCounter() { if(m_MinorCounter < m_MajorCounter) ++m_MinorCounter; else if(m_MajorCounter > 0) --m_MajorCounter, --m_MinorCounter; } }; #endif // _VMA_MAPPING_HYSTERESIS #ifndef _VMA_DEVICE_MEMORY_BLOCK /* Represents a single block of device memory (`VkDeviceMemory`) with all the data about its regions (aka suballocations, #VmaAllocation), assigned and free. Thread-safety: - Access to m_pMetadata must be externally synchronized. - Map, Unmap, Bind* are synchronized internally. */ class VmaDeviceMemoryBlock { VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock) public: VmaBlockMetadata* m_pMetadata; VmaDeviceMemoryBlock(VmaAllocator hAllocator); ~VmaDeviceMemoryBlock(); // Always call after construction. void Init( VmaAllocator hAllocator, VmaPool hParentPool, uint32_t newMemoryTypeIndex, VkDeviceMemory newMemory, VkDeviceSize newSize, uint32_t id, uint32_t algorithm, VkDeviceSize bufferImageGranularity); // Always call before destruction. void Destroy(VmaAllocator allocator); VmaPool GetParentPool() const { return m_hParentPool; } VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } uint32_t GetId() const { return m_Id; } void* GetMappedData() const { return m_pMappedData; } uint32_t GetMapRefCount() const { return m_MapCount; } // Call when allocation/free was made from m_pMetadata. // Used for m_MappingHysteresis. void PostAlloc() { m_MappingHysteresis.PostAlloc(); } void PostFree(VmaAllocator hAllocator); // Validates all data structures inside this object. If not valid, returns false. bool Validate() const; VkResult CheckCorruption(VmaAllocator hAllocator); // ppData can be null. VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); void Unmap(VmaAllocator hAllocator, uint32_t count); VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); VkResult BindBufferMemory( const VmaAllocator hAllocator, const VmaAllocation hAllocation, VkDeviceSize allocationLocalOffset, VkBuffer hBuffer, const void* pNext); VkResult BindImageMemory( const VmaAllocator hAllocator, const VmaAllocation hAllocation, VkDeviceSize allocationLocalOffset, VkImage hImage, const void* pNext); private: VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. uint32_t m_MemoryTypeIndex; uint32_t m_Id; VkDeviceMemory m_hMemory; /* Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. Also protects m_MapCount, m_pMappedData. Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. */ VMA_MUTEX m_MapAndBindMutex; VmaMappingHysteresis m_MappingHysteresis; uint32_t m_MapCount; void* m_pMappedData; }; #endif // _VMA_DEVICE_MEMORY_BLOCK #ifndef _VMA_ALLOCATION_T struct VmaAllocation_T { friend struct VmaDedicatedAllocationListItemTraits; enum FLAGS { FLAG_USER_DATA_STRING = 0x01, FLAG_PERSISTENT_MAP = 0x02, FLAG_MAPPING_ALLOWED = 0x04, }; public: enum ALLOCATION_TYPE { ALLOCATION_TYPE_NONE, ALLOCATION_TYPE_BLOCK, ALLOCATION_TYPE_DEDICATED, }; // This struct is allocated using VmaPoolAllocator. VmaAllocation_T(bool userDataString, bool mappingAllowed); ~VmaAllocation_T(); void InitBlockAllocation( VmaDeviceMemoryBlock* block, VmaAllocHandle allocHandle, VkDeviceSize alignment, VkDeviceSize size, uint32_t memoryTypeIndex, VmaSuballocationType suballocationType, bool mapped); // pMappedData not null means allocation is created with MAPPED flag. void InitDedicatedAllocation( VmaPool hParentPool, uint32_t memoryTypeIndex, VkDeviceMemory hMemory, VmaSuballocationType suballocationType, void* pMappedData, VkDeviceSize size); ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } VkDeviceSize GetAlignment() const { return m_Alignment; } VkDeviceSize GetSize() const { return m_Size; } bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; } void* GetUserData() const { return m_pUserData; } VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; } uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; } bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; } void SetUserData(VmaAllocator hAllocator, void* pUserData); void ChangeBlockAllocation(VmaAllocator hAllocator, VmaDeviceMemoryBlock* block, VmaAllocHandle allocHandle); void ChangeAllocHandle(VmaAllocHandle newAllocHandle); VmaAllocHandle GetAllocHandle() const; VkDeviceSize GetOffset() const; VmaPool GetParentPool() const; VkDeviceMemory GetMemory() const; void* GetMappedData() const; void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo); void BlockAllocMap(); void BlockAllocUnmap(); VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); void DedicatedAllocUnmap(VmaAllocator hAllocator); #if VMA_STATS_STRING_ENABLED uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; } void InitBufferImageUsage(uint32_t bufferImageUsage); void PrintParameters(class VmaJsonWriter& json) const; #endif private: // Allocation out of VmaDeviceMemoryBlock. struct BlockAllocation { VmaDeviceMemoryBlock* m_Block; VmaAllocHandle m_AllocHandle; }; // Allocation for an object that has its own private VkDeviceMemory. struct DedicatedAllocation { VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. VkDeviceMemory m_hMemory; void* m_pMappedData; // Not null means memory is mapped. VmaAllocation_T* m_Prev; VmaAllocation_T* m_Next; }; union { // Allocation out of VmaDeviceMemoryBlock. BlockAllocation m_BlockAllocation; // Allocation for an object that has its own private VkDeviceMemory. DedicatedAllocation m_DedicatedAllocation; }; VkDeviceSize m_Alignment; VkDeviceSize m_Size; void* m_pUserData; uint32_t m_MemoryTypeIndex; uint8_t m_Type; // ALLOCATION_TYPE uint8_t m_SuballocationType; // VmaSuballocationType // Reference counter for vmaMapMemory()/vmaUnmapMemory(). uint8_t m_MapCount; uint8_t m_Flags; // enum FLAGS #if VMA_STATS_STRING_ENABLED uint32_t m_BufferImageUsage; // 0 if unknown. #endif void FreeUserDataString(VmaAllocator hAllocator); }; #endif // _VMA_ALLOCATION_T #ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS struct VmaDedicatedAllocationListItemTraits { typedef VmaAllocation_T ItemType; static ItemType* GetPrev(const ItemType* item) { VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); return item->m_DedicatedAllocation.m_Prev; } static ItemType* GetNext(const ItemType* item) { VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); return item->m_DedicatedAllocation.m_Next; } static ItemType*& AccessPrev(ItemType* item) { VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); return item->m_DedicatedAllocation.m_Prev; } static ItemType*& AccessNext(ItemType* item) { VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); return item->m_DedicatedAllocation.m_Next; } }; #endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS #ifndef _VMA_DEDICATED_ALLOCATION_LIST /* Stores linked list of VmaAllocation_T objects. Thread-safe, synchronized internally. */ class VmaDedicatedAllocationList { public: VmaDedicatedAllocationList() {} ~VmaDedicatedAllocationList(); void Init(bool useMutex) { m_UseMutex = useMutex; } bool Validate(); void AddStats(VmaStats* stats, uint32_t memTypeIndex, uint32_t memHeapIndex); void AddPoolStats(VmaPoolStats* stats); #if VMA_STATS_STRING_ENABLED // Writes JSON array with the list of allocations. void BuildStatsString(VmaJsonWriter& json); #endif bool IsEmpty(); void Register(VmaAllocation alloc); void Unregister(VmaAllocation alloc); private: typedef VmaIntrusiveLinkedList DedicatedAllocationLinkedList; bool m_UseMutex = true; VMA_RW_MUTEX m_Mutex; DedicatedAllocationLinkedList m_AllocationList; }; #ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS VmaDedicatedAllocationList::~VmaDedicatedAllocationList() { VMA_HEAVY_ASSERT(Validate()); if (!m_AllocationList.IsEmpty()) { VMA_ASSERT(false && "Unfreed dedicated allocations found!"); } } bool VmaDedicatedAllocationList::Validate() { const size_t declaredCount = m_AllocationList.GetCount(); size_t actualCount = 0; VmaMutexLockRead lock(m_Mutex, m_UseMutex); for (VmaAllocation alloc = m_AllocationList.Front(); alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) { ++actualCount; } VMA_VALIDATE(actualCount == declaredCount); return true; } void VmaDedicatedAllocationList::AddStats(VmaStats* stats, uint32_t memTypeIndex, uint32_t memHeapIndex) { VmaMutexLockRead lock(m_Mutex, m_UseMutex); for (VmaAllocation alloc = m_AllocationList.Front(); alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) { VmaStatInfo allocationStatInfo; alloc->DedicatedAllocCalcStatsInfo(allocationStatInfo); VmaAddStatInfo(stats->total, allocationStatInfo); VmaAddStatInfo(stats->memoryType[memTypeIndex], allocationStatInfo); VmaAddStatInfo(stats->memoryHeap[memHeapIndex], allocationStatInfo); } } void VmaDedicatedAllocationList::AddPoolStats(VmaPoolStats* stats) { VmaMutexLockRead lock(m_Mutex, m_UseMutex); const size_t allocCount = m_AllocationList.GetCount(); stats->allocationCount += allocCount; stats->blockCount += allocCount; for(auto* item = m_AllocationList.Front(); item != nullptr; item = DedicatedAllocationLinkedList::GetNext(item)) { stats->size += item->GetSize(); } } #if VMA_STATS_STRING_ENABLED void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json) { VmaMutexLockRead lock(m_Mutex, m_UseMutex); json.BeginArray(); for (VmaAllocation alloc = m_AllocationList.Front(); alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) { json.BeginObject(true); alloc->PrintParameters(json); json.EndObject(); } json.EndArray(); } #endif // VMA_STATS_STRING_ENABLED bool VmaDedicatedAllocationList::IsEmpty() { VmaMutexLockRead lock(m_Mutex, m_UseMutex); return m_AllocationList.IsEmpty(); } void VmaDedicatedAllocationList::Register(VmaAllocation alloc) { VmaMutexLockWrite lock(m_Mutex, m_UseMutex); m_AllocationList.PushBack(alloc); } void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc) { VmaMutexLockWrite lock(m_Mutex, m_UseMutex); m_AllocationList.Remove(alloc); } #endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS #endif // _VMA_DEDICATED_ALLOCATION_LIST #ifndef _VMA_SUBALLOCATION /* Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as allocated memory block or free. */ struct VmaSuballocation { VkDeviceSize offset; VkDeviceSize size; void* userData; VmaSuballocationType type; }; // Comparator for offsets. struct VmaSuballocationOffsetLess { bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const { return lhs.offset < rhs.offset; } }; struct VmaSuballocationOffsetGreater { bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const { return lhs.offset > rhs.offset; } }; struct VmaSuballocationItemSizeLess { bool operator()(const VmaSuballocationList::iterator lhs, const VmaSuballocationList::iterator rhs) const { return lhs->size < rhs->size; } bool operator()(const VmaSuballocationList::iterator lhs, VkDeviceSize rhsSize) const { return lhs->size < rhsSize; } }; #endif // _VMA_SUBALLOCATION #ifndef _VMA_ALLOCATION_REQUEST /* Parameters of planned allocation inside a VmaDeviceMemoryBlock. item points to a FREE suballocation. */ struct VmaAllocationRequest { VmaAllocHandle allocHandle; VkDeviceSize size; VmaSuballocationList::iterator item; void* customData; uint64_t algorithmData; VmaAllocationRequestType type; }; #endif // _VMA_ALLOCATION_REQUEST #ifndef _VMA_BLOCK_METADATA /* Data structure used for bookkeeping of allocations and unused ranges of memory in a single VkDeviceMemory block. */ class VmaBlockMetadata { public: // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object. VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual); virtual ~VmaBlockMetadata() = default; virtual void Init(VkDeviceSize size) { m_Size = size; } bool IsVirtual() const { return m_IsVirtual; } VkDeviceSize GetSize() const { return m_Size; } // Validates all data structures inside this object. If not valid, returns false. virtual bool Validate() const = 0; virtual size_t GetAllocationCount() const = 0; virtual VkDeviceSize GetSumFreeSize() const = 0; // Returns true if this block is empty - contains only single free suballocation. virtual bool IsEmpty() const = 0; virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0; virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0; // Must set blockCount to 1. virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0; // Shouldn't modify blockCount. virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0; #if VMA_STATS_STRING_ENABLED // mapRefCount == UINT32_MAX means unspecified. virtual void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const = 0; #endif // Tries to find a place for suballocation with given parameters inside this block. // If succeeded, fills pAllocationRequest and returns true. // If failed, returns false. virtual bool CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. uint32_t strategy, VmaAllocationRequest* pAllocationRequest) = 0; virtual VkResult CheckCorruption(const void* pBlockData) = 0; // Makes actual allocation based on request. Request must already be checked and valid. virtual void Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) = 0; // Frees suballocation assigned to given memory region. virtual void Free(VmaAllocHandle allocHandle) = 0; // Frees all allocations. // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations! virtual void Clear() = 0; virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0; virtual void DebugLogAllAllocations() const = 0; protected: const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } VkDeviceSize GetDebugMargin() const { return IsVirtual() ? 0 : VMA_DEBUG_MARGIN; } void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const; #if VMA_STATS_STRING_ENABLED // mapRefCount == UINT32_MAX means unspecified. void PrintDetailedMap_Begin(class VmaJsonWriter& json, VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount, uint32_t mapRefCount) const; void PrintDetailedMap_Allocation(class VmaJsonWriter& json, VkDeviceSize offset, VkDeviceSize size, void* userData) const; void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, VkDeviceSize offset, VkDeviceSize size) const; void PrintDetailedMap_End(class VmaJsonWriter& json) const; #endif private: VkDeviceSize m_Size; const VkAllocationCallbacks* m_pAllocationCallbacks; const VkDeviceSize m_BufferImageGranularity; const bool m_IsVirtual; }; #ifndef _VMA_BLOCK_METADATA_FUNCTIONS VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual) : m_Size(0), m_pAllocationCallbacks(pAllocationCallbacks), m_BufferImageGranularity(bufferImageGranularity), m_IsVirtual(isVirtual) {} void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const { if (IsVirtual()) { VMA_DEBUG_LOG("UNFREED VIRTUAL ALLOCATION; Offset: %llu; Size: %llu; UserData: %p", offset, size, userData); } else { VMA_ASSERT(userData != VMA_NULL); VmaAllocation allocation = reinterpret_cast(userData); userData = allocation->GetUserData(); #if VMA_STATS_STRING_ENABLED if (userData != VMA_NULL && allocation->IsUserDataString()) { VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %s; Type: %s; Usage: %u", offset, size, reinterpret_cast(userData), VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()], allocation->GetBufferImageUsage()); } else { VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Type: %s; Usage: %u", offset, size, userData, VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()], allocation->GetBufferImageUsage()); } #else if (userData != VMA_NULL && allocation->IsUserDataString()) { VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %s; Type: %u", offset, size, reinterpret_cast(userData), (uint32_t)allocation->GetSuballocationType()); } else { VMA_DEBUG_LOG("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Type: %u", offset, size, userData, (uint32_t)allocation->GetSuballocationType()); } #endif // VMA_STATS_STRING_ENABLED } } #if VMA_STATS_STRING_ENABLED void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount, uint32_t mapRefCount) const { json.BeginObject(); json.WriteString("TotalBytes"); json.WriteNumber(GetSize()); json.WriteString("UnusedBytes"); json.WriteNumber(unusedBytes); json.WriteString("Allocations"); json.WriteNumber((uint64_t)allocationCount); json.WriteString("UnusedRanges"); json.WriteNumber((uint64_t)unusedRangeCount); if(mapRefCount != UINT32_MAX) { json.WriteString("MapRefCount"); json.WriteNumber(mapRefCount); } json.WriteString("Suballocations"); json.BeginArray(); } void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, VkDeviceSize offset, VkDeviceSize size, void* userData) const { json.BeginObject(true); json.WriteString("Offset"); json.WriteNumber(offset); if (IsVirtual()) { json.WriteString("Type"); json.WriteString("VirtualAllocation"); json.WriteString("Size"); json.WriteNumber(size); if (userData != VMA_NULL) { json.WriteString("UserData"); json.BeginString(); json.ContinueString_Pointer(userData); json.EndString(); } } else { ((VmaAllocation)userData)->PrintParameters(json); } json.EndObject(); } void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, VkDeviceSize offset, VkDeviceSize size) const { json.BeginObject(true); json.WriteString("Offset"); json.WriteNumber(offset); json.WriteString("Type"); json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); json.WriteString("Size"); json.WriteNumber(size); json.EndObject(); } void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const { json.EndArray(); json.EndObject(); } #endif // VMA_STATS_STRING_ENABLED #endif // _VMA_BLOCK_METADATA_FUNCTIONS #endif // _VMA_BLOCK_METADATA #ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY // Before deleting object of this class remember to call 'Destroy()' class VmaBlockBufferImageGranularity final { public: struct ValidationContext { const VkAllocationCallbacks* allocCallbacks; uint16_t* pageAllocs; }; VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity); ~VmaBlockBufferImageGranularity(); bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; } void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size); // Before destroying object you must call free it's memory void Destroy(const VkAllocationCallbacks* pAllocationCallbacks); void RoundupAllocRequest(VmaSuballocationType allocType, VkDeviceSize& inOutAllocSize, VkDeviceSize& inOutAllocAlignment) const; bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, VkDeviceSize allocSize, VkDeviceSize blockOffset, VkDeviceSize blockSize, VmaSuballocationType allocType) const; void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size); void FreePages(VkDeviceSize offset, VkDeviceSize size); void Clear(); ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const; bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const; bool FinishValidation(ValidationContext& ctx) const; private: static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256; struct RegionInfo { uint8_t allocType; uint16_t allocCount; }; VkDeviceSize m_BufferImageGranularity; uint32_t m_RegionCount; RegionInfo* m_RegionInfo; uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); } uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); } uint32_t OffsetToPageIndex(VkDeviceSize offset) const; void AllocPage(RegionInfo& page, uint8_t allocType); }; #ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity) : m_BufferImageGranularity(bufferImageGranularity), m_RegionCount(0), m_RegionInfo(VMA_NULL) {} VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity() { VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!"); } void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size) { if (IsEnabled()) { m_RegionCount = static_cast(VmaDivideRoundingUp(size, m_BufferImageGranularity)); m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount); memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); } } void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks) { if (m_RegionInfo) { vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount); m_RegionInfo = VMA_NULL; } } void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType, VkDeviceSize& inOutAllocSize, VkDeviceSize& inOutAllocAlignment) const { if (m_BufferImageGranularity > 1 && m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY) { if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) { inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity); inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity); } } } bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, VkDeviceSize allocSize, VkDeviceSize blockOffset, VkDeviceSize blockSize, VmaSuballocationType allocType) const { if (IsEnabled()) { uint32_t startPage = GetStartPage(inOutAllocOffset); if (m_RegionInfo[startPage].allocCount > 0 && VmaIsBufferImageGranularityConflict(static_cast(m_RegionInfo[startPage].allocType), allocType)) { inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity); if (blockSize < allocSize + inOutAllocOffset - blockOffset) return true; ++startPage; } uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize); if (endPage != startPage && m_RegionInfo[endPage].allocCount > 0 && VmaIsBufferImageGranularityConflict(static_cast(m_RegionInfo[endPage].allocType), allocType)) { return true; } } return false; } void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size) { if (IsEnabled()) { uint32_t startPage = GetStartPage(offset); AllocPage(m_RegionInfo[startPage], allocType); uint32_t endPage = GetEndPage(offset, size); if (startPage != endPage) AllocPage(m_RegionInfo[endPage], allocType); } } void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size) { if (IsEnabled()) { uint32_t startPage = GetStartPage(offset); --m_RegionInfo[startPage].allocCount; if (m_RegionInfo[startPage].allocCount == 0) m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; uint32_t endPage = GetEndPage(offset, size); if (startPage != endPage) { --m_RegionInfo[endPage].allocCount; if (m_RegionInfo[endPage].allocCount == 0) m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; } } } void VmaBlockBufferImageGranularity::Clear() { if (m_RegionInfo) memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); } VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation( const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const { ValidationContext ctx{ pAllocationCallbacks, VMA_NULL }; if (!isVirutal && IsEnabled()) { ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount); memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t)); } return ctx; } bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const { if (IsEnabled()) { uint32_t start = GetStartPage(offset); ++ctx.pageAllocs[start]; VMA_VALIDATE(m_RegionInfo[start].allocCount > 0); uint32_t end = GetEndPage(offset, size); if (start != end) { ++ctx.pageAllocs[end]; VMA_VALIDATE(m_RegionInfo[end].allocCount > 0); } } return true; } bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const { // Check proper page structure if (IsEnabled()) { VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!"); for (uint32_t page = 0; page < m_RegionCount; ++page) { VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount); } vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount); ctx.pageAllocs = VMA_NULL; } return true; } uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const { return static_cast(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity)); } void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType) { // When current alloc type is free then it can be overriden by new type if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE)) page.allocType = allocType; ++page.allocCount; } #endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS #endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY #ifndef _VMA_BLOCK_METADATA_GENERIC class VmaBlockMetadata_Generic : public VmaBlockMetadata { friend class VmaDefragmentationAlgorithm_Generic; friend class VmaDefragmentationAlgorithm_Fast; VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic) public: VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual); virtual ~VmaBlockMetadata_Generic() = default; size_t GetAllocationCount() const override { return m_Suballocations.size() - m_FreeCount; } VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; } bool IsEmpty() const override { return (m_Suballocations.size() == 1) && (m_FreeCount == 1); } void Free(VmaAllocHandle allocHandle) override { FreeSuballocation(FindAtOffset((VkDeviceSize)allocHandle - 1)); } VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; void Init(VkDeviceSize size) override; bool Validate() const override; void CalcAllocationStatInfo(VmaStatInfo& outInfo) const override; void AddPoolStats(VmaPoolStats& inoutStats) const override; #if VMA_STATS_STRING_ENABLED void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override; #endif bool CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) override; VkResult CheckCorruption(const void* pBlockData) override; void Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) override; void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; void Clear() override; void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; void DebugLogAllAllocations() const override; // For defragmentation bool IsBufferImageGranularityConflictPossible( VkDeviceSize bufferImageGranularity, VmaSuballocationType& inOutPrevSuballocType) const; private: uint32_t m_FreeCount; VkDeviceSize m_SumFreeSize; VmaSuballocationList m_Suballocations; // Suballocations that are free. Sorted by size, ascending. VmaVector> m_FreeSuballocationsBySize; VkDeviceSize AlignAllocationSize(VkDeviceSize size) const { return IsVirtual() ? size : VmaAlignUp(size, (VkDeviceSize)16); } VmaSuballocationList::iterator FindAtOffset(VkDeviceSize offset); bool ValidateFreeSuballocationList() const; // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem. // If yes, fills pOffset and returns true. If no, returns false. bool CheckAllocation( VkDeviceSize allocSize, VkDeviceSize allocAlignment, VmaSuballocationType allocType, VmaSuballocationList::const_iterator suballocItem, VmaAllocHandle* pAllocHandle) const; // Given free suballocation, it merges it with following one, which must also be free. void MergeFreeWithNext(VmaSuballocationList::iterator item); // Releases given suballocation, making it free. // Merges it with adjacent free suballocations if applicable. // Returns iterator to new free suballocation at this place. VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem); // Given free suballocation, it inserts it into sorted list of // m_FreeSuballocationsBySize if it is suitable. void RegisterFreeSuballocation(VmaSuballocationList::iterator item); // Given free suballocation, it removes it from sorted list of // m_FreeSuballocationsBySize if it is suitable. void UnregisterFreeSuballocation(VmaSuballocationList::iterator item); }; #ifndef _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual) : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), m_FreeCount(0), m_SumFreeSize(0), m_Suballocations(VmaStlAllocator(pAllocationCallbacks)), m_FreeSuballocationsBySize(VmaStlAllocator(pAllocationCallbacks)) {} void VmaBlockMetadata_Generic::Init(VkDeviceSize size) { VmaBlockMetadata::Init(size); m_FreeCount = 1; m_SumFreeSize = size; VmaSuballocation suballoc = {}; suballoc.offset = 0; suballoc.size = size; suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; m_Suballocations.push_back(suballoc); m_FreeSuballocationsBySize.push_back(m_Suballocations.begin()); } bool VmaBlockMetadata_Generic::Validate() const { VMA_VALIDATE(!m_Suballocations.empty()); // Expected offset of new suballocation as calculated from previous ones. VkDeviceSize calculatedOffset = 0; // Expected number of free suballocations as calculated from traversing their list. uint32_t calculatedFreeCount = 0; // Expected sum size of free suballocations as calculated from traversing their list. VkDeviceSize calculatedSumFreeSize = 0; // Expected number of free suballocations that should be registered in // m_FreeSuballocationsBySize calculated from traversing their list. size_t freeSuballocationsToRegister = 0; // True if previous visited suballocation was free. bool prevFree = false; const VkDeviceSize debugMargin = GetDebugMargin(); for (const auto& subAlloc : m_Suballocations) { // Actual offset of this suballocation doesn't match expected one. VMA_VALIDATE(subAlloc.offset == calculatedOffset); const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE); // Two adjacent free suballocations are invalid. They should be merged. VMA_VALIDATE(!prevFree || !currFree); VmaAllocation alloc = (VmaAllocation)subAlloc.userData; if (!IsVirtual()) { VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); } if (currFree) { calculatedSumFreeSize += subAlloc.size; ++calculatedFreeCount; ++freeSuballocationsToRegister; // Margin required between allocations - every free space must be at least that large. VMA_VALIDATE(subAlloc.size >= debugMargin); } else { if (!IsVirtual()) { VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == subAlloc.offset + 1); VMA_VALIDATE(alloc->GetSize() == subAlloc.size); } // Margin required between allocations - previous allocation must be free. VMA_VALIDATE(debugMargin == 0 || prevFree); } calculatedOffset += subAlloc.size; prevFree = currFree; } // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't // match expected one. VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister); VkDeviceSize lastSize = 0; for (size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) { VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i]; // Only free suballocations can be registered in m_FreeSuballocationsBySize. VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE); // They must be sorted by size ascending. VMA_VALIDATE(suballocItem->size >= lastSize); lastSize = suballocItem->size; } // Check if totals match calculated values. VMA_VALIDATE(ValidateFreeSuballocationList()); VMA_VALIDATE(calculatedOffset == GetSize()); VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize); VMA_VALIDATE(calculatedFreeCount == m_FreeCount); return true; } void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const { const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); VmaInitStatInfo(outInfo); outInfo.blockCount = 1; for (const auto& suballoc : m_Suballocations) { if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { VmaAddStatInfoAllocation(outInfo, suballoc.size); } else { VmaAddStatInfoUnusedRange(outInfo, suballoc.size); } } } void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const { const uint32_t rangeCount = (uint32_t)m_Suballocations.size(); inoutStats.size += GetSize(); inoutStats.unusedSize += m_SumFreeSize; inoutStats.allocationCount += rangeCount - m_FreeCount; inoutStats.unusedRangeCount += m_FreeCount; } #if VMA_STATS_STRING_ENABLED void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const { PrintDetailedMap_Begin(json, m_SumFreeSize, // unusedBytes m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount m_FreeCount, // unusedRangeCount mapRefCount); for (const auto& suballoc : m_Suballocations) { if (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) { PrintDetailedMap_UnusedRange(json, suballoc.offset, suballoc.size); } else { PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); } } PrintDetailedMap_End(json); } #endif // VMA_STATS_STRING_ENABLED bool VmaBlockMetadata_Generic::CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) { VMA_ASSERT(allocSize > 0); VMA_ASSERT(!upperAddress); VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); VMA_ASSERT(pAllocationRequest != VMA_NULL); VMA_HEAVY_ASSERT(Validate()); allocSize = AlignAllocationSize(allocSize); pAllocationRequest->type = VmaAllocationRequestType::Normal; pAllocationRequest->size = allocSize; const VkDeviceSize debugMargin = GetDebugMargin(); // There is not enough total free space in this block to fulfill the request: Early return. if (m_SumFreeSize < allocSize + debugMargin) { return false; } // New algorithm, efficiently searching freeSuballocationsBySize. const size_t freeSuballocCount = m_FreeSuballocationsBySize.size(); if (freeSuballocCount > 0) { if (strategy == 0 || strategy == VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT) { // Find first free suballocation with size not less than allocSize + debugMargin. VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( m_FreeSuballocationsBySize.data(), m_FreeSuballocationsBySize.data() + freeSuballocCount, allocSize + debugMargin, VmaSuballocationItemSizeLess()); size_t index = it - m_FreeSuballocationsBySize.data(); for (; index < freeSuballocCount; ++index) { if (CheckAllocation( allocSize, allocAlignment, allocType, m_FreeSuballocationsBySize[index], &pAllocationRequest->allocHandle)) { pAllocationRequest->item = m_FreeSuballocationsBySize[index]; return true; } } } else if (strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) { for (VmaSuballocationList::iterator it = m_Suballocations.begin(); it != m_Suballocations.end(); ++it) { if (it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation( allocSize, allocAlignment, allocType, it, &pAllocationRequest->allocHandle)) { pAllocationRequest->item = it; return true; } } } else { VMA_ASSERT(strategy == VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT); // Search staring from biggest suballocations. for (size_t index = freeSuballocCount; index--; ) { if (CheckAllocation( allocSize, allocAlignment, allocType, m_FreeSuballocationsBySize[index], &pAllocationRequest->allocHandle)) { pAllocationRequest->item = m_FreeSuballocationsBySize[index]; return true; } } } } return false; } VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData) { for (auto& suballoc : m_Suballocations) { if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) { VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); return VK_ERROR_UNKNOWN_COPY; } } } return VK_SUCCESS; } void VmaBlockMetadata_Generic::Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) { VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); VMA_ASSERT(request.item != m_Suballocations.end()); VmaSuballocation& suballoc = *request.item; // Given suballocation is a free block. VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); // Given offset is inside this suballocation. VMA_ASSERT((VkDeviceSize)request.allocHandle - 1 >= suballoc.offset); const VkDeviceSize paddingBegin = (VkDeviceSize)request.allocHandle - suballoc.offset - 1; VMA_ASSERT(suballoc.size >= paddingBegin + request.size); const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - request.size; // Unregister this free suballocation from m_FreeSuballocationsBySize and update // it to become used. UnregisterFreeSuballocation(request.item); suballoc.offset = (VkDeviceSize)request.allocHandle - 1; suballoc.size = request.size; suballoc.type = type; suballoc.userData = userData; // If there are any free bytes remaining at the end, insert new free suballocation after current one. if (paddingEnd) { VmaSuballocation paddingSuballoc = {}; paddingSuballoc.offset = suballoc.offset + suballoc.size; paddingSuballoc.size = paddingEnd; paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; VmaSuballocationList::iterator next = request.item; ++next; const VmaSuballocationList::iterator paddingEndItem = m_Suballocations.insert(next, paddingSuballoc); RegisterFreeSuballocation(paddingEndItem); } // If there are any free bytes remaining at the beginning, insert new free suballocation before current one. if (paddingBegin) { VmaSuballocation paddingSuballoc = {}; paddingSuballoc.offset = suballoc.offset - paddingBegin; paddingSuballoc.size = paddingBegin; paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; const VmaSuballocationList::iterator paddingBeginItem = m_Suballocations.insert(request.item, paddingSuballoc); RegisterFreeSuballocation(paddingBeginItem); } // Update totals. m_FreeCount = m_FreeCount - 1; if (paddingBegin > 0) { ++m_FreeCount; } if (paddingEnd > 0) { ++m_FreeCount; } m_SumFreeSize -= request.size; } void VmaBlockMetadata_Generic::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) { outInfo.offset = (VkDeviceSize)allocHandle - 1; const VmaSuballocation& suballoc = *FindAtOffset(outInfo.offset); outInfo.size = suballoc.size; outInfo.pUserData = suballoc.userData; } void VmaBlockMetadata_Generic::Clear() { const VkDeviceSize size = GetSize(); VMA_ASSERT(IsVirtual()); m_FreeCount = 1; m_SumFreeSize = size; m_Suballocations.clear(); m_FreeSuballocationsBySize.clear(); VmaSuballocation suballoc = {}; suballoc.offset = 0; suballoc.size = size; suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; m_Suballocations.push_back(suballoc); m_FreeSuballocationsBySize.push_back(m_Suballocations.begin()); } void VmaBlockMetadata_Generic::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) { VmaSuballocation& suballoc = *FindAtOffset((VkDeviceSize)allocHandle - 1); suballoc.userData = userData; } void VmaBlockMetadata_Generic::DebugLogAllAllocations() const { for (const auto& suballoc : m_Suballocations) { if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) DebugLogAllocation(suballoc.offset, suballoc.size, suballoc.userData); } } VmaSuballocationList::iterator VmaBlockMetadata_Generic::FindAtOffset(VkDeviceSize offset) { VMA_HEAVY_ASSERT(!m_Suballocations.empty()); const VkDeviceSize last = m_Suballocations.rbegin()->offset; if (last == offset) return m_Suballocations.rbegin(); const VkDeviceSize first = m_Suballocations.begin()->offset; if (first == offset) return m_Suballocations.begin(); const size_t suballocCount = m_Suballocations.size(); const VkDeviceSize step = (last - first + m_Suballocations.begin()->size) / suballocCount; auto findSuballocation = [&](auto begin, auto end) -> VmaSuballocationList::iterator { for (auto suballocItem = begin; suballocItem != end; ++suballocItem) { VmaSuballocation& suballoc = *suballocItem; if (suballoc.offset == offset) return suballocItem; } VMA_ASSERT(false && "Not found!"); return m_Suballocations.end(); }; // If requested offset is closer to the end of range, search from the end if (offset - first > suballocCount * step / 2) { return findSuballocation(m_Suballocations.rbegin(), m_Suballocations.rend()); } return findSuballocation(m_Suballocations.begin(), m_Suballocations.end()); } bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const { VkDeviceSize lastSize = 0; for (size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) { const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i]; VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE); VMA_VALIDATE(it->size >= lastSize); lastSize = it->size; } return true; } bool VmaBlockMetadata_Generic::CheckAllocation( VkDeviceSize allocSize, VkDeviceSize allocAlignment, VmaSuballocationType allocType, VmaSuballocationList::const_iterator suballocItem, VmaAllocHandle* pAllocHandle) const { VMA_ASSERT(allocSize > 0); VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); VMA_ASSERT(suballocItem != m_Suballocations.cend()); VMA_ASSERT(pAllocHandle != VMA_NULL); const VkDeviceSize debugMargin = GetDebugMargin(); const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); const VmaSuballocation& suballoc = *suballocItem; VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); // Size of this suballocation is too small for this request: Early return. if (suballoc.size < allocSize) { return false; } // Start from offset equal to beginning of this suballocation. VkDeviceSize offset = suballoc.offset + (suballocItem == m_Suballocations.cbegin() ? 0 : GetDebugMargin()); // Apply debugMargin from the end of previous alloc. if (debugMargin > 0) { offset += debugMargin; } // Apply alignment. offset = VmaAlignUp(offset, allocAlignment); // Check previous suballocations for BufferImageGranularity conflicts. // Make bigger alignment if necessary. if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment) { bool bufferImageGranularityConflict = false; VmaSuballocationList::const_iterator prevSuballocItem = suballocItem; while (prevSuballocItem != m_Suballocations.cbegin()) { --prevSuballocItem; const VmaSuballocation& prevSuballoc = *prevSuballocItem; if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, offset, bufferImageGranularity)) { if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) { bufferImageGranularityConflict = true; break; } } else // Already on previous page. break; } if (bufferImageGranularityConflict) { offset = VmaAlignUp(offset, bufferImageGranularity); } } // Calculate padding at the beginning based on current offset. const VkDeviceSize paddingBegin = offset - suballoc.offset; // Fail if requested size plus margin after is bigger than size of this suballocation. if (paddingBegin + allocSize + debugMargin > suballoc.size) { return false; } // Check next suballocations for BufferImageGranularity conflicts. // If conflict exists, allocation cannot be made here. if (allocSize % bufferImageGranularity || offset % bufferImageGranularity) { VmaSuballocationList::const_iterator nextSuballocItem = suballocItem; ++nextSuballocItem; while (nextSuballocItem != m_Suballocations.cend()) { const VmaSuballocation& nextSuballoc = *nextSuballocItem; if (VmaBlocksOnSamePage(offset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) { return false; } } else { // Already on next page. break; } ++nextSuballocItem; } } *pAllocHandle = (VmaAllocHandle)(offset + 1); // All tests passed: Success. pAllocHandle is already filled. return true; } void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) { VMA_ASSERT(item != m_Suballocations.end()); VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); VmaSuballocationList::iterator nextItem = item; ++nextItem; VMA_ASSERT(nextItem != m_Suballocations.end()); VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE); item->size += nextItem->size; --m_FreeCount; m_Suballocations.erase(nextItem); } VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) { // Change this suballocation to be marked as free. VmaSuballocation& suballoc = *suballocItem; suballoc.type = VMA_SUBALLOCATION_TYPE_FREE; suballoc.userData = VMA_NULL; // Update totals. ++m_FreeCount; m_SumFreeSize += suballoc.size; // Merge with previous and/or next suballocation if it's also free. bool mergeWithNext = false; bool mergeWithPrev = false; VmaSuballocationList::iterator nextItem = suballocItem; ++nextItem; if ((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) { mergeWithNext = true; } VmaSuballocationList::iterator prevItem = suballocItem; if (suballocItem != m_Suballocations.begin()) { --prevItem; if (prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) { mergeWithPrev = true; } } if (mergeWithNext) { UnregisterFreeSuballocation(nextItem); MergeFreeWithNext(suballocItem); } if (mergeWithPrev) { UnregisterFreeSuballocation(prevItem); MergeFreeWithNext(prevItem); RegisterFreeSuballocation(prevItem); return prevItem; } else { RegisterFreeSuballocation(suballocItem); return suballocItem; } } void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) { VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); VMA_ASSERT(item->size > 0); // You may want to enable this validation at the beginning or at the end of // this function, depending on what do you want to check. VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); if (m_FreeSuballocationsBySize.empty()) { m_FreeSuballocationsBySize.push_back(item); } else { VmaVectorInsertSorted(m_FreeSuballocationsBySize, item); } //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); } void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) { VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE); VMA_ASSERT(item->size > 0); // You may want to enable this validation at the beginning or at the end of // this function, depending on what do you want to check. VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess( m_FreeSuballocationsBySize.data(), m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(), item, VmaSuballocationItemSizeLess()); for (size_t index = it - m_FreeSuballocationsBySize.data(); index < m_FreeSuballocationsBySize.size(); ++index) { if (m_FreeSuballocationsBySize[index] == item) { VmaVectorRemove(m_FreeSuballocationsBySize, index); return; } VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found."); } VMA_ASSERT(0 && "Not found."); //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList()); } bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible( VkDeviceSize bufferImageGranularity, VmaSuballocationType& inOutPrevSuballocType) const { if (bufferImageGranularity == 1 || IsEmpty() || IsVirtual()) { return false; } VkDeviceSize minAlignment = VK_WHOLE_SIZE; bool typeConflictFound = false; for (const auto& suballoc : m_Suballocations) { const VmaSuballocationType suballocType = suballoc.type; if (suballocType != VMA_SUBALLOCATION_TYPE_FREE) { VmaAllocation const alloc = (VmaAllocation)suballoc.userData; minAlignment = VMA_MIN(minAlignment, alloc->GetAlignment()); if (VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) { typeConflictFound = true; } inOutPrevSuballocType = suballocType; } } return typeConflictFound || minAlignment >= bufferImageGranularity; } #endif // _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS #endif // _VMA_BLOCK_METADATA_GENERIC #ifndef _VMA_BLOCK_METADATA_LINEAR /* Allocations and their references in internal data structure look like this: if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): 0 +-------+ | | | | | | +-------+ | Alloc | 1st[m_1stNullItemsBeginCount] +-------+ | Alloc | 1st[m_1stNullItemsBeginCount + 1] +-------+ | ... | +-------+ | Alloc | 1st[1st.size() - 1] +-------+ | | | | | | GetSize() +-------+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): 0 +-------+ | Alloc | 2nd[0] +-------+ | Alloc | 2nd[1] +-------+ | ... | +-------+ | Alloc | 2nd[2nd.size() - 1] +-------+ | | | | | | +-------+ | Alloc | 1st[m_1stNullItemsBeginCount] +-------+ | Alloc | 1st[m_1stNullItemsBeginCount + 1] +-------+ | ... | +-------+ | Alloc | 1st[1st.size() - 1] +-------+ | | GetSize() +-------+ if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): 0 +-------+ | | | | | | +-------+ | Alloc | 1st[m_1stNullItemsBeginCount] +-------+ | Alloc | 1st[m_1stNullItemsBeginCount + 1] +-------+ | ... | +-------+ | Alloc | 1st[1st.size() - 1] +-------+ | | | | | | +-------+ | Alloc | 2nd[2nd.size() - 1] +-------+ | ... | +-------+ | Alloc | 2nd[1] +-------+ | Alloc | 2nd[0] GetSize() +-------+ */ class VmaBlockMetadata_Linear : public VmaBlockMetadata { VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear) public: VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual); virtual ~VmaBlockMetadata_Linear() = default; VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; } bool IsEmpty() const override { return GetAllocationCount() == 0; } VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; void Init(VkDeviceSize size) override; bool Validate() const override; size_t GetAllocationCount() const override; void CalcAllocationStatInfo(VmaStatInfo& outInfo) const override; void AddPoolStats(VmaPoolStats& inoutStats) const override; #if VMA_STATS_STRING_ENABLED void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override; #endif bool CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) override; VkResult CheckCorruption(const void* pBlockData) override; void Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) override; void Free(VmaAllocHandle allocHandle) override; void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; void Clear() override; void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; void DebugLogAllAllocations() const override; private: /* There are two suballocation vectors, used in ping-pong way. The one with index m_1stVectorIndex is called 1st. The one with index (m_1stVectorIndex ^ 1) is called 2nd. 2nd can be non-empty only when 1st is not empty. When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. */ typedef VmaVector> SuballocationVectorType; enum SECOND_VECTOR_MODE { SECOND_VECTOR_EMPTY, /* Suballocations in 2nd vector are created later than the ones in 1st, but they all have smaller offset. */ SECOND_VECTOR_RING_BUFFER, /* Suballocations in 2nd vector are upper side of double stack. They all have offsets higher than those in 1st vector. Top of this stack means smaller offsets, but higher indices in this vector. */ SECOND_VECTOR_DOUBLE_STACK, }; VkDeviceSize m_SumFreeSize; SuballocationVectorType m_Suballocations0, m_Suballocations1; uint32_t m_1stVectorIndex; SECOND_VECTOR_MODE m_2ndVectorMode; // Number of items in 1st vector with hAllocation = null at the beginning. size_t m_1stNullItemsBeginCount; // Number of other items in 1st vector with hAllocation = null somewhere in the middle. size_t m_1stNullItemsMiddleCount; // Number of items in 2nd vector with hAllocation = null. size_t m_2ndNullItemsCount; SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } VmaSuballocation& FindSuballocation(VkDeviceSize offset); bool ShouldCompact1st() const; void CleanupAfterFree(); bool CreateAllocationRequest_LowerAddress( VkDeviceSize allocSize, VkDeviceSize allocAlignment, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest); bool CreateAllocationRequest_UpperAddress( VkDeviceSize allocSize, VkDeviceSize allocAlignment, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest); }; #ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual) : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), m_SumFreeSize(0), m_Suballocations0(VmaStlAllocator(pAllocationCallbacks)), m_Suballocations1(VmaStlAllocator(pAllocationCallbacks)), m_1stVectorIndex(0), m_2ndVectorMode(SECOND_VECTOR_EMPTY), m_1stNullItemsBeginCount(0), m_1stNullItemsMiddleCount(0), m_2ndNullItemsCount(0) {} void VmaBlockMetadata_Linear::Init(VkDeviceSize size) { VmaBlockMetadata::Init(size); m_SumFreeSize = size; } bool VmaBlockMetadata_Linear::Validate() const { const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); VMA_VALIDATE(!suballocations1st.empty() || suballocations2nd.empty() || m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); if (!suballocations1st.empty()) { // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE); // Null item at the end should be just pop_back(). VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE); } if (!suballocations2nd.empty()) { // Null item at the end should be just pop_back(). VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE); } VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); VkDeviceSize sumUsedSize = 0; const size_t suballoc1stCount = suballocations1st.size(); const VkDeviceSize debugMargin = GetDebugMargin(); VkDeviceSize offset = 0; if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { const size_t suballoc2ndCount = suballocations2nd.size(); size_t nullItem2ndCount = 0; for (size_t i = 0; i < suballoc2ndCount; ++i) { const VmaSuballocation& suballoc = suballocations2nd[i]; const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); VmaAllocation const alloc = (VmaAllocation)suballoc.userData; if (!IsVirtual()) { VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); } VMA_VALIDATE(suballoc.offset >= offset); if (!currFree) { if (!IsVirtual()) { VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); VMA_VALIDATE(alloc->GetSize() == suballoc.size); } sumUsedSize += suballoc.size; } else { ++nullItem2ndCount; } offset = suballoc.offset + suballoc.size + debugMargin; } VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); } for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i) { const VmaSuballocation& suballoc = suballocations1st[i]; VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && suballoc.userData == VMA_NULL); } size_t nullItem1stCount = m_1stNullItemsBeginCount; for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) { const VmaSuballocation& suballoc = suballocations1st[i]; const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); VmaAllocation const alloc = (VmaAllocation)suballoc.userData; if (!IsVirtual()) { VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); } VMA_VALIDATE(suballoc.offset >= offset); VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); if (!currFree) { if (!IsVirtual()) { VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); VMA_VALIDATE(alloc->GetSize() == suballoc.size); } sumUsedSize += suballoc.size; } else { ++nullItem1stCount; } offset = suballoc.offset + suballoc.size + debugMargin; } VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { const size_t suballoc2ndCount = suballocations2nd.size(); size_t nullItem2ndCount = 0; for (size_t i = suballoc2ndCount; i--; ) { const VmaSuballocation& suballoc = suballocations2nd[i]; const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); VmaAllocation const alloc = (VmaAllocation)suballoc.userData; if (!IsVirtual()) { VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); } VMA_VALIDATE(suballoc.offset >= offset); if (!currFree) { if (!IsVirtual()) { VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); VMA_VALIDATE(alloc->GetSize() == suballoc.size); } sumUsedSize += suballoc.size; } else { ++nullItem2ndCount; } offset = suballoc.offset + suballoc.size + debugMargin; } VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); } VMA_VALIDATE(offset <= GetSize()); VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); return true; } size_t VmaBlockMetadata_Linear::GetAllocationCount() const { return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount + AccessSuballocations2nd().size() - m_2ndNullItemsCount; } void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const { const VkDeviceSize size = GetSize(); const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); const size_t suballoc1stCount = suballocations1st.size(); const size_t suballoc2ndCount = suballocations2nd.size(); VmaInitStatInfo(outInfo); outInfo.blockCount = 1; VkDeviceSize lastOffset = 0; if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; size_t nextAlloc2ndIndex = 0; while (lastOffset < freeSpace2ndTo1stEnd) { // Find next non-null allocation or move nextAllocIndex to the end. while (nextAlloc2ndIndex < suballoc2ndCount && suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) { ++nextAlloc2ndIndex; } // Found non-null allocation. if (nextAlloc2ndIndex < suballoc2ndCount) { const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. VmaAddStatInfoAllocation(outInfo, suballoc.size); // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; ++nextAlloc2ndIndex; } // We are at the end. else { // There is free space from lastOffset to freeSpace2ndTo1stEnd. if (lastOffset < freeSpace2ndTo1stEnd) { const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); } // End of loop. lastOffset = freeSpace2ndTo1stEnd; } } } size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; const VkDeviceSize freeSpace1stTo2ndEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; while (lastOffset < freeSpace1stTo2ndEnd) { // Find next non-null allocation or move nextAllocIndex to the end. while (nextAlloc1stIndex < suballoc1stCount && suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) { ++nextAlloc1stIndex; } // Found non-null allocation. if (nextAlloc1stIndex < suballoc1stCount) { const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. VmaAddStatInfoAllocation(outInfo, suballoc.size); // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; ++nextAlloc1stIndex; } // We are at the end. else { // There is free space from lastOffset to freeSpace1stTo2ndEnd. if (lastOffset < freeSpace1stTo2ndEnd) { const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); } // End of loop. lastOffset = freeSpace1stTo2ndEnd; } } if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; while (lastOffset < size) { // Find next non-null allocation or move nextAllocIndex to the end. while (nextAlloc2ndIndex != SIZE_MAX && suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) { --nextAlloc2ndIndex; } // Found non-null allocation. if (nextAlloc2ndIndex != SIZE_MAX) { const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. VmaAddStatInfoAllocation(outInfo, suballoc.size); // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; --nextAlloc2ndIndex; } // We are at the end. else { // There is free space from lastOffset to size. if (lastOffset < size) { const VkDeviceSize unusedRangeSize = size - lastOffset; VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize); } // End of loop. lastOffset = size; } } } outInfo.unusedBytes = size - outInfo.usedBytes; } void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const { const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); const VkDeviceSize size = GetSize(); const size_t suballoc1stCount = suballocations1st.size(); const size_t suballoc2ndCount = suballocations2nd.size(); inoutStats.size += size; VkDeviceSize lastOffset = 0; if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; while (lastOffset < freeSpace2ndTo1stEnd) { // Find next non-null allocation or move nextAlloc2ndIndex to the end. while (nextAlloc2ndIndex < suballoc2ndCount && suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) { ++nextAlloc2ndIndex; } // Found non-null allocation. if (nextAlloc2ndIndex < suballoc2ndCount) { const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; inoutStats.unusedSize += unusedRangeSize; ++inoutStats.unusedRangeCount; } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. ++inoutStats.allocationCount; // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; ++nextAlloc2ndIndex; } // We are at the end. else { if (lastOffset < freeSpace2ndTo1stEnd) { // There is free space from lastOffset to freeSpace2ndTo1stEnd. const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; inoutStats.unusedSize += unusedRangeSize; ++inoutStats.unusedRangeCount; } // End of loop. lastOffset = freeSpace2ndTo1stEnd; } } } size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; const VkDeviceSize freeSpace1stTo2ndEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; while (lastOffset < freeSpace1stTo2ndEnd) { // Find next non-null allocation or move nextAllocIndex to the end. while (nextAlloc1stIndex < suballoc1stCount && suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) { ++nextAlloc1stIndex; } // Found non-null allocation. if (nextAlloc1stIndex < suballoc1stCount) { const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; inoutStats.unusedSize += unusedRangeSize; ++inoutStats.unusedRangeCount; } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. ++inoutStats.allocationCount; // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; ++nextAlloc1stIndex; } // We are at the end. else { if (lastOffset < freeSpace1stTo2ndEnd) { // There is free space from lastOffset to freeSpace1stTo2ndEnd. const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; inoutStats.unusedSize += unusedRangeSize; ++inoutStats.unusedRangeCount; } // End of loop. lastOffset = freeSpace1stTo2ndEnd; } } if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; while (lastOffset < size) { // Find next non-null allocation or move nextAlloc2ndIndex to the end. while (nextAlloc2ndIndex != SIZE_MAX && suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) { --nextAlloc2ndIndex; } // Found non-null allocation. if (nextAlloc2ndIndex != SIZE_MAX) { const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; inoutStats.unusedSize += unusedRangeSize; ++inoutStats.unusedRangeCount; } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. ++inoutStats.allocationCount; // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; --nextAlloc2ndIndex; } // We are at the end. else { if (lastOffset < size) { // There is free space from lastOffset to size. const VkDeviceSize unusedRangeSize = size - lastOffset; inoutStats.unusedSize += unusedRangeSize; ++inoutStats.unusedRangeCount; } // End of loop. lastOffset = size; } } } } #if VMA_STATS_STRING_ENABLED void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const { const VkDeviceSize size = GetSize(); const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); const size_t suballoc1stCount = suballocations1st.size(); const size_t suballoc2ndCount = suballocations2nd.size(); // FIRST PASS size_t unusedRangeCount = 0; VkDeviceSize usedBytes = 0; VkDeviceSize lastOffset = 0; size_t alloc2ndCount = 0; if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; size_t nextAlloc2ndIndex = 0; while (lastOffset < freeSpace2ndTo1stEnd) { // Find next non-null allocation or move nextAlloc2ndIndex to the end. while (nextAlloc2ndIndex < suballoc2ndCount && suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) { ++nextAlloc2ndIndex; } // Found non-null allocation. if (nextAlloc2ndIndex < suballoc2ndCount) { const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. ++unusedRangeCount; } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. ++alloc2ndCount; usedBytes += suballoc.size; // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; ++nextAlloc2ndIndex; } // We are at the end. else { if (lastOffset < freeSpace2ndTo1stEnd) { // There is free space from lastOffset to freeSpace2ndTo1stEnd. ++unusedRangeCount; } // End of loop. lastOffset = freeSpace2ndTo1stEnd; } } } size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; size_t alloc1stCount = 0; const VkDeviceSize freeSpace1stTo2ndEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; while (lastOffset < freeSpace1stTo2ndEnd) { // Find next non-null allocation or move nextAllocIndex to the end. while (nextAlloc1stIndex < suballoc1stCount && suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) { ++nextAlloc1stIndex; } // Found non-null allocation. if (nextAlloc1stIndex < suballoc1stCount) { const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. ++unusedRangeCount; } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. ++alloc1stCount; usedBytes += suballoc.size; // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; ++nextAlloc1stIndex; } // We are at the end. else { if (lastOffset < size) { // There is free space from lastOffset to freeSpace1stTo2ndEnd. ++unusedRangeCount; } // End of loop. lastOffset = freeSpace1stTo2ndEnd; } } if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; while (lastOffset < size) { // Find next non-null allocation or move nextAlloc2ndIndex to the end. while (nextAlloc2ndIndex != SIZE_MAX && suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) { --nextAlloc2ndIndex; } // Found non-null allocation. if (nextAlloc2ndIndex != SIZE_MAX) { const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. ++unusedRangeCount; } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. ++alloc2ndCount; usedBytes += suballoc.size; // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; --nextAlloc2ndIndex; } // We are at the end. else { if (lastOffset < size) { // There is free space from lastOffset to size. ++unusedRangeCount; } // End of loop. lastOffset = size; } } } const VkDeviceSize unusedBytes = size - usedBytes; PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount, mapRefCount); // SECOND PASS lastOffset = 0; if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; size_t nextAlloc2ndIndex = 0; while (lastOffset < freeSpace2ndTo1stEnd) { // Find next non-null allocation or move nextAlloc2ndIndex to the end. while (nextAlloc2ndIndex < suballoc2ndCount && suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) { ++nextAlloc2ndIndex; } // Found non-null allocation. if (nextAlloc2ndIndex < suballoc2ndCount) { const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; ++nextAlloc2ndIndex; } // We are at the end. else { if (lastOffset < freeSpace2ndTo1stEnd) { // There is free space from lastOffset to freeSpace2ndTo1stEnd. const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); } // End of loop. lastOffset = freeSpace2ndTo1stEnd; } } } nextAlloc1stIndex = m_1stNullItemsBeginCount; while (lastOffset < freeSpace1stTo2ndEnd) { // Find next non-null allocation or move nextAllocIndex to the end. while (nextAlloc1stIndex < suballoc1stCount && suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) { ++nextAlloc1stIndex; } // Found non-null allocation. if (nextAlloc1stIndex < suballoc1stCount) { const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; ++nextAlloc1stIndex; } // We are at the end. else { if (lastOffset < freeSpace1stTo2ndEnd) { // There is free space from lastOffset to freeSpace1stTo2ndEnd. const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); } // End of loop. lastOffset = freeSpace1stTo2ndEnd; } } if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; while (lastOffset < size) { // Find next non-null allocation or move nextAlloc2ndIndex to the end. while (nextAlloc2ndIndex != SIZE_MAX && suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) { --nextAlloc2ndIndex; } // Found non-null allocation. if (nextAlloc2ndIndex != SIZE_MAX) { const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; // 1. Process free space before this allocation. if (lastOffset < suballoc.offset) { // There is free space from lastOffset to suballoc.offset. const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); } // 2. Process this allocation. // There is allocation with suballoc.offset, suballoc.size. PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); // 3. Prepare for next iteration. lastOffset = suballoc.offset + suballoc.size; --nextAlloc2ndIndex; } // We are at the end. else { if (lastOffset < size) { // There is free space from lastOffset to size. const VkDeviceSize unusedRangeSize = size - lastOffset; PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); } // End of loop. lastOffset = size; } } } PrintDetailedMap_End(json); } #endif // VMA_STATS_STRING_ENABLED bool VmaBlockMetadata_Linear::CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) { VMA_ASSERT(allocSize > 0); VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); VMA_ASSERT(pAllocationRequest != VMA_NULL); VMA_HEAVY_ASSERT(Validate()); pAllocationRequest->size = allocSize; return upperAddress ? CreateAllocationRequest_UpperAddress( allocSize, allocAlignment, allocType, strategy, pAllocationRequest) : CreateAllocationRequest_LowerAddress( allocSize, allocAlignment, allocType, strategy, pAllocationRequest); } VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) { VMA_ASSERT(!IsVirtual()); SuballocationVectorType& suballocations1st = AccessSuballocations1st(); for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) { const VmaSuballocation& suballoc = suballocations1st[i]; if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) { VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); return VK_ERROR_UNKNOWN_COPY; } } } SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) { const VmaSuballocation& suballoc = suballocations2nd[i]; if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) { if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) { VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); return VK_ERROR_UNKNOWN_COPY; } } } return VK_SUCCESS; } void VmaBlockMetadata_Linear::Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) { const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1; const VmaSuballocation newSuballoc = { offset, request.size, userData, type }; switch (request.type) { case VmaAllocationRequestType::UpperAddress: { VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); suballocations2nd.push_back(newSuballoc); m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; } break; case VmaAllocationRequestType::EndOf1st: { SuballocationVectorType& suballocations1st = AccessSuballocations1st(); VMA_ASSERT(suballocations1st.empty() || offset >= suballocations1st.back().offset + suballocations1st.back().size); // Check if it fits before the end of the block. VMA_ASSERT(offset + request.size <= GetSize()); suballocations1st.push_back(newSuballoc); } break; case VmaAllocationRequestType::EndOf2nd: { SuballocationVectorType& suballocations1st = AccessSuballocations1st(); // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. VMA_ASSERT(!suballocations1st.empty() && offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset); SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); switch (m_2ndVectorMode) { case SECOND_VECTOR_EMPTY: // First allocation from second part ring buffer. VMA_ASSERT(suballocations2nd.empty()); m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; break; case SECOND_VECTOR_RING_BUFFER: // 2-part ring buffer is already started. VMA_ASSERT(!suballocations2nd.empty()); break; case SECOND_VECTOR_DOUBLE_STACK: VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); break; default: VMA_ASSERT(0); } suballocations2nd.push_back(newSuballoc); } break; default: VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); } m_SumFreeSize -= newSuballoc.size; } void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle) { SuballocationVectorType& suballocations1st = AccessSuballocations1st(); SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); VkDeviceSize offset = (VkDeviceSize)allocHandle - 1; if (!suballocations1st.empty()) { // First allocation: Mark it as next empty at the beginning. VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; if (firstSuballoc.offset == offset) { firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; firstSuballoc.userData = VMA_NULL; m_SumFreeSize += firstSuballoc.size; ++m_1stNullItemsBeginCount; CleanupAfterFree(); return; } } // Last allocation in 2-part ring buffer or top of upper stack (same logic). if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { VmaSuballocation& lastSuballoc = suballocations2nd.back(); if (lastSuballoc.offset == offset) { m_SumFreeSize += lastSuballoc.size; suballocations2nd.pop_back(); CleanupAfterFree(); return; } } // Last allocation in 1st vector. else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY) { VmaSuballocation& lastSuballoc = suballocations1st.back(); if (lastSuballoc.offset == offset) { m_SumFreeSize += lastSuballoc.size; suballocations1st.pop_back(); CleanupAfterFree(); return; } } VmaSuballocation refSuballoc; refSuballoc.offset = offset; // Rest of members stays uninitialized intentionally for better performance. // Item from the middle of 1st vector. { const SuballocationVectorType::iterator it = VmaBinaryFindSorted( suballocations1st.begin() + m_1stNullItemsBeginCount, suballocations1st.end(), refSuballoc, VmaSuballocationOffsetLess()); if (it != suballocations1st.end()) { it->type = VMA_SUBALLOCATION_TYPE_FREE; it->userData = VMA_NULL; ++m_1stNullItemsMiddleCount; m_SumFreeSize += it->size; CleanupAfterFree(); return; } } if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) { // Item from the middle of 2nd vector. const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); if (it != suballocations2nd.end()) { it->type = VMA_SUBALLOCATION_TYPE_FREE; it->userData = VMA_NULL; ++m_2ndNullItemsCount; m_SumFreeSize += it->size; CleanupAfterFree(); return; } } VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); } void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) { outInfo.offset = (VkDeviceSize)allocHandle - 1; VmaSuballocation& suballoc = FindSuballocation(outInfo.offset); outInfo.size = suballoc.size; outInfo.pUserData = suballoc.userData; } void VmaBlockMetadata_Linear::Clear() { m_SumFreeSize = GetSize(); m_Suballocations0.clear(); m_Suballocations1.clear(); // Leaving m_1stVectorIndex unchanged - it doesn't matter. m_2ndVectorMode = SECOND_VECTOR_EMPTY; m_1stNullItemsBeginCount = 0; m_1stNullItemsMiddleCount = 0; m_2ndNullItemsCount = 0; } void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) { VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1); suballoc.userData = userData; } void VmaBlockMetadata_Linear::DebugLogAllAllocations() const { const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it) if (it->type != VMA_SUBALLOCATION_TYPE_FREE) DebugLogAllocation(it->offset, it->size, it->userData); const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it) if (it->type != VMA_SUBALLOCATION_TYPE_FREE) DebugLogAllocation(it->offset, it->size, it->userData); } VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) { SuballocationVectorType& suballocations1st = AccessSuballocations1st(); SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); VmaSuballocation refSuballoc; refSuballoc.offset = offset; // Rest of members stays uninitialized intentionally for better performance. // Item from the 1st vector. { const SuballocationVectorType::iterator it = VmaBinaryFindSorted( suballocations1st.begin() + m_1stNullItemsBeginCount, suballocations1st.end(), refSuballoc, VmaSuballocationOffsetLess()); if (it != suballocations1st.end()) { return *it; } } if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) { // Rest of members stays uninitialized intentionally for better performance. const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); if (it != suballocations2nd.end()) { return *it; } } VMA_ASSERT(0 && "Allocation not found in linear allocator!"); return suballocations1st.back(); // Should never occur. } bool VmaBlockMetadata_Linear::ShouldCompact1st() const { const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; const size_t suballocCount = AccessSuballocations1st().size(); return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; } void VmaBlockMetadata_Linear::CleanupAfterFree() { SuballocationVectorType& suballocations1st = AccessSuballocations1st(); SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); if (IsEmpty()) { suballocations1st.clear(); suballocations2nd.clear(); m_1stNullItemsBeginCount = 0; m_1stNullItemsMiddleCount = 0; m_2ndNullItemsCount = 0; m_2ndVectorMode = SECOND_VECTOR_EMPTY; } else { const size_t suballoc1stCount = suballocations1st.size(); const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; VMA_ASSERT(nullItem1stCount <= suballoc1stCount); // Find more null items at the beginning of 1st vector. while (m_1stNullItemsBeginCount < suballoc1stCount && suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) { ++m_1stNullItemsBeginCount; --m_1stNullItemsMiddleCount; } // Find more null items at the end of 1st vector. while (m_1stNullItemsMiddleCount > 0 && suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE) { --m_1stNullItemsMiddleCount; suballocations1st.pop_back(); } // Find more null items at the end of 2nd vector. while (m_2ndNullItemsCount > 0 && suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE) { --m_2ndNullItemsCount; suballocations2nd.pop_back(); } // Find more null items at the beginning of 2nd vector. while (m_2ndNullItemsCount > 0 && suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE) { --m_2ndNullItemsCount; VmaVectorRemove(suballocations2nd, 0); } if (ShouldCompact1st()) { const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; size_t srcIndex = m_1stNullItemsBeginCount; for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) { while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE) { ++srcIndex; } if (dstIndex != srcIndex) { suballocations1st[dstIndex] = suballocations1st[srcIndex]; } ++srcIndex; } suballocations1st.resize(nonNullItemCount); m_1stNullItemsBeginCount = 0; m_1stNullItemsMiddleCount = 0; } // 2nd vector became empty. if (suballocations2nd.empty()) { m_2ndVectorMode = SECOND_VECTOR_EMPTY; } // 1st vector became empty. if (suballocations1st.size() - m_1stNullItemsBeginCount == 0) { suballocations1st.clear(); m_1stNullItemsBeginCount = 0; if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { // Swap 1st with 2nd. Now 2nd is empty. m_2ndVectorMode = SECOND_VECTOR_EMPTY; m_1stNullItemsMiddleCount = m_2ndNullItemsCount; while (m_1stNullItemsBeginCount < suballocations2nd.size() && suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) { ++m_1stNullItemsBeginCount; --m_1stNullItemsMiddleCount; } m_2ndNullItemsCount = 0; m_1stVectorIndex ^= 1; } } } VMA_HEAVY_ASSERT(Validate()); } bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( VkDeviceSize allocSize, VkDeviceSize allocAlignment, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) { const VkDeviceSize blockSize = GetSize(); const VkDeviceSize debugMargin = GetDebugMargin(); const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); SuballocationVectorType& suballocations1st = AccessSuballocations1st(); SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { // Try to allocate at the end of 1st vector. VkDeviceSize resultBaseOffset = 0; if (!suballocations1st.empty()) { const VmaSuballocation& lastSuballoc = suballocations1st.back(); resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; } // Start from offset equal to beginning of free space. VkDeviceSize resultOffset = resultBaseOffset; // Apply alignment. resultOffset = VmaAlignUp(resultOffset, allocAlignment); // Check previous suballocations for BufferImageGranularity conflicts. // Make bigger alignment if necessary. if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty()) { bool bufferImageGranularityConflict = false; for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) { const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) { if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) { bufferImageGranularityConflict = true; break; } } else // Already on previous page. break; } if (bufferImageGranularityConflict) { resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); } } const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : blockSize; // There is enough free space at the end after alignment. if (resultOffset + allocSize + debugMargin <= freeSpaceEnd) { // Check next suballocations for BufferImageGranularity conflicts. // If conflict exists, allocation cannot be made here. if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) { for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) { const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) { return false; } } else { // Already on previous page. break; } } } // All tests passed: Success. pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); // pAllocationRequest->item, customData unused. pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; return true; } } // Wrap-around to end of 2nd vector. Try to allocate there, watching for the // beginning of 1st vector as the end of free space. if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { VMA_ASSERT(!suballocations1st.empty()); VkDeviceSize resultBaseOffset = 0; if (!suballocations2nd.empty()) { const VmaSuballocation& lastSuballoc = suballocations2nd.back(); resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; } // Start from offset equal to beginning of free space. VkDeviceSize resultOffset = resultBaseOffset; // Apply alignment. resultOffset = VmaAlignUp(resultOffset, allocAlignment); // Check previous suballocations for BufferImageGranularity conflicts. // Make bigger alignment if necessary. if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) { bool bufferImageGranularityConflict = false; for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) { const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) { if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) { bufferImageGranularityConflict = true; break; } } else // Already on previous page. break; } if (bufferImageGranularityConflict) { resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); } } size_t index1st = m_1stNullItemsBeginCount; // There is enough free space at the end after alignment. if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) || (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset)) { // Check next suballocations for BufferImageGranularity conflicts. // If conflict exists, allocation cannot be made here. if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) { for (size_t nextSuballocIndex = index1st; nextSuballocIndex < suballocations1st.size(); nextSuballocIndex++) { const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) { return false; } } else { // Already on next page. break; } } } // All tests passed: Success. pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; // pAllocationRequest->item, customData unused. return true; } } return false; } bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( VkDeviceSize allocSize, VkDeviceSize allocAlignment, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) { const VkDeviceSize blockSize = GetSize(); const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); SuballocationVectorType& suballocations1st = AccessSuballocations1st(); SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) { VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); return false; } // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). if (allocSize > blockSize) { return false; } VkDeviceSize resultBaseOffset = blockSize - allocSize; if (!suballocations2nd.empty()) { const VmaSuballocation& lastSuballoc = suballocations2nd.back(); resultBaseOffset = lastSuballoc.offset - allocSize; if (allocSize > lastSuballoc.offset) { return false; } } // Start from offset equal to end of free space. VkDeviceSize resultOffset = resultBaseOffset; const VkDeviceSize debugMargin = GetDebugMargin(); // Apply debugMargin at the end. if (debugMargin > 0) { if (resultOffset < debugMargin) { return false; } resultOffset -= debugMargin; } // Apply alignment. resultOffset = VmaAlignDown(resultOffset, allocAlignment); // Check next suballocations from 2nd for BufferImageGranularity conflicts. // Make bigger alignment if necessary. if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) { bool bufferImageGranularityConflict = false; for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) { const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) { if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) { bufferImageGranularityConflict = true; break; } } else // Already on previous page. break; } if (bufferImageGranularityConflict) { resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); } } // There is enough free space. const VkDeviceSize endOf1st = !suballocations1st.empty() ? suballocations1st.back().offset + suballocations1st.back().size : 0; if (endOf1st + debugMargin <= resultOffset) { // Check previous suballocations for BufferImageGranularity conflicts. // If conflict exists, allocation cannot be made here. if (bufferImageGranularity > 1) { for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) { const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) { if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) { return false; } } else { // Already on next page. break; } } } // All tests passed: Success. pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); // pAllocationRequest->item unused. pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; return true; } return false; } #endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS #endif // _VMA_BLOCK_METADATA_LINEAR #ifndef _VMA_BLOCK_METADATA_BUDDY /* - GetSize() is the original size of allocated memory block. - m_UsableSize is this size aligned down to a power of two. All allocations and calculations happen relative to m_UsableSize. - GetUnusableSize() is the difference between them. It is reported as separate, unused range, not available for allocations. Node at level 0 has size = m_UsableSize. Each next level contains nodes with size 2 times smaller than current level. m_LevelCount is the maximum number of levels to use in the current object. */ class VmaBlockMetadata_Buddy : public VmaBlockMetadata { VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy) public: VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual); virtual ~VmaBlockMetadata_Buddy(); size_t GetAllocationCount() const override { return m_AllocationCount; } VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize + GetUnusableSize(); } bool IsEmpty() const override { return m_Root->type == Node::TYPE_FREE; } VkResult CheckCorruption(const void* pBlockData) override { return VK_ERROR_FEATURE_NOT_PRESENT; } VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }; void DebugLogAllAllocations() const override { DebugLogAllAllocationNode(m_Root, 0); } void Init(VkDeviceSize size) override; bool Validate() const override; void CalcAllocationStatInfo(VmaStatInfo& outInfo) const override; void AddPoolStats(VmaPoolStats& inoutStats) const override; #if VMA_STATS_STRING_ENABLED void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override; #endif bool CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) override; void Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) override; void Free(VmaAllocHandle allocHandle) override; void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; void Clear() override; void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; private: static const size_t MAX_LEVELS = 48; struct ValidationContext { size_t calculatedAllocationCount = 0; size_t calculatedFreeCount = 0; VkDeviceSize calculatedSumFreeSize = 0; }; struct Node { VkDeviceSize offset; enum TYPE { TYPE_FREE, TYPE_ALLOCATION, TYPE_SPLIT, TYPE_COUNT } type; Node* parent; Node* buddy; union { struct { Node* prev; Node* next; } free; struct { void* userData; } allocation; struct { Node* leftChild; } split; }; }; // Size of the memory block aligned down to a power of two. VkDeviceSize m_UsableSize; uint32_t m_LevelCount; VmaPoolAllocator m_NodeAllocator; Node* m_Root; struct { Node* front; Node* back; } m_FreeList[MAX_LEVELS]; // Number of nodes in the tree with type == TYPE_ALLOCATION. size_t m_AllocationCount; // Number of nodes in the tree with type == TYPE_FREE. size_t m_FreeCount; // Doesn't include space wasted due to internal fragmentation - allocation sizes are just aligned up to node sizes. // Doesn't include unusable size. VkDeviceSize m_SumFreeSize; VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; } VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; } VkDeviceSize AlignAllocationSize(VkDeviceSize size) const { if (!IsVirtual()) { size = VmaAlignUp(size, (VkDeviceSize)16); } return VmaNextPow2(size); } Node* FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel); void DeleteNodeChildren(Node* node); bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const; uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const; void CalcAllocationStatInfoNode(VmaStatInfo& inoutInfo, const Node* node, VkDeviceSize levelNodeSize) const; // Adds node to the front of FreeList at given level. // node->type must be FREE. // node->free.prev, next can be undefined. void AddToFreeListFront(uint32_t level, Node* node); // Removes node from FreeList at given level. // node->type must be FREE. // node->free.prev, next stay untouched. void RemoveFromFreeList(uint32_t level, Node* node); void DebugLogAllAllocationNode(Node* node, uint32_t level) const; #if VMA_STATS_STRING_ENABLED void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const; #endif }; #ifndef _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual) : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), m_NodeAllocator(pAllocationCallbacks, 32), // firstBlockCapacity m_Root(VMA_NULL), m_AllocationCount(0), m_FreeCount(1), m_SumFreeSize(0) { memset(m_FreeList, 0, sizeof(m_FreeList)); } VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() { DeleteNodeChildren(m_Root); m_NodeAllocator.Free(m_Root); } void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) { VmaBlockMetadata::Init(size); m_UsableSize = VmaPrevPow2(size); m_SumFreeSize = m_UsableSize; // Calculate m_LevelCount. const VkDeviceSize minNodeSize = IsVirtual() ? 1 : 16; m_LevelCount = 1; while (m_LevelCount < MAX_LEVELS && LevelToNodeSize(m_LevelCount) >= minNodeSize) { ++m_LevelCount; } Node* rootNode = m_NodeAllocator.Alloc(); rootNode->offset = 0; rootNode->type = Node::TYPE_FREE; rootNode->parent = VMA_NULL; rootNode->buddy = VMA_NULL; m_Root = rootNode; AddToFreeListFront(0, rootNode); } bool VmaBlockMetadata_Buddy::Validate() const { // Validate tree. ValidationContext ctx; if (!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) { VMA_VALIDATE(false && "ValidateNode failed."); } VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount); VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize); // Validate free node lists. for (uint32_t level = 0; level < m_LevelCount; ++level) { VMA_VALIDATE(m_FreeList[level].front == VMA_NULL || m_FreeList[level].front->free.prev == VMA_NULL); for (Node* node = m_FreeList[level].front; node != VMA_NULL; node = node->free.next) { VMA_VALIDATE(node->type == Node::TYPE_FREE); if (node->free.next == VMA_NULL) { VMA_VALIDATE(m_FreeList[level].back == node); } else { VMA_VALIDATE(node->free.next->free.prev == node); } } } // Validate that free lists ar higher levels are empty. for (uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) { VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL); } return true; } void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const { VmaInitStatInfo(outInfo); outInfo.blockCount = 1; CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0)); const VkDeviceSize unusableSize = GetUnusableSize(); if (unusableSize > 0) { VmaAddStatInfoUnusedRange(outInfo, unusableSize); } } void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const { const VkDeviceSize unusableSize = GetUnusableSize(); inoutStats.size += GetSize(); inoutStats.unusedSize += m_SumFreeSize + unusableSize; inoutStats.allocationCount += m_AllocationCount; inoutStats.unusedRangeCount += m_FreeCount; if (unusableSize > 0) { ++inoutStats.unusedRangeCount; } } #if VMA_STATS_STRING_ENABLED void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const { VmaStatInfo stat; CalcAllocationStatInfo(stat); PrintDetailedMap_Begin( json, stat.unusedBytes, stat.allocationCount, stat.unusedRangeCount, mapRefCount); PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0)); const VkDeviceSize unusableSize = GetUnusableSize(); if (unusableSize > 0) { PrintDetailedMap_UnusedRange(json, m_UsableSize, // offset unusableSize); // size } PrintDetailedMap_End(json); } #endif // VMA_STATS_STRING_ENABLED bool VmaBlockMetadata_Buddy::CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) { VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); allocSize = AlignAllocationSize(allocSize); // Simple way to respect bufferImageGranularity. May be optimized some day. // Whenever it might be an OPTIMAL image... if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) { allocAlignment = VMA_MAX(allocAlignment, GetBufferImageGranularity()); allocSize = VmaAlignUp(allocSize, GetBufferImageGranularity()); } if (allocSize > m_UsableSize) { return false; } const uint32_t targetLevel = AllocSizeToLevel(allocSize); for (uint32_t level = targetLevel; level--; ) { for (Node* freeNode = m_FreeList[level].front; freeNode != VMA_NULL; freeNode = freeNode->free.next) { if (freeNode->offset % allocAlignment == 0) { pAllocationRequest->type = VmaAllocationRequestType::Normal; pAllocationRequest->allocHandle = (VmaAllocHandle)(freeNode->offset + 1); pAllocationRequest->size = allocSize; pAllocationRequest->customData = (void*)(uintptr_t)level; return true; } } } return false; } void VmaBlockMetadata_Buddy::Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) { VMA_ASSERT(request.type == VmaAllocationRequestType::Normal); const uint32_t targetLevel = AllocSizeToLevel(request.size); uint32_t currLevel = (uint32_t)(uintptr_t)request.customData; Node* currNode = m_FreeList[currLevel].front; VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1; while (currNode->offset != offset) { currNode = currNode->free.next; VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); } // Go down, splitting free nodes. while (currLevel < targetLevel) { // currNode is already first free node at currLevel. // Remove it from list of free nodes at this currLevel. RemoveFromFreeList(currLevel, currNode); const uint32_t childrenLevel = currLevel + 1; // Create two free sub-nodes. Node* leftChild = m_NodeAllocator.Alloc(); Node* rightChild = m_NodeAllocator.Alloc(); leftChild->offset = currNode->offset; leftChild->type = Node::TYPE_FREE; leftChild->parent = currNode; leftChild->buddy = rightChild; rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel); rightChild->type = Node::TYPE_FREE; rightChild->parent = currNode; rightChild->buddy = leftChild; // Convert current currNode to split type. currNode->type = Node::TYPE_SPLIT; currNode->split.leftChild = leftChild; // Add child nodes to free list. Order is important! AddToFreeListFront(childrenLevel, rightChild); AddToFreeListFront(childrenLevel, leftChild); ++m_FreeCount; ++currLevel; currNode = m_FreeList[currLevel].front; /* We can be sure that currNode, as left child of node previously split, also fulfills the alignment requirement. */ } // Remove from free list. VMA_ASSERT(currLevel == targetLevel && currNode != VMA_NULL && currNode->type == Node::TYPE_FREE); RemoveFromFreeList(currLevel, currNode); // Convert to allocation node. currNode->type = Node::TYPE_ALLOCATION; currNode->allocation.userData = userData; ++m_AllocationCount; --m_FreeCount; m_SumFreeSize -= request.size; } void VmaBlockMetadata_Buddy::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) { uint32_t level = 0; outInfo.offset = (VkDeviceSize)allocHandle - 1; const Node* const node = FindAllocationNode(outInfo.offset, level); outInfo.size = LevelToNodeSize(level); outInfo.pUserData = node->allocation.userData; } void VmaBlockMetadata_Buddy::DeleteNodeChildren(Node* node) { if (node->type == Node::TYPE_SPLIT) { DeleteNodeChildren(node->split.leftChild->buddy); DeleteNodeChildren(node->split.leftChild); const VkAllocationCallbacks* allocationCallbacks = GetAllocationCallbacks(); m_NodeAllocator.Free(node->split.leftChild->buddy); m_NodeAllocator.Free(node->split.leftChild); } } void VmaBlockMetadata_Buddy::Clear() { DeleteNodeChildren(m_Root); m_Root->type = Node::TYPE_FREE; m_AllocationCount = 0; m_FreeCount = 1; m_SumFreeSize = m_UsableSize; } void VmaBlockMetadata_Buddy::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) { uint32_t level = 0; Node* const node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level); node->allocation.userData = userData; } VmaBlockMetadata_Buddy::Node* VmaBlockMetadata_Buddy::FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel) { Node* node = m_Root; VkDeviceSize nodeOffset = 0; outLevel = 0; VkDeviceSize levelNodeSize = LevelToNodeSize(0); while (node->type == Node::TYPE_SPLIT) { const VkDeviceSize nextLevelNodeSize = levelNodeSize >> 1; if (offset < nodeOffset + nextLevelNodeSize) { node = node->split.leftChild; } else { node = node->split.leftChild->buddy; nodeOffset += nextLevelNodeSize; } ++outLevel; levelNodeSize = nextLevelNodeSize; } VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION); return node; } bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const { VMA_VALIDATE(level < m_LevelCount); VMA_VALIDATE(curr->parent == parent); VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL)); VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr); switch (curr->type) { case Node::TYPE_FREE: // curr->free.prev, next are validated separately. ctx.calculatedSumFreeSize += levelNodeSize; ++ctx.calculatedFreeCount; break; case Node::TYPE_ALLOCATION: ++ctx.calculatedAllocationCount; if (!IsVirtual()) { VMA_VALIDATE(curr->allocation.userData != VMA_NULL); } break; case Node::TYPE_SPLIT: { const uint32_t childrenLevel = level + 1; const VkDeviceSize childrenLevelNodeSize = levelNodeSize >> 1; const Node* const leftChild = curr->split.leftChild; VMA_VALIDATE(leftChild != VMA_NULL); VMA_VALIDATE(leftChild->offset == curr->offset); if (!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) { VMA_VALIDATE(false && "ValidateNode for left child failed."); } const Node* const rightChild = leftChild->buddy; VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize); if (!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) { VMA_VALIDATE(false && "ValidateNode for right child failed."); } } break; default: return false; } return true; } uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const { // I know this could be optimized somehow e.g. by using std::log2p1 from C++20. uint32_t level = 0; VkDeviceSize currLevelNodeSize = m_UsableSize; VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1; while (allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) { ++level; currLevelNodeSize >>= 1; nextLevelNodeSize >>= 1; } return level; } void VmaBlockMetadata_Buddy::Free(VmaAllocHandle allocHandle) { uint32_t level = 0; Node* node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level); ++m_FreeCount; --m_AllocationCount; m_SumFreeSize += LevelToNodeSize(level); node->type = Node::TYPE_FREE; // Join free nodes if possible. while (level > 0 && node->buddy->type == Node::TYPE_FREE) { RemoveFromFreeList(level, node->buddy); Node* const parent = node->parent; m_NodeAllocator.Free(node->buddy); m_NodeAllocator.Free(node); parent->type = Node::TYPE_FREE; node = parent; --level; --m_FreeCount; } AddToFreeListFront(level, node); } void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& inoutInfo, const Node* node, VkDeviceSize levelNodeSize) const { switch (node->type) { case Node::TYPE_FREE: VmaAddStatInfoUnusedRange(inoutInfo, levelNodeSize); break; case Node::TYPE_ALLOCATION: VmaAddStatInfoAllocation(inoutInfo, levelNodeSize); break; case Node::TYPE_SPLIT: { const VkDeviceSize childrenNodeSize = levelNodeSize / 2; const Node* const leftChild = node->split.leftChild; CalcAllocationStatInfoNode(inoutInfo, leftChild, childrenNodeSize); const Node* const rightChild = leftChild->buddy; CalcAllocationStatInfoNode(inoutInfo, rightChild, childrenNodeSize); } break; default: VMA_ASSERT(0); } } void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node) { VMA_ASSERT(node->type == Node::TYPE_FREE); // List is empty. Node* const frontNode = m_FreeList[level].front; if (frontNode == VMA_NULL) { VMA_ASSERT(m_FreeList[level].back == VMA_NULL); node->free.prev = node->free.next = VMA_NULL; m_FreeList[level].front = m_FreeList[level].back = node; } else { VMA_ASSERT(frontNode->free.prev == VMA_NULL); node->free.prev = VMA_NULL; node->free.next = frontNode; frontNode->free.prev = node; m_FreeList[level].front = node; } } void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node) { VMA_ASSERT(m_FreeList[level].front != VMA_NULL); // It is at the front. if (node->free.prev == VMA_NULL) { VMA_ASSERT(m_FreeList[level].front == node); m_FreeList[level].front = node->free.next; } else { Node* const prevFreeNode = node->free.prev; VMA_ASSERT(prevFreeNode->free.next == node); prevFreeNode->free.next = node->free.next; } // It is at the back. if (node->free.next == VMA_NULL) { VMA_ASSERT(m_FreeList[level].back == node); m_FreeList[level].back = node->free.prev; } else { Node* const nextFreeNode = node->free.next; VMA_ASSERT(nextFreeNode->free.prev == node); nextFreeNode->free.prev = node->free.prev; } } void VmaBlockMetadata_Buddy::DebugLogAllAllocationNode(Node* node, uint32_t level) const { switch (node->type) { case Node::TYPE_ALLOCATION: DebugLogAllocation(node->offset, LevelToNodeSize(level), node->allocation.userData); break; case Node::TYPE_SPLIT: { ++level; DebugLogAllAllocationNode(node->split.leftChild, level); DebugLogAllAllocationNode(node->split.leftChild->buddy, level); } break; default: VMA_ASSERT(0); } } #if VMA_STATS_STRING_ENABLED void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const { switch (node->type) { case Node::TYPE_FREE: PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize); break; case Node::TYPE_ALLOCATION: PrintDetailedMap_Allocation(json, node->offset, levelNodeSize, node->allocation.userData); break; case Node::TYPE_SPLIT: { const VkDeviceSize childrenNodeSize = levelNodeSize / 2; const Node* const leftChild = node->split.leftChild; PrintDetailedMapNode(json, leftChild, childrenNodeSize); const Node* const rightChild = leftChild->buddy; PrintDetailedMapNode(json, rightChild, childrenNodeSize); } break; default: VMA_ASSERT(0); } } #endif // VMA_STATS_STRING_ENABLED #endif // _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS #endif // _VMA_BLOCK_METADATA_BUDDY #ifndef _VMA_BLOCK_METADATA_TLSF // To not search current larger region if first allocation won't succeed and skip to smaller range // use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest(). // When fragmentation and reusal of previous blocks doesn't matter then use with // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible. class VmaBlockMetadata_TLSF : public VmaBlockMetadata { VMA_CLASS_NO_COPY(VmaBlockMetadata_TLSF) public: VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual); virtual ~VmaBlockMetadata_TLSF(); size_t GetAllocationCount() const override { return m_AllocCount; } VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; } bool IsEmpty() const override { return m_NullBlock->offset == 0; } VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; }; void Init(VkDeviceSize size) override; bool Validate() const override; void CalcAllocationStatInfo(VmaStatInfo& outInfo) const override; void AddPoolStats(VmaPoolStats& inoutStats) const override; #if VMA_STATS_STRING_ENABLED void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override; #endif bool CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) override; VkResult CheckCorruption(const void* pBlockData) override; void Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) override; void Free(VmaAllocHandle allocHandle) override; void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; void Clear() override; void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; void DebugLogAllAllocations() const override; private: // According to original paper it should be preferable 4 or 5: // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems" // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf static const uint8_t SECOND_LEVEL_INDEX = 5; static const uint16_t SMALL_BUFFER_SIZE = 256; static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16; static const uint8_t MEMORY_CLASS_SHIFT = 7; static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT; class Block { public: VkDeviceSize offset; VkDeviceSize size; Block* prevPhysical; Block* nextPhysical; void MarkFree() { prevFree = VMA_NULL; } void MarkTaken() { prevFree = this; } bool IsFree() const { return prevFree != this; } void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; } Block*& PrevFree() { return prevFree; } Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; } private: Block* prevFree; // Address of the same block here indicates that block is taken union { Block* nextFree; void* userData; }; }; size_t m_AllocCount; // Total number of free blocks besides null block size_t m_BlocksFreeCount; // Total size of free blocks excluding null block VkDeviceSize m_BlocksFreeSize; uint32_t m_IsFreeBitmap; uint8_t m_MemoryClasses; uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES]; uint32_t m_ListsCount; /* * 0: 0-3 lists for small buffers * 1+: 0-(2^SLI-1) lists for normal buffers */ Block** m_FreeList; VmaPoolAllocator m_BlockAllocator; Block* m_NullBlock; VmaBlockBufferImageGranularity m_GranularityHandler; uint8_t SizeToMemoryClass(VkDeviceSize size) const; uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const; uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const; uint32_t GetListIndex(VkDeviceSize size) const; void RemoveFreeBlock(Block* block); void InsertFreeBlock(Block* block); void MergeBlock(Block* block, Block* prev); Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const; bool CheckBlock( Block& block, uint32_t listIndex, VkDeviceSize allocSize, VkDeviceSize allocAlignment, VmaSuballocationType allocType, VmaAllocationRequest* pAllocationRequest); }; #ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize bufferImageGranularity, bool isVirtual) : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), m_AllocCount(0), m_BlocksFreeCount(0), m_BlocksFreeSize(0), m_IsFreeBitmap(0), m_MemoryClasses(0), m_ListsCount(0), m_FreeList(VMA_NULL), m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT), m_NullBlock(VMA_NULL), m_GranularityHandler(bufferImageGranularity) {} VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF() { if (m_FreeList) vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount); m_GranularityHandler.Destroy(GetAllocationCallbacks()); } void VmaBlockMetadata_TLSF::Init(VkDeviceSize size) { VmaBlockMetadata::Init(size); if (!IsVirtual()) m_GranularityHandler.Init(GetAllocationCallbacks(), size); m_NullBlock = m_BlockAllocator.Alloc(); m_NullBlock->size = size; m_NullBlock->offset = 0; m_NullBlock->prevPhysical = VMA_NULL; m_NullBlock->nextPhysical = VMA_NULL; m_NullBlock->MarkFree(); m_NullBlock->NextFree() = VMA_NULL; m_NullBlock->PrevFree() = VMA_NULL; uint8_t memoryClass = SizeToMemoryClass(size); uint16_t sli = SizeToSecondIndex(size, memoryClass); m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1; if (IsVirtual()) m_ListsCount += 1UL << SECOND_LEVEL_INDEX; else m_ListsCount += 4; m_MemoryClasses = memoryClass + 2; memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t)); m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount); memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); } bool VmaBlockMetadata_TLSF::Validate() const { VMA_VALIDATE(GetSumFreeSize() <= GetSize()); VkDeviceSize calculatedSize = m_NullBlock->size; VkDeviceSize calculatedFreeSize = m_NullBlock->size; size_t allocCount = 0; size_t freeCount = 0; // Check integrity of free lists for (uint32_t list = 0; list < m_ListsCount; ++list) { Block* block = m_FreeList[list]; if (block != VMA_NULL) { VMA_VALIDATE(block->IsFree()); VMA_VALIDATE(block->PrevFree() == VMA_NULL); while (block->NextFree()) { VMA_VALIDATE(block->NextFree()->IsFree()); VMA_VALIDATE(block->NextFree()->PrevFree() == block); block = block->NextFree(); } } } VkDeviceSize nextOffset = m_NullBlock->offset; auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual()); VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL); if (m_NullBlock->prevPhysical) { VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock); } // Check all blocks for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical) { VMA_VALIDATE(prev->offset + prev->size == nextOffset); nextOffset = prev->offset; calculatedSize += prev->size; uint32_t listIndex = GetListIndex(prev->size); if (prev->IsFree()) { ++freeCount; // Check if free block belongs to free list Block* freeBlock = m_FreeList[listIndex]; VMA_VALIDATE(freeBlock != VMA_NULL); bool found = false; do { if (freeBlock == prev) found = true; freeBlock = freeBlock->NextFree(); } while (!found && freeBlock != VMA_NULL); VMA_VALIDATE(found); calculatedFreeSize += prev->size; } else { ++allocCount; // Check if taken block is not on a free list Block* freeBlock = m_FreeList[listIndex]; while (freeBlock) { VMA_VALIDATE(freeBlock != prev); freeBlock = freeBlock->NextFree(); } if (!IsVirtual()) { VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size)); } } if (prev->prevPhysical) { VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev); } } if (!IsVirtual()) { VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx)); } VMA_VALIDATE(nextOffset == 0); VMA_VALIDATE(calculatedSize == GetSize()); VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize()); VMA_VALIDATE(allocCount == m_AllocCount); VMA_VALIDATE(freeCount == m_BlocksFreeCount); return true; } void VmaBlockMetadata_TLSF::CalcAllocationStatInfo(VmaStatInfo& outInfo) const { VmaInitStatInfo(outInfo); outInfo.blockCount = 1; if (m_NullBlock->size > 0) VmaAddStatInfoUnusedRange(outInfo, m_NullBlock->size); for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) { if (block->IsFree()) VmaAddStatInfoUnusedRange(outInfo, block->size); else VmaAddStatInfoAllocation(outInfo, block->size); } } void VmaBlockMetadata_TLSF::AddPoolStats(VmaPoolStats& inoutStats) const { inoutStats.size += GetSize(); inoutStats.unusedSize += GetSumFreeSize(); inoutStats.allocationCount += m_AllocCount; inoutStats.unusedRangeCount += m_BlocksFreeCount; if(m_NullBlock->size > 0) ++inoutStats.unusedRangeCount; } #if VMA_STATS_STRING_ENABLED void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const { size_t blockCount = m_AllocCount + m_BlocksFreeCount; VmaStlAllocator allocator(GetAllocationCallbacks()); VmaVector> blockList(blockCount, allocator); size_t i = blockCount; for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) { blockList[--i] = block; } VMA_ASSERT(i == 0); VmaStatInfo stat; CalcAllocationStatInfo(stat); PrintDetailedMap_Begin(json, stat.unusedBytes, stat.allocationCount, stat.unusedRangeCount, mapRefCount); for (; i < blockCount; ++i) { Block* block = blockList[i]; if (block->IsFree()) PrintDetailedMap_UnusedRange(json, block->offset, block->size); else PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData()); } if (m_NullBlock->size > 0) PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size); PrintDetailedMap_End(json); } #endif bool VmaBlockMetadata_TLSF::CreateAllocationRequest( VkDeviceSize allocSize, VkDeviceSize allocAlignment, bool upperAddress, VmaSuballocationType allocType, uint32_t strategy, VmaAllocationRequest* pAllocationRequest) { VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!"); VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); // For small granularity round up if (!IsVirtual()) m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment); allocSize += GetDebugMargin(); // Quick check for too small pool if (allocSize > GetSumFreeSize()) return false; // If no free blocks in pool then check only null block if (m_BlocksFreeCount == 0) return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest); // Round up to the next block VkDeviceSize sizeForNextList = allocSize; VkDeviceSize smallSizeStep = SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4); if (allocSize > SMALL_BUFFER_SIZE) { sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX)); } else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep) sizeForNextList = SMALL_BUFFER_SIZE + 1; else sizeForNextList += smallSizeStep; uint32_t nextListIndex = 0; uint32_t prevListIndex = 0; Block* nextListBlock = VMA_NULL; Block* prevListBlock = VMA_NULL; // Check blocks according to strategies if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) { // Quick check for larger block first nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; // If not fitted then null block if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; // Null block failed, search larger bucket while (nextListBlock) { if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; nextListBlock = nextListBlock->NextFree(); } // Failed again, check best fit bucket prevListBlock = FindFreeBlock(allocSize, prevListIndex); while (prevListBlock) { if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; prevListBlock = prevListBlock->NextFree(); } } else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT) { // Check best fit bucket prevListBlock = FindFreeBlock(allocSize, prevListIndex); while (prevListBlock) { if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; prevListBlock = prevListBlock->NextFree(); } // If failed check null block if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; // Check larger bucket nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); while (nextListBlock) { if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; nextListBlock = nextListBlock->NextFree(); } } else { // Check larger bucket nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); while (nextListBlock) { if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; nextListBlock = nextListBlock->NextFree(); } // If failed check null block if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; // Check best fit bucket prevListBlock = FindFreeBlock(allocSize, prevListIndex); while (prevListBlock) { if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; prevListBlock = prevListBlock->NextFree(); } } // Worst case, full search has to be done while (++nextListIndex < m_ListsCount) { nextListBlock = m_FreeList[nextListIndex]; while (nextListBlock) { if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) return true; nextListBlock = nextListBlock->NextFree(); } } // No more memory sadly return false; } VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData) { for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) { if (!block->IsFree()) { if (!VmaValidateMagicValue(pBlockData, block->offset + block->size)) { VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); return VK_ERROR_UNKNOWN_COPY; } } } return VK_SUCCESS; } void VmaBlockMetadata_TLSF::Alloc( const VmaAllocationRequest& request, VmaSuballocationType type, void* userData) { VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF); // Get block and pop it from the free list Block* currentBlock = (Block*)request.allocHandle; VkDeviceSize offset = request.algorithmData; VMA_ASSERT(currentBlock != VMA_NULL); VMA_ASSERT(currentBlock->offset <= offset); if (currentBlock != m_NullBlock) RemoveFreeBlock(currentBlock); VkDeviceSize debugMargin = GetDebugMargin(); VkDeviceSize misssingAlignment = offset - currentBlock->offset; // Append missing alignment to prev block or create new one if (misssingAlignment) { Block* prevBlock = currentBlock->prevPhysical; VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!"); if (prevBlock->IsFree() && prevBlock->size != debugMargin) { uint32_t oldList = GetListIndex(prevBlock->size); prevBlock->size += misssingAlignment; // Check if new size crosses list bucket if (oldList != GetListIndex(prevBlock->size)) { prevBlock->size -= misssingAlignment; RemoveFreeBlock(prevBlock); prevBlock->size += misssingAlignment; InsertFreeBlock(prevBlock); } else m_BlocksFreeSize += misssingAlignment; } else { Block* newBlock = m_BlockAllocator.Alloc(); currentBlock->prevPhysical = newBlock; prevBlock->nextPhysical = newBlock; newBlock->prevPhysical = prevBlock; newBlock->nextPhysical = currentBlock; newBlock->size = misssingAlignment; newBlock->offset = currentBlock->offset; newBlock->MarkTaken(); InsertFreeBlock(newBlock); } currentBlock->size -= misssingAlignment; currentBlock->offset += misssingAlignment; } VkDeviceSize size = request.size + debugMargin; if (currentBlock->size == size) { if (currentBlock == m_NullBlock) { // Setup new null block m_NullBlock = m_BlockAllocator.Alloc(); m_NullBlock->size = 0; m_NullBlock->offset = currentBlock->offset + size; m_NullBlock->prevPhysical = currentBlock; m_NullBlock->nextPhysical = VMA_NULL; m_NullBlock->MarkFree(); m_NullBlock->PrevFree() = VMA_NULL; m_NullBlock->NextFree() = VMA_NULL; currentBlock->nextPhysical = m_NullBlock; currentBlock->MarkTaken(); } } else { VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!"); // Create new free block Block* newBlock = m_BlockAllocator.Alloc(); newBlock->size = currentBlock->size - size; newBlock->offset = currentBlock->offset + size; newBlock->prevPhysical = currentBlock; newBlock->nextPhysical = currentBlock->nextPhysical; currentBlock->nextPhysical = newBlock; currentBlock->size = size; if (currentBlock == m_NullBlock) { m_NullBlock = newBlock; m_NullBlock->MarkFree(); m_NullBlock->NextFree() = VMA_NULL; m_NullBlock->PrevFree() = VMA_NULL; currentBlock->MarkTaken(); } else { newBlock->nextPhysical->prevPhysical = newBlock; newBlock->MarkTaken(); InsertFreeBlock(newBlock); } } currentBlock->UserData() = userData; if (debugMargin > 0) { currentBlock->size -= debugMargin; Block* newBlock = m_BlockAllocator.Alloc(); newBlock->size = debugMargin; newBlock->offset = currentBlock->offset + currentBlock->size; newBlock->prevPhysical = currentBlock; newBlock->nextPhysical = currentBlock->nextPhysical; newBlock->MarkTaken(); currentBlock->nextPhysical->prevPhysical = newBlock; currentBlock->nextPhysical = newBlock; InsertFreeBlock(newBlock); } if (!IsVirtual()) m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData, currentBlock->offset, currentBlock->size); ++m_AllocCount; } void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle) { Block* block = (Block*)allocHandle; Block* next = block->nextPhysical; VMA_ASSERT(!block->IsFree() && "Block is already free!"); if (!IsVirtual()) m_GranularityHandler.FreePages(block->offset, block->size); --m_AllocCount; VkDeviceSize debugMargin = GetDebugMargin(); if (debugMargin > 0) { RemoveFreeBlock(next); MergeBlock(next, block); block = next; next = next->nextPhysical; } // Try merging Block* prev = block->prevPhysical; if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin) { RemoveFreeBlock(prev); MergeBlock(block, prev); } if (!next->IsFree()) InsertFreeBlock(block); else if (next == m_NullBlock) MergeBlock(m_NullBlock, block); else { RemoveFreeBlock(next); MergeBlock(next, block); InsertFreeBlock(next); } } void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) { Block* block = (Block*)allocHandle; VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!"); outInfo.offset = block->offset; outInfo.size = block->size; outInfo.pUserData = block->UserData(); } void VmaBlockMetadata_TLSF::Clear() { m_AllocCount = 0; m_BlocksFreeCount = 0; m_BlocksFreeSize = 0; m_IsFreeBitmap = 0; m_NullBlock->offset = 0; m_NullBlock->size = GetSize(); Block* block = m_NullBlock->prevPhysical; m_NullBlock->prevPhysical = VMA_NULL; while (block) { Block* prev = block->prevPhysical; m_BlockAllocator.Free(block); block = prev; } memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t)); m_GranularityHandler.Clear(); } void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) { Block* block = (Block*)allocHandle; VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!"); block->UserData() = userData; } void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const { for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) if (!block->IsFree()) DebugLogAllocation(block->offset, block->size, block->UserData()); } uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const { if (size > SMALL_BUFFER_SIZE) return VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT; return 0; } uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const { if (memoryClass == 0) { if (IsVirtual()) return static_cast((size - 1) / 8); else return static_cast((size - 1) / 64); } return static_cast((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX)); } uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const { if (memoryClass == 0) return secondIndex; const uint32_t index = static_cast(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex; if (IsVirtual()) return index + (1 << SECOND_LEVEL_INDEX); else return index + 4; } uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const { uint8_t memoryClass = SizeToMemoryClass(size); return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass)); } void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block) { VMA_ASSERT(block != m_NullBlock); VMA_ASSERT(block->IsFree()); if (block->NextFree() != VMA_NULL) block->NextFree()->PrevFree() = block->PrevFree(); if (block->PrevFree() != VMA_NULL) block->PrevFree()->NextFree() = block->NextFree(); else { uint8_t memClass = SizeToMemoryClass(block->size); uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); uint32_t index = GetListIndex(memClass, secondIndex); VMA_ASSERT(m_FreeList[index] == block); m_FreeList[index] = block->NextFree(); if (block->NextFree() == VMA_NULL) { m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex); if (m_InnerIsFreeBitmap[memClass] == 0) m_IsFreeBitmap &= ~(1UL << memClass); } } block->MarkTaken(); block->UserData() = VMA_NULL; --m_BlocksFreeCount; m_BlocksFreeSize -= block->size; } void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block) { VMA_ASSERT(block != m_NullBlock); VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!"); uint8_t memClass = SizeToMemoryClass(block->size); uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); uint32_t index = GetListIndex(memClass, secondIndex); VMA_ASSERT(index < m_ListsCount); block->PrevFree() = VMA_NULL; block->NextFree() = m_FreeList[index]; m_FreeList[index] = block; if (block->NextFree() != VMA_NULL) block->NextFree()->PrevFree() = block; else { m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex; m_IsFreeBitmap |= 1UL << memClass; } ++m_BlocksFreeCount; m_BlocksFreeSize += block->size; } void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev) { VMA_ASSERT(block->prevPhysical == prev && "Cannot merge seperate physical regions!"); VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!"); block->offset = prev->offset; block->size += prev->size; block->prevPhysical = prev->prevPhysical; if (block->prevPhysical) block->prevPhysical->nextPhysical = block; m_BlockAllocator.Free(prev); } VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const { uint8_t memoryClass = SizeToMemoryClass(size); uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass)); if (!innerFreeMap) { // Check higher levels for avaiable blocks uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1)); if (!freeMap) return VMA_NULL; // No more memory avaible // Find lowest free region memoryClass = VMA_BITSCAN_LSB(freeMap); innerFreeMap = m_InnerIsFreeBitmap[memoryClass]; VMA_ASSERT(innerFreeMap != 0); } // Find lowest free subregion listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap)); VMA_ASSERT(m_FreeList[listIndex]); return m_FreeList[listIndex]; } bool VmaBlockMetadata_TLSF::CheckBlock( Block& block, uint32_t listIndex, VkDeviceSize allocSize, VkDeviceSize allocAlignment, VmaSuballocationType allocType, VmaAllocationRequest* pAllocationRequest) { VMA_ASSERT(block.IsFree() && "Block is already taken!"); VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment); if (block.size < allocSize + alignedOffset - block.offset) return false; // Check for granularity conflicts if (!IsVirtual() && m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType)) return false; // Alloc successful pAllocationRequest->type = VmaAllocationRequestType::TLSF; pAllocationRequest->allocHandle = (VmaAllocHandle)█ pAllocationRequest->size = allocSize - GetDebugMargin(); pAllocationRequest->customData = (void*)allocType; pAllocationRequest->algorithmData = alignedOffset; // Place block at the start of list if it's normal block if (listIndex != m_ListsCount && block.PrevFree()) { block.PrevFree()->NextFree() = block.NextFree(); if (block.NextFree()) block.NextFree()->PrevFree() = block.PrevFree(); block.PrevFree() = VMA_NULL; block.NextFree() = m_FreeList[listIndex]; m_FreeList[listIndex] = █ if (block.NextFree()) block.NextFree()->PrevFree() = █ } return true; } #endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS #endif // _VMA_BLOCK_METADATA_TLSF #ifndef _VMA_BLOCK_VECTOR /* Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific Vulkan memory type. Synchronized internally with a mutex. */ class VmaBlockVector { friend class VmaDefragmentationAlgorithm_Generic; VMA_CLASS_NO_COPY(VmaBlockVector) public: VmaBlockVector( VmaAllocator hAllocator, VmaPool hParentPool, uint32_t memoryTypeIndex, VkDeviceSize preferredBlockSize, size_t minBlockCount, size_t maxBlockCount, VkDeviceSize bufferImageGranularity, bool explicitBlockSize, uint32_t algorithm, float priority, VkDeviceSize minAllocationAlignment, void* pMemoryAllocateNext); ~VmaBlockVector(); VmaAllocator GetAllocator() const { return m_hAllocator; } VmaPool GetParentPool() const { return m_hParentPool; } bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } uint32_t GetAlgorithm() const { return m_Algorithm; } bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; } float GetPriority() const { return m_Priority; } void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; } VkResult CreateMinBlocks(); void AddPoolStats(VmaPoolStats* pStats); bool IsEmpty(); bool IsCorruptionDetectionEnabled() const; VkResult Allocate( VkDeviceSize size, VkDeviceSize alignment, const VmaAllocationCreateInfo& createInfo, VmaSuballocationType suballocType, size_t allocationCount, VmaAllocation* pAllocations); void Free(const VmaAllocation hAllocation); // Adds statistics of this BlockVector to pStats. void AddStats(VmaStats* pStats); #if VMA_STATS_STRING_ENABLED void PrintDetailedMap(class VmaJsonWriter& json); #endif VkResult CheckCorruption(); // Saves results in pCtx->res. void Defragment( class VmaBlockVectorDefragmentationContext* pCtx, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, VkCommandBuffer commandBuffer); void DefragmentationEnd( class VmaBlockVectorDefragmentationContext* pCtx, uint32_t flags, VmaDefragmentationStats* pStats); uint32_t ProcessDefragmentations( class VmaBlockVectorDefragmentationContext* pCtx, VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves); void CommitDefragmentations( class VmaBlockVectorDefragmentationContext* pCtx, VmaDefragmentationStats* pStats); //////////////////////////////////////////////////////////////////////////////// // To be used only while the m_Mutex is locked. Used during defragmentation. size_t GetBlockCount() const { return m_Blocks.size(); } VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } size_t CalcAllocationCount() const; bool IsBufferImageGranularityConflictPossible() const; private: const VmaAllocator m_hAllocator; const VmaPool m_hParentPool; const uint32_t m_MemoryTypeIndex; const VkDeviceSize m_PreferredBlockSize; const size_t m_MinBlockCount; const size_t m_MaxBlockCount; const VkDeviceSize m_BufferImageGranularity; const bool m_ExplicitBlockSize; const uint32_t m_Algorithm; const float m_Priority; const VkDeviceSize m_MinAllocationAlignment; void* const m_pMemoryAllocateNext; VMA_RW_MUTEX m_Mutex; // Incrementally sorted by sumFreeSize, ascending. VmaVector> m_Blocks; uint32_t m_NextBlockId; VkDeviceSize CalcMaxBlockSize() const; // Finds and removes given block from vector. void Remove(VmaDeviceMemoryBlock* pBlock); // Performs single step in sorting m_Blocks. They may not be fully sorted // after this call. void IncrementallySortBlocks(); VkResult AllocatePage( VkDeviceSize size, VkDeviceSize alignment, const VmaAllocationCreateInfo& createInfo, VmaSuballocationType suballocType, VmaAllocation* pAllocation); VkResult AllocateFromBlock( VmaDeviceMemoryBlock* pBlock, VkDeviceSize size, VkDeviceSize alignment, VmaAllocationCreateFlags allocFlags, void* pUserData, VmaSuballocationType suballocType, uint32_t strategy, VmaAllocation* pAllocation); VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); // Saves result to pCtx->res. void ApplyDefragmentationMovesCpu( VmaBlockVectorDefragmentationContext* pDefragCtx, const VmaVector>& moves); // Saves result to pCtx->res. void ApplyDefragmentationMovesGpu( VmaBlockVectorDefragmentationContext* pDefragCtx, VmaVector>& moves, VkCommandBuffer commandBuffer); /* Used during defragmentation. pDefragmentationStats is optional. It is in/out - updated with new data. */ void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats); bool HasEmptyBlock() const; }; #endif // _VMA_BLOCK_VECTOR #ifndef _VMA_DEFRAGMENTATION_ALGORITHM struct VmaDefragmentationMove { size_t srcBlockIndex; size_t dstBlockIndex; VkDeviceSize srcOffset; VkDeviceSize dstOffset; VmaAllocHandle dstHandle; VkDeviceSize size; VmaAllocation hAllocation; VmaDeviceMemoryBlock* pSrcBlock; VmaDeviceMemoryBlock* pDstBlock; }; /* Performs defragmentation: - Updates `pBlockVector->m_pMetadata`. - Updates allocations by calling ChangeBlockAllocation() or ChangeOffset(). - Does not move actual data, only returns requested moves as `moves`. */ class VmaDefragmentationAlgorithm { VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm) public: VmaDefragmentationAlgorithm( VmaAllocator hAllocator, VmaBlockVector* pBlockVector) : m_hAllocator(hAllocator), m_pBlockVector(pBlockVector) {} virtual ~VmaDefragmentationAlgorithm() = default; virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0; virtual void AddAll() = 0; virtual VkResult Defragment( VmaVector>& moves, VkDeviceSize maxBytesToMove, uint32_t maxAllocationsToMove, VmaDefragmentationFlags flags) = 0; virtual VkDeviceSize GetBytesMoved() const = 0; virtual uint32_t GetAllocationsMoved() const = 0; protected: struct AllocationInfo { VmaAllocation m_hAllocation; VkBool32* m_pChanged; AllocationInfo() : m_hAllocation(VK_NULL_HANDLE), m_pChanged(VMA_NULL) {} AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) : m_hAllocation(hAlloc), m_pChanged(pChanged) {} }; VmaAllocator const m_hAllocator; VmaBlockVector* const m_pBlockVector; }; #endif // _VMA_DEFRAGMENTATION_ALGORITHM #ifndef _VMA_DEFRAGMENTATION_ALGORITHM_GENERIC class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm { VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic) public: VmaDefragmentationAlgorithm_Generic( VmaAllocator hAllocator, VmaBlockVector* pBlockVector, bool overlappingMoveSupported); virtual ~VmaDefragmentationAlgorithm_Generic(); virtual void AddAll() { m_AllAllocations = true; } virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); virtual VkResult Defragment( VmaVector>& moves, VkDeviceSize maxBytesToMove, uint32_t maxAllocationsToMove, VmaDefragmentationFlags flags); private: struct AllocationInfoSizeGreater { bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const; }; struct AllocationInfoOffsetGreater { bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const; }; struct BlockInfo { size_t m_OriginalBlockIndex; VmaDeviceMemoryBlock* m_pBlock; bool m_HasNonMovableAllocations; VmaVector> m_Allocations; BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks); void CalcHasNonMovableAllocations(); void SortAllocationsBySizeDescending(); void SortAllocationsByOffsetDescending(); }; struct BlockPointerLess { bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const; bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const; }; // 1. Blocks with some non-movable allocations go first. // 2. Blocks with smaller sumFreeSize go first. struct BlockInfoCompareMoveDestination { bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const; }; typedef VmaVector> BlockInfoVector; BlockInfoVector m_Blocks; uint32_t m_AllocationCount; bool m_AllAllocations; VkDeviceSize m_BytesMoved; uint32_t m_AllocationsMoved; static bool MoveMakesSense( size_t dstBlockIndex, VkDeviceSize dstOffset, size_t srcBlockIndex, VkDeviceSize srcOffset); size_t CalcBlocksWithNonMovableCount() const; VkResult DefragmentRound( VmaVector>& moves, VkDeviceSize maxBytesToMove, uint32_t maxAllocationsToMove, bool freeOldAllocations); }; #endif // _VMA_DEFRAGMENTATION_ALGORITHM_GENERIC #ifndef _VMA_DEFRAGMENTATION_ALGORITHM_FAST class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm { VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast) public: VmaDefragmentationAlgorithm_Fast( VmaAllocator hAllocator, VmaBlockVector* pBlockVector, bool overlappingMoveSupported); virtual ~VmaDefragmentationAlgorithm_Fast() = default; virtual void AddAll() { m_AllAllocations = true; } virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; } virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; } virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; } virtual VkResult Defragment( VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, VkDeviceSize maxBytesToMove, uint32_t maxAllocationsToMove, VmaDefragmentationFlags flags); private: struct BlockInfo { size_t origBlockIndex; }; class FreeSpaceDatabase { public: FreeSpaceDatabase(); void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size); bool Fetch(VkDeviceSize alignment, VkDeviceSize size, size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset); private: static const size_t MAX_COUNT = 4; struct FreeSpace { size_t blockInfoIndex; // SIZE_MAX means this structure is invalid. VkDeviceSize offset; VkDeviceSize size; } m_FreeSpaces[MAX_COUNT]; }; const bool m_OverlappingMoveSupported; uint32_t m_AllocationCount; bool m_AllAllocations; VkDeviceSize m_BytesMoved; uint32_t m_AllocationsMoved; VmaVector> m_BlockInfos; void PreprocessMetadata(); void PostprocessMetadata(); void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc); }; #endif // _VMA_DEFRAGMENTATION_ALGORITHM_FAST #ifndef _VMA_BLOCK_VECTOR_DEFRAGMENTATION_CONTEXT struct VmaBlockDefragmentationContext { enum BLOCK_FLAG { BLOCK_FLAG_USED = 0x00000001, }; uint32_t flags; VkBuffer hBuffer; }; class VmaBlockVectorDefragmentationContext { VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext) public: VkResult res; bool mutexLocked; VmaVector> blockContexts; VmaVector> defragmentationMoves; uint32_t defragmentationMovesProcessed; uint32_t defragmentationMovesCommitted; bool hasDefragmentationPlan; VmaBlockVectorDefragmentationContext( VmaAllocator hAllocator, VmaPool hCustomPool, // Optional. VmaBlockVector* pBlockVector); ~VmaBlockVectorDefragmentationContext(); VmaPool GetCustomPool() const { return m_hCustomPool; } VmaBlockVector* GetBlockVector() const { return m_pBlockVector; } VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; } void AddAll() { m_AllAllocations = true; } void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged); void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags); private: struct AllocInfo { VmaAllocation hAlloc; VkBool32* pChanged; }; const VmaAllocator m_hAllocator; // Null if not from custom pool. const VmaPool m_hCustomPool; // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors. VmaBlockVector* const m_pBlockVector; // Owner of this object. VmaDefragmentationAlgorithm* m_pAlgorithm; // Used between constructor and Begin. VmaVector> m_Allocations; bool m_AllAllocations; }; #endif // _VMA_BLOCK_VECTOR_DEFRAGMENTATION_CONTEXT #ifndef _VMA_DEFRAGMENTATION_CONTEXT struct VmaDefragmentationContext_T { private: VMA_CLASS_NO_COPY(VmaDefragmentationContext_T) public: VmaDefragmentationContext_T( VmaAllocator hAllocator, uint32_t flags, VmaDefragmentationStats* pStats); ~VmaDefragmentationContext_T(); void AddPools(uint32_t poolCount, const VmaPool* pPools); void AddAllocations( uint32_t allocationCount, const VmaAllocation* pAllocations, VkBool32* pAllocationsChanged); /* Returns: - `VK_SUCCESS` if succeeded and object can be destroyed immediately. - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd(). - Negative value if error occurred and object can be destroyed immediately. */ VkResult Defragment( VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags); VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo); VkResult DefragmentPassEnd(); private: const VmaAllocator m_hAllocator; const uint32_t m_Flags; VmaDefragmentationStats* const m_pStats; VkDeviceSize m_MaxCpuBytesToMove; uint32_t m_MaxCpuAllocationsToMove; VkDeviceSize m_MaxGpuBytesToMove; uint32_t m_MaxGpuAllocationsToMove; // Owner of these objects. VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES]; // Owner of these objects. VmaVector> m_CustomPoolContexts; }; #endif // _VMA_DEFRAGMENTATION_CONTEXT #ifndef _VMA_POOL_T struct VmaPool_T { friend struct VmaPoolListItemTraits; VMA_CLASS_NO_COPY(VmaPool_T) public: VmaBlockVector m_BlockVector; VmaDedicatedAllocationList m_DedicatedAllocations; VmaPool_T( VmaAllocator hAllocator, const VmaPoolCreateInfo& createInfo, VkDeviceSize preferredBlockSize); ~VmaPool_T(); uint32_t GetId() const { return m_Id; } void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } const char* GetName() const { return m_Name; } void SetName(const char* pName); #if VMA_STATS_STRING_ENABLED //void PrintDetailedMap(class VmaStringBuilder& sb); #endif private: uint32_t m_Id; char* m_Name; VmaPool_T* m_PrevPool = VMA_NULL; VmaPool_T* m_NextPool = VMA_NULL; }; struct VmaPoolListItemTraits { typedef VmaPool_T ItemType; static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; } static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; } static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; } static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; } }; #endif // _VMA_POOL_T #ifndef _VMA_CURRENT_BUDGET_DATA struct VmaCurrentBudgetData { VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; #if VMA_MEMORY_BUDGET VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; VMA_RW_MUTEX m_BudgetMutex; uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; #endif // VMA_MEMORY_BUDGET VmaCurrentBudgetData(); void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); }; #ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS VmaCurrentBudgetData::VmaCurrentBudgetData() { for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) { m_BlockBytes[heapIndex] = 0; m_AllocationBytes[heapIndex] = 0; #if VMA_MEMORY_BUDGET m_VulkanUsage[heapIndex] = 0; m_VulkanBudget[heapIndex] = 0; m_BlockBytesAtBudgetFetch[heapIndex] = 0; #endif } #if VMA_MEMORY_BUDGET m_OperationsSinceBudgetFetch = 0; #endif } void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) { m_AllocationBytes[heapIndex] += allocationSize; #if VMA_MEMORY_BUDGET ++m_OperationsSinceBudgetFetch; #endif } void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) { VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); m_AllocationBytes[heapIndex] -= allocationSize; #if VMA_MEMORY_BUDGET ++m_OperationsSinceBudgetFetch; #endif } #endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS #endif // _VMA_CURRENT_BUDGET_DATA #ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR /* Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. */ class VmaAllocationObjectAllocator { VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator) public: VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) : m_Allocator(pAllocationCallbacks, 1024) {} template VmaAllocation Allocate(Types&&... args); void Free(VmaAllocation hAlloc); private: VMA_MUTEX m_Mutex; VmaPoolAllocator m_Allocator; }; template VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args) { VmaMutexLock mutexLock(m_Mutex); return m_Allocator.Alloc(std::forward(args)...); } void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) { VmaMutexLock mutexLock(m_Mutex); m_Allocator.Free(hAlloc); } #endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR #ifndef _VMA_VIRTUAL_BLOCK_T struct VmaVirtualBlock_T { VMA_CLASS_NO_COPY(VmaVirtualBlock_T) public: const bool m_AllocationCallbacksSpecified; const VkAllocationCallbacks m_AllocationCallbacks; VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo); ~VmaVirtualBlock_T(); VkResult Init() { return VK_SUCCESS; } bool IsEmpty() const { return m_Metadata->IsEmpty(); } void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); } void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); } void Clear() { m_Metadata->Clear(); } const VkAllocationCallbacks* GetAllocationCallbacks() const; void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo); VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, VkDeviceSize* outOffset); void CalculateStats(VmaStatInfo& outStatInfo) const; #if VMA_STATS_STRING_ENABLED void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const; #endif private: VmaBlockMetadata* m_Metadata; }; #ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo) : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL), m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks) { const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK; switch (algorithm) { case 0: m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Generic)(VK_NULL_HANDLE, 1, true); break; case VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT: m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Buddy)(VK_NULL_HANDLE, 1, true); break; case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT: m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true); break; case VMA_VIRTUAL_BLOCK_CREATE_TLSF_ALGORITHM_BIT: m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true); break; default: VMA_ASSERT(0); } m_Metadata->Init(createInfo.size); } VmaVirtualBlock_T::~VmaVirtualBlock_T() { // Define macro VMA_DEBUG_LOG to receive the list of the unfreed allocations if (!m_Metadata->IsEmpty()) m_Metadata->DebugLogAllAllocations(); // This is the most important assert in the entire library. // Hitting it means you have some memory leak - unreleased virtual allocations. VMA_ASSERT(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!"); vma_delete(GetAllocationCallbacks(), m_Metadata); } const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const { return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; } void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo) { m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo); } VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, VkDeviceSize* outOffset) { VmaAllocationRequest request = {}; if (m_Metadata->CreateAllocationRequest( createInfo.size, // allocSize VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy &request)) { m_Metadata->Alloc(request, VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant createInfo.pUserData); outAllocation = (VmaVirtualAllocation)request.allocHandle; if(outOffset) *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle); return VK_SUCCESS; } outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE; if (outOffset) *outOffset = UINT64_MAX; return VK_ERROR_OUT_OF_DEVICE_MEMORY; } void VmaVirtualBlock_T::CalculateStats(VmaStatInfo& outStatInfo) const { m_Metadata->CalcAllocationStatInfo(outStatInfo); VmaPostprocessCalcStatInfo(outStatInfo); } #if VMA_STATS_STRING_ENABLED void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const { VmaJsonWriter json(GetAllocationCallbacks(), sb); json.BeginObject(); VmaStatInfo stat = {}; CalculateStats(stat); json.WriteString("Stats"); VmaPrintStatInfo(json, stat); if (detailedMap) { json.WriteString("Details"); m_Metadata->PrintDetailedMap(json, UINT32_MAX); // mapRefCount } json.EndObject(); } #endif // VMA_STATS_STRING_ENABLED #endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS #endif // _VMA_VIRTUAL_BLOCK_T // Main allocator object. struct VmaAllocator_T { VMA_CLASS_NO_COPY(VmaAllocator_T) public: bool m_UseMutex; uint32_t m_VulkanApiVersion; bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). bool m_UseExtMemoryBudget; bool m_UseAmdDeviceCoherentMemory; bool m_UseKhrBufferDeviceAddress; bool m_UseExtMemoryPriority; VkDevice m_hDevice; VkInstance m_hInstance; bool m_AllocationCallbacksSpecified; VkAllocationCallbacks m_AllocationCallbacks; VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; VmaAllocationObjectAllocator m_AllocationObjectAllocator; // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. uint32_t m_HeapSizeLimitMask; VkPhysicalDeviceProperties m_PhysicalDeviceProperties; VkPhysicalDeviceMemoryProperties m_MemProps; // Default pools. VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES]; VmaCurrentBudgetData m_Budget; VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects. VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); ~VmaAllocator_T(); const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; } const VmaVulkanFunctions& GetVulkanFunctions() const { return m_VulkanFunctions; } VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; } VkDeviceSize GetBufferImageGranularity() const { return VMA_MAX( static_cast(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), m_PhysicalDeviceProperties.limits.bufferImageGranularity); } uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const { VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); return m_MemProps.memoryTypes[memTypeIndex].heapIndex; } // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const { return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; } // Minimum alignment for all allocations in specific memory type. VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const { return IsMemoryTypeNonCoherent(memTypeIndex) ? VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : (VkDeviceSize)VMA_MIN_ALIGNMENT; } bool IsIntegratedGpu() const { return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; } uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; } void GetBufferMemoryRequirements( VkBuffer hBuffer, VkMemoryRequirements& memReq, bool& requiresDedicatedAllocation, bool& prefersDedicatedAllocation) const; void GetImageMemoryRequirements( VkImage hImage, VkMemoryRequirements& memReq, bool& requiresDedicatedAllocation, bool& prefersDedicatedAllocation) const; VkResult FindMemoryTypeIndex( uint32_t memoryTypeBits, const VmaAllocationCreateInfo* pAllocationCreateInfo, VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown. uint32_t* pMemoryTypeIndex) const; // Main allocation function. VkResult AllocateMemory( const VkMemoryRequirements& vkMemReq, bool requiresDedicatedAllocation, bool prefersDedicatedAllocation, VkBuffer dedicatedBuffer, VkImage dedicatedImage, VkFlags dedicatedBufferImageUsage, // UINT32_MAX if unknown. const VmaAllocationCreateInfo& createInfo, VmaSuballocationType suballocType, size_t allocationCount, VmaAllocation* pAllocations); // Main deallocation function. void FreeMemory( size_t allocationCount, const VmaAllocation* pAllocations); void CalculateStats(VmaStats* pStats); void GetHeapBudgets( VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount); #if VMA_STATS_STRING_ENABLED void PrintDetailedMap(class VmaJsonWriter& json); #endif VkResult DefragmentationBegin( const VmaDefragmentationInfo2& info, VmaDefragmentationStats* pStats, VmaDefragmentationContext* pContext); VkResult DefragmentationEnd( VmaDefragmentationContext context); VkResult DefragmentationPassBegin( VmaDefragmentationPassInfo* pInfo, VmaDefragmentationContext context); VkResult DefragmentationPassEnd( VmaDefragmentationContext context); void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); void DestroyPool(VmaPool pool); void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats); void SetCurrentFrameIndex(uint32_t frameIndex); uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } VkResult CheckPoolCorruption(VmaPool hPool); VkResult CheckCorruption(uint32_t memoryTypeBits); // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. VkResult BindVulkanBuffer( VkDeviceMemory memory, VkDeviceSize memoryOffset, VkBuffer buffer, const void* pNext); // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. VkResult BindVulkanImage( VkDeviceMemory memory, VkDeviceSize memoryOffset, VkImage image, const void* pNext); VkResult Map(VmaAllocation hAllocation, void** ppData); void Unmap(VmaAllocation hAllocation); VkResult BindBufferMemory( VmaAllocation hAllocation, VkDeviceSize allocationLocalOffset, VkBuffer hBuffer, const void* pNext); VkResult BindImageMemory( VmaAllocation hAllocation, VkDeviceSize allocationLocalOffset, VkImage hImage, const void* pNext); VkResult FlushOrInvalidateAllocation( VmaAllocation hAllocation, VkDeviceSize offset, VkDeviceSize size, VMA_CACHE_OPERATION op); VkResult FlushOrInvalidateAllocations( uint32_t allocationCount, const VmaAllocation* allocations, const VkDeviceSize* offsets, const VkDeviceSize* sizes, VMA_CACHE_OPERATION op); void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); /* Returns bit mask of memory types that can support defragmentation on GPU as they support creation of required buffer for copy operations. */ uint32_t GetGpuDefragmentationMemoryTypeBits(); #if VMA_EXTERNAL_MEMORY VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const { return m_TypeExternalMemoryHandleTypes[memTypeIndex]; } #endif // #if VMA_EXTERNAL_MEMORY private: VkDeviceSize m_PreferredLargeHeapBlockSize; VkPhysicalDevice m_PhysicalDevice; VMA_ATOMIC_UINT32 m_CurrentFrameIndex; VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. #if VMA_EXTERNAL_MEMORY VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES]; #endif // #if VMA_EXTERNAL_MEMORY VMA_RW_MUTEX m_PoolsMutex; typedef VmaIntrusiveLinkedList PoolList; // Protected by m_PoolsMutex. PoolList m_Pools; uint32_t m_NextPoolId; VmaVulkanFunctions m_VulkanFunctions; // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types. uint32_t m_GlobalMemoryTypeBits; void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); #if VMA_STATIC_VULKAN_FUNCTIONS == 1 void ImportVulkanFunctions_Static(); #endif void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions); #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 void ImportVulkanFunctions_Dynamic(); #endif void ValidateVulkanFunctions(); VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); VkResult AllocateMemoryOfType( VmaPool pool, VkDeviceSize size, VkDeviceSize alignment, bool dedicatedPreferred, VkBuffer dedicatedBuffer, VkImage dedicatedImage, VkFlags dedicatedBufferImageUsage, const VmaAllocationCreateInfo& createInfo, uint32_t memTypeIndex, VmaSuballocationType suballocType, VmaDedicatedAllocationList& dedicatedAllocations, VmaBlockVector& blockVector, size_t allocationCount, VmaAllocation* pAllocations); // Helper function only to be used inside AllocateDedicatedMemory. VkResult AllocateDedicatedMemoryPage( VmaPool pool, VkDeviceSize size, VmaSuballocationType suballocType, uint32_t memTypeIndex, const VkMemoryAllocateInfo& allocInfo, bool map, bool isUserDataString, bool isMappingAllowed, void* pUserData, VmaAllocation* pAllocation); // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. VkResult AllocateDedicatedMemory( VmaPool pool, VkDeviceSize size, VmaSuballocationType suballocType, VmaDedicatedAllocationList& dedicatedAllocations, uint32_t memTypeIndex, bool map, bool isUserDataString, bool isMappingAllowed, bool canAliasMemory, void* pUserData, float priority, VkBuffer dedicatedBuffer, VkImage dedicatedImage, VkFlags dedicatedBufferImageUsage, size_t allocationCount, VmaAllocation* pAllocations, const void* pNextChain = nullptr); void FreeDedicatedMemory(const VmaAllocation allocation); VkResult CalcMemTypeParams( VmaAllocationCreateInfo& outCreateInfo, uint32_t memTypeIndex, VkDeviceSize size, size_t allocationCount); VkResult CalcAllocationParams( VmaAllocationCreateInfo& outCreateInfo, bool dedicatedRequired, bool dedicatedPreferred); /* Calculates and returns bit mask of memory types that can support defragmentation on GPU as they support creation of required buffer for copy operations. */ uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; uint32_t CalculateGlobalMemoryTypeBits() const; bool GetFlushOrInvalidateRange( VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size, VkMappedMemoryRange& outRange) const; #if VMA_MEMORY_BUDGET void UpdateVulkanBudget(); #endif // #if VMA_MEMORY_BUDGET }; #ifndef _VMA_MEMORY_FUNCTIONS static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) { return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); } static void VmaFree(VmaAllocator hAllocator, void* ptr) { VmaFree(&hAllocator->m_AllocationCallbacks, ptr); } template static T* VmaAllocate(VmaAllocator hAllocator) { return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); } template static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) { return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); } template static void vma_delete(VmaAllocator hAllocator, T* ptr) { if(ptr != VMA_NULL) { ptr->~T(); VmaFree(hAllocator, ptr); } } template static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) { if(ptr != VMA_NULL) { for(size_t i = count; i--; ) ptr[i].~T(); VmaFree(hAllocator, ptr); } } #endif // _VMA_MEMORY_FUNCTIONS #ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) : m_pMetadata(VMA_NULL), m_MemoryTypeIndex(UINT32_MAX), m_Id(0), m_hMemory(VK_NULL_HANDLE), m_MapCount(0), m_pMappedData(VMA_NULL) {} VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock() { VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); } void VmaDeviceMemoryBlock::Init( VmaAllocator hAllocator, VmaPool hParentPool, uint32_t newMemoryTypeIndex, VkDeviceMemory newMemory, VkDeviceSize newSize, uint32_t id, uint32_t algorithm, VkDeviceSize bufferImageGranularity) { VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); m_hParentPool = hParentPool; m_MemoryTypeIndex = newMemoryTypeIndex; m_Id = id; m_hMemory = newMemory; switch (algorithm) { case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(), bufferImageGranularity, false); // isVirtual break; case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT: m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator->GetAllocationCallbacks(), bufferImageGranularity, false); // isVirtual break; case VMA_POOL_CREATE_TLSF_ALGORITHM_BIT: m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(), bufferImageGranularity, false); // isVirtual break; default: VMA_ASSERT(0); // Fall-through. case 0: m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator->GetAllocationCallbacks(), bufferImageGranularity, false); // isVirtual } m_pMetadata->Init(newSize); } void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) { // Define macro VMA_DEBUG_LOG to receive the list of the unfreed allocations if (!m_pMetadata->IsEmpty()) m_pMetadata->DebugLogAllAllocations(); // This is the most important assert in the entire library. // Hitting it means you have some memory leak - unreleased VmaAllocation objects. VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); VMA_ASSERT(m_hMemory != VK_NULL_HANDLE); allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); m_hMemory = VK_NULL_HANDLE; vma_delete(allocator, m_pMetadata); m_pMetadata = VMA_NULL; } void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator) { if(m_MappingHysteresis.PostFree()) { VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0); if (m_MapCount == 0) { m_pMappedData = VMA_NULL; (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); } } } bool VmaDeviceMemoryBlock::Validate() const { VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && (m_pMetadata->GetSize() != 0)); return m_pMetadata->Validate(); } VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) { void* pData = nullptr; VkResult res = Map(hAllocator, 1, &pData); if (res != VK_SUCCESS) { return res; } res = m_pMetadata->CheckCorruption(pData); Unmap(hAllocator, 1); return res; } VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) { if (count == 0) { return VK_SUCCESS; } VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping(); m_MappingHysteresis.PostMap(); if (oldTotalMapCount != 0) { m_MapCount += count; VMA_ASSERT(m_pMappedData != VMA_NULL); if (ppData != VMA_NULL) { *ppData = m_pMappedData; } return VK_SUCCESS; } else { VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( hAllocator->m_hDevice, m_hMemory, 0, // offset VK_WHOLE_SIZE, 0, // flags &m_pMappedData); if (result == VK_SUCCESS) { if (ppData != VMA_NULL) { *ppData = m_pMappedData; } m_MapCount = count; } return result; } } void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) { if (count == 0) { return; } VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); if (m_MapCount >= count) { m_MapCount -= count; const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping(); if (totalMapCount == 0) { m_pMappedData = VMA_NULL; (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); } m_MappingHysteresis.PostUnmap(); } else { VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); } } VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) { VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); void* pData; VkResult res = Map(hAllocator, 1, &pData); if (res != VK_SUCCESS) { return res; } VmaWriteMagicValue(pData, allocOffset + allocSize); Unmap(hAllocator, 1); return VK_SUCCESS; } VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) { VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); void* pData; VkResult res = Map(hAllocator, 1, &pData); if (res != VK_SUCCESS) { return res; } if (!VmaValidateMagicValue(pData, allocOffset + allocSize)) { VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); } Unmap(hAllocator, 1); return VK_SUCCESS; } VkResult VmaDeviceMemoryBlock::BindBufferMemory( const VmaAllocator hAllocator, const VmaAllocation hAllocation, VkDeviceSize allocationLocalOffset, VkBuffer hBuffer, const void* pNext) { VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && hAllocation->GetBlock() == this); VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); } VkResult VmaDeviceMemoryBlock::BindImageMemory( const VmaAllocator hAllocator, const VmaAllocation hAllocation, VkDeviceSize allocationLocalOffset, VkImage hImage, const void* pNext) { VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && hAllocation->GetBlock() == this); VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); } #endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS #ifndef _VMA_ALLOCATION_T_FUNCTIONS VmaAllocation_T::VmaAllocation_T(bool userDataString, bool mappingAllowed) : m_Alignment{ 1 }, m_Size{ 0 }, m_pUserData{ VMA_NULL }, m_MemoryTypeIndex{ 0 }, m_Type{ (uint8_t)ALLOCATION_TYPE_NONE }, m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN }, m_MapCount{ 0 }, m_Flags{ 0 } { if(userDataString) m_Flags |= (uint8_t)FLAG_USER_DATA_STRING; if(mappingAllowed) m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED; #if VMA_STATS_STRING_ENABLED m_BufferImageUsage = 0; #endif } VmaAllocation_T::~VmaAllocation_T() { VMA_ASSERT(m_MapCount == 0 && "Allocation was not unmapped before destruction."); // Check if owned string was freed. VMA_ASSERT(m_pUserData == VMA_NULL); } void VmaAllocation_T::InitBlockAllocation( VmaDeviceMemoryBlock* block, VmaAllocHandle allocHandle, VkDeviceSize alignment, VkDeviceSize size, uint32_t memoryTypeIndex, VmaSuballocationType suballocationType, bool mapped) { VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); VMA_ASSERT(block != VMA_NULL); m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; m_Alignment = alignment; m_Size = size; m_MemoryTypeIndex = memoryTypeIndex; if(mapped) { VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP; } m_SuballocationType = (uint8_t)suballocationType; m_BlockAllocation.m_Block = block; m_BlockAllocation.m_AllocHandle = allocHandle; } void VmaAllocation_T::InitDedicatedAllocation( VmaPool hParentPool, uint32_t memoryTypeIndex, VkDeviceMemory hMemory, VmaSuballocationType suballocationType, void* pMappedData, VkDeviceSize size) { VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); VMA_ASSERT(hMemory != VK_NULL_HANDLE); m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; m_Alignment = 0; m_Size = size; m_MemoryTypeIndex = memoryTypeIndex; m_SuballocationType = (uint8_t)suballocationType; if(pMappedData != VMA_NULL) { VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP; } m_DedicatedAllocation.m_hParentPool = hParentPool; m_DedicatedAllocation.m_hMemory = hMemory; m_DedicatedAllocation.m_pMappedData = pMappedData; m_DedicatedAllocation.m_Prev = VMA_NULL; m_DedicatedAllocation.m_Next = VMA_NULL; } void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData) { if (IsUserDataString()) { VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData); FreeUserDataString(hAllocator); if (pUserData != VMA_NULL) { m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData); } } else { m_pUserData = pUserData; } } void VmaAllocation_T::ChangeBlockAllocation( VmaAllocator hAllocator, VmaDeviceMemoryBlock* block, VmaAllocHandle allocHandle) { VMA_ASSERT(block != VMA_NULL); VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); // Move mapping reference counter from old block to new block. if (block != m_BlockAllocation.m_Block) { uint32_t mapRefCount = m_MapCount; if (IsPersistentMap()) ++mapRefCount; m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount); block->Map(hAllocator, mapRefCount, VMA_NULL); } m_BlockAllocation.m_Block = block; m_BlockAllocation.m_AllocHandle = allocHandle; } void VmaAllocation_T::ChangeAllocHandle(VmaAllocHandle newAllocHandle) { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); m_BlockAllocation.m_AllocHandle = newAllocHandle; } VmaAllocHandle VmaAllocation_T::GetAllocHandle() const { switch (m_Type) { case ALLOCATION_TYPE_BLOCK: return m_BlockAllocation.m_AllocHandle; case ALLOCATION_TYPE_DEDICATED: return VK_NULL_HANDLE; default: VMA_ASSERT(0); return VK_NULL_HANDLE; } } VkDeviceSize VmaAllocation_T::GetOffset() const { switch (m_Type) { case ALLOCATION_TYPE_BLOCK: return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle); case ALLOCATION_TYPE_DEDICATED: return 0; default: VMA_ASSERT(0); return 0; } } VmaPool VmaAllocation_T::GetParentPool() const { switch (m_Type) { case ALLOCATION_TYPE_BLOCK: return m_BlockAllocation.m_Block->GetParentPool(); case ALLOCATION_TYPE_DEDICATED: return m_DedicatedAllocation.m_hParentPool; default: VMA_ASSERT(0); return VK_NULL_HANDLE; } } VkDeviceMemory VmaAllocation_T::GetMemory() const { switch (m_Type) { case ALLOCATION_TYPE_BLOCK: return m_BlockAllocation.m_Block->GetDeviceMemory(); case ALLOCATION_TYPE_DEDICATED: return m_DedicatedAllocation.m_hMemory; default: VMA_ASSERT(0); return VK_NULL_HANDLE; } } void* VmaAllocation_T::GetMappedData() const { switch (m_Type) { case ALLOCATION_TYPE_BLOCK: if (m_MapCount != 0 || IsPersistentMap()) { void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); VMA_ASSERT(pBlockData != VMA_NULL); return (char*)pBlockData + GetOffset(); } else { return VMA_NULL; } break; case ALLOCATION_TYPE_DEDICATED: VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0 || IsPersistentMap())); return m_DedicatedAllocation.m_pMappedData; default: VMA_ASSERT(0); return VMA_NULL; } } void VmaAllocation_T::DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo) { VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED); outInfo.blockCount = 1; outInfo.allocationCount = 1; outInfo.unusedRangeCount = 0; outInfo.usedBytes = m_Size; outInfo.unusedBytes = 0; outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size; outInfo.unusedRangeSizeMin = UINT64_MAX; outInfo.unusedRangeSizeMax = 0; } void VmaAllocation_T::BlockAllocMap() { VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); if (m_MapCount < 0xFF) { ++m_MapCount; } else { VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); } } void VmaAllocation_T::BlockAllocUnmap() { VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); if (m_MapCount > 0) { --m_MapCount; } else { VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); } } VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) { VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); if (m_MapCount != 0 || IsPersistentMap()) { if (m_MapCount < 0xFF) { VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); *ppData = m_DedicatedAllocation.m_pMappedData; ++m_MapCount; return VK_SUCCESS; } else { VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); return VK_ERROR_MEMORY_MAP_FAILED; } } else { VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( hAllocator->m_hDevice, m_DedicatedAllocation.m_hMemory, 0, // offset VK_WHOLE_SIZE, 0, // flags ppData); if (result == VK_SUCCESS) { m_DedicatedAllocation.m_pMappedData = *ppData; m_MapCount = 1; } return result; } } void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) { VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); if (m_MapCount > 0) { --m_MapCount; if (m_MapCount == 0 && !IsPersistentMap()) { m_DedicatedAllocation.m_pMappedData = VMA_NULL; (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( hAllocator->m_hDevice, m_DedicatedAllocation.m_hMemory); } } else { VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); } } #if VMA_STATS_STRING_ENABLED void VmaAllocation_T::InitBufferImageUsage(uint32_t bufferImageUsage) { VMA_ASSERT(m_BufferImageUsage == 0); m_BufferImageUsage = bufferImageUsage; } void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const { json.WriteString("Type"); json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); json.WriteString("Size"); json.WriteNumber(m_Size); if (m_pUserData != VMA_NULL) { json.WriteString("UserData"); if (IsUserDataString()) { json.WriteString((const char*)m_pUserData); } else { json.BeginString(); json.ContinueString_Pointer(m_pUserData); json.EndString(); } } if (m_BufferImageUsage != 0) { json.WriteString("Usage"); json.WriteNumber(m_BufferImageUsage); } } #endif // VMA_STATS_STRING_ENABLED void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) { VMA_ASSERT(IsUserDataString()); VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData); m_pUserData = VMA_NULL; } #endif // _VMA_ALLOCATION_T_FUNCTIONS #ifndef _VMA_BLOCK_VECTOR_FUNCTIONS VmaBlockVector::VmaBlockVector( VmaAllocator hAllocator, VmaPool hParentPool, uint32_t memoryTypeIndex, VkDeviceSize preferredBlockSize, size_t minBlockCount, size_t maxBlockCount, VkDeviceSize bufferImageGranularity, bool explicitBlockSize, uint32_t algorithm, float priority, VkDeviceSize minAllocationAlignment, void* pMemoryAllocateNext) : m_hAllocator(hAllocator), m_hParentPool(hParentPool), m_MemoryTypeIndex(memoryTypeIndex), m_PreferredBlockSize(preferredBlockSize), m_MinBlockCount(minBlockCount), m_MaxBlockCount(maxBlockCount), m_BufferImageGranularity(bufferImageGranularity), m_ExplicitBlockSize(explicitBlockSize), m_Algorithm(algorithm), m_Priority(priority), m_MinAllocationAlignment(minAllocationAlignment), m_pMemoryAllocateNext(pMemoryAllocateNext), m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), m_NextBlockId(0) {} VmaBlockVector::~VmaBlockVector() { for (size_t i = m_Blocks.size(); i--; ) { m_Blocks[i]->Destroy(m_hAllocator); vma_delete(m_hAllocator, m_Blocks[i]); } } VkResult VmaBlockVector::CreateMinBlocks() { for (size_t i = 0; i < m_MinBlockCount; ++i) { VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); if (res != VK_SUCCESS) { return res; } } return VK_SUCCESS; } void VmaBlockVector::AddPoolStats(VmaPoolStats* pStats) { VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); const size_t blockCount = m_Blocks.size(); pStats->blockCount += blockCount; for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; VMA_ASSERT(pBlock); VMA_HEAVY_ASSERT(pBlock->Validate()); pBlock->m_pMetadata->AddPoolStats(*pStats); } } bool VmaBlockVector::IsEmpty() { VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); return m_Blocks.empty(); } bool VmaBlockVector::IsCorruptionDetectionEnabled() const { const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; return (VMA_DEBUG_DETECT_CORRUPTION != 0) && (VMA_DEBUG_MARGIN > 0) && (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; } VkResult VmaBlockVector::Allocate( VkDeviceSize size, VkDeviceSize alignment, const VmaAllocationCreateInfo& createInfo, VmaSuballocationType suballocType, size_t allocationCount, VmaAllocation* pAllocations) { size_t allocIndex; VkResult res = VK_SUCCESS; alignment = VMA_MAX(alignment, m_MinAllocationAlignment); if (IsCorruptionDetectionEnabled()) { size = VmaAlignUp(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); alignment = VmaAlignUp(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); } { VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { res = AllocatePage( size, alignment, createInfo, suballocType, pAllocations + allocIndex); if (res != VK_SUCCESS) { break; } } } if (res != VK_SUCCESS) { // Free all already created allocations. const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); while (allocIndex--) { VmaAllocation_T* const alloc = pAllocations[allocIndex]; const VkDeviceSize allocSize = alloc->GetSize(); Free(alloc); m_hAllocator->m_Budget.RemoveAllocation(heapIndex, allocSize); } memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); } return res; } VkResult VmaBlockVector::AllocatePage( VkDeviceSize size, VkDeviceSize alignment, const VmaAllocationCreateInfo& createInfo, VmaSuballocationType suballocType, VmaAllocation* pAllocation) { const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; VkDeviceSize freeMemory; { const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); VmaBudget heapBudget = {}; m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; } const bool canFallbackToDedicated = !HasExplicitBlockSize() && (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0; const bool canCreateNewBlock = ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && (m_Blocks.size() < m_MaxBlockCount) && (freeMemory >= size || !canFallbackToDedicated); uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; // Upper address can only be used with linear allocator and within single memory block. if (isUpperAddress && (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) { return VK_ERROR_FEATURE_NOT_PRESENT; } // Early reject: requested allocation size is larger that maximum block size for this block vector. if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize) { return VK_ERROR_OUT_OF_DEVICE_MEMORY; } // 1. Search existing allocations. Try to allocate. if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) { // Use only last block. if (!m_Blocks.empty()) { VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); VMA_ASSERT(pCurrBlock); VkResult res = AllocateFromBlock( pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); if (res == VK_SUCCESS) { VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId()); IncrementallySortBlocks(); return VK_SUCCESS; } } } else { if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default { const bool isHostVisible = (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; if(isHostVisible) { const bool isMappingAllowed = (createInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0; /* For non-mappable allocations, check blocks that are not mapped first. For mappable allocations, check blocks that are already mapped first. This way, having many blocks, we will separate mappable and non-mappable allocations, hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc. */ for(size_t mappingI = 0; mappingI < 2; ++mappingI) { // Forward order in m_Blocks - prefer blocks with smallest amount of free space. for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; VMA_ASSERT(pCurrBlock); const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL; if((mappingI == 0) == (isMappingAllowed == isBlockMapped)) { VkResult res = AllocateFromBlock( pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); if (res == VK_SUCCESS) { VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); IncrementallySortBlocks(); return VK_SUCCESS; } } } } } else { // Forward order in m_Blocks - prefer blocks with smallest amount of free space. for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; VMA_ASSERT(pCurrBlock); VkResult res = AllocateFromBlock( pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); if (res == VK_SUCCESS) { VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); IncrementallySortBlocks(); return VK_SUCCESS; } } } } else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT { // Backward order in m_Blocks - prefer blocks with largest amount of free space. for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) { VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; VMA_ASSERT(pCurrBlock); VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); if (res == VK_SUCCESS) { VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId()); IncrementallySortBlocks(); return VK_SUCCESS; } } } } // 2. Try to create new block. if (canCreateNewBlock) { // Calculate optimal size for new block. VkDeviceSize newBlockSize = m_PreferredBlockSize; uint32_t newBlockSizeShift = 0; const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; if (!m_ExplicitBlockSize) { // Allocate 1/8, 1/4, 1/2 as first blocks. const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) { const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) { newBlockSize = smallerNewBlockSize; ++newBlockSizeShift; } else { break; } } } size_t newBlockIndex = 0; VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. if (!m_ExplicitBlockSize) { while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) { const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; if (smallerNewBlockSize >= size) { newBlockSize = smallerNewBlockSize; ++newBlockSizeShift; res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; } else { break; } } } if (res == VK_SUCCESS) { VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); res = AllocateFromBlock( pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); if (res == VK_SUCCESS) { VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize); IncrementallySortBlocks(); return VK_SUCCESS; } else { // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. return VK_ERROR_OUT_OF_DEVICE_MEMORY; } } } return VK_ERROR_OUT_OF_DEVICE_MEMORY; } void VmaBlockVector::Free( const VmaAllocation hAllocation) { VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; bool budgetExceeded = false; { const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); VmaBudget heapBudget = {}; m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); budgetExceeded = heapBudget.usage >= heapBudget.budget; } // Scope for lock. { VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); if (IsCorruptionDetectionEnabled()) { VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); } if (hAllocation->IsPersistentMap()) { pBlock->Unmap(m_hAllocator, 1); } const bool hadEmptyBlockBeforeFree = HasEmptyBlock(); pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle()); pBlock->PostFree(m_hAllocator); VMA_HEAVY_ASSERT(pBlock->Validate()); VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex); const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; // pBlock became empty after this deallocation. if (pBlock->m_pMetadata->IsEmpty()) { // Already had empty block. We don't want to have two, so delete this one. if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock) { pBlockToDelete = pBlock; Remove(pBlock); } // else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth. } // pBlock didn't become empty, but we have another empty block - find and free that one. // (This is optional, heuristics.) else if (hadEmptyBlockBeforeFree && canDeleteBlock) { VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); if (pLastBlock->m_pMetadata->IsEmpty()) { pBlockToDelete = pLastBlock; m_Blocks.pop_back(); } } IncrementallySortBlocks(); } // Destruction of a free block. Deferred until this point, outside of mutex // lock, for performance reason. if (pBlockToDelete != VMA_NULL) { VMA_DEBUG_LOG(" Deleted empty block #%u", pBlockToDelete->GetId()); pBlockToDelete->Destroy(m_hAllocator); vma_delete(m_hAllocator, pBlockToDelete); } } VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const { VkDeviceSize result = 0; for (size_t i = m_Blocks.size(); i--; ) { result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); if (result >= m_PreferredBlockSize) { break; } } return result; } void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) { for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { if (m_Blocks[blockIndex] == pBlock) { VmaVectorRemove(m_Blocks, blockIndex); return; } } VMA_ASSERT(0); } void VmaBlockVector::IncrementallySortBlocks() { if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) { // Bubble sort only until first swap. for (size_t i = 1; i < m_Blocks.size(); ++i) { if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) { VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]); return; } } } } VkResult VmaBlockVector::AllocateFromBlock( VmaDeviceMemoryBlock* pBlock, VkDeviceSize size, VkDeviceSize alignment, VmaAllocationCreateFlags allocFlags, void* pUserData, VmaSuballocationType suballocType, uint32_t strategy, VmaAllocation* pAllocation) { const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; const bool isMappingAllowed = (allocFlags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0; VmaAllocationRequest currRequest = {}; if (pBlock->m_pMetadata->CreateAllocationRequest( size, alignment, isUpperAddress, suballocType, strategy, &currRequest)) { pBlock->PostAlloc(); // Allocate from pCurrBlock. if (mapped) { VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); if (res != VK_SUCCESS) { return res; } } *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isUserDataString, isMappingAllowed); pBlock->m_pMetadata->Alloc(currRequest, suballocType, *pAllocation); (*pAllocation)->InitBlockAllocation( pBlock, currRequest.allocHandle, alignment, currRequest.size, // Not size, as actual allocation size may be larger than requested! m_MemoryTypeIndex, suballocType, mapped); VMA_HEAVY_ASSERT(pBlock->Validate()); (*pAllocation)->SetUserData(m_hAllocator, pUserData); m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), currRequest.size); if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) { m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); } if (IsCorruptionDetectionEnabled()) { VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), currRequest.size); VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); } return VK_SUCCESS; } return VK_ERROR_OUT_OF_DEVICE_MEMORY; } VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) { VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; allocInfo.pNext = m_pMemoryAllocateNext; allocInfo.memoryTypeIndex = m_MemoryTypeIndex; allocInfo.allocationSize = blockSize; #if VMA_BUFFER_DEVICE_ADDRESS // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature. VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; if (m_hAllocator->m_UseKhrBufferDeviceAddress) { allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); } #endif // VMA_BUFFER_DEVICE_ADDRESS #if VMA_MEMORY_PRIORITY VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; if (m_hAllocator->m_UseExtMemoryPriority) { priorityInfo.priority = m_Priority; VmaPnextChainPushFront(&allocInfo, &priorityInfo); } #endif // VMA_MEMORY_PRIORITY #if VMA_EXTERNAL_MEMORY // Attach VkExportMemoryAllocateInfoKHR if necessary. VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex); if (exportMemoryAllocInfo.handleTypes != 0) { VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); } #endif // VMA_EXTERNAL_MEMORY VkDeviceMemory mem = VK_NULL_HANDLE; VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); if (res < 0) { return res; } // New VkDeviceMemory successfully created. // Create new Allocation for it. VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); pBlock->Init( m_hAllocator, m_hParentPool, m_MemoryTypeIndex, mem, allocInfo.allocationSize, m_NextBlockId++, m_Algorithm, m_BufferImageGranularity); m_Blocks.push_back(pBlock); if (pNewBlockIndex != VMA_NULL) { *pNewBlockIndex = m_Blocks.size() - 1; } return VK_SUCCESS; } void VmaBlockVector::ApplyDefragmentationMovesCpu( VmaBlockVectorDefragmentationContext* pDefragCtx, const VmaVector>& moves) { const size_t blockCount = m_Blocks.size(); const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex); enum BLOCK_FLAG { BLOCK_FLAG_USED = 0x00000001, BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002, }; struct BlockInfo { uint32_t flags; void* pMappedData; }; VmaVector< BlockInfo, VmaStlAllocator > blockInfo(blockCount, BlockInfo(), VmaStlAllocator(m_hAllocator->GetAllocationCallbacks())); memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo)); // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. const size_t moveCount = moves.size(); for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { const VmaDefragmentationMove& move = moves[moveIndex]; blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED; blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED; } VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); // Go over all blocks. Get mapped pointer or map if necessary. for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) { BlockInfo& currBlockInfo = blockInfo[blockIndex]; VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; if ((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) { currBlockInfo.pMappedData = pBlock->GetMappedData(); // It is not originally mapped - map it. if (currBlockInfo.pMappedData == VMA_NULL) { pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData); if (pDefragCtx->res == VK_SUCCESS) { currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION; } } } } // Go over all moves. Do actual data transfer. if (pDefragCtx->res == VK_SUCCESS) { const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE }; for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { const VmaDefragmentationMove& move = moves[moveIndex]; const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex]; const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex]; VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData); // Invalidate source. if (isNonCoherent) { VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex]; memRange.memory = pSrcBlock->GetDeviceMemory(); memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize); memRange.size = VMA_MIN( VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize), pSrcBlock->m_pMetadata->GetSize() - memRange.offset); (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); } // THE PLACE WHERE ACTUAL DATA COPY HAPPENS. memmove( reinterpret_cast(dstBlockInfo.pMappedData) + move.dstOffset, reinterpret_cast(srcBlockInfo.pMappedData) + move.srcOffset, static_cast(move.size)); if (IsCorruptionDetectionEnabled()) { VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size); } // Flush destination. if (isNonCoherent) { VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex]; memRange.memory = pDstBlock->GetDeviceMemory(); memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize); memRange.size = VMA_MIN( VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize), pDstBlock->m_pMetadata->GetSize() - memRange.offset); (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange); } } } // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation. // Regardless of pCtx->res == VK_SUCCESS. for (size_t blockIndex = blockCount; blockIndex--; ) { const BlockInfo& currBlockInfo = blockInfo[blockIndex]; if ((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) { VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; pBlock->Unmap(m_hAllocator, 1); } } } void VmaBlockVector::ApplyDefragmentationMovesGpu( VmaBlockVectorDefragmentationContext* pDefragCtx, VmaVector>& moves, VkCommandBuffer commandBuffer) { const size_t blockCount = m_Blocks.size(); pDefragCtx->blockContexts.resize(blockCount); memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext)); // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED. const size_t moveCount = moves.size(); for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { const VmaDefragmentationMove& move = moves[moveIndex]; //if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN) { // Old school move still require us to map the whole block pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED; } } VMA_ASSERT(pDefragCtx->res == VK_SUCCESS); // Go over all blocks. Create and bind buffer for whole block if necessary. { VkBufferCreateInfo bufCreateInfo; VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo); for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) { VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex]; VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; if ((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) { bufCreateInfo.size = pBlock->m_pMetadata->GetSize(); pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)( m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer); if (pDefragCtx->res == VK_SUCCESS) { pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)( m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0); } } } } // Go over all moves. Post data transfer commands to command buffer. if (pDefragCtx->res == VK_SUCCESS) { for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) { const VmaDefragmentationMove& move = moves[moveIndex]; const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex]; const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex]; VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer); VkBufferCopy region = { move.srcOffset, move.dstOffset, move.size }; (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)( commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion); } } // Save buffers to defrag context for later destruction. if (pDefragCtx->res == VK_SUCCESS && moveCount > 0) { pDefragCtx->res = VK_NOT_READY; } } void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats) { for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) { VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex]; if (pBlock->m_pMetadata->IsEmpty()) { if (m_Blocks.size() > m_MinBlockCount) { if (pDefragmentationStats != VMA_NULL) { ++pDefragmentationStats->deviceMemoryBlocksFreed; pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize(); } VmaVectorRemove(m_Blocks, blockIndex); pBlock->Destroy(m_hAllocator); vma_delete(m_hAllocator, pBlock); } else { break; } } } } bool VmaBlockVector::HasEmptyBlock() const { for (size_t index = 0, count = m_Blocks.size(); index < count; ++index) { VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; if (pBlock->m_pMetadata->IsEmpty()) { return true; } } return false; } #if VMA_STATS_STRING_ENABLED void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) { VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); if (IsCustomPool()) { const char* poolName = m_hParentPool->GetName(); if (poolName != VMA_NULL && poolName[0] != '\0') { json.WriteString("Name"); json.WriteString(poolName); } json.WriteString("MemoryTypeIndex"); json.WriteNumber(m_MemoryTypeIndex); json.WriteString("BlockSize"); json.WriteNumber(m_PreferredBlockSize); json.WriteString("BlockCount"); json.BeginObject(true); if (m_MinBlockCount > 0) { json.WriteString("Min"); json.WriteNumber((uint64_t)m_MinBlockCount); } if (m_MaxBlockCount < SIZE_MAX) { json.WriteString("Max"); json.WriteNumber((uint64_t)m_MaxBlockCount); } json.WriteString("Cur"); json.WriteNumber((uint64_t)m_Blocks.size()); json.EndObject(); if (m_Algorithm != 0) { json.WriteString("Algorithm"); json.WriteString(VmaAlgorithmToStr(m_Algorithm)); } } else { json.WriteString("PreferredBlockSize"); json.WriteNumber(m_PreferredBlockSize); } json.WriteString("Blocks"); json.BeginObject(); for (size_t i = 0; i < m_Blocks.size(); ++i) { json.BeginString(); json.ContinueString(m_Blocks[i]->GetId()); json.EndString(); m_Blocks[i]->m_pMetadata->PrintDetailedMap(json, m_Blocks[i]->GetMapRefCount()); } json.EndObject(); } #endif // VMA_STATS_STRING_ENABLED void VmaBlockVector::Defragment( class VmaBlockVectorDefragmentationContext* pCtx, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags, VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove, VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove, VkCommandBuffer commandBuffer) { pCtx->res = VK_SUCCESS; const VkMemoryPropertyFlags memPropFlags = m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags; const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 && isHostVisible; const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 && !IsCorruptionDetectionEnabled() && ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0; // There are options to defragment this memory type. if (canDefragmentOnCpu || canDefragmentOnGpu) { bool defragmentOnGpu; // There is only one option to defragment this memory type. if (canDefragmentOnGpu != canDefragmentOnCpu) { defragmentOnGpu = canDefragmentOnGpu; } // Both options are available: Heuristics to choose the best one. else { defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 || m_hAllocator->IsIntegratedGpu(); } bool overlappingMoveSupported = !defragmentOnGpu; if (m_hAllocator->m_UseMutex) { if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) { if (!m_Mutex.TryLockWrite()) { pCtx->res = VK_ERROR_INITIALIZATION_FAILED; return; } } else { m_Mutex.LockWrite(); pCtx->mutexLocked = true; } } pCtx->Begin(overlappingMoveSupported, flags); // Defragment. const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove; const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove; VmaDefragmentationAlgorithm* algo = pCtx->GetAlgorithm(); pCtx->res = algo->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags); // Accumulate statistics. if (pStats != VMA_NULL) { const VkDeviceSize bytesMoved = algo->GetBytesMoved(); const uint32_t allocationsMoved = algo->GetAllocationsMoved(); pStats->bytesMoved += bytesMoved; pStats->allocationsMoved += allocationsMoved; VMA_ASSERT(bytesMoved <= maxBytesToMove); VMA_ASSERT(allocationsMoved <= maxAllocationsToMove); if (defragmentOnGpu) { maxGpuBytesToMove -= bytesMoved; maxGpuAllocationsToMove -= allocationsMoved; } else { maxCpuBytesToMove -= bytesMoved; maxCpuAllocationsToMove -= allocationsMoved; } } if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) { if (m_hAllocator->m_UseMutex) m_Mutex.UnlockWrite(); if (pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty()) pCtx->res = VK_NOT_READY; return; } if (pCtx->res >= VK_SUCCESS) { if (defragmentOnGpu) { ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer); } else { ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves); } } } } void VmaBlockVector::DefragmentationEnd( class VmaBlockVectorDefragmentationContext* pCtx, uint32_t flags, VmaDefragmentationStats* pStats) { if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL && m_hAllocator->m_UseMutex) { VMA_ASSERT(pCtx->mutexLocked == false); // Incremental defragmentation doesn't hold the lock, so when we enter here we don't actually have any // lock protecting us. Since we mutate state here, we have to take the lock out now m_Mutex.LockWrite(); pCtx->mutexLocked = true; } // If the mutex isn't locked we didn't do any work and there is nothing to delete. if (pCtx->mutexLocked || !m_hAllocator->m_UseMutex) { // Destroy buffers. for (size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;) { VmaBlockDefragmentationContext& blockCtx = pCtx->blockContexts[blockIndex]; if (blockCtx.hBuffer) { (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks()); } } if (pCtx->res >= VK_SUCCESS) { FreeEmptyBlocks(pStats); } } if (pCtx->mutexLocked) { VMA_ASSERT(m_hAllocator->m_UseMutex); m_Mutex.UnlockWrite(); } } uint32_t VmaBlockVector::ProcessDefragmentations( class VmaBlockVectorDefragmentationContext* pCtx, VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves) { VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); const uint32_t moveCount = VMA_MIN(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves); for (uint32_t i = 0; i < moveCount; ++i) { VmaDefragmentationMove& move = pCtx->defragmentationMoves[pCtx->defragmentationMovesProcessed + i]; pMove->allocation = move.hAllocation; pMove->memory = move.pDstBlock->GetDeviceMemory(); pMove->offset = move.dstOffset; ++pMove; } pCtx->defragmentationMovesProcessed += moveCount; return moveCount; } void VmaBlockVector::CommitDefragmentations( class VmaBlockVectorDefragmentationContext* pCtx, VmaDefragmentationStats* pStats) { VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); for (uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++i) { const VmaDefragmentationMove& move = pCtx->defragmentationMoves[i]; move.pSrcBlock->m_pMetadata->Free(move.hAllocation->GetAllocHandle()); move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstHandle); } pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed; FreeEmptyBlocks(pStats); } size_t VmaBlockVector::CalcAllocationCount() const { size_t result = 0; for (size_t i = 0; i < m_Blocks.size(); ++i) { result += m_Blocks[i]->m_pMetadata->GetAllocationCount(); } return result; } bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const { if (m_BufferImageGranularity == 1) { return false; } VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE; for (size_t i = 0, count = m_Blocks.size(); i < count; ++i) { VmaDeviceMemoryBlock* const pBlock = m_Blocks[i]; VMA_ASSERT(m_Algorithm == 0); VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata; if (pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) { return true; } } return false; } VkResult VmaBlockVector::CheckCorruption() { if (!IsCorruptionDetectionEnabled()) { return VK_ERROR_FEATURE_NOT_PRESENT; } VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; VMA_ASSERT(pBlock); VkResult res = pBlock->CheckCorruption(m_hAllocator); if (res != VK_SUCCESS) { return res; } } return VK_SUCCESS; } void VmaBlockVector::AddStats(VmaStats* pStats) { const uint32_t memTypeIndex = m_MemoryTypeIndex; const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex); VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) { const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; VMA_ASSERT(pBlock); VMA_HEAVY_ASSERT(pBlock->Validate()); VmaStatInfo allocationStatInfo; pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo); VmaAddStatInfo(pStats->total, allocationStatInfo); VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo); VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo); } } #endif // _VMA_BLOCK_VECTOR_FUNCTIONS #ifndef _VMA_DEFRAGMENTATION_ALGORITHM_GENERIC_FUNCTIONS VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic( VmaAllocator hAllocator, VmaBlockVector* pBlockVector, bool overlappingMoveSupported) : VmaDefragmentationAlgorithm(hAllocator, pBlockVector), m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), m_AllocationCount(0), m_AllAllocations(false), m_BytesMoved(0), m_AllocationsMoved(0) { // Create block info for each block. const size_t blockCount = m_pBlockVector->m_Blocks.size(); for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks()); pBlockInfo->m_OriginalBlockIndex = blockIndex; pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex]; m_Blocks.push_back(pBlockInfo); } // Sort them by m_pBlock pointer value. VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess()); } VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() { for (size_t i = m_Blocks.size(); i--; ) { vma_delete(m_hAllocator, m_Blocks[i]); } } void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock(); BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess()); if (it != m_Blocks.end() && (*it)->m_pBlock == pBlock) { AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged); (*it)->m_Allocations.push_back(allocInfo); } else { VMA_ASSERT(0); } ++m_AllocationCount; } VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound( VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, VkDeviceSize maxBytesToMove, uint32_t maxAllocationsToMove, bool freeOldAllocations) { if (m_Blocks.empty()) { return VK_SUCCESS; } // This is a choice based on research. // Option 1: uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT; // Option 2: //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT; size_t srcBlockMinIndex = 0; // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations. /* if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT) { const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount(); if(blocksWithNonMovableCount > 0) { srcBlockMinIndex = blocksWithNonMovableCount - 1; } } */ size_t srcBlockIndex = m_Blocks.size() - 1; size_t srcAllocIndex = SIZE_MAX; for (;;) { // 1. Find next allocation to move. // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source". // 1.2. Then start from last to first m_Allocations. while (srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) { if (m_Blocks[srcBlockIndex]->m_Allocations.empty()) { // Finished: no more allocations to process. if (srcBlockIndex == srcBlockMinIndex) { return VK_SUCCESS; } else { --srcBlockIndex; srcAllocIndex = SIZE_MAX; } } else { srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1; } } BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex]; AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex]; const VkDeviceSize size = allocInfo.m_hAllocation->GetSize(); const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset(); const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment(); const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType(); // 2. Try to find new place for this allocation in preceding or current block. for (size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) { BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex]; VmaBlockMetadata* pMetadata = pDstBlockInfo->m_pBlock->m_pMetadata; VmaAllocationRequest dstAllocRequest; if (pMetadata->CreateAllocationRequest( size, alignment, false, // upperAddress suballocType, strategy, &dstAllocRequest) && MoveMakesSense( dstBlockIndex, pMetadata->GetAllocationOffset(dstAllocRequest.allocHandle), srcBlockIndex, srcOffset)) { // Reached limit on number of allocations or bytes to move. if ((m_AllocationsMoved + 1 > maxAllocationsToMove) || (m_BytesMoved + size > maxBytesToMove)) { return VK_SUCCESS; } VmaDefragmentationMove move = {}; move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex; move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex; move.srcOffset = srcOffset; move.dstOffset = pMetadata->GetAllocationOffset(dstAllocRequest.allocHandle); move.size = size; move.hAllocation = allocInfo.m_hAllocation; move.pSrcBlock = pSrcBlockInfo->m_pBlock; move.pDstBlock = pDstBlockInfo->m_pBlock; move.dstHandle = dstAllocRequest.allocHandle; moves.push_back(move); pDstBlockInfo->m_pBlock->m_pMetadata->Alloc(dstAllocRequest, suballocType, allocInfo.m_hAllocation); if (freeOldAllocations) { pSrcBlockInfo->m_pBlock->m_pMetadata->Free(allocInfo.m_hAllocation->GetAllocHandle()); allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.allocHandle); } if (allocInfo.m_pChanged != VMA_NULL) { *allocInfo.m_pChanged = VK_TRUE; } ++m_AllocationsMoved; m_BytesMoved += size; VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex); break; } } // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round. if (srcAllocIndex > 0) { --srcAllocIndex; } else { if (srcBlockIndex > 0) { --srcBlockIndex; srcAllocIndex = SIZE_MAX; } else { return VK_SUCCESS; } } } } bool VmaDefragmentationAlgorithm_Generic::AllocationInfoSizeGreater::operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const { return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize(); } bool VmaDefragmentationAlgorithm_Generic::AllocationInfoOffsetGreater::operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const { return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset(); } VmaDefragmentationAlgorithm_Generic::BlockInfo::BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) : m_OriginalBlockIndex(SIZE_MAX), m_pBlock(VMA_NULL), m_HasNonMovableAllocations(true), m_Allocations(pAllocationCallbacks) {} void VmaDefragmentationAlgorithm_Generic::BlockInfo::CalcHasNonMovableAllocations() { const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount(); const size_t defragmentAllocCount = m_Allocations.size(); m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount; } void VmaDefragmentationAlgorithm_Generic::BlockInfo::SortAllocationsBySizeDescending() { VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater()); } void VmaDefragmentationAlgorithm_Generic::BlockInfo::SortAllocationsByOffsetDescending() { VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater()); } bool VmaDefragmentationAlgorithm_Generic::BlockPointerLess::operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const { return pLhsBlockInfo->m_pBlock < pRhsBlock; } bool VmaDefragmentationAlgorithm_Generic::BlockPointerLess::operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const { return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock; } bool VmaDefragmentationAlgorithm_Generic::BlockInfoCompareMoveDestination::operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const { if (pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) { return true; } if (!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) { return false; } if (pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) { return true; } return false; } bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense( size_t dstBlockIndex, VkDeviceSize dstOffset, size_t srcBlockIndex, VkDeviceSize srcOffset) { if (dstBlockIndex < srcBlockIndex) { return true; } if (dstBlockIndex > srcBlockIndex) { return false; } if (dstOffset < srcOffset) { return true; } return false; } size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const { size_t result = 0; for (size_t i = 0; i < m_Blocks.size(); ++i) { if (m_Blocks[i]->m_HasNonMovableAllocations) { ++result; } } return result; } VkResult VmaDefragmentationAlgorithm_Generic::Defragment( VmaVector< VmaDefragmentationMove, VmaStlAllocator >& moves, VkDeviceSize maxBytesToMove, uint32_t maxAllocationsToMove, VmaDefragmentationFlags flags) { if (!m_AllAllocations && m_AllocationCount == 0) { return VK_SUCCESS; } const size_t blockCount = m_Blocks.size(); for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { BlockInfo* pBlockInfo = m_Blocks[blockIndex]; if (m_AllAllocations) { VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata; VMA_ASSERT(!pMetadata->IsVirtual()); for (VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin(); it != pMetadata->m_Suballocations.end(); ++it) { if (it->type != VMA_SUBALLOCATION_TYPE_FREE) { AllocationInfo allocInfo = AllocationInfo((VmaAllocation)it->userData, VMA_NULL); pBlockInfo->m_Allocations.push_back(allocInfo); } } } pBlockInfo->CalcHasNonMovableAllocations(); // This is a choice based on research. // Option 1: pBlockInfo->SortAllocationsByOffsetDescending(); // Option 2: //pBlockInfo->SortAllocationsBySizeDescending(); } // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks. VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination()); // This is a choice based on research. const uint32_t roundCount = 2; // Execute defragmentation rounds (the main part). VkResult result = VK_SUCCESS; for (uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) { result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)); } return result; } #endif // _VMA_DEFRAGMENTATION_ALGORITHM_GENERIC_FUNCTIONS #ifndef _VMA_DEFRAGMENTATION_ALGORITHM_FAST_FUNCTIONS VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast( VmaAllocator hAllocator, VmaBlockVector* pBlockVector, bool overlappingMoveSupported) : VmaDefragmentationAlgorithm(hAllocator, pBlockVector), m_OverlappingMoveSupported(overlappingMoveSupported), m_AllocationCount(0), m_AllAllocations(false), m_BytesMoved(0), m_AllocationsMoved(0), m_BlockInfos(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) { VMA_ASSERT(VMA_DEBUG_MARGIN == 0); } VkResult VmaDefragmentationAlgorithm_Fast::Defragment( VmaVector>& moves, VkDeviceSize maxBytesToMove, uint32_t maxAllocationsToMove, VmaDefragmentationFlags flags) { VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount); const size_t blockCount = m_pBlockVector->GetBlockCount(); if (blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) { return VK_SUCCESS; } PreprocessMetadata(); // Sort blocks in order from most destination. m_BlockInfos.resize(blockCount); for (size_t i = 0; i < blockCount; ++i) { m_BlockInfos[i].origBlockIndex = i; } VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool { return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() < m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize(); }); // THE MAIN ALGORITHM FreeSpaceDatabase freeSpaceDb; size_t dstBlockInfoIndex = 0; size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; VkDeviceSize dstBlockSize = pDstMetadata->GetSize(); VkDeviceSize dstOffset = 0; bool end = false; for (size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) { const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex; VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex); VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata; for (VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin(); !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); ) { VmaAllocation const pAlloc = (VmaAllocation)srcSuballocIt->userData; const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment(); const VkDeviceSize srcAllocSize = srcSuballocIt->size; if (m_AllocationsMoved == maxAllocationsToMove || m_BytesMoved + srcAllocSize > maxBytesToMove) { end = true; break; } const VkDeviceSize srcAllocOffset = srcSuballocIt->offset; VmaDefragmentationMove move = {}; // Try to place it in one of free spaces from the database. size_t freeSpaceInfoIndex; VkDeviceSize dstAllocOffset; if (freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize, freeSpaceInfoIndex, dstAllocOffset)) { size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex; VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex); VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata; // Same block if (freeSpaceInfoIndex == srcBlockInfoIndex) { VMA_ASSERT(dstAllocOffset <= srcAllocOffset); // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. VmaSuballocation suballoc = *srcSuballocIt; suballoc.offset = dstAllocOffset; ((VmaAllocation)(suballoc.userData))->ChangeAllocHandle((VmaAllocHandle)(dstAllocOffset + 1)); m_BytesMoved += srcAllocSize; ++m_AllocationsMoved; VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; ++nextSuballocIt; pSrcMetadata->m_Suballocations.erase(srcSuballocIt); srcSuballocIt = nextSuballocIt; InsertSuballoc(pFreeSpaceMetadata, suballoc); move.srcBlockIndex = srcOrigBlockIndex; move.dstBlockIndex = freeSpaceOrigBlockIndex; move.srcOffset = srcAllocOffset; move.dstOffset = dstAllocOffset; move.dstHandle = (VmaAllocHandle)(dstAllocOffset + 1); move.size = srcAllocSize; moves.push_back(move); } // Different block else { // MOVE OPTION 2: Move the allocation to a different block. VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex); VmaSuballocation suballoc = *srcSuballocIt; suballoc.offset = dstAllocOffset; ((VmaAllocation)(suballoc.userData))->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, (VmaAllocHandle)(dstAllocOffset + 1)); m_BytesMoved += srcAllocSize; ++m_AllocationsMoved; VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; ++nextSuballocIt; pSrcMetadata->m_Suballocations.erase(srcSuballocIt); srcSuballocIt = nextSuballocIt; InsertSuballoc(pFreeSpaceMetadata, suballoc); move.srcBlockIndex = srcOrigBlockIndex; move.dstBlockIndex = freeSpaceOrigBlockIndex; move.srcOffset = srcAllocOffset; move.dstOffset = dstAllocOffset; move.dstHandle = (VmaAllocHandle)(dstAllocOffset + 1); move.size = srcAllocSize; moves.push_back(move); } } else { dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment); // If the allocation doesn't fit before the end of dstBlock, forward to next block. while (dstBlockInfoIndex < srcBlockInfoIndex && dstAllocOffset + srcAllocSize > dstBlockSize) { // But before that, register remaining free space at the end of dst block. freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset); ++dstBlockInfoIndex; dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex; pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex); pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata; dstBlockSize = pDstMetadata->GetSize(); dstOffset = 0; dstAllocOffset = 0; } // Same block if (dstBlockInfoIndex == srcBlockInfoIndex) { VMA_ASSERT(dstAllocOffset <= srcAllocOffset); const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset; bool skipOver = overlap; if (overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) { // If destination and source place overlap, skip if it would move it // by only < 1/64 of its size. skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize; } if (skipOver) { freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset); dstOffset = srcAllocOffset + srcAllocSize; ++srcSuballocIt; } // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset. else { srcSuballocIt->offset = dstAllocOffset; ((VmaAllocation)(srcSuballocIt->userData))->ChangeAllocHandle((VmaAllocHandle)(dstAllocOffset + 1)); dstOffset = dstAllocOffset + srcAllocSize; m_BytesMoved += srcAllocSize; ++m_AllocationsMoved; ++srcSuballocIt; move.srcBlockIndex = srcOrigBlockIndex; move.dstBlockIndex = dstOrigBlockIndex; move.srcOffset = srcAllocOffset; move.dstOffset = dstAllocOffset; move.dstHandle = (VmaAllocHandle)(dstAllocOffset + 1); move.size = srcAllocSize; moves.push_back(move); } } // Different block else { // MOVE OPTION 2: Move the allocation to a different block. VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex); VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize); VmaSuballocation suballoc = *srcSuballocIt; suballoc.offset = dstAllocOffset; ((VmaAllocation)(suballoc.userData))->ChangeBlockAllocation(m_hAllocator, pDstBlock, (VmaAllocHandle)(dstAllocOffset + 1)); dstOffset = dstAllocOffset + srcAllocSize; m_BytesMoved += srcAllocSize; ++m_AllocationsMoved; VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt; ++nextSuballocIt; pSrcMetadata->m_Suballocations.erase(srcSuballocIt); srcSuballocIt = nextSuballocIt; pDstMetadata->m_Suballocations.push_back(suballoc); move.srcBlockIndex = srcOrigBlockIndex; move.dstBlockIndex = dstOrigBlockIndex; move.srcOffset = srcAllocOffset; move.dstOffset = dstAllocOffset; move.dstHandle = (VmaAllocHandle)(dstAllocOffset + 1); move.size = srcAllocSize; moves.push_back(move); } } } } m_BlockInfos.clear(); PostprocessMetadata(); return VK_SUCCESS; } VmaDefragmentationAlgorithm_Fast::FreeSpaceDatabase::FreeSpaceDatabase() { FreeSpace s = {}; s.blockInfoIndex = SIZE_MAX; for (size_t i = 0; i < MAX_COUNT; ++i) { m_FreeSpaces[i] = s; } } void VmaDefragmentationAlgorithm_Fast::FreeSpaceDatabase::Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) { // Find first invalid or the smallest structure. size_t bestIndex = SIZE_MAX; for (size_t i = 0; i < MAX_COUNT; ++i) { // Empty structure. if (m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) { bestIndex = i; break; } if (m_FreeSpaces[i].size < size && (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) { bestIndex = i; } } if (bestIndex != SIZE_MAX) { m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex; m_FreeSpaces[bestIndex].offset = offset; m_FreeSpaces[bestIndex].size = size; } } bool VmaDefragmentationAlgorithm_Fast::FreeSpaceDatabase::Fetch(VkDeviceSize alignment, VkDeviceSize size, size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset) { size_t bestIndex = SIZE_MAX; VkDeviceSize bestFreeSpaceAfter = 0; for (size_t i = 0; i < MAX_COUNT; ++i) { // Structure is valid. if (m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) { const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment); // Allocation fits into this structure. if (dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) { const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) - (dstOffset + size); if (bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) { bestIndex = i; bestFreeSpaceAfter = freeSpaceAfter; } } } } if (bestIndex != SIZE_MAX) { outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex; outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment); // Leave this structure for remaining empty space. const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size; m_FreeSpaces[bestIndex].offset += alignmentPlusSize; m_FreeSpaces[bestIndex].size -= alignmentPlusSize; return true; } return false; } void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() { const size_t blockCount = m_pBlockVector->GetBlockCount(); for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; pMetadata->m_FreeCount = 0; pMetadata->m_SumFreeSize = pMetadata->GetSize(); pMetadata->m_FreeSuballocationsBySize.clear(); for (VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin(); it != pMetadata->m_Suballocations.end(); ) { if (it->type == VMA_SUBALLOCATION_TYPE_FREE) { VmaSuballocationList::iterator nextIt = it; ++nextIt; pMetadata->m_Suballocations.erase(it); it = nextIt; } else { ++it; } } } } void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() { const size_t blockCount = m_pBlockVector->GetBlockCount(); for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) { VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata; const VkDeviceSize blockSize = pMetadata->GetSize(); // No allocations in this block - entire area is free. if (pMetadata->m_Suballocations.empty()) { pMetadata->m_FreeCount = 1; //pMetadata->m_SumFreeSize is already set to blockSize. VmaSuballocation suballoc = { 0, // offset blockSize, // size VMA_NULL, // hAllocation VMA_SUBALLOCATION_TYPE_FREE }; pMetadata->m_Suballocations.push_back(suballoc); pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin()); } // There are some allocations in this block. else { VkDeviceSize offset = 0; VmaSuballocationList::iterator it; for (it = pMetadata->m_Suballocations.begin(); it != pMetadata->m_Suballocations.end(); ++it) { VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE); VMA_ASSERT(it->offset >= offset); // Need to insert preceding free space. if (it->offset > offset) { ++pMetadata->m_FreeCount; const VkDeviceSize freeSize = it->offset - offset; VmaSuballocation suballoc = { offset, // offset freeSize, // size VMA_NULL, // hAllocation VMA_SUBALLOCATION_TYPE_FREE }; VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt); } pMetadata->m_SumFreeSize -= it->size; offset = it->offset + it->size; } // Need to insert trailing free space. if (offset < blockSize) { ++pMetadata->m_FreeCount; const VkDeviceSize freeSize = blockSize - offset; VmaSuballocation suballoc = { offset, // offset freeSize, // size VMA_NULL, // hAllocation VMA_SUBALLOCATION_TYPE_FREE }; VMA_ASSERT(it == pMetadata->m_Suballocations.end()); VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc); pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt); } VMA_SORT( pMetadata->m_FreeSuballocationsBySize.begin(), pMetadata->m_FreeSuballocationsBySize.end(), VmaSuballocationItemSizeLess()); } VMA_HEAVY_ASSERT(pMetadata->Validate()); } } void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc) { VmaSuballocationList& suballocs = pMetadata->m_Suballocations; VmaSuballocationList::iterator elementAfter; const VkDeviceSize last = suballocs.rbegin()->offset; const VkDeviceSize first = suballocs.begin()->offset; if (last <= suballoc.offset) elementAfter = suballocs.end(); else if (first >= suballoc.offset) elementAfter = suballocs.begin(); else { const size_t suballocCount = suballocs.size(); const VkDeviceSize step = (last - first + suballocs.begin()->size) / suballocCount; // If offset to be inserted is closer to the end of range, search from the end if ((suballoc.offset - first) / step > suballocCount / 2) { elementAfter = suballocs.begin(); for (VmaSuballocationList::reverse_iterator suballocItem = ++suballocs.rbegin(); suballocItem != suballocs.rend(); ++suballocItem) { if (suballocItem->offset <= suballoc.offset) { elementAfter = --suballocItem; break; } } } else { elementAfter = suballocs.end(); for (VmaSuballocationList::iterator suballocItem = ++suballocs.begin(); suballocItem != suballocs.end(); ++suballocItem) { if (suballocItem->offset >= suballoc.offset) { elementAfter = suballocItem; break; } } } } pMetadata->m_Suballocations.insert(elementAfter, suballoc); } #endif // _VMA_DEFRAGMENTATION_ALGORITHM_FAST_FUNCTIONS #ifndef _VMA_BLOCK_VECTOR_DEFRAGMENTATION_CONTEXT_FUNCTIONS VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext( VmaAllocator hAllocator, VmaPool hCustomPool, VmaBlockVector* pBlockVector) : res(VK_SUCCESS), mutexLocked(false), blockContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), defragmentationMoves(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), defragmentationMovesProcessed(0), defragmentationMovesCommitted(0), hasDefragmentationPlan(0), m_hAllocator(hAllocator), m_hCustomPool(hCustomPool), m_pBlockVector(pBlockVector), m_pAlgorithm(VMA_NULL), m_Allocations(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), m_AllAllocations(false) {} VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() { vma_delete(m_hAllocator, m_pAlgorithm); } void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { AllocInfo info = { hAlloc, pChanged }; m_Allocations.push_back(info); } void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags) { const bool allAllocations = m_AllAllocations || m_Allocations.size() == m_pBlockVector->CalcAllocationCount(); /******************************** HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM. ********************************/ /* Fast algorithm is supported only when certain criteria are met: - VMA_DEBUG_MARGIN is 0. - All allocations in this block vector are movable. - There is no possibility of image/buffer granularity conflict. - The defragmentation is not incremental */ if (VMA_DEBUG_MARGIN == 0 && allAllocations && !m_pBlockVector->IsBufferImageGranularityConflictPossible() && !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)) { m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)( m_hAllocator, m_pBlockVector, overlappingMoveSupported); } else { m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)( m_hAllocator, m_pBlockVector, overlappingMoveSupported); } if (allAllocations) { m_pAlgorithm->AddAll(); } else { for (size_t i = 0, count = m_Allocations.size(); i < count; ++i) { m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged); } } } #endif // _VMA_BLOCK_VECTOR_DEFRAGMENTATION_CONTEXT_FUNCTIONS #ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS VmaDefragmentationContext_T::VmaDefragmentationContext_T( VmaAllocator hAllocator, uint32_t flags, VmaDefragmentationStats* pStats) : m_hAllocator(hAllocator), m_Flags(flags), m_pStats(pStats), m_CustomPoolContexts(VmaStlAllocator(hAllocator->GetAllocationCallbacks())) { memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts)); } VmaDefragmentationContext_T::~VmaDefragmentationContext_T() { for (size_t i = m_CustomPoolContexts.size(); i--; ) { VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i]; pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats); vma_delete(m_hAllocator, pBlockVectorCtx); } for (size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; ) { VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i]; if (pBlockVectorCtx) { pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats); vma_delete(m_hAllocator, pBlockVectorCtx); } } } void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pPools) { for (uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) { VmaPool pool = pPools[poolIndex]; VMA_ASSERT(pool); // Pools with algorithm other than default are not defragmented. if (pool->m_BlockVector.GetAlgorithm() == 0) { VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; for (size_t i = m_CustomPoolContexts.size(); i--; ) { if (m_CustomPoolContexts[i]->GetCustomPool() == pool) { pBlockVectorDefragCtx = m_CustomPoolContexts[i]; break; } } if (!pBlockVectorDefragCtx) { pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( m_hAllocator, pool, &pool->m_BlockVector); m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); } pBlockVectorDefragCtx->AddAll(); } } } void VmaDefragmentationContext_T::AddAllocations( uint32_t allocationCount, const VmaAllocation* pAllocations, VkBool32* pAllocationsChanged) { // Dispatch pAllocations among defragmentators. Create them when necessary. for (uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { const VmaAllocation hAlloc = pAllocations[allocIndex]; VMA_ASSERT(hAlloc); // DedicatedAlloc cannot be defragmented. if (hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) { VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL; const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool(); // This allocation belongs to custom pool. if (hAllocPool != VK_NULL_HANDLE) { // Pools with algorithm other than default are not defragmented. if (hAllocPool->m_BlockVector.GetAlgorithm() == 0) { for (size_t i = m_CustomPoolContexts.size(); i--; ) { if (m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) { pBlockVectorDefragCtx = m_CustomPoolContexts[i]; break; } } if (!pBlockVectorDefragCtx) { pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( m_hAllocator, hAllocPool, &hAllocPool->m_BlockVector); m_CustomPoolContexts.push_back(pBlockVectorDefragCtx); } } } // This allocation belongs to default pool. else { const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex(); pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex]; if (!pBlockVectorDefragCtx) { VMA_ASSERT(m_hAllocator->m_pBlockVectors[memTypeIndex] && "Trying to use unsupported memory type!"); pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)( m_hAllocator, VMA_NULL, // hCustomPool m_hAllocator->m_pBlockVectors[memTypeIndex]); m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx; } } if (pBlockVectorDefragCtx) { VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ? &pAllocationsChanged[allocIndex] : VMA_NULL; pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged); } } } } VkResult VmaDefragmentationContext_T::Defragment( VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove, VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove, VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags) { if (pStats) { memset(pStats, 0, sizeof(VmaDefragmentationStats)); } if (flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL) { // For incremental defragmetnations, we just earmark how much we can move // The real meat is in the defragmentation steps m_MaxCpuBytesToMove = maxCpuBytesToMove; m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove; m_MaxGpuBytesToMove = maxGpuBytesToMove; m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove; if (m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 && m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0) return VK_SUCCESS; return VK_NOT_READY; } if (commandBuffer == VK_NULL_HANDLE) { maxGpuBytesToMove = 0; maxGpuAllocationsToMove = 0; } VkResult res = VK_SUCCESS; // Process default pools. for (uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS; ++memTypeIndex) { VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; if (pBlockVectorCtx) { VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); pBlockVectorCtx->GetBlockVector()->Defragment( pBlockVectorCtx, pStats, flags, maxCpuBytesToMove, maxCpuAllocationsToMove, maxGpuBytesToMove, maxGpuAllocationsToMove, commandBuffer); if (pBlockVectorCtx->res != VK_SUCCESS) { res = pBlockVectorCtx->res; } } } // Process custom pools. for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); customCtxIndex < customCtxCount && res >= VK_SUCCESS; ++customCtxIndex) { VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); pBlockVectorCtx->GetBlockVector()->Defragment( pBlockVectorCtx, pStats, flags, maxCpuBytesToMove, maxCpuAllocationsToMove, maxGpuBytesToMove, maxGpuAllocationsToMove, commandBuffer); if (pBlockVectorCtx->res != VK_SUCCESS) { res = pBlockVectorCtx->res; } } return res; } VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo) { VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves; uint32_t movesLeft = pInfo->moveCount; // Process default pools. for (uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex) { VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; if (pBlockVectorCtx) { VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); if (!pBlockVectorCtx->hasDefragmentationPlan) { pBlockVectorCtx->GetBlockVector()->Defragment( pBlockVectorCtx, m_pStats, m_Flags, m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, VK_NULL_HANDLE); if (pBlockVectorCtx->res < VK_SUCCESS) continue; pBlockVectorCtx->hasDefragmentationPlan = true; } const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( pBlockVectorCtx, pCurrentMove, movesLeft); movesLeft -= processed; pCurrentMove += processed; } } // Process custom pools. for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); customCtxIndex < customCtxCount; ++customCtxIndex) { VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); if (!pBlockVectorCtx->hasDefragmentationPlan) { pBlockVectorCtx->GetBlockVector()->Defragment( pBlockVectorCtx, m_pStats, m_Flags, m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove, m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove, VK_NULL_HANDLE); if (pBlockVectorCtx->res < VK_SUCCESS) continue; pBlockVectorCtx->hasDefragmentationPlan = true; } const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations( pBlockVectorCtx, pCurrentMove, movesLeft); movesLeft -= processed; pCurrentMove += processed; } pInfo->moveCount = pInfo->moveCount - movesLeft; return VK_SUCCESS; } VkResult VmaDefragmentationContext_T::DefragmentPassEnd() { VkResult res = VK_SUCCESS; // Process default pools. for (uint32_t memTypeIndex = 0; memTypeIndex < m_hAllocator->GetMemoryTypeCount(); ++memTypeIndex) { VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex]; if (pBlockVectorCtx) { VMA_ASSERT(pBlockVectorCtx->GetBlockVector()); if (!pBlockVectorCtx->hasDefragmentationPlan) { res = VK_NOT_READY; continue; } pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( pBlockVectorCtx, m_pStats); if (pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) res = VK_NOT_READY; } } // Process custom pools. for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size(); customCtxIndex < customCtxCount; ++customCtxIndex) { VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex]; VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector()); if (!pBlockVectorCtx->hasDefragmentationPlan) { res = VK_NOT_READY; continue; } pBlockVectorCtx->GetBlockVector()->CommitDefragmentations( pBlockVectorCtx, m_pStats); if (pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted) res = VK_NOT_READY; } return res; } #endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS #ifndef _VMA_POOL_T_FUNCTIONS VmaPool_T::VmaPool_T( VmaAllocator hAllocator, const VmaPoolCreateInfo& createInfo, VkDeviceSize preferredBlockSize) : m_BlockVector( hAllocator, this, // hParentPool createInfo.memoryTypeIndex, createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, createInfo.minBlockCount, createInfo.maxBlockCount, (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), createInfo.blockSize != 0, // explicitBlockSize createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm createInfo.priority, VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment), createInfo.pMemoryAllocateNext), m_Id(0), m_Name(VMA_NULL) {} VmaPool_T::~VmaPool_T() { VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL); } void VmaPool_T::SetName(const char* pName) { const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); VmaFreeString(allocs, m_Name); if (pName != VMA_NULL) { m_Name = VmaCreateStringCopy(allocs, pName); } else { m_Name = VMA_NULL; } } #endif // _VMA_POOL_T_FUNCTIONS #ifndef _VMA_ALLOCATOR_T_FUNCTIONS VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0), m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0), m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0), m_hDevice(pCreateInfo->device), m_hInstance(pCreateInfo->instance), m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), m_AllocationObjectAllocator(&m_AllocationCallbacks), m_HeapSizeLimitMask(0), m_DeviceMemoryCount(0), m_PreferredLargeHeapBlockSize(0), m_PhysicalDevice(pCreateInfo->physicalDevice), m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), m_NextPoolId(0), m_GlobalMemoryTypeBits(UINT32_MAX) { if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { m_UseKhrDedicatedAllocation = false; m_UseKhrBindMemory2 = false; } if(VMA_DEBUG_DETECT_CORRUPTION) { // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); } VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance); if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) { #if !(VMA_DEDICATED_ALLOCATION) if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) { VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); } #endif #if !(VMA_BIND_MEMORY2) if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) { VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); } #endif } #if !(VMA_MEMORY_BUDGET) if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) { VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); } #endif #if !(VMA_BUFFER_DEVICE_ADDRESS) if(m_UseKhrBufferDeviceAddress) { VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); } #endif #if VMA_VULKAN_VERSION < 1002000 if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0)) { VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros."); } #endif #if VMA_VULKAN_VERSION < 1001000 if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); } #endif #if !(VMA_MEMORY_PRIORITY) if(m_UseExtMemoryPriority) { VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); } #endif memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); memset(&m_MemProps, 0, sizeof(m_MemProps)); memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); #if VMA_EXTERNAL_MEMORY memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes)); #endif // #if VMA_EXTERNAL_MEMORY if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) { m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData; m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; } ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT)); VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? pCreateInfo->preferredLargeHeapBlockSize : static_cast(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits(); #if VMA_EXTERNAL_MEMORY if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL) { memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes, sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount()); } #endif // #if VMA_EXTERNAL_MEMORY if(pCreateInfo->pHeapSizeLimit != VMA_NULL) { for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) { const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; if(limit != VK_WHOLE_SIZE) { m_HeapSizeLimitMask |= 1u << heapIndex; if(limit < m_MemProps.memoryHeaps[heapIndex].size) { m_MemProps.memoryHeaps[heapIndex].size = limit; } } } } for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { // Create only supported types if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) { const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( this, VK_NULL_HANDLE, // hParentPool memTypeIndex, preferredBlockSize, 0, SIZE_MAX, GetBufferImageGranularity(), false, // explicitBlockSize 0, // algorithm 0.5f, // priority (0.5 is the default per Vulkan spec) GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment VMA_NULL); // // pMemoryAllocateNext // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, // becase minBlockCount is 0. } } } VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) { VkResult res = VK_SUCCESS; #if VMA_MEMORY_BUDGET if(m_UseExtMemoryBudget) { UpdateVulkanBudget(); } #endif // #if VMA_MEMORY_BUDGET return res; } VmaAllocator_T::~VmaAllocator_T() { VMA_ASSERT(m_Pools.IsEmpty()); for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; ) { vma_delete(this, m_pBlockVectors[memTypeIndex]); } } void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) { #if VMA_STATIC_VULKAN_FUNCTIONS == 1 ImportVulkanFunctions_Static(); #endif if(pVulkanFunctions != VMA_NULL) { ImportVulkanFunctions_Custom(pVulkanFunctions); } #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 ImportVulkanFunctions_Dynamic(); #endif ValidateVulkanFunctions(); } #if VMA_STATIC_VULKAN_FUNCTIONS == 1 void VmaAllocator_T::ImportVulkanFunctions_Static() { // Vulkan 1.0 m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr; m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr; m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; // Vulkan 1.1 #if VMA_VULKAN_VERSION >= 1001000 if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2; m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2; m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2; m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2; m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2; } #endif } #endif // VMA_STATIC_VULKAN_FUNCTIONS == 1 void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions) { VMA_ASSERT(pVulkanFunctions != VMA_NULL); #define VMA_COPY_IF_NOT_NULL(funcName) \ if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr); VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr); VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); VMA_COPY_IF_NOT_NULL(vkAllocateMemory); VMA_COPY_IF_NOT_NULL(vkFreeMemory); VMA_COPY_IF_NOT_NULL(vkMapMemory); VMA_COPY_IF_NOT_NULL(vkUnmapMemory); VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); VMA_COPY_IF_NOT_NULL(vkBindImageMemory); VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); VMA_COPY_IF_NOT_NULL(vkCreateBuffer); VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); VMA_COPY_IF_NOT_NULL(vkCreateImage); VMA_COPY_IF_NOT_NULL(vkDestroyImage); VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); #endif #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); #endif #if VMA_MEMORY_BUDGET VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); #endif #undef VMA_COPY_IF_NOT_NULL } #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 void VmaAllocator_T::ImportVulkanFunctions_Dynamic() { VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr && "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass " "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. " "Other members can be null."); #define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \ if(m_VulkanFunctions.memberName == VMA_NULL) \ m_VulkanFunctions.memberName = \ (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString); #define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \ if(m_VulkanFunctions.memberName == VMA_NULL) \ m_VulkanFunctions.memberName = \ (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString); VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties"); VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties"); VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory"); VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory"); VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory"); VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory"); VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges"); VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges"); VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory"); VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory"); VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements"); VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements"); VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer"); VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer"); VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage"); VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage"); VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer"); #if VMA_VULKAN_VERSION >= 1001000 if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2"); VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2"); VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2"); VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2"); VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2"); } #endif #if VMA_DEDICATED_ALLOCATION if(m_UseKhrDedicatedAllocation) { VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR"); VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR"); } #endif #if VMA_BIND_MEMORY2 if(m_UseKhrBindMemory2) { VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR"); VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR"); } #endif // #if VMA_BIND_MEMORY2 #if VMA_MEMORY_BUDGET if(m_UseExtMemoryBudget) { VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); } #endif // #if VMA_MEMORY_BUDGET #undef VMA_FETCH_DEVICE_FUNC #undef VMA_FETCH_INSTANCE_FUNC } #endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 void VmaAllocator_T::ValidateVulkanFunctions() { VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) { VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); } #endif #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) { VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); } #endif #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); } #endif } VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) { const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); } VkResult VmaAllocator_T::AllocateMemoryOfType( VmaPool pool, VkDeviceSize size, VkDeviceSize alignment, bool dedicatedPreferred, VkBuffer dedicatedBuffer, VkImage dedicatedImage, VkFlags dedicatedBufferImageUsage, const VmaAllocationCreateInfo& createInfo, uint32_t memTypeIndex, VmaSuballocationType suballocType, VmaDedicatedAllocationList& dedicatedAllocations, VmaBlockVector& blockVector, size_t allocationCount, VmaAllocation* pAllocations) { VMA_ASSERT(pAllocations != VMA_NULL); VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size); VmaAllocationCreateInfo finalCreateInfo = createInfo; VkResult res = CalcMemTypeParams( finalCreateInfo, memTypeIndex, size, allocationCount); if(res != VK_SUCCESS) return res; if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) { return AllocateDedicatedMemory( pool, size, suballocType, dedicatedAllocations, memTypeIndex, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, (finalCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, finalCreateInfo.pUserData, finalCreateInfo.priority, dedicatedBuffer, dedicatedImage, dedicatedBufferImageUsage, allocationCount, pAllocations, blockVector.GetAllocationNextPtr()); } else { const bool canAllocateDedicated = (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize()); if(canAllocateDedicated) { // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. if(size > blockVector.GetPreferredBlockSize() / 2) { dedicatedPreferred = true; } // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget, // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above // 3/4 of the maximum allocation count. if(m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4) { dedicatedPreferred = false; } if(dedicatedPreferred) { res = AllocateDedicatedMemory( pool, size, suballocType, dedicatedAllocations, memTypeIndex, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, (finalCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, finalCreateInfo.pUserData, finalCreateInfo.priority, dedicatedBuffer, dedicatedImage, dedicatedBufferImageUsage, allocationCount, pAllocations, blockVector.GetAllocationNextPtr()); if(res == VK_SUCCESS) { // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); return VK_SUCCESS; } } } res = blockVector.Allocate( size, alignment, finalCreateInfo, suballocType, allocationCount, pAllocations); if(res == VK_SUCCESS) return VK_SUCCESS; // Try dedicated memory. if(canAllocateDedicated && !dedicatedPreferred) { res = AllocateDedicatedMemory( pool, size, suballocType, dedicatedAllocations, memTypeIndex, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, (finalCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, finalCreateInfo.pUserData, finalCreateInfo.priority, dedicatedBuffer, dedicatedImage, dedicatedBufferImageUsage, allocationCount, pAllocations, blockVector.GetAllocationNextPtr()); if(res == VK_SUCCESS) { // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here. VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); return VK_SUCCESS; } } // Everything failed: Return error code. VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); return res; } } VkResult VmaAllocator_T::AllocateDedicatedMemory( VmaPool pool, VkDeviceSize size, VmaSuballocationType suballocType, VmaDedicatedAllocationList& dedicatedAllocations, uint32_t memTypeIndex, bool map, bool isUserDataString, bool isMappingAllowed, bool canAliasMemory, void* pUserData, float priority, VkBuffer dedicatedBuffer, VkImage dedicatedImage, VkFlags dedicatedBufferImageUsage, size_t allocationCount, VmaAllocation* pAllocations, const void* pNextChain) { VMA_ASSERT(allocationCount > 0 && pAllocations); VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; allocInfo.memoryTypeIndex = memTypeIndex; allocInfo.allocationSize = size; allocInfo.pNext = pNextChain; #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; if(!canAliasMemory) { if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { if(dedicatedBuffer != VK_NULL_HANDLE) { VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); dedicatedAllocInfo.buffer = dedicatedBuffer; VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); } else if(dedicatedImage != VK_NULL_HANDLE) { dedicatedAllocInfo.image = dedicatedImage; VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); } } } #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 #if VMA_BUFFER_DEVICE_ADDRESS VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; if(m_UseKhrBufferDeviceAddress) { bool canContainBufferWithDeviceAddress = true; if(dedicatedBuffer != VK_NULL_HANDLE) { canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == UINT32_MAX || // Usage flags unknown (dedicatedBufferImageUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0; } else if(dedicatedImage != VK_NULL_HANDLE) { canContainBufferWithDeviceAddress = false; } if(canContainBufferWithDeviceAddress) { allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); } } #endif // #if VMA_BUFFER_DEVICE_ADDRESS #if VMA_MEMORY_PRIORITY VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; if(m_UseExtMemoryPriority) { priorityInfo.priority = priority; VmaPnextChainPushFront(&allocInfo, &priorityInfo); } #endif // #if VMA_MEMORY_PRIORITY #if VMA_EXTERNAL_MEMORY // Attach VkExportMemoryAllocateInfoKHR if necessary. VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex); if(exportMemoryAllocInfo.handleTypes != 0) { VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); } #endif // #if VMA_EXTERNAL_MEMORY size_t allocIndex; VkResult res = VK_SUCCESS; for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { res = AllocateDedicatedMemoryPage( pool, size, suballocType, memTypeIndex, allocInfo, map, isUserDataString, isMappingAllowed, pUserData, pAllocations + allocIndex); if(res != VK_SUCCESS) { break; } } if(res == VK_SUCCESS) { for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { dedicatedAllocations.Register(pAllocations[allocIndex]); } VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex); } else { // Free all already created allocations. while(allocIndex--) { VmaAllocation currAlloc = pAllocations[allocIndex]; VkDeviceMemory hMemory = currAlloc->GetMemory(); /* There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory before vkFreeMemory. if(currAlloc->GetMappedData() != VMA_NULL) { (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); } */ FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); currAlloc->SetUserData(this, VMA_NULL); m_AllocationObjectAllocator.Free(currAlloc); } memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); } return res; } VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( VmaPool pool, VkDeviceSize size, VmaSuballocationType suballocType, uint32_t memTypeIndex, const VkMemoryAllocateInfo& allocInfo, bool map, bool isUserDataString, bool isMappingAllowed, void* pUserData, VmaAllocation* pAllocation) { VkDeviceMemory hMemory = VK_NULL_HANDLE; VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); if(res < 0) { VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); return res; } void* pMappedData = VMA_NULL; if(map) { res = (*m_VulkanFunctions.vkMapMemory)( m_hDevice, hMemory, 0, VK_WHOLE_SIZE, 0, &pMappedData); if(res < 0) { VMA_DEBUG_LOG(" vkMapMemory FAILED"); FreeVulkanMemory(memTypeIndex, size, hMemory); return res; } } *pAllocation = m_AllocationObjectAllocator.Allocate(isUserDataString, isMappingAllowed); (*pAllocation)->InitDedicatedAllocation(pool, memTypeIndex, hMemory, suballocType, pMappedData, size); (*pAllocation)->SetUserData(this, pUserData); m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) { FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); } return VK_SUCCESS; } void VmaAllocator_T::GetBufferMemoryRequirements( VkBuffer hBuffer, VkMemoryRequirements& memReq, bool& requiresDedicatedAllocation, bool& prefersDedicatedAllocation) const { #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; memReqInfo.buffer = hBuffer; VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; VmaPnextChainPushFront(&memReq2, &memDedicatedReq); (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); memReq = memReq2.memoryRequirements; requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); } else #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 { (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); requiresDedicatedAllocation = false; prefersDedicatedAllocation = false; } } void VmaAllocator_T::GetImageMemoryRequirements( VkImage hImage, VkMemoryRequirements& memReq, bool& requiresDedicatedAllocation, bool& prefersDedicatedAllocation) const { #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) { VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; memReqInfo.image = hImage; VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; VmaPnextChainPushFront(&memReq2, &memDedicatedReq); (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); memReq = memReq2.memoryRequirements; requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); } else #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 { (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); requiresDedicatedAllocation = false; prefersDedicatedAllocation = false; } } VkResult VmaAllocator_T::FindMemoryTypeIndex( uint32_t memoryTypeBits, const VmaAllocationCreateInfo* pAllocationCreateInfo, VkFlags bufImgUsage, uint32_t* pMemoryTypeIndex) const { memoryTypeBits &= GetGlobalMemoryTypeBits(); if(pAllocationCreateInfo->memoryTypeBits != 0) { memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; } VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0; if(!FindMemoryPreferences( IsIntegratedGpu(), *pAllocationCreateInfo, bufImgUsage, requiredFlags, preferredFlags, notPreferredFlags)) { return VK_ERROR_FEATURE_NOT_PRESENT; } *pMemoryTypeIndex = UINT32_MAX; uint32_t minCost = UINT32_MAX; for(uint32_t memTypeIndex = 0, memTypeBit = 1; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex, memTypeBit <<= 1) { // This memory type is acceptable according to memoryTypeBits bitmask. if((memTypeBit & memoryTypeBits) != 0) { const VkMemoryPropertyFlags currFlags = m_MemProps.memoryTypes[memTypeIndex].propertyFlags; // This memory type contains requiredFlags. if((requiredFlags & ~currFlags) == 0) { // Calculate cost as number of bits from preferredFlags not present in this memory type. uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) + VmaCountBitsSet(currFlags & notPreferredFlags); // Remember memory type with lowest cost. if(currCost < minCost) { *pMemoryTypeIndex = memTypeIndex; if(currCost == 0) { return VK_SUCCESS; } minCost = currCost; } } } } return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; } VkResult VmaAllocator_T::CalcMemTypeParams( VmaAllocationCreateInfo& inoutCreateInfo, uint32_t memTypeIndex, VkDeviceSize size, size_t allocationCount) { // If memory type is not HOST_VISIBLE, disable MAPPED. if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) { inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; } if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0) { const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); VmaBudget heapBudget = {}; GetHeapBudgets(&heapBudget, heapIndex, 1); if(heapBudget.usage + size * allocationCount > heapBudget.budget) { return VK_ERROR_OUT_OF_DEVICE_MEMORY; } } return VK_SUCCESS; } VkResult VmaAllocator_T::CalcAllocationParams( VmaAllocationCreateInfo& inoutCreateInfo, bool dedicatedRequired, bool dedicatedPreferred) { VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) && "Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect."); VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 || (inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) && "Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT."); if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST) { if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0) { VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 && "When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT."); } } // If memory is lazily allocated, it should be always dedicated. if(dedicatedRequired || inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) { inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; } if(inoutCreateInfo.pool != VK_NULL_HANDLE) { if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() && (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) { VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); return VK_ERROR_FEATURE_NOT_PRESENT; } inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority(); } if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) { VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); return VK_ERROR_FEATURE_NOT_PRESENT; } if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY && (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) { inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; } // Non-auto USAGE values imply HOST_ACCESS flags. // And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools. // Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*. // Otherwise they just protect from assert on mapping. if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO && inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE && inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST) { if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0) { inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT; } } return VK_SUCCESS; } VkResult VmaAllocator_T::AllocateMemory( const VkMemoryRequirements& vkMemReq, bool requiresDedicatedAllocation, bool prefersDedicatedAllocation, VkBuffer dedicatedBuffer, VkImage dedicatedImage, VkFlags dedicatedBufferImageUsage, const VmaAllocationCreateInfo& createInfo, VmaSuballocationType suballocType, size_t allocationCount, VmaAllocation* pAllocations) { memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); if(vkMemReq.size == 0) { return VK_ERROR_INITIALIZATION_FAILED; } VmaAllocationCreateInfo createInfoFinal = createInfo; VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation); if(res != VK_SUCCESS) return res; if(createInfoFinal.pool != VK_NULL_HANDLE) { VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector; return AllocateMemoryOfType( createInfoFinal.pool, vkMemReq.size, vkMemReq.alignment, prefersDedicatedAllocation, dedicatedBuffer, dedicatedImage, dedicatedBufferImageUsage, createInfoFinal, blockVector.GetMemoryTypeIndex(), suballocType, createInfoFinal.pool->m_DedicatedAllocations, blockVector, allocationCount, pAllocations); } else { // Bit mask of memory Vulkan types acceptable for this allocation. uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; uint32_t memTypeIndex = UINT32_MAX; res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex); // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. if(res != VK_SUCCESS) return res; do { VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex]; VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); res = AllocateMemoryOfType( VK_NULL_HANDLE, vkMemReq.size, vkMemReq.alignment, requiresDedicatedAllocation || prefersDedicatedAllocation, dedicatedBuffer, dedicatedImage, dedicatedBufferImageUsage, createInfoFinal, memTypeIndex, suballocType, m_DedicatedAllocations[memTypeIndex], *blockVector, allocationCount, pAllocations); // Allocation succeeded if(res == VK_SUCCESS) return VK_SUCCESS; // Remove old memTypeIndex from list of possibilities. memoryTypeBits &= ~(1u << memTypeIndex); // Find alternative memTypeIndex. res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex); } while(res == VK_SUCCESS); // No other matching memory type index could be found. // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. return VK_ERROR_OUT_OF_DEVICE_MEMORY; } } void VmaAllocator_T::FreeMemory( size_t allocationCount, const VmaAllocation* pAllocations) { VMA_ASSERT(pAllocations); for(size_t allocIndex = allocationCount; allocIndex--; ) { VmaAllocation allocation = pAllocations[allocIndex]; if(allocation != VK_NULL_HANDLE) { if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) { FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); } switch(allocation->GetType()) { case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { VmaBlockVector* pBlockVector = VMA_NULL; VmaPool hPool = allocation->GetParentPool(); if(hPool != VK_NULL_HANDLE) { pBlockVector = &hPool->m_BlockVector; } else { const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); pBlockVector = m_pBlockVectors[memTypeIndex]; VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); } pBlockVector->Free(allocation); } break; case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: FreeDedicatedMemory(allocation); break; default: VMA_ASSERT(0); } m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); allocation->SetUserData(this, VMA_NULL); m_AllocationObjectAllocator.Free(allocation); } } } void VmaAllocator_T::CalculateStats(VmaStats* pStats) { // Initialize. VmaInitStatInfo(pStats->total); for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) VmaInitStatInfo(pStats->memoryType[i]); for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) VmaInitStatInfo(pStats->memoryHeap[i]); // Process default pools. for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; if (pBlockVector != VMA_NULL) pBlockVector->AddStats(pStats); } // Process custom pools. { VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) { VmaBlockVector& blockVector = pool->m_BlockVector; blockVector.AddStats(pStats); const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); pool->m_DedicatedAllocations.AddStats(pStats, memTypeIndex, memHeapIndex); } } // Process dedicated allocations. for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); m_DedicatedAllocations[memTypeIndex].AddStats(pStats, memTypeIndex, memHeapIndex); } // Postprocess. VmaPostprocessCalcStatInfo(pStats->total); for(size_t i = 0; i < GetMemoryTypeCount(); ++i) VmaPostprocessCalcStatInfo(pStats->memoryType[i]); for(size_t i = 0; i < GetMemoryHeapCount(); ++i) VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]); } void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount) { #if VMA_MEMORY_BUDGET if(m_UseExtMemoryBudget) { if(m_Budget.m_OperationsSinceBudgetFetch < 30) { VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) { const uint32_t heapIndex = firstHeap + i; outBudgets->blockBytes = m_Budget.m_BlockBytes[heapIndex]; outBudgets->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) { outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] + outBudgets->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; } else { outBudgets->usage = 0; } // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. outBudgets->budget = VMA_MIN( m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); } } else { UpdateVulkanBudget(); // Outside of mutex lock GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion } } else #endif { for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) { const uint32_t heapIndex = firstHeap + i; outBudgets->blockBytes = m_Budget.m_BlockBytes[heapIndex]; outBudgets->allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; outBudgets->usage = outBudgets->blockBytes; outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. } } } VkResult VmaAllocator_T::DefragmentationBegin( const VmaDefragmentationInfo2& info, VmaDefragmentationStats* pStats, VmaDefragmentationContext* pContext) { if(info.pAllocationsChanged != VMA_NULL) { memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32)); } *pContext = vma_new(this, VmaDefragmentationContext_T)( this, info.flags, pStats); (*pContext)->AddPools(info.poolCount, info.pPools); (*pContext)->AddAllocations( info.allocationCount, info.pAllocations, info.pAllocationsChanged); VkResult res = (*pContext)->Defragment( info.maxCpuBytesToMove, info.maxCpuAllocationsToMove, info.maxGpuBytesToMove, info.maxGpuAllocationsToMove, info.commandBuffer, pStats, info.flags); if(res != VK_NOT_READY) { vma_delete(this, *pContext); *pContext = VMA_NULL; } return res; } VkResult VmaAllocator_T::DefragmentationEnd( VmaDefragmentationContext context) { vma_delete(this, context); return VK_SUCCESS; } VkResult VmaAllocator_T::DefragmentationPassBegin( VmaDefragmentationPassInfo* pInfo, VmaDefragmentationContext context) { return context->DefragmentPassBegin(pInfo); } VkResult VmaAllocator_T::DefragmentationPassEnd( VmaDefragmentationContext context) { return context->DefragmentPassEnd(); } void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) { pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); pAllocationInfo->deviceMemory = hAllocation->GetMemory(); pAllocationInfo->offset = hAllocation->GetOffset(); pAllocationInfo->size = hAllocation->GetSize(); pAllocationInfo->pMappedData = hAllocation->GetMappedData(); pAllocationInfo->pUserData = hAllocation->GetUserData(); } VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) { VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags); VmaPoolCreateInfo newCreateInfo = *pCreateInfo; // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash. if(pCreateInfo->pMemoryAllocateNext) { VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0); } if(newCreateInfo.maxBlockCount == 0) { newCreateInfo.maxBlockCount = SIZE_MAX; } if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) { return VK_ERROR_INITIALIZATION_FAILED; } // Memory type index out of range or forbidden. if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) { return VK_ERROR_FEATURE_NOT_PRESENT; } if(newCreateInfo.minAllocationAlignment > 0) { VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment)); } const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); if(res != VK_SUCCESS) { vma_delete(this, *pPool); *pPool = VMA_NULL; return res; } // Add to m_Pools. { VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); (*pPool)->SetId(m_NextPoolId++); m_Pools.PushBack(*pPool); } return VK_SUCCESS; } void VmaAllocator_T::DestroyPool(VmaPool pool) { // Remove from m_Pools. { VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); m_Pools.Remove(pool); } vma_delete(this, pool); } void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats) { pPoolStats->size = 0; pPoolStats->unusedSize = 0; pPoolStats->allocationCount = 0; pPoolStats->unusedRangeCount = 0; pPoolStats->blockCount = 0; pool->m_BlockVector.AddPoolStats(pPoolStats); pool->m_DedicatedAllocations.AddPoolStats(pPoolStats); } void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) { m_CurrentFrameIndex.store(frameIndex); #if VMA_MEMORY_BUDGET if(m_UseExtMemoryBudget) { UpdateVulkanBudget(); } #endif // #if VMA_MEMORY_BUDGET } VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) { return hPool->m_BlockVector.CheckCorruption(); } VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) { VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; // Process default pools. for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; if(pBlockVector != VMA_NULL) { VkResult localRes = pBlockVector->CheckCorruption(); switch(localRes) { case VK_ERROR_FEATURE_NOT_PRESENT: break; case VK_SUCCESS: finalRes = VK_SUCCESS; break; default: return localRes; } } } // Process custom pools. { VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) { if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) { VkResult localRes = pool->m_BlockVector.CheckCorruption(); switch(localRes) { case VK_ERROR_FEATURE_NOT_PRESENT: break; case VK_SUCCESS: finalRes = VK_SUCCESS; break; default: return localRes; } } } } return finalRes; } VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) { AtomicTransactionalIncrement deviceMemoryCountIncrement; const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount); #if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount) { return VK_ERROR_TOO_MANY_OBJECTS; } #endif const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); // HeapSizeLimit is in effect for this heap. if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) { const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; for(;;) { const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; if(blockBytesAfterAllocation > heapSize) { return VK_ERROR_OUT_OF_DEVICE_MEMORY; } if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) { break; } } } else { m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; } // VULKAN CALL vkAllocateMemory. VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); if(res == VK_SUCCESS) { #if VMA_MEMORY_BUDGET ++m_Budget.m_OperationsSinceBudgetFetch; #endif // Informative callback. if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) { (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData); } deviceMemoryCountIncrement.Commit(); } else { m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; } return res; } void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) { // Informative callback. if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) { (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData); } // VULKAN CALL vkFreeMemory. (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size; --m_DeviceMemoryCount; } VkResult VmaAllocator_T::BindVulkanBuffer( VkDeviceMemory memory, VkDeviceSize memoryOffset, VkBuffer buffer, const void* pNext) { if(pNext != VMA_NULL) { #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) { VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; bindBufferMemoryInfo.pNext = pNext; bindBufferMemoryInfo.buffer = buffer; bindBufferMemoryInfo.memory = memory; bindBufferMemoryInfo.memoryOffset = memoryOffset; return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); } else #endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 { return VK_ERROR_EXTENSION_NOT_PRESENT; } } else { return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); } } VkResult VmaAllocator_T::BindVulkanImage( VkDeviceMemory memory, VkDeviceSize memoryOffset, VkImage image, const void* pNext) { if(pNext != VMA_NULL) { #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) { VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; bindBufferMemoryInfo.pNext = pNext; bindBufferMemoryInfo.image = image; bindBufferMemoryInfo.memory = memory; bindBufferMemoryInfo.memoryOffset = memoryOffset; return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); } else #endif // #if VMA_BIND_MEMORY2 { return VK_ERROR_EXTENSION_NOT_PRESENT; } } else { return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); } } VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) { switch(hAllocation->GetType()) { case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); char *pBytes = VMA_NULL; VkResult res = pBlock->Map(this, 1, (void**)&pBytes); if(res == VK_SUCCESS) { *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); hAllocation->BlockAllocMap(); } return res; } case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: return hAllocation->DedicatedAllocMap(this, ppData); default: VMA_ASSERT(0); return VK_ERROR_MEMORY_MAP_FAILED; } } void VmaAllocator_T::Unmap(VmaAllocation hAllocation) { switch(hAllocation->GetType()) { case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); hAllocation->BlockAllocUnmap(); pBlock->Unmap(this, 1); } break; case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: hAllocation->DedicatedAllocUnmap(this); break; default: VMA_ASSERT(0); } } VkResult VmaAllocator_T::BindBufferMemory( VmaAllocation hAllocation, VkDeviceSize allocationLocalOffset, VkBuffer hBuffer, const void* pNext) { VkResult res = VK_SUCCESS; switch(hAllocation->GetType()) { case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); break; case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block."); res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); break; } default: VMA_ASSERT(0); } return res; } VkResult VmaAllocator_T::BindImageMemory( VmaAllocation hAllocation, VkDeviceSize allocationLocalOffset, VkImage hImage, const void* pNext) { VkResult res = VK_SUCCESS; switch(hAllocation->GetType()) { case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); break; case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block."); res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); break; } default: VMA_ASSERT(0); } return res; } VkResult VmaAllocator_T::FlushOrInvalidateAllocation( VmaAllocation hAllocation, VkDeviceSize offset, VkDeviceSize size, VMA_CACHE_OPERATION op) { VkResult res = VK_SUCCESS; VkMappedMemoryRange memRange = {}; if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange)) { switch(op) { case VMA_CACHE_FLUSH: res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); break; case VMA_CACHE_INVALIDATE: res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); break; default: VMA_ASSERT(0); } } // else: Just ignore this call. return res; } VkResult VmaAllocator_T::FlushOrInvalidateAllocations( uint32_t allocationCount, const VmaAllocation* allocations, const VkDeviceSize* offsets, const VkDeviceSize* sizes, VMA_CACHE_OPERATION op) { typedef VmaStlAllocator RangeAllocator; typedef VmaSmallVector RangeVector; RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks())); for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) { const VmaAllocation alloc = allocations[allocIndex]; const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0; const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE; VkMappedMemoryRange newRange; if(GetFlushOrInvalidateRange(alloc, offset, size, newRange)) { ranges.push_back(newRange); } } VkResult res = VK_SUCCESS; if(!ranges.empty()) { switch(op) { case VMA_CACHE_FLUSH: res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); break; case VMA_CACHE_INVALIDATE: res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); break; default: VMA_ASSERT(0); } } // else: Just ignore this call. return res; } void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) { VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); VmaPool parentPool = allocation->GetParentPool(); if(parentPool == VK_NULL_HANDLE) { // Default pool m_DedicatedAllocations[memTypeIndex].Unregister(allocation); } else { // Custom pool parentPool->m_DedicatedAllocations.Unregister(allocation); } VkDeviceMemory hMemory = allocation->GetMemory(); /* There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory before vkFreeMemory. if(allocation->GetMappedData() != VMA_NULL) { (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); } */ FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex); } uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const { VkBufferCreateInfo dummyBufCreateInfo; VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); uint32_t memoryTypeBits = 0; // Create buffer. VkBuffer buf = VK_NULL_HANDLE; VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); if(res == VK_SUCCESS) { // Query for supported memory types. VkMemoryRequirements memReq; (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); memoryTypeBits = memReq.memoryTypeBits; // Destroy buffer. (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); } return memoryTypeBits; } uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const { // Make sure memory information is already fetched. VMA_ASSERT(GetMemoryTypeCount() > 0); uint32_t memoryTypeBits = UINT32_MAX; if(!m_UseAmdDeviceCoherentMemory) { // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD. for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) { memoryTypeBits &= ~(1u << memTypeIndex); } } } return memoryTypeBits; } bool VmaAllocator_T::GetFlushOrInvalidateRange( VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size, VkMappedMemoryRange& outRange) const { const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) { const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; const VkDeviceSize allocationSize = allocation->GetSize(); VMA_ASSERT(offset <= allocationSize); outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; outRange.pNext = VMA_NULL; outRange.memory = allocation->GetMemory(); switch(allocation->GetType()) { case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); if(size == VK_WHOLE_SIZE) { outRange.size = allocationSize - outRange.offset; } else { VMA_ASSERT(offset + size <= allocationSize); outRange.size = VMA_MIN( VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize), allocationSize - outRange.offset); } break; case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: { // 1. Still within this allocation. outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); if(size == VK_WHOLE_SIZE) { size = allocationSize - offset; } else { VMA_ASSERT(offset + size <= allocationSize); } outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize); // 2. Adjust to whole block. const VkDeviceSize allocationOffset = allocation->GetOffset(); VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize(); outRange.offset += allocationOffset; outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset); break; } default: VMA_ASSERT(0); } return true; } return false; } #if VMA_MEMORY_BUDGET void VmaAllocator_T::UpdateVulkanBudget() { VMA_ASSERT(m_UseExtMemoryBudget); VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; VmaPnextChainPushFront(&memProps, &budgetProps); GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); { VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) { m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size. if(m_Budget.m_VulkanBudget[heapIndex] == 0) { m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. } else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size) { m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size; } if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0) { m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; } } m_Budget.m_OperationsSinceBudgetFetch = 0; } } #endif // VMA_MEMORY_BUDGET void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) { if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) { void* pData = VMA_NULL; VkResult res = Map(hAllocation, &pData); if(res == VK_SUCCESS) { memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); Unmap(hAllocation); } else { VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); } } } uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() { uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); if(memoryTypeBits == UINT32_MAX) { memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); } return memoryTypeBits; } #if VMA_STATS_STRING_ENABLED void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) { bool dedicatedAllocationsStarted = false; for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex]; if(!dedicatedAllocList.IsEmpty()) { if(dedicatedAllocationsStarted == false) { dedicatedAllocationsStarted = true; json.WriteString("DedicatedAllocations"); json.BeginObject(); } json.BeginString("Type "); json.ContinueString(memTypeIndex); json.EndString(); dedicatedAllocList.BuildStatsString(json); } } if(dedicatedAllocationsStarted) { json.EndObject(); } { bool allocationsStarted = false; for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) { VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex]; if(pBlockVector != VMA_NULL) { if (pBlockVector->IsEmpty() == false) { if (allocationsStarted == false) { allocationsStarted = true; json.WriteString("DefaultPools"); json.BeginObject(); } json.BeginString("Type "); json.ContinueString(memTypeIndex); json.EndString(); json.BeginObject(); pBlockVector->PrintDetailedMap(json); json.EndObject(); } } } if(allocationsStarted) { json.EndObject(); } } // Custom pools { VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); if(!m_Pools.IsEmpty()) { json.WriteString("Pools"); json.BeginObject(); for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) { json.BeginString(); json.ContinueString(pool->GetId()); json.EndString(); json.BeginObject(); pool->m_BlockVector.PrintDetailedMap(json); if (!pool->m_DedicatedAllocations.IsEmpty()) { json.WriteString("DedicatedAllocations"); pool->m_DedicatedAllocations.BuildStatsString(json); } json.EndObject(); } json.EndObject(); } } } #endif // VMA_STATS_STRING_ENABLED #endif // _VMA_ALLOCATOR_T_FUNCTIONS #ifndef _VMA_PUBLIC_INTERFACE VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( const VmaAllocatorCreateInfo* pCreateInfo, VmaAllocator* pAllocator) { VMA_ASSERT(pCreateInfo && pAllocator); VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3)); VMA_DEBUG_LOG("vmaCreateAllocator"); *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); VkResult result = (*pAllocator)->Init(pCreateInfo); if(result < 0) { vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator); *pAllocator = VK_NULL_HANDLE; } return result; } VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( VmaAllocator allocator) { if(allocator != VK_NULL_HANDLE) { VMA_DEBUG_LOG("vmaDestroyAllocator"); VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying. vma_delete(&allocationCallbacks, allocator); } } VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo) { VMA_ASSERT(allocator && pAllocatorInfo); pAllocatorInfo->instance = allocator->m_hInstance; pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice(); pAllocatorInfo->device = allocator->m_hDevice; } VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( VmaAllocator allocator, const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) { VMA_ASSERT(allocator && ppPhysicalDeviceProperties); *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; } VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( VmaAllocator allocator, const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) { VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; } VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( VmaAllocator allocator, uint32_t memoryTypeIndex, VkMemoryPropertyFlags* pFlags) { VMA_ASSERT(allocator && pFlags); VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; } VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( VmaAllocator allocator, uint32_t frameIndex) { VMA_ASSERT(allocator); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->SetCurrentFrameIndex(frameIndex); } VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats( VmaAllocator allocator, VmaStats* pStats) { VMA_ASSERT(allocator && pStats); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->CalculateStats(pStats); } VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( VmaAllocator allocator, VmaBudget* pBudgets) { VMA_ASSERT(allocator && pBudgets); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount()); } #if VMA_STATS_STRING_ENABLED VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( VmaAllocator allocator, char** ppStatsString, VkBool32 detailedMap) { VMA_ASSERT(allocator && ppStatsString); VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaStringBuilder sb(allocator->GetAllocationCallbacks()); { VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); json.BeginObject(); VmaBudget budgets[VK_MAX_MEMORY_HEAPS]; allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount()); VmaStats stats; allocator->CalculateStats(&stats); json.WriteString("Total"); VmaPrintStatInfo(json, stats.total); for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) { json.BeginString("Heap "); json.ContinueString(heapIndex); json.EndString(); json.BeginObject(); json.WriteString("Size"); json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size); json.WriteString("Flags"); json.BeginArray(true); if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) { json.WriteString("DEVICE_LOCAL"); } json.EndArray(); json.WriteString("Budget"); json.BeginObject(); { json.WriteString("BlockBytes"); json.WriteNumber(budgets[heapIndex].blockBytes); json.WriteString("AllocationBytes"); json.WriteNumber(budgets[heapIndex].allocationBytes); json.WriteString("Usage"); json.WriteNumber(budgets[heapIndex].usage); json.WriteString("Budget"); json.WriteNumber(budgets[heapIndex].budget); } json.EndObject(); if(stats.memoryHeap[heapIndex].blockCount > 0) { json.WriteString("Stats"); VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]); } for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) { if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) { json.BeginString("Type "); json.ContinueString(typeIndex); json.EndString(); json.BeginObject(); json.WriteString("Flags"); json.BeginArray(true); VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) { json.WriteString("DEVICE_LOCAL"); } if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) { json.WriteString("HOST_VISIBLE"); } if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) { json.WriteString("HOST_COHERENT"); } if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) { json.WriteString("HOST_CACHED"); } if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) { json.WriteString("LAZILY_ALLOCATED"); } #if VMA_VULKAN_VERSION >= 1001000 if((flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) != 0) { json.WriteString("PROTECTED"); } #endif // #if VMA_VULKAN_VERSION >= 1001000 #if VK_AMD_device_coherent_memory if((flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) { json.WriteString("DEVICE_COHERENT"); } if((flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) != 0) { json.WriteString("DEVICE_UNCACHED"); } #endif // #if VK_AMD_device_coherent_memory json.EndArray(); if(stats.memoryType[typeIndex].blockCount > 0) { json.WriteString("Stats"); VmaPrintStatInfo(json, stats.memoryType[typeIndex]); } json.EndObject(); } } json.EndObject(); } if(detailedMap == VK_TRUE) { allocator->PrintDetailedMap(json); } json.EndObject(); } *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength()); } VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( VmaAllocator allocator, char* pStatsString) { if(pStatsString != VMA_NULL) { VMA_ASSERT(allocator); VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString); } } #endif // VMA_STATS_STRING_ENABLED /* This function is not protected by any mutex because it just reads immutable data. */ VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( VmaAllocator allocator, uint32_t memoryTypeBits, const VmaAllocationCreateInfo* pAllocationCreateInfo, uint32_t* pMemoryTypeIndex) { VMA_ASSERT(allocator != VK_NULL_HANDLE); VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, UINT32_MAX, pMemoryTypeIndex); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( VmaAllocator allocator, const VkBufferCreateInfo* pBufferCreateInfo, const VmaAllocationCreateInfo* pAllocationCreateInfo, uint32_t* pMemoryTypeIndex) { VMA_ASSERT(allocator != VK_NULL_HANDLE); VMA_ASSERT(pBufferCreateInfo != VMA_NULL); VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); const VkDevice hDev = allocator->m_hDevice; VkBuffer hBuffer = VK_NULL_HANDLE; const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); VkResult res = funcs->vkCreateBuffer( hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); if(res == VK_SUCCESS) { VkMemoryRequirements memReq = {}; funcs->vkGetBufferMemoryRequirements( hDev, hBuffer, &memReq); res = allocator->FindMemoryTypeIndex( memReq.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex); funcs->vkDestroyBuffer( hDev, hBuffer, allocator->GetAllocationCallbacks()); } return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( VmaAllocator allocator, const VkImageCreateInfo* pImageCreateInfo, const VmaAllocationCreateInfo* pAllocationCreateInfo, uint32_t* pMemoryTypeIndex) { VMA_ASSERT(allocator != VK_NULL_HANDLE); VMA_ASSERT(pImageCreateInfo != VMA_NULL); VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); const VkDevice hDev = allocator->m_hDevice; VkImage hImage = VK_NULL_HANDLE; const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); VkResult res = funcs->vkCreateImage( hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); if(res == VK_SUCCESS) { VkMemoryRequirements memReq = {}; funcs->vkGetImageMemoryRequirements( hDev, hImage, &memReq); res = allocator->FindMemoryTypeIndex( memReq.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex); funcs->vkDestroyImage( hDev, hImage, allocator->GetAllocationCallbacks()); } return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( VmaAllocator allocator, const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) { VMA_ASSERT(allocator && pCreateInfo && pPool); VMA_DEBUG_LOG("vmaCreatePool"); VMA_DEBUG_GLOBAL_MUTEX_LOCK return allocator->CreatePool(pCreateInfo, pPool); } VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( VmaAllocator allocator, VmaPool pool) { VMA_ASSERT(allocator); if(pool == VK_NULL_HANDLE) { return; } VMA_DEBUG_LOG("vmaDestroyPool"); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->DestroyPool(pool); } VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats( VmaAllocator allocator, VmaPool pool, VmaPoolStats* pPoolStats) { VMA_ASSERT(allocator && pool && pPoolStats); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->GetPoolStats(pool, pPoolStats); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) { VMA_ASSERT(allocator && pool); VMA_DEBUG_GLOBAL_MUTEX_LOCK VMA_DEBUG_LOG("vmaCheckPoolCorruption"); return allocator->CheckPoolCorruption(pool); } VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( VmaAllocator allocator, VmaPool pool, const char** ppName) { VMA_ASSERT(allocator && pool && ppName); VMA_DEBUG_LOG("vmaGetPoolName"); VMA_DEBUG_GLOBAL_MUTEX_LOCK *ppName = pool->GetName(); } VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( VmaAllocator allocator, VmaPool pool, const char* pName) { VMA_ASSERT(allocator && pool); VMA_DEBUG_LOG("vmaSetPoolName"); VMA_DEBUG_GLOBAL_MUTEX_LOCK pool->SetName(pName); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( VmaAllocator allocator, const VkMemoryRequirements* pVkMemoryRequirements, const VmaAllocationCreateInfo* pCreateInfo, VmaAllocation* pAllocation, VmaAllocationInfo* pAllocationInfo) { VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); VMA_DEBUG_LOG("vmaAllocateMemory"); VMA_DEBUG_GLOBAL_MUTEX_LOCK VkResult result = allocator->AllocateMemory( *pVkMemoryRequirements, false, // requiresDedicatedAllocation false, // prefersDedicatedAllocation VK_NULL_HANDLE, // dedicatedBuffer VK_NULL_HANDLE, // dedicatedImage UINT32_MAX, // dedicatedBufferImageUsage *pCreateInfo, VMA_SUBALLOCATION_TYPE_UNKNOWN, 1, // allocationCount pAllocation); if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) { allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); } return result; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( VmaAllocator allocator, const VkMemoryRequirements* pVkMemoryRequirements, const VmaAllocationCreateInfo* pCreateInfo, size_t allocationCount, VmaAllocation* pAllocations, VmaAllocationInfo* pAllocationInfo) { if(allocationCount == 0) { return VK_SUCCESS; } VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); VMA_DEBUG_LOG("vmaAllocateMemoryPages"); VMA_DEBUG_GLOBAL_MUTEX_LOCK VkResult result = allocator->AllocateMemory( *pVkMemoryRequirements, false, // requiresDedicatedAllocation false, // prefersDedicatedAllocation VK_NULL_HANDLE, // dedicatedBuffer VK_NULL_HANDLE, // dedicatedImage UINT32_MAX, // dedicatedBufferImageUsage *pCreateInfo, VMA_SUBALLOCATION_TYPE_UNKNOWN, allocationCount, pAllocations); if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) { for(size_t i = 0; i < allocationCount; ++i) { allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); } } return result; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( VmaAllocator allocator, VkBuffer buffer, const VmaAllocationCreateInfo* pCreateInfo, VmaAllocation* pAllocation, VmaAllocationInfo* pAllocationInfo) { VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); VMA_DEBUG_GLOBAL_MUTEX_LOCK VkMemoryRequirements vkMemReq = {}; bool requiresDedicatedAllocation = false; bool prefersDedicatedAllocation = false; allocator->GetBufferMemoryRequirements(buffer, vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation); VkResult result = allocator->AllocateMemory( vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation, buffer, // dedicatedBuffer VK_NULL_HANDLE, // dedicatedImage UINT32_MAX, // dedicatedBufferImageUsage *pCreateInfo, VMA_SUBALLOCATION_TYPE_BUFFER, 1, // allocationCount pAllocation); if(pAllocationInfo && result == VK_SUCCESS) { allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); } return result; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( VmaAllocator allocator, VkImage image, const VmaAllocationCreateInfo* pCreateInfo, VmaAllocation* pAllocation, VmaAllocationInfo* pAllocationInfo) { VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); VMA_DEBUG_GLOBAL_MUTEX_LOCK VkMemoryRequirements vkMemReq = {}; bool requiresDedicatedAllocation = false; bool prefersDedicatedAllocation = false; allocator->GetImageMemoryRequirements(image, vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation); VkResult result = allocator->AllocateMemory( vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation, VK_NULL_HANDLE, // dedicatedBuffer image, // dedicatedImage UINT32_MAX, // dedicatedBufferImageUsage *pCreateInfo, VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, 1, // allocationCount pAllocation); if(pAllocationInfo && result == VK_SUCCESS) { allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); } return result; } VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( VmaAllocator allocator, VmaAllocation allocation) { VMA_ASSERT(allocator); if(allocation == VK_NULL_HANDLE) { return; } VMA_DEBUG_LOG("vmaFreeMemory"); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->FreeMemory( 1, // allocationCount &allocation); } VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( VmaAllocator allocator, size_t allocationCount, const VmaAllocation* pAllocations) { if(allocationCount == 0) { return; } VMA_ASSERT(allocator); VMA_DEBUG_LOG("vmaFreeMemoryPages"); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->FreeMemory(allocationCount, pAllocations); } VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( VmaAllocator allocator, VmaAllocation allocation, VmaAllocationInfo* pAllocationInfo) { VMA_ASSERT(allocator && allocation && pAllocationInfo); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->GetAllocationInfo(allocation, pAllocationInfo); } VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( VmaAllocator allocator, VmaAllocation allocation, void* pUserData) { VMA_ASSERT(allocator && allocation); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocation->SetUserData(allocator, pUserData); } VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( VmaAllocator VMA_NOT_NULL allocator, VmaAllocation VMA_NOT_NULL allocation, VkMemoryPropertyFlags* VMA_NOT_NULL pFlags) { VMA_ASSERT(allocator && allocation && pFlags); const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( VmaAllocator allocator, VmaAllocation allocation, void** ppData) { VMA_ASSERT(allocator && allocation && ppData); VMA_DEBUG_GLOBAL_MUTEX_LOCK return allocator->Map(allocation, ppData); } VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( VmaAllocator allocator, VmaAllocation allocation) { VMA_ASSERT(allocator && allocation); VMA_DEBUG_GLOBAL_MUTEX_LOCK allocator->Unmap(allocation); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) { VMA_ASSERT(allocator && allocation); VMA_DEBUG_LOG("vmaFlushAllocation"); VMA_DEBUG_GLOBAL_MUTEX_LOCK const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) { VMA_ASSERT(allocator && allocation); VMA_DEBUG_LOG("vmaInvalidateAllocation"); VMA_DEBUG_GLOBAL_MUTEX_LOCK const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( VmaAllocator allocator, uint32_t allocationCount, const VmaAllocation* allocations, const VkDeviceSize* offsets, const VkDeviceSize* sizes) { VMA_ASSERT(allocator); if(allocationCount == 0) { return VK_SUCCESS; } VMA_ASSERT(allocations); VMA_DEBUG_LOG("vmaFlushAllocations"); VMA_DEBUG_GLOBAL_MUTEX_LOCK const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH); return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( VmaAllocator allocator, uint32_t allocationCount, const VmaAllocation* allocations, const VkDeviceSize* offsets, const VkDeviceSize* sizes) { VMA_ASSERT(allocator); if(allocationCount == 0) { return VK_SUCCESS; } VMA_ASSERT(allocations); VMA_DEBUG_LOG("vmaInvalidateAllocations"); VMA_DEBUG_GLOBAL_MUTEX_LOCK const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE); return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( VmaAllocator allocator, uint32_t memoryTypeBits) { VMA_ASSERT(allocator); VMA_DEBUG_LOG("vmaCheckCorruption"); VMA_DEBUG_GLOBAL_MUTEX_LOCK return allocator->CheckCorruption(memoryTypeBits); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment( VmaAllocator allocator, const VmaAllocation* pAllocations, size_t allocationCount, VkBool32* pAllocationsChanged, const VmaDefragmentationInfo *pDefragmentationInfo, VmaDefragmentationStats* pDefragmentationStats) { // Deprecated interface, reimplemented using new one. VmaDefragmentationInfo2 info2 = {}; info2.allocationCount = (uint32_t)allocationCount; info2.pAllocations = pAllocations; info2.pAllocationsChanged = pAllocationsChanged; if(pDefragmentationInfo != VMA_NULL) { info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove; info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove; } else { info2.maxCpuAllocationsToMove = UINT32_MAX; info2.maxCpuBytesToMove = VK_WHOLE_SIZE; } // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero. VmaDefragmentationContext ctx; VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx); if(res == VK_NOT_READY) { res = vmaDefragmentationEnd( allocator, ctx); } return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin( VmaAllocator allocator, const VmaDefragmentationInfo2* pInfo, VmaDefragmentationStats* pStats, VmaDefragmentationContext *pContext) { VMA_ASSERT(allocator && pInfo && pContext); // Degenerate case: Nothing to defragment. if(pInfo->allocationCount == 0 && pInfo->poolCount == 0) { return VK_SUCCESS; } VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL); VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL); VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations)); VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools)); VMA_DEBUG_LOG("vmaDefragmentationBegin"); VMA_DEBUG_GLOBAL_MUTEX_LOCK VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext); return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd( VmaAllocator allocator, VmaDefragmentationContext context) { VMA_ASSERT(allocator); VMA_DEBUG_LOG("vmaDefragmentationEnd"); if(context != VK_NULL_HANDLE) { VMA_DEBUG_GLOBAL_MUTEX_LOCK return allocator->DefragmentationEnd(context); } else { return VK_SUCCESS; } } VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( VmaAllocator allocator, VmaDefragmentationContext context, VmaDefragmentationPassInfo* pInfo ) { VMA_ASSERT(allocator); VMA_ASSERT(pInfo); VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); VMA_DEBUG_GLOBAL_MUTEX_LOCK if(context == VK_NULL_HANDLE) { pInfo->moveCount = 0; return VK_SUCCESS; } return allocator->DefragmentationPassBegin(pInfo, context); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( VmaAllocator allocator, VmaDefragmentationContext context) { VMA_ASSERT(allocator); VMA_DEBUG_LOG("vmaEndDefragmentationPass"); VMA_DEBUG_GLOBAL_MUTEX_LOCK if(context == VK_NULL_HANDLE) return VK_SUCCESS; return allocator->DefragmentationPassEnd(context); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( VmaAllocator allocator, VmaAllocation allocation, VkBuffer buffer) { VMA_ASSERT(allocator && allocation && buffer); VMA_DEBUG_LOG("vmaBindBufferMemory"); VMA_DEBUG_GLOBAL_MUTEX_LOCK return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize allocationLocalOffset, VkBuffer buffer, const void* pNext) { VMA_ASSERT(allocator && allocation && buffer); VMA_DEBUG_LOG("vmaBindBufferMemory2"); VMA_DEBUG_GLOBAL_MUTEX_LOCK return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( VmaAllocator allocator, VmaAllocation allocation, VkImage image) { VMA_ASSERT(allocator && allocation && image); VMA_DEBUG_LOG("vmaBindImageMemory"); VMA_DEBUG_GLOBAL_MUTEX_LOCK return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize allocationLocalOffset, VkImage image, const void* pNext) { VMA_ASSERT(allocator && allocation && image); VMA_DEBUG_LOG("vmaBindImageMemory2"); VMA_DEBUG_GLOBAL_MUTEX_LOCK return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( VmaAllocator allocator, const VkBufferCreateInfo* pBufferCreateInfo, const VmaAllocationCreateInfo* pAllocationCreateInfo, VkBuffer* pBuffer, VmaAllocation* pAllocation, VmaAllocationInfo* pAllocationInfo) { VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); if(pBufferCreateInfo->size == 0) { return VK_ERROR_INITIALIZATION_FAILED; } if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && !allocator->m_UseKhrBufferDeviceAddress) { VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); return VK_ERROR_INITIALIZATION_FAILED; } VMA_DEBUG_LOG("vmaCreateBuffer"); VMA_DEBUG_GLOBAL_MUTEX_LOCK *pBuffer = VK_NULL_HANDLE; *pAllocation = VK_NULL_HANDLE; // 1. Create VkBuffer. VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( allocator->m_hDevice, pBufferCreateInfo, allocator->GetAllocationCallbacks(), pBuffer); if(res >= 0) { // 2. vkGetBufferMemoryRequirements. VkMemoryRequirements vkMemReq = {}; bool requiresDedicatedAllocation = false; bool prefersDedicatedAllocation = false; allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation); // 3. Allocate memory using allocator. res = allocator->AllocateMemory( vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation, *pBuffer, // dedicatedBuffer VK_NULL_HANDLE, // dedicatedImage pBufferCreateInfo->usage, // dedicatedBufferImageUsage *pAllocationCreateInfo, VMA_SUBALLOCATION_TYPE_BUFFER, 1, // allocationCount pAllocation); if(res >= 0) { // 3. Bind buffer with memory. if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) { res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); } if(res >= 0) { // All steps succeeded. #if VMA_STATS_STRING_ENABLED (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); #endif if(pAllocationInfo != VMA_NULL) { allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); } return VK_SUCCESS; } allocator->FreeMemory( 1, // allocationCount pAllocation); *pAllocation = VK_NULL_HANDLE; (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); *pBuffer = VK_NULL_HANDLE; return res; } (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); *pBuffer = VK_NULL_HANDLE; return res; } return res; } VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( VmaAllocator allocator, const VkBufferCreateInfo* pBufferCreateInfo, const VmaAllocationCreateInfo* pAllocationCreateInfo, VkDeviceSize minAlignment, VkBuffer* pBuffer, VmaAllocation* pAllocation, VmaAllocationInfo* pAllocationInfo) { VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation); if(pBufferCreateInfo->size == 0) { return VK_ERROR_INITIALIZATION_FAILED; } if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && !allocator->m_UseKhrBufferDeviceAddress) { VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); return VK_ERROR_INITIALIZATION_FAILED; } VMA_DEBUG_LOG("vmaCreateBufferWithAlignment"); VMA_DEBUG_GLOBAL_MUTEX_LOCK *pBuffer = VK_NULL_HANDLE; *pAllocation = VK_NULL_HANDLE; // 1. Create VkBuffer. VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( allocator->m_hDevice, pBufferCreateInfo, allocator->GetAllocationCallbacks(), pBuffer); if(res >= 0) { // 2. vkGetBufferMemoryRequirements. VkMemoryRequirements vkMemReq = {}; bool requiresDedicatedAllocation = false; bool prefersDedicatedAllocation = false; allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation); // 2a. Include minAlignment vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment); // 3. Allocate memory using allocator. res = allocator->AllocateMemory( vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation, *pBuffer, // dedicatedBuffer VK_NULL_HANDLE, // dedicatedImage pBufferCreateInfo->usage, // dedicatedBufferImageUsage *pAllocationCreateInfo, VMA_SUBALLOCATION_TYPE_BUFFER, 1, // allocationCount pAllocation); if(res >= 0) { // 3. Bind buffer with memory. if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) { res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); } if(res >= 0) { // All steps succeeded. #if VMA_STATS_STRING_ENABLED (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage); #endif if(pAllocationInfo != VMA_NULL) { allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); } return VK_SUCCESS; } allocator->FreeMemory( 1, // allocationCount pAllocation); *pAllocation = VK_NULL_HANDLE; (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); *pBuffer = VK_NULL_HANDLE; return res; } (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); *pBuffer = VK_NULL_HANDLE; return res; } return res; } VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( VmaAllocator allocator, VkBuffer buffer, VmaAllocation allocation) { VMA_ASSERT(allocator); if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) { return; } VMA_DEBUG_LOG("vmaDestroyBuffer"); VMA_DEBUG_GLOBAL_MUTEX_LOCK if(buffer != VK_NULL_HANDLE) { (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); } if(allocation != VK_NULL_HANDLE) { allocator->FreeMemory( 1, // allocationCount &allocation); } } VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( VmaAllocator allocator, const VkImageCreateInfo* pImageCreateInfo, const VmaAllocationCreateInfo* pAllocationCreateInfo, VkImage* pImage, VmaAllocation* pAllocation, VmaAllocationInfo* pAllocationInfo) { VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); if(pImageCreateInfo->extent.width == 0 || pImageCreateInfo->extent.height == 0 || pImageCreateInfo->extent.depth == 0 || pImageCreateInfo->mipLevels == 0 || pImageCreateInfo->arrayLayers == 0) { return VK_ERROR_INITIALIZATION_FAILED; } VMA_DEBUG_LOG("vmaCreateImage"); VMA_DEBUG_GLOBAL_MUTEX_LOCK *pImage = VK_NULL_HANDLE; *pAllocation = VK_NULL_HANDLE; // 1. Create VkImage. VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( allocator->m_hDevice, pImageCreateInfo, allocator->GetAllocationCallbacks(), pImage); if(res >= 0) { VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; // 2. Allocate memory using allocator. VkMemoryRequirements vkMemReq = {}; bool requiresDedicatedAllocation = false; bool prefersDedicatedAllocation = false; allocator->GetImageMemoryRequirements(*pImage, vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation); res = allocator->AllocateMemory( vkMemReq, requiresDedicatedAllocation, prefersDedicatedAllocation, VK_NULL_HANDLE, // dedicatedBuffer *pImage, // dedicatedImage pImageCreateInfo->usage, // dedicatedBufferImageUsage *pAllocationCreateInfo, suballocType, 1, // allocationCount pAllocation); if(res >= 0) { // 3. Bind image with memory. if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) { res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); } if(res >= 0) { // All steps succeeded. #if VMA_STATS_STRING_ENABLED (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage); #endif if(pAllocationInfo != VMA_NULL) { allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); } return VK_SUCCESS; } allocator->FreeMemory( 1, // allocationCount pAllocation); *pAllocation = VK_NULL_HANDLE; (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); *pImage = VK_NULL_HANDLE; return res; } (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); *pImage = VK_NULL_HANDLE; return res; } return res; } VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( VmaAllocator allocator, VkImage image, VmaAllocation allocation) { VMA_ASSERT(allocator); if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) { return; } VMA_DEBUG_LOG("vmaDestroyImage"); VMA_DEBUG_GLOBAL_MUTEX_LOCK if(image != VK_NULL_HANDLE) { (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); } if(allocation != VK_NULL_HANDLE) { allocator->FreeMemory( 1, // allocationCount &allocation); } } VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock) { VMA_ASSERT(pCreateInfo && pVirtualBlock); VMA_ASSERT(pCreateInfo->size > 0); VMA_DEBUG_LOG("vmaCreateVirtualBlock"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo); VkResult res = (*pVirtualBlock)->Init(); if(res < 0) { vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock); *pVirtualBlock = VK_NULL_HANDLE; } return res; } VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock) { if(virtualBlock != VK_NULL_HANDLE) { VMA_DEBUG_LOG("vmaDestroyVirtualBlock"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying. vma_delete(&allocationCallbacks, virtualBlock); } } VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE; } VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL); VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo); } VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock, const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, VkDeviceSize* VMA_NULLABLE pOffset) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL); VMA_DEBUG_LOG("vmaVirtualAllocate"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset); } VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation) { if(allocation != VK_NULL_HANDLE) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); VMA_DEBUG_LOG("vmaVirtualFree"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; virtualBlock->Free(allocation); } } VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); VMA_DEBUG_LOG("vmaClearVirtualBlock"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; virtualBlock->Clear(); } VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; virtualBlock->SetAllocationUserData(allocation, pUserData); } VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStats(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaStatInfo* VMA_NOT_NULL pStatInfo) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStatInfo != VMA_NULL); VMA_DEBUG_LOG("vmaCalculateVirtualBlockStats"); VMA_DEBUG_GLOBAL_MUTEX_LOCK; virtualBlock->CalculateStats(*pStatInfo); } #if VMA_STATS_STRING_ENABLED VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL); VMA_DEBUG_GLOBAL_MUTEX_LOCK; const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks(); VmaStringBuilder sb(allocationCallbacks); virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb); *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength()); } VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, char* VMA_NULLABLE pStatsString) { if(pStatsString != VMA_NULL) { VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); VMA_DEBUG_GLOBAL_MUTEX_LOCK; VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString); } } #endif // VMA_STATS_STRING_ENABLED #endif // _VMA_PUBLIC_INTERFACE #endif // VMA_IMPLEMENTATION /** \page quick_start Quick start \section quick_start_project_setup Project setup Vulkan Memory Allocator comes in form of a "stb-style" single header file. You don't need to build it as a separate library project. You can add this file directly to your project and submit it to code repository next to your other source files. "Single header" doesn't mean that everything is contained in C/C++ declarations, like it tends to be in case of inline functions or C++ templates. It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. If you don't do it properly, you will get linker errors. To do it properly: -# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. This includes declarations of all members of the library. -# In exactly one CPP file define following macro before this include. It enables also internal definitions. \code #define VMA_IMPLEMENTATION #include "vk_mem_alloc.h" \endcode It may be a good idea to create dedicated CPP file just for this purpose. This library includes header ``, which in turn includes `` on Windows. If you need some specific macros defined before including these headers (like `WIN32_LEAN_AND_MEAN` or `WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define them before every `#include` of this library. \note This library is written in C++, but has C-compatible interface. Thus you can include and use vk_mem_alloc.h in C or C++ code, but full implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. \section quick_start_initialization Initialization At program startup: -# Initialize Vulkan to have `VkPhysicalDevice`, `VkDevice` and `VkInstance` object. -# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by calling vmaCreateAllocator(). Only members `physicalDevice`, `device`, `instance` are required. However, you should inform the library which Vulkan version do you use by setting VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable by setting VmaAllocatorCreateInfo::flags (like #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT for VK_KHR_buffer_device_address). Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions. You may need to configure importing Vulkan functions. There are 3 ways to do this: -# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows): - You don't need to do anything. - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default. -# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`, `vkGetDeviceProcAddr` (this is the option presented in the example below): - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1. - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr, VmaVulkanFunctions::vkGetDeviceProcAddr. - The library will fetch pointers to all other functions it needs internally. -# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like [Volk](https://github.com/zeux/volk): - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0. - Pass these pointers via structure #VmaVulkanFunctions. \code VmaVulkanFunctions vulkanFunctions = {}; vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr; vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr; VmaAllocatorCreateInfo allocatorCreateInfo = {}; allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2; allocatorCreateInfo.physicalDevice = physicalDevice; allocatorCreateInfo.device = device; allocatorCreateInfo.instance = instance; allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions; VmaAllocator allocator; vmaCreateAllocator(&allocatorCreateInfo, &allocator); \endcode \section quick_start_resource_allocation Resource allocation When you want to create a buffer or image: -# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. -# Fill VmaAllocationCreateInfo structure. -# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory. \code VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; bufferInfo.size = 65536; bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VmaAllocationCreateInfo allocInfo = {}; allocInfo.usage = VMA_MEMORY_USAGE_AUTO; VkBuffer buffer; VmaAllocation allocation; vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); \endcode Don't forget to destroy your objects when no longer needed: \code vmaDestroyBuffer(allocator, buffer, allocation); vmaDestroyAllocator(allocator); \endcode \page choosing_memory_type Choosing memory type Physical devices in Vulkan support various combinations of memory heaps and types. Help with choosing correct and optimal memory type for your specific resource is one of the key features of this library. You can use it by filling appropriate members of VmaAllocationCreateInfo structure, as described below. You can also combine multiple methods. -# If you just want to find memory type index that meets your requirements, you can use function: vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex(). -# If you want to allocate a region of device memory without association with any specific image or buffer, you can use function vmaAllocateMemory(). Usage of this function is not recommended and usually not needed. vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, which may be useful for sparse binding. -# If you already have a buffer or an image created, you want to allocate memory for it and then you will bind it yourself, you can use function vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). -# **This is the easiest and recommended way to use this library:** If you want to create a buffer or an image, allocate memory for it and bind them together, all in one call, you can use function vmaCreateBuffer(), vmaCreateImage(). When using 3. or 4., the library internally queries Vulkan for memory types supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) and uses only one of these types. If no memory type can be found that meets all the requirements, these functions return `VK_ERROR_FEATURE_NOT_PRESENT`. You can leave VmaAllocationCreateInfo structure completely filled with zeros. It means no requirements are specified for memory type. It is valid, although not very useful. \section choosing_memory_type_usage Usage The easiest way to specify memory requirements is to fill member VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. It defines high level, common usage types. Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically. For example, if you want to create a uniform buffer that will be filled using transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can do it using following code. The buffer will most likely end up in a memory type with `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device. \code VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; bufferInfo.size = 65536; bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VmaAllocationCreateInfo allocInfo = {}; allocInfo.usage = VMA_MEMORY_USAGE_AUTO; VkBuffer buffer; VmaAllocation allocation; vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); \endcode If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory on systems with discrete graphics card that have the memories separate, you can use #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST. When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory, you also need to specify one of the host access flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` so you can map it. For example, a staging buffer that will be filled via mapped pointer and then used as a source of transfer to the buffer decribed previously can be created like this. It will likely and up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT` but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM). \code VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; stagingBufferInfo.size = 65536; stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; VmaAllocationCreateInfo stagingAllocInfo = {}; stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO; stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT; VkBuffer stagingBuffer; VmaAllocation stagingAllocation; vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr); \endcode For more examples of creating different kinds of resources, see chapter \ref usage_patterns. Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed, so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc. If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting memory type, as decribed below. \note Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`, `VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`) are still available and work same way as in previous versions of the library for backward compatibility, but they are not recommended. \section choosing_memory_type_required_preferred_flags Required and preferred flags You can specify more detailed requirements by filling members VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags with a combination of bits from enum `VkMemoryPropertyFlags`. For example, if you want to create a buffer that will be persistently mapped on host (so it must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, use following code: \code VmaAllocationCreateInfo allocInfo = {}; allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer buffer; VmaAllocation allocation; vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); \endcode A memory type is chosen that has all the required flags and as many preferred flags set as possible. Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags, plus some extra "magic" (heuristics). \section choosing_memory_type_explicit_memory_types Explicit memory types If you inspected memory types available on the physical device and you have a preference for memory types that you want to use, you can fill member VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set means that a memory type with that index is allowed to be used for the allocation. Special value 0, just like `UINT32_MAX`, means there are no restrictions to memory type index. Please note that this member is NOT just a memory type index. Still you can use it to choose just one, specific memory type. For example, if you already determined that your buffer should be created in memory type 2, use following code: \code uint32_t memoryTypeIndex = 2; VmaAllocationCreateInfo allocInfo = {}; allocInfo.memoryTypeBits = 1u << memoryTypeIndex; VkBuffer buffer; VmaAllocation allocation; vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); \endcode \section choosing_memory_type_custom_memory_pools Custom memory pools If you allocate from custom memory pool, all the ways of specifying memory requirements described above are not applicable and the aforementioned members of VmaAllocationCreateInfo structure are ignored. Memory type is selected explicitly when creating the pool and then used to make all the allocations from that pool. For further details, see \ref custom_memory_pools. \section choosing_memory_type_dedicated_allocations Dedicated allocations Memory for allocations is reserved out of larger block of `VkDeviceMemory` allocated from Vulkan internally. That is the main feature of this whole library. You can still request a separate memory block to be created for an allocation, just like you would do in a trivial solution without using any allocator. In that case, a buffer or image is always bound to that memory at offset 0. This is called a "dedicated allocation". You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. The library can also internally decide to use dedicated allocation in some cases, e.g.: - When the size of the allocation is large. - When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled and it reports that dedicated allocation is required or recommended for the resource. - When allocation of next big memory block fails due to not enough device memory, but allocation with the exact requested size succeeds. \page memory_mapping Memory mapping To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, to be able to read from it or write to it in CPU code. Mapping is possible only of memory allocated from a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. You can use them directly with memory allocated by this library, but it is not recommended because of following issue: Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. Because of this, Vulkan Memory Allocator provides following facilities: \note If you want to be able to map an allocation, you need to specify one of the flags #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values. For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable, but they can still be used for consistency. \section memory_mapping_mapping_functions Mapping functions The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory(). They are safer and more convenient to use than standard Vulkan functions. You can map an allocation multiple times simultaneously - mapping is reference-counted internally. You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. The way it is implemented is that the library always maps entire memory block, not just region of the allocation. For further details, see description of vmaMapMemory() function. Example: \code // Having these objects initialized: struct ConstantBuffer { ... }; ConstantBuffer constantBufferData = ... VmaAllocator allocator = ... VkBuffer constantBuffer = ... VmaAllocation constantBufferAllocation = ... // You can map and fill your buffer using following code: void* mappedData; vmaMapMemory(allocator, constantBufferAllocation, &mappedData); memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); vmaUnmapMemory(allocator, constantBufferAllocation); \endcode When mapping, you may see a warning from Vulkan validation layer similar to this one: Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used. It happens because the library maps entire `VkDeviceMemory` block, where different types of images and buffers may end up together, especially on GPUs with unified memory like Intel. You can safely ignore it if you are sure you access only memory of the intended object that you wanted to map. \section memory_mapping_persistently_mapped_memory Persistently mapped memory Kepping your memory persistently mapped is generally OK in Vulkan. You don't need to unmap it before using its data on the GPU. The library provides a special feature designed for that: Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in VmaAllocationCreateInfo::flags stay mapped all the time, so you can just access CPU pointer to it any time without a need to call any "map" or "unmap" function. Example: \code VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; bufCreateInfo.size = sizeof(ConstantBuffer); bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo; vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); // Buffer is already mapped. You can access its memory. memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); \endcode \note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up in a mappable memory type. For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. #VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation. For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading. \section memory_mapping_cache_control Cache flush and invalidate Memory in Vulkan doesn't need to be unmapped before using it on GPU, but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, you need to manually **invalidate** cache before reading of mapped pointer and **flush** cache after writing to mapped pointer. Map/unmap operations don't do that automatically. Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, `vkInvalidateMappedMemoryRanges()`, but this library provides more convenient functions that refer to given allocation object: vmaFlushAllocation(), vmaInvalidateAllocation(), or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations(). Regions of memory specified for flush/invalidate must be aligned to `VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations within blocks are aligned to this value, so their offsets are always multiply of `nonCoherentAtomSize` and two different allocations never share same "line" of this size. Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA) currently provide `HOST_COHERENT` flag on all memory types that are `HOST_VISIBLE`, so on PC you may not need to bother. \page staying_within_budget Staying within budget When developing a graphics-intensive game or program, it is important to avoid allocating more GPU memory than it is physically available. When the memory is over-committed, various bad things can happen, depending on the specific GPU, graphics driver, and operating system: - It may just work without any problems. - The application may slow down because some memory blocks are moved to system RAM and the GPU has to access them through PCI Express bus. - A new allocation may take very long time to complete, even few seconds, and possibly freeze entire system. - The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` returned somewhere later. \section staying_within_budget_querying_for_budget Querying for budget To query for current memory usage and available budget, use function vmaGetHeapBudgets(). Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. Please note that this function returns different information and works faster than vmaCalculateStats(). vmaGetHeapBudgets() can be called every frame or even before every allocation, while vmaCalculateStats() is intended to be used rarely, only to obtain statistical information, e.g. for debugging purposes. It is recommended to use VK_EXT_memory_budget device extension to obtain information about the budget from Vulkan device. VMA is able to use this extension automatically. When not enabled, the allocator behaves same way, but then it estimates current usage and available budget based on its internal information and Vulkan memory heap sizes, which may be less precise. In order to use this extension: 1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 required by it are available and enable them. Please note that the first is a device extension and the second is instance extension! 2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. 3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from Vulkan inside of it to avoid overhead of querying it with every allocation. \section staying_within_budget_controlling_memory_usage Controlling memory usage There are many ways in which you can try to stay within the budget. First, when making new allocation requires allocating a new memory block, the library tries not to exceed the budget automatically. If a block with default recommended size (e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even dedicated memory for just this resource. If the size of the requested resource plus current memory usage is more than the budget, by default the library still tries to create it, leaving it to the Vulkan implementation whether the allocation succeeds or fails. You can change this behavior by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is not made if it would exceed the budget or if the budget is already exceeded. The allocation then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag when creating resources that are not essential for the application (e.g. the texture of a specific object) and not to pass it when creating critically important resources (e.g. render targets). Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure a new allocation is created only when it fits inside one of the existing memory blocks. If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. This also ensures that the function call is very fast because it never goes to Vulkan to obtain a new block. Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount set to more than 0 will try to allocate memory blocks without checking whether they fit within budget. \page resource_aliasing Resource aliasing (overlap) New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory management, give an opportunity to alias (overlap) multiple resources in the same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL). It can be useful to save video memory, but it must be used with caution. For example, if you know the flow of your whole render frame in advance, you are going to use some intermediate textures or buffers only during a small range of render passes, and you know these ranges don't overlap in time, you can bind these resources to the same place in memory, even if they have completely different parameters (width, height, format etc.). ![Resource aliasing (overlap)](../gfx/Aliasing.png) Such scenario is possible using VMA, but you need to create your images manually. Then you need to calculate parameters of an allocation to be made using formula: - allocation size = max(size of each image) - allocation alignment = max(alignment of each image) - allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image) Following example shows two different images bound to the same place in memory, allocated to fit largest of them. \code // A 512x512 texture to be sampled. VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; img1CreateInfo.imageType = VK_IMAGE_TYPE_2D; img1CreateInfo.extent.width = 512; img1CreateInfo.extent.height = 512; img1CreateInfo.extent.depth = 1; img1CreateInfo.mipLevels = 10; img1CreateInfo.arrayLayers = 1; img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB; img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; // A full screen texture to be used as color attachment. VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; img2CreateInfo.imageType = VK_IMAGE_TYPE_2D; img2CreateInfo.extent.width = 1920; img2CreateInfo.extent.height = 1080; img2CreateInfo.extent.depth = 1; img2CreateInfo.mipLevels = 1; img2CreateInfo.arrayLayers = 1; img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; VkImage img1; res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1); VkImage img2; res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2); VkMemoryRequirements img1MemReq; vkGetImageMemoryRequirements(device, img1, &img1MemReq); VkMemoryRequirements img2MemReq; vkGetImageMemoryRequirements(device, img2, &img2MemReq); VkMemoryRequirements finalMemReq = {}; finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size); finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment); finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits; // Validate if(finalMemReq.memoryTypeBits != 0) VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; VmaAllocation alloc; res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr); res = vmaBindImageMemory(allocator, alloc, img1); res = vmaBindImageMemory(allocator, alloc, img2); // You can use img1, img2 here, but not at the same time! vmaFreeMemory(allocator, alloc); vkDestroyImage(allocator, img2, nullptr); vkDestroyImage(allocator, img1, nullptr); \endcode Remember that using resources that alias in memory requires proper synchronization. You need to issue a memory barrier to make sure commands that use `img1` and `img2` don't overlap on GPU timeline. You also need to treat a resource after aliasing as uninitialized - containing garbage data. For example, if you use `img1` and then want to use `img2`, you need to issue an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`. Additional considerations: - Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases. See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag. - You can create more complex layout where different images and buffers are bound at different offsets inside one large allocation. For example, one can imagine a big texture used in some render passes, aliasing with a set of many small buffers used between in some further passes. To bind a resource at non-zero offset in an allocation, use vmaBindBufferMemory2() / vmaBindImageMemory2(). - Before allocating memory for the resources you want to alias, check `memoryTypeBits` returned in memory requirements of each resource to make sure the bits overlap. Some GPUs may expose multiple memory types suitable e.g. only for buffers or images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your resources may be disjoint. Aliasing them is not possible in that case. \page custom_memory_pools Custom memory pools A memory pool contains a number of `VkDeviceMemory` blocks. The library automatically creates and manages default pool for each memory type available on the device. Default memory pool automatically grows in size. Size of allocated blocks is also variable and managed automatically. You can create custom pool and allocate memory out of it. It can be useful if you want to: - Keep certain kind of allocations separate from others. - Enforce particular, fixed size of Vulkan memory blocks. - Limit maximum amount of Vulkan memory allocated for that pool. - Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. - Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain. - Perform defragmentation on a specific subset of your allocations. To use custom memory pools: -# Fill VmaPoolCreateInfo structure. -# Call vmaCreatePool() to obtain #VmaPool handle. -# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. You don't need to specify any other parameters of this structure, like `usage`. Example: \code // Create a pool that can have at most 2 blocks, 128 MiB each. VmaPoolCreateInfo poolCreateInfo = {}; poolCreateInfo.memoryTypeIndex = ... poolCreateInfo.blockSize = 128ull * 1024 * 1024; poolCreateInfo.maxBlockCount = 2; VmaPool pool; vmaCreatePool(allocator, &poolCreateInfo, &pool); // Allocate a buffer out of it. VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; bufCreateInfo.size = 1024; bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.pool = pool; VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo; vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); \endcode You have to free all allocations made from this pool before destroying it. \code vmaDestroyBuffer(allocator, buf, alloc); vmaDestroyPool(allocator, pool); \endcode New versions of this library support creating dedicated allocations in custom pools. It is supported only when VmaPoolCreateInfo::blockSize = 0. To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. \note Excessive use of custom pools is a common mistake when using this library. Custom pools may be useful for special purposes - when you want to keep certain type of resources separate e.g. to reserve minimum amount of memory for them or limit maximum amount of memory they can occupy. For most resources this is not needed and so it is not recommended to create #VmaPool objects and allocations out of them. Allocating from the default pool is sufficient. \section custom_memory_pools_MemTypeIndex Choosing memory type index When creating a pool, you must explicitly specify memory type index. To find the one suitable for your buffers or images, you can use helper functions vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). You need to provide structures with example parameters of buffers or images that you are going to create in that pool. \code VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; exampleBufCreateInfo.size = 1024; // Doesn't matter exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; uint32_t memTypeIndex; vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); VmaPoolCreateInfo poolCreateInfo = {}; poolCreateInfo.memoryTypeIndex = memTypeIndex; // ... \endcode When creating buffers/images allocated in that pool, provide following parameters: - `VkBufferCreateInfo`: Prefer to pass same parameters as above. Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers or the other way around. - VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. Other members are ignored anyway. \section linear_algorithm Linear allocation algorithm Each Vulkan memory block managed by this library has accompanying metadata that keeps track of used and unused regions. By default, the metadata structure and algorithm tries to find best place for new allocations among free regions to optimize memory usage. This way you can allocate and free objects in any order. ![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) Sometimes there is a need to use simpler, linear allocation algorithm. You can create custom pool that uses such algorithm by adding flag #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating #VmaPool object. Then an alternative metadata management is used. It always creates new allocations after last one and doesn't reuse free regions after allocations freed in the middle. It results in better allocation performance and less memory consumed by metadata. ![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) With this one flag, you can create a custom pool that can be used in many ways: free-at-once, stack, double stack, and ring buffer. See below for details. You don't need to specify explicitly which of these options you are going to use - it is detected automatically. \subsection linear_algorithm_free_at_once Free-at-once In a pool that uses linear algorithm, you still need to free all the allocations individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free them in any order. New allocations are always made after last one - free space in the middle is not reused. However, when you release all the allocation and the pool becomes empty, allocation starts from the beginning again. This way you can use linear algorithm to speed up creation of allocations that you are going to release all at once. ![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount value that allows multiple memory blocks. \subsection linear_algorithm_stack Stack When you free an allocation that was created last, its space can be reused. Thanks to this, if you always release allocations in the order opposite to their creation (LIFO - Last In First Out), you can achieve behavior of a stack. ![Stack](../gfx/Linear_allocator_4_stack.png) This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount value that allows multiple memory blocks. \subsection linear_algorithm_double_stack Double stack The space reserved by a custom pool with linear algorithm may be used by two stacks: - First, default one, growing up from offset 0. - Second, "upper" one, growing down from the end towards lower offsets. To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT to VmaAllocationCreateInfo::flags. ![Double stack](../gfx/Linear_allocator_7_double_stack.png) Double stack is available only in pools with one memory block - VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. When the two stacks' ends meet so there is not enough space between them for a new allocation, such allocation fails with usual `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. \subsection linear_algorithm_ring_buffer Ring buffer When you free some allocations from the beginning and there is not enough free space for a new one at the end of a pool, allocator's "cursor" wraps around to the beginning and starts allocation there. Thanks to this, if you always release allocations in the same order as you created them (FIFO - First In First Out), you can achieve behavior of a ring buffer / queue. ![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) Ring buffer is available only in pools with one memory block - VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. \section buddy_algorithm Buddy allocation algorithm There is another allocation algorithm that can be used with custom pools, called "buddy". Its internal data structure is based on a binary tree of blocks, each having size that is a power of two and a half of its parent's size. When you want to allocate memory of certain size, a free node in the tree is located. If it is too large, it is recursively split into two halves (called "buddies"). However, if requested allocation size is not a power of two, the size of the allocation is aligned up to the nearest power of two and the remaining space is wasted. When two buddy nodes become free, they are merged back into one larger node. ![Buddy allocator](../gfx/Buddy_allocator.png) The advantage of buddy allocation algorithm over default algorithm is faster allocation and deallocation, as well as smaller external fragmentation. The disadvantage is more wasted space (internal fragmentation). For more information, please search the Internet for "Buddy memory allocation" - sources that describe this concept in general. To use buddy allocation algorithm with a custom pool, add flag #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating #VmaPool object. Several limitations apply to pools that use buddy algorithm: - It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two. Otherwise, only largest power of two smaller than the size is used for allocations. The remaining space always stays unused. - [Margins](@ref debugging_memory_usage_margins) and [corruption detection](@ref debugging_memory_usage_corruption_detection) don't work in such pools. - [Defragmentation](@ref defragmentation) doesn't work with allocations made from such pool. \page defragmentation Defragmentation Interleaved allocations and deallocations of many objects of varying size can cause fragmentation over time, which can lead to a situation where the library is unable to find a continuous range of free memory for a new allocation despite there is enough free space, just scattered across many small free ranges between existing allocations. To mitigate this problem, you can use defragmentation feature: structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd(). Given set of allocations, this function can move them to compact used memory, ensure more continuous free space and possibly also free some `VkDeviceMemory` blocks. What the defragmentation does is: - Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset. After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or VmaAllocationInfo::offset changes. You must query them again using vmaGetAllocationInfo() if you need them. - Moves actual data in memory. What it doesn't do, so you need to do it yourself: - Recreate buffers and images that were bound to allocations that were defragmented and bind them with their new places in memory. You must use `vkDestroyBuffer()`, `vkDestroyImage()`, `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory() for that purpose and NOT vmaDestroyBuffer(), vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to destroy or create allocation objects! - Recreate views and update descriptors that point to these buffers and images. \section defragmentation_cpu Defragmenting CPU memory Following example demonstrates how you can run defragmentation on CPU. Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented. Others are ignored. The way it works is: - It temporarily maps entire memory blocks when necessary. - It moves data using `memmove()` function. \code // Given following variables already initialized: VkDevice device; VmaAllocator allocator; std::vector buffers; std::vector allocations; const uint32_t allocCount = (uint32_t)allocations.size(); std::vector allocationsChanged(allocCount); VmaDefragmentationInfo2 defragInfo = {}; defragInfo.allocationCount = allocCount; defragInfo.pAllocations = allocations.data(); defragInfo.pAllocationsChanged = allocationsChanged.data(); defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit. defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit. VmaDefragmentationContext defragCtx; vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); vmaDefragmentationEnd(allocator, defragCtx); for(uint32_t i = 0; i < allocCount; ++i) { if(allocationsChanged[i]) { // Destroy buffer that is immutably bound to memory region which is no longer valid. vkDestroyBuffer(device, buffers[i], nullptr); // Create new buffer with same parameters. VkBufferCreateInfo bufferInfo = ...; vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. // Bind new buffer to new memory region. Data contained in it is already moved. VmaAllocationInfo allocInfo; vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); vmaBindBufferMemory(allocator, allocations[i], buffers[i]); } } \endcode Setting VmaDefragmentationInfo2::pAllocationsChanged is optional. This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index has been modified during defragmentation. You can pass null, but you then need to query every allocation passed to defragmentation for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it. If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools), you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations to defragment all allocations in given pools. You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case. You can also combine both methods. \section defragmentation_gpu Defragmenting GPU memory It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`. To do that, you need to pass a command buffer that meets requirements as described in VmaDefragmentationInfo2::commandBuffer. The way it works is: - It creates temporary buffers and binds them to entire memory blocks when necessary. - It issues `vkCmdCopyBuffer()` to passed command buffer. Example: \code // Given following variables already initialized: VkDevice device; VmaAllocator allocator; VkCommandBuffer commandBuffer; std::vector buffers; std::vector allocations; const uint32_t allocCount = (uint32_t)allocations.size(); std::vector allocationsChanged(allocCount); VkCommandBufferBeginInfo cmdBufBeginInfo = ...; vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo); VmaDefragmentationInfo2 defragInfo = {}; defragInfo.allocationCount = allocCount; defragInfo.pAllocations = allocations.data(); defragInfo.pAllocationsChanged = allocationsChanged.data(); defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it is "GPU" this time. defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it is "GPU" this time. defragInfo.commandBuffer = commandBuffer; VmaDefragmentationContext defragCtx; vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx); vkEndCommandBuffer(commandBuffer); // Submit commandBuffer. // Wait for a fence that ensures commandBuffer execution finished. vmaDefragmentationEnd(allocator, defragCtx); for(uint32_t i = 0; i < allocCount; ++i) { if(allocationsChanged[i]) { // Destroy buffer that is immutably bound to memory region which is no longer valid. vkDestroyBuffer(device, buffers[i], nullptr); // Create new buffer with same parameters. VkBufferCreateInfo bufferInfo = ...; vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]); // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning. // Bind new buffer to new memory region. Data contained in it is already moved. VmaAllocationInfo allocInfo; vmaGetAllocationInfo(allocator, allocations[i], &allocInfo); vmaBindBufferMemory(allocator, allocations[i], buffers[i]); } } \endcode You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters. The library automatically chooses best method to defragment each memory pool. You may try not to block your entire program to wait until defragmentation finishes, but do it in the background, as long as you carefully fullfill requirements described in function vmaDefragmentationBegin(). \section defragmentation_additional_notes Additional notes It is only legal to defragment allocations bound to: - buffers - images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`. Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other layout may give undefined results. If you defragment allocations bound to images, new images to be bound to new memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED` and then transitioned to their original layout from before defragmentation if needed using an image memory barrier. While using defragmentation, you may experience validation layer warnings, which you just need to ignore. See [Validation layer warnings](@ref general_considerations_validation_layer_warnings). Please don't expect memory to be fully compacted after defragmentation. Algorithms inside are based on some heuristics that try to maximize number of Vulkan memory blocks to make totally empty to release them, as well as to maximize continuous empty space inside remaining blocks, while minimizing the number and size of allocations that need to be moved. Some fragmentation may still remain - this is normal. \section defragmentation_custom_algorithm Writing custom defragmentation algorithm If you want to implement your own, custom defragmentation algorithm, there is infrastructure prepared for that, but it is not exposed through the library API - you need to hack its source code. Here are steps needed to do this: -# Main thing you need to do is to define your own class derived from base abstract class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods. See definition and comments of this class for details. -# Your code needs to interact with device memory block metadata. If you need more access to its data than it is provided by its public interface, declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`. -# If you want to create a flag that would enable your algorithm or pass some additional flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in VmaDefragmentationInfo2::flags. -# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object of your new class whenever needed. \page statistics Statistics This library contains functions that return information about its internal state, especially the amount of memory allocated from Vulkan. Please keep in mind that these functions need to traverse all internal data structures to gather these information, so they may be quite time-consuming. Don't call them too often. \section statistics_numeric_statistics Numeric statistics You can query for overall statistics of the allocator using function vmaCalculateStats(). Information are returned using structure #VmaStats. It contains #VmaStatInfo - number of allocated blocks, number of allocations (occupied ranges in these blocks), number of unused (free) ranges in these blocks, number of bytes used and unused (but still allocated from Vulkan) and other information. They are summed across memory heaps, memory types and total for whole allocator. You can query for statistics of a custom pool using function vmaGetPoolStats(). Information are returned using structure #VmaPoolStats. You can query for information about specific allocation using function vmaGetAllocationInfo(). It fill structure #VmaAllocationInfo. \section statistics_json_dump JSON dump You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). The result is guaranteed to be correct JSON. It uses ANSI encoding. Any strings provided by user (see [Allocation names](@ref allocation_names)) are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, this JSON string can be treated as using this encoding. It must be freed using function vmaFreeStatsString(). The format of this JSON string is not part of official documentation of the library, but it will not change in backward-incompatible way without increasing library major version number and appropriate mention in changelog. The JSON string contains all the data that can be obtained using vmaCalculateStats(). It can also contain detailed map of allocated memory blocks and their regions - free and occupied by allocations. This allows e.g. to visualize the memory or assess fragmentation. \page allocation_annotation Allocation names and user data \section allocation_user_data Allocation user data You can annotate allocations with your own information, e.g. for debugging purposes. To do that, fill VmaAllocationCreateInfo::pUserData field when creating an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer, some handle, index, key, ordinal number or any other value that would associate the allocation with your custom metadata. \code VkBufferCreateInfo bufCreateInfo = ... MyBufferMetadata* pMetadata = CreateBufferMetadata(); VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; allocCreateInfo.pUserData = pMetadata; VkBuffer buffer; VmaAllocation allocation; vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr); \endcode The pointer may be later retrieved as VmaAllocationInfo::pUserData: \code VmaAllocationInfo allocInfo; vmaGetAllocationInfo(allocator, allocation, &allocInfo); MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; \endcode It can also be changed using function vmaSetAllocationUserData(). Values of (non-zero) allocations' `pUserData` are printed in JSON report created by vmaBuildStatsString() in hexadecimal form. \section allocation_names Allocation names There is alternative mode available where `pUserData` pointer is used to point to a null-terminated string, giving a name to the allocation. To use this mode, set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags. Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to vmaSetAllocationUserData() must be either null or a pointer to a null-terminated string. The library creates internal copy of the string, so the pointer you pass doesn't need to be valid for whole lifetime of the allocation. You can free it after the call. \code VkImageCreateInfo imageInfo = ... std::string imageName = "Texture: "; imageName += fileName; VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT; allocCreateInfo.pUserData = imageName.c_str(); VkImage image; VmaAllocation allocation; vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr); \endcode The value of `pUserData` pointer of the allocation will be different than the one you passed when setting allocation's name - pointing to a buffer managed internally that holds copy of the string. \code VmaAllocationInfo allocInfo; vmaGetAllocationInfo(allocator, allocation, &allocInfo); const char* imageName = (const char*)allocInfo.pUserData; printf("Image name: %s\n", imageName); \endcode That string is also printed in JSON report created by vmaBuildStatsString(). \note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. \page virtual_allocator Virtual allocator As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator". It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block". You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan. A common use case is sub-allocation of pieces of one large GPU buffer. \section virtual_allocator_creating_virtual_block Creating virtual block To use this functionality, there is no main "allocator" object. You don't need to have #VmaAllocator object created. All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator: -# Fill in #VmaVirtualBlockCreateInfo structure. -# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object. Example: \code VmaVirtualBlockCreateInfo blockCreateInfo = {}; blockCreateInfo.size = 1048576; // 1 MB VmaVirtualBlock block; VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block); \endcode \section virtual_allocator_making_virtual_allocations Making virtual allocations #VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions using the same code as the main Vulkan memory allocator. Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type that represents an opaque handle to an allocation withing the virtual block. In order to make such allocation: -# Fill in #VmaVirtualAllocationCreateInfo structure. -# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation. You can also receive `VkDeviceSize offset` that was assigned to the allocation. Example: \code VmaVirtualAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.size = 4096; // 4 KB VmaVirtualAllocation alloc; VkDeviceSize offset; res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset); if(res == VK_SUCCESS) { // Use the 4 KB of your memory starting at offset. } else { // Allocation failed - no space for it could be found. Handle this error! } \endcode \section virtual_allocator_deallocation Deallocation When no longer needed, an allocation can be freed by calling vmaVirtualFree(). You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate() called for the same #VmaVirtualBlock. When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock(). All allocations must be freed before the block is destroyed, which is checked internally by an assert. However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once - a feature not available in normal Vulkan memory allocator. Example: \code vmaVirtualFree(block, alloc); vmaDestroyVirtualBlock(block); \endcode \section virtual_allocator_allocation_parameters Allocation parameters You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData(). Its default value is null. It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some larger data structure containing more information. Example: \code struct CustomAllocData { std::string m_AllocName; }; CustomAllocData* allocData = new CustomAllocData(); allocData->m_AllocName = "My allocation 1"; vmaSetVirtualAllocationUserData(block, alloc, allocData); \endcode The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo. If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation! Example: \code VmaVirtualAllocationInfo allocInfo; vmaGetVirtualAllocationInfo(block, alloc, &allocInfo); delete (CustomAllocData*)allocInfo.pUserData; vmaVirtualFree(block, alloc); \endcode \section virtual_allocator_alignment_and_units Alignment and units It feels natural to express sizes and offsets in bytes. If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member VmaVirtualAllocationCreateInfo::alignment to request it. Example: \code VmaVirtualAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.size = 4096; // 4 KB allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B VmaVirtualAllocation alloc; res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr); \endcode Alignments of different allocations made from one block may vary. However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`, you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes. It might be more convenient, but you need to make sure to use this new unit consistently in all the places: - VmaVirtualBlockCreateInfo::size - VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment - Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset \section virtual_allocator_statistics Statistics You can obtain statistics of a virtual block using vmaCalculateVirtualBlockStats(). The function fills structure #VmaStatInfo - same as used by the normal Vulkan memory allocator. Example: \code VmaStatInfo statInfo; vmaCalculateVirtualBlockStats(block, &statInfo); printf("My virtual block has %llu bytes used by %u virtual allocations\n", statInfo.usedBytes, statInfo.allocationCount); \endcode You can also request a full list of allocations and free regions as a string in JSON format by calling vmaBuildVirtualBlockStatsString(). Returned string must be later freed using vmaFreeVirtualBlockStatsString(). The format of this string differs from the one returned by the main Vulkan allocator, but it is similar. \section virtual_allocator_additional_considerations Additional considerations The "virtual allocator" functionality is implemented on a level of individual memory blocks. Keeping track of a whole collection of blocks, allocating new ones when out of free space, deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user. Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory. See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT). You can find their description in chapter \ref custom_memory_pools. Allocation strategies are also supported. See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT). Following features are supported only by the allocator of the real GPU memory and not by virtual allocations: buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`. \page debugging_memory_usage Debugging incorrect memory usage If you suspect a bug with memory usage, like usage of uninitialized memory or memory being overwritten out of bounds of an allocation, you can use debug features of this library to verify this. \section debugging_memory_usage_initialization Memory initialization If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, you can enable automatic memory initialization to verify this. To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. \code #define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 #include "vk_mem_alloc.h" \endcode It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`. Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. Memory is automatically mapped and unmapped if necessary. If you find these values while debugging your program, good chances are that you incorrectly read Vulkan memory that is allocated but not initialized, or already freed, respectively. Memory initialization works only with memory types that are `HOST_VISIBLE`. It works also with dedicated allocations. \section debugging_memory_usage_margins Margins By default, allocations are laid out in memory blocks next to each other if possible (considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). ![Allocations without margin](../gfx/Margins_1.png) Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified number of bytes as a margin after every allocation. \code #define VMA_DEBUG_MARGIN 16 #include "vk_mem_alloc.h" \endcode ![Allocations with margin](../gfx/Margins_2.png) If your bug goes away after enabling margins, it means it may be caused by memory being overwritten outside of allocation boundaries. It is not 100% certain though. Change in application behavior may also be caused by different order and distribution of allocations across memory blocks after margins are applied. Margins work with all types of memory. Margin is applied only to allocations made out of memory blocks and not to dedicated allocations, which have their own memory block of specific size. It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag or those automatically decided to put into dedicated allocations, e.g. due to its large size or recommended by VK_KHR_dedicated_allocation extension. Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag. Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. Note that enabling margins increases memory usage and fragmentation. Margins do not apply to \ref virtual_allocator. \section debugging_memory_usage_corruption_detection Corruption detection You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation of contents of the margins. \code #define VMA_DEBUG_MARGIN 16 #define VMA_DEBUG_DETECT_CORRUPTION 1 #include "vk_mem_alloc.h" \endcode When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` (it must be multiply of 4) after every allocation is filled with a magic number. This idea is also know as "canary". Memory is automatically mapped and unmapped if necessary. This number is validated automatically when the allocation is destroyed. If it is not equal to the expected value, `VMA_ASSERT()` is executed. It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, which indicates a serious bug. You can also explicitly request checking margins of all allocations in all memory blocks that belong to specified memory types by using function vmaCheckCorruption(), or in memory blocks that belong to specified custom pool, by using function vmaCheckPoolCorruption(). Margin validation (corruption detection) works only for memory types that are `HOST_VISIBLE` and `HOST_COHERENT`. \page opengl_interop OpenGL Interop VMA provides some features that help with interoperability with OpenGL. \section opengl_interop_exporting_memory Exporting memory If you want to attach `VkExportMemoryAllocateInfoKHR` structure to `pNext` chain of memory allocations made by the library: It is recommended to create \ref custom_memory_pools for such allocations. Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext while creating the custom pool. Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool, not only while creating it, as no copy of the structure is made, but its original pointer is used for each allocation instead. If you want to export all memory allocated by the library from certain memory types, also dedicated allocations or other allocations made from default pools, an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes. It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type. Please note that new versions of the library also support dedicated allocations created in custom pools. You should not mix these two methods in a way that allows to apply both to the same memory type. Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`. \section opengl_interop_custom_alignment Custom alignment Buffers or images exported to a different API like OpenGL may require a different alignment, higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`. To impose such alignment: It is recommended to create \ref custom_memory_pools for such allocations. Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation to be made out of this pool. The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically. If you want to create a buffer with a specific minimum alignment out of default pools, use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`. Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block. Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation. \page usage_patterns Recommended usage patterns Vulkan gives great flexibility in memory allocation. This chapter shows the most common patterns. See also slides from talk: [Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) \section usage_patterns_gpu_only GPU-only resource When: Any resources that you frequently write and read on GPU, e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). What to do: Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. \code VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; imgCreateInfo.imageType = VK_IMAGE_TYPE_2D; imgCreateInfo.extent.width = 3840; imgCreateInfo.extent.height = 2160; imgCreateInfo.extent.depth = 1; imgCreateInfo.mipLevels = 1; imgCreateInfo.arrayLayers = 1; imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; VkImage img; VmaAllocation alloc; vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr); \endcode Also consider: Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, especially if they are large or if you plan to destroy and recreate them with different sizes e.g. when display resolution changes. Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. \section usage_patterns_staging_copy_upload Staging copy for upload When: A "staging" buffer than you want to map and fill from CPU code, then use as a source od transfer to some GPU resource. What to do: Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT. Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`. \code VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; bufCreateInfo.size = 65536; bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo; vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); ... memcpy(allocInfo.pMappedData, myData, myDataSize); \endcode Also consider: You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above. \section usage_patterns_readback Readback When: Buffers for data written by or transferred from the GPU that you want to read back on the CPU, e.g. results of some computations. What to do: Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`. \code VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; bufCreateInfo.size = 65536; bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT; VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo; vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); ... const float* downloadedData = (const float*)allocInfo.pMappedData; \endcode \section usage_patterns_advanced_data_uploading Advanced data uploading For resources that you frequently write on CPU via mapped pointer and freqnently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible: -# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory, even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card, and make the device reach out to that resource directly. - Reads performed by the device will then go through PCI Express bus. The performace of this access may be limited, but it may be fine depending on the size of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity of access. -# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips), a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL` (fast to access from the GPU). Then, it is likely the best choice for such type of resource. -# Systems with a discrete graphics card and separate video memory may or may not expose a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR). If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS) that is available to CPU for mapping. - Writes performed by the host to that memory go through PCI Express bus. The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0, as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads. -# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory, a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them. Thankfully, VMA offers an aid to create and use such resources in the the way optimal for the current Vulkan device. To help the library make the best choice, use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT. It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR), but if no such memory type is available or allocation from it fails (PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS), it will fall back to `DEVICE_LOCAL` memory for fast GPU access. It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`, so you need to create another "staging" allocation and perform explicit transfers. \code VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; bufCreateInfo.size = 65536; bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VmaAllocationCreateInfo allocCreateInfo = {}; allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo; vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); VkMemoryPropertyFlags memPropFlags; vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags); if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { // Allocation ended up in a mappable memory and is already mapped - write to it directly. // [Executed in runtime]: memcpy(allocInfo.pMappedData, myData, myDataSize); } else { // Allocation ended up in a non-mappable memory - need to transfer. VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; stagingBufCreateInfo.size = 65536; stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; VmaAllocationCreateInfo stagingAllocCreateInfo = {}; stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; VkBuffer stagingBuf; VmaAllocation stagingAlloc; VmaAllocationInfo stagingAllocInfo; vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo, &stagingBuf, &stagingAlloc, stagingAllocInfo); // [Executed in runtime]: memcpy(stagingAllocInfo.pMappedData, myData, myDataSize); VkBufferCopy bufCopy = { 0, // srcOffset 0, // dstOffset, myDataSize); // size vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy); } \endcode \section usage_patterns_other_use_cases Other use cases Here are some other, less obvious use cases and their recommended settings: - An image that is used only as transfer source and destination, but it should stay on the device, as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame, for temporal antialiasing or other temporal effects. - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT` - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO - An image that is used only as transfer source and destination, but it should be placed in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict least recently used textures from VRAM. - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT` - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST, as VMA needs a hint here to differentiate from the previous case. - A buffer that you want to map and write from the CPU, directly read from the GPU (e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or host memory due to its large size. - Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT` - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST - Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT \page configuration Configuration Please check "CONFIGURATION SECTION" in the code to find macros that you can define before each include of this file or change directly in this file to provide your own implementation of basic facilities like assert, `min()` and `max()` functions, mutex, atomic etc. The library uses its own implementation of containers by default, but you can switch to using STL containers instead. For example, define `VMA_ASSERT(expr)` before including the library to provide custom implementation of the assertion, compatible with your project. By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration and empty otherwise. \section config_Vulkan_functions Pointers to Vulkan functions There are multiple ways to import pointers to Vulkan functions in the library. In the simplest case you don't need to do anything. If the compilation or linking of your program or the initialization of the #VmaAllocator doesn't work for you, you can try to reconfigure it. First, the allocator tries to fetch pointers to Vulkan functions linked statically, like this: \code m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; \endcode If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`. Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions. You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or by using a helper library like [volk](https://github.com/zeux/volk). Third, VMA tries to fetch remaining pointers that are still null by calling `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own. You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr. Other pointers will be fetched automatically. If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`. Finally, all the function pointers required by the library (considering selected Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null. \section custom_memory_allocator Custom host memory allocator If you use custom allocator for CPU memory rather than default operator `new` and `delete` from C++, you can make this library using your allocator as well by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These functions will be passed to Vulkan, as well as used by the library itself to make any CPU-side allocations. \section allocation_callbacks Device memory allocation callbacks The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. You can setup callbacks to be informed about these calls, e.g. for the purpose of gathering some statistics. To do it, fill optional member VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. \section heap_memory_limit Device heap memory limit When device memory of certain heap runs out of free space, new allocations may fail (returning error code) or they may succeed, silently pushing some existing_ memory blocks from GPU VRAM to system RAM (which degrades performance). This behavior is implementation-dependent - it depends on GPU vendor and graphics driver. On AMD cards it can be controlled while creating Vulkan device object by using VK_AMD_memory_overallocation_behavior extension, if available. Alternatively, if you want to test how your program behaves with limited amount of Vulkan device memory available without switching your graphics card to one that really has smaller VRAM, you can use a feature of this library intended for this purpose. To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. \page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve performance on some GPUs. It augments Vulkan API with possibility to query driver whether it prefers particular buffer or image to have its own, dedicated allocation (separate `VkDeviceMemory` block) for better efficiency - to be able to do some internal optimizations. The extension is supported by this library. It will be used automatically when enabled. It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion, you are all set. Otherwise, if you want to use it as an extension: 1 . When creating Vulkan device, check if following 2 device extensions are supported (call `vkEnumerateDeviceExtensionProperties()`). If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). - VK_KHR_get_memory_requirements2 - VK_KHR_dedicated_allocation If you enabled these extensions: 2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating your #VmaAllocator to inform the library that you enabled required extensions and you want the library to use them. \code allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; vmaCreateAllocator(&allocatorInfo, &allocator); \endcode That is all. The extension will be automatically used whenever you create a buffer using vmaCreateBuffer() or image using vmaCreateImage(). When using the extension together with Vulkan Validation Layer, you will receive warnings like this: _vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._ It is OK, you should just ignore it. It happens because you use function `vkGetBufferMemoryRequirements2KHR()` instead of standard `vkGetBufferMemoryRequirements()`, while the validation layer seems to be unaware of it. To learn more about this extension, see: - [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation) - [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) \page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory VK_AMD_device_coherent_memory is a device extension that enables access to additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for allocation of buffers intended for writing "breadcrumb markers" in between passes or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases. When the extension is available but has not been enabled, Vulkan physical device still exposes those memory types, but their usage is forbidden. VMA automatically takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt to allocate memory of such type is made. If you want to use this extension in connection with VMA, follow these steps: \section vk_amd_device_coherent_memory_initialization Initialization 1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory". 2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned. Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true. 3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. 4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`. 5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT to VmaAllocatorCreateInfo::flags. \section vk_amd_device_coherent_memory_usage Usage After following steps described above, you can create VMA allocations and custom pools out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible devices. There are multiple ways to do it, for example: - You can request or prefer to allocate out of such memory types by adding `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage. - If you manually found memory type index to use for this purpose, force allocation from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`. \section vk_amd_device_coherent_memory_more_information More information To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html) Example use of this extension can be found in the code of the sample and test suite accompanying this library. \page enabling_buffer_device_address Enabling buffer device address Device extension VK_KHR_buffer_device_address allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code. It has been promoted to core Vulkan 1.2. If you want to use this feature in connection with VMA, follow these steps: \section enabling_buffer_device_address_initialization Initialization 1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device. Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_KHR_buffer_device_address". 2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned. Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true. 3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add "VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. 4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`. 5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT to VmaAllocatorCreateInfo::flags. \section enabling_buffer_device_address_usage Usage After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA. The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to allocated memory blocks wherever it might be needed. Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`. The second part of this functionality related to "capture and replay" is not supported, as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage. \section enabling_buffer_device_address_more_information More information To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address) Example use of this extension can be found in the code of the sample and test suite accompanying this library. \page general_considerations General considerations \section general_considerations_thread_safety Thread safety - The library has no global state, so separate #VmaAllocator objects can be used independently. There should be no need to create multiple such objects though - one per `VkDevice` is enough. - By default, all calls to functions that take #VmaAllocator as first parameter are safe to call from multiple threads simultaneously because they are synchronized internally when needed. This includes allocation and deallocation from default memory pool, as well as custom #VmaPool. - When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT flag, calls to functions that take such #VmaAllocator object must be synchronized externally. - Access to a #VmaAllocation object must be externally synchronized. For example, you must not call vmaGetAllocationInfo() and vmaMapMemory() from different threads at the same time if you pass the same #VmaAllocation object to these functions. - #VmaVirtualBlock is not safe to be used from multiple threads simultaneously. \section general_considerations_validation_layer_warnings Validation layer warnings When using this library, you can meet following types of warnings issued by Vulkan validation layer. They don't necessarily indicate a bug, so you may need to just ignore them. - *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* - It happens when VK_KHR_dedicated_allocation extension is enabled. `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. - *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* - It happens when you map a buffer or image, because the library maps entire `VkDeviceMemory` block, where different types of images and buffers may end up together, especially on GPUs with unified memory like Intel. - *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* - It may happen when you use [defragmentation](@ref defragmentation). \section general_considerations_allocation_algorithm Allocation algorithm The library uses following algorithm for allocation, in order: -# Try to find free range of memory in existing blocks. -# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. -# If failed, try to create such block with size / 2, size / 4, size / 8. -# If failed, try to allocate separate `VkDeviceMemory` for this allocation, just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. -# If failed, choose other memory type that meets the requirements specified in VmaAllocationCreateInfo and go to point 1. -# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. \section general_considerations_features_not_supported Features not supported Features deliberately excluded from the scope of this library: -# **Data transfer.** Uploading (streaming) and downloading data of buffers and images between CPU and GPU memory and related synchronization is responsibility of the user. Defining some "texture" object that would automatically stream its data from a staging copy in CPU memory to GPU memory would rather be a feature of another, higher-level library implemented on top of VMA. VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory. -# **Recreation of buffers and images.** Although the library has functions for buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to recreate these objects yourself after defragmentation. That is because the big structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in #VmaAllocation object. -# **Handling CPU memory allocation failures.** When dynamically creating small C++ objects in CPU memory (not Vulkan memory), allocation failures are not checked and handled gracefully, because that would complicate code significantly and is usually not needed in desktop PC applications anyway. Success of an allocation is just checked with an assert. -# **Code free of any compiler warnings.** Maintaining the library to compile and work correctly on so many different platforms is hard enough. Being free of any warnings, on any version of any compiler, is simply not feasible. There are many preprocessor macros that make some variables unused, function parameters unreferenced, or conditional expressions constant in some configurations. The code of this library should not be bigger or more complicated just to silence these warnings. It is recommended to disable such warnings instead. -# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but are not going to be included into this repository. */