VulkanMemoryAllocator/src/Common.h
2020-07-16 16:41:53 +02:00

328 lines
10 KiB
C++

//
// Copyright (c) 2017-2020 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#ifndef COMMON_H_
#define COMMON_H_
#include "VmaUsage.h"
#ifdef _WIN32
#include <iostream>
#include <fstream>
#include <vector>
#include <memory>
#include <algorithm>
#include <numeric>
#include <array>
#include <type_traits>
#include <utility>
#include <chrono>
#include <string>
#include <exception>
#include <cassert>
#include <cstdlib>
#include <cstdio>
#include <cstdarg>
typedef std::chrono::high_resolution_clock::time_point time_point;
typedef std::chrono::high_resolution_clock::duration duration;
#ifdef _DEBUG
#define TEST(expr) do { \
if(!(expr)) { \
assert(0 && #expr); \
} \
} while(0)
#else
#define TEST(expr) do { \
if(!(expr)) { \
throw std::runtime_error("TEST FAILED: " #expr); \
} \
} while(0)
#endif
#define ERR_GUARD_VULKAN(expr) TEST((expr) >= 0)
extern VkInstance g_hVulkanInstance;
extern VkPhysicalDevice g_hPhysicalDevice;
extern VkDevice g_hDevice;
extern VkInstance g_hVulkanInstance;
extern VmaAllocator g_hAllocator;
extern bool VK_AMD_device_coherent_memory_enabled;
void SetAllocatorCreateInfo(VmaAllocatorCreateInfo& outInfo);
inline float ToFloatSeconds(duration d)
{
return std::chrono::duration_cast<std::chrono::duration<float>>(d).count();
}
template <typename T>
inline T ceil_div(T x, T y)
{
return (x+y-1) / y;
}
template <typename T>
inline T round_div(T x, T y)
{
return (x+y/(T)2) / y;
}
template <typename T>
static inline T align_up(T val, T align)
{
return (val + align - 1) / align * align;
}
static const float PI = 3.14159265358979323846264338327950288419716939937510582f;
template<typename MainT, typename NewT>
inline void PnextChainPushFront(MainT* mainStruct, NewT* newStruct)
{
newStruct->pNext = mainStruct->pNext;
mainStruct->pNext = newStruct;
}
template<typename MainT, typename NewT>
inline void PnextChainPushBack(MainT* mainStruct, NewT* newStruct)
{
struct VkAnyStruct
{
VkStructureType sType;
void* pNext;
};
VkAnyStruct* lastStruct = (VkAnyStruct*)mainStruct;
while(lastStruct->pNext != nullptr)
{
lastStruct = (VkAnyStruct*)lastStruct->pNext;
}
newStruct->pNext = nullptr;
lastStruct->pNext = newStruct;
}
struct vec3
{
float x, y, z;
vec3() { }
vec3(float x, float y, float z) : x(x), y(y), z(z) { }
float& operator[](uint32_t index) { return *(&x + index); }
const float& operator[](uint32_t index) const { return *(&x + index); }
vec3 operator+(const vec3& rhs) const { return vec3(x + rhs.x, y + rhs.y, z + rhs.z); }
vec3 operator-(const vec3& rhs) const { return vec3(x - rhs.x, y - rhs.y, z - rhs.z); }
vec3 operator*(float s) const { return vec3(x * s, y * s, z * s); }
vec3 Normalized() const
{
return (*this) * (1.f / sqrt(x * x + y * y + z * z));
}
};
inline float Dot(const vec3& lhs, const vec3& rhs)
{
return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z;
}
inline vec3 Cross(const vec3& lhs, const vec3& rhs)
{
return vec3(
lhs.y * rhs.z - lhs.z * rhs.y,
lhs.z * rhs.x - lhs.x * rhs.z,
lhs.x * rhs.y - lhs.y * rhs.x);
}
struct vec4
{
float x, y, z, w;
vec4() { }
vec4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) { }
vec4(const vec3& v, float w) : x(v.x), y(v.y), z(v.z), w(w) { }
float& operator[](uint32_t index) { return *(&x + index); }
const float& operator[](uint32_t index) const { return *(&x + index); }
};
struct mat4
{
union
{
struct
{
float _11, _12, _13, _14;
float _21, _22, _23, _24;
float _31, _32, _33, _34;
float _41, _42, _43, _44;
};
float m[4][4]; // [row][column]
};
mat4() { }
mat4(
float _11, float _12, float _13, float _14,
float _21, float _22, float _23, float _24,
float _31, float _32, float _33, float _34,
float _41, float _42, float _43, float _44) :
_11(_11), _12(_12), _13(_13), _14(_14),
_21(_21), _22(_22), _23(_23), _24(_24),
_31(_31), _32(_32), _33(_33), _34(_34),
_41(_41), _42(_42), _43(_43), _44(_44)
{
}
mat4(
const vec4& row1,
const vec4& row2,
const vec4& row3,
const vec4& row4) :
_11(row1.x), _12(row1.y), _13(row1.z), _14(row1.w),
_21(row2.x), _22(row2.y), _23(row2.z), _24(row2.w),
_31(row3.x), _32(row3.y), _33(row3.z), _34(row3.w),
_41(row4.x), _42(row4.y), _43(row4.z), _44(row4.w)
{
}
mat4 operator*(const mat4 &rhs) const
{
return mat4(
_11 * rhs._11 + _12 * rhs._21 + _13 * rhs._31 + _14 * rhs._41,
_11 * rhs._12 + _12 * rhs._22 + _13 * rhs._32 + _14 * rhs._42,
_11 * rhs._13 + _12 * rhs._23 + _13 * rhs._33 + _14 * rhs._43,
_11 * rhs._14 + _12 * rhs._24 + _13 * rhs._34 + _14 * rhs._44,
_21 * rhs._11 + _22 * rhs._21 + _23 * rhs._31 + _24 * rhs._41,
_21 * rhs._12 + _22 * rhs._22 + _23 * rhs._32 + _24 * rhs._42,
_21 * rhs._13 + _22 * rhs._23 + _23 * rhs._33 + _24 * rhs._43,
_21 * rhs._14 + _22 * rhs._24 + _23 * rhs._34 + _24 * rhs._44,
_31 * rhs._11 + _32 * rhs._21 + _33 * rhs._31 + _34 * rhs._41,
_31 * rhs._12 + _32 * rhs._22 + _33 * rhs._32 + _34 * rhs._42,
_31 * rhs._13 + _32 * rhs._23 + _33 * rhs._33 + _34 * rhs._43,
_31 * rhs._14 + _32 * rhs._24 + _33 * rhs._34 + _34 * rhs._44,
_41 * rhs._11 + _42 * rhs._21 + _43 * rhs._31 + _44 * rhs._41,
_41 * rhs._12 + _42 * rhs._22 + _43 * rhs._32 + _44 * rhs._42,
_41 * rhs._13 + _42 * rhs._23 + _43 * rhs._33 + _44 * rhs._43,
_41 * rhs._14 + _42 * rhs._24 + _43 * rhs._34 + _44 * rhs._44);
}
static mat4 RotationY(float angle)
{
const float s = sin(angle), c = cos(angle);
return mat4(
c, 0.f, -s, 0.f,
0.f, 1.f, 0.f, 0.f,
s, 0.f, c, 0.f,
0.f, 0.f, 0.f, 1.f);
}
static mat4 Perspective(float fovY, float aspectRatio, float zNear, float zFar)
{
float yScale = 1.0f / tan(fovY * 0.5f);
float xScale = yScale / aspectRatio;
return mat4(
xScale, 0.0f, 0.0f, 0.0f,
0.0f, yScale, 0.0f, 0.0f,
0.0f, 0.0f, zFar / (zFar - zNear), 1.0f,
0.0f, 0.0f, -zNear * zFar / (zFar - zNear), 0.0f);
}
static mat4 LookAt(vec3 at, vec3 eye, vec3 up)
{
vec3 zAxis = (at - eye).Normalized();
vec3 xAxis = Cross(up, zAxis).Normalized();
vec3 yAxis = Cross(zAxis, xAxis);
return mat4(
xAxis.x, yAxis.x, zAxis.x, 0.0f,
xAxis.y, yAxis.y, zAxis.y, 0.0f,
xAxis.z, yAxis.z, zAxis.z, 0.0f,
-Dot(xAxis, eye), -Dot(yAxis, eye), -Dot(zAxis, eye), 1.0f);
}
};
class RandomNumberGenerator
{
public:
RandomNumberGenerator() : m_Value{GetTickCount()} {}
RandomNumberGenerator(uint32_t seed) : m_Value{seed} { }
void Seed(uint32_t seed) { m_Value = seed; }
uint32_t Generate() { return GenerateFast() ^ (GenerateFast() >> 7); }
private:
uint32_t m_Value;
uint32_t GenerateFast() { return m_Value = (m_Value * 196314165 + 907633515); }
};
// Wrapper for RandomNumberGenerator compatible with STL "UniformRandomNumberGenerator" idea.
struct MyUniformRandomNumberGenerator
{
typedef uint32_t result_type;
MyUniformRandomNumberGenerator(RandomNumberGenerator& gen) : m_Gen(gen) { }
static uint32_t min() { return 0; }
static uint32_t max() { return UINT32_MAX; }
uint32_t operator()() { return m_Gen.Generate(); }
private:
RandomNumberGenerator& m_Gen;
};
void ReadFile(std::vector<char>& out, const char* fileName);
enum class CONSOLE_COLOR
{
INFO,
NORMAL,
WARNING,
ERROR_,
COUNT
};
void SetConsoleColor(CONSOLE_COLOR color);
void PrintMessage(CONSOLE_COLOR color, const char* msg);
void PrintMessage(CONSOLE_COLOR color, const wchar_t* msg);
inline void Print(const char* msg) { PrintMessage(CONSOLE_COLOR::NORMAL, msg); }
inline void Print(const wchar_t* msg) { PrintMessage(CONSOLE_COLOR::NORMAL, msg); }
inline void PrintWarning(const char* msg) { PrintMessage(CONSOLE_COLOR::WARNING, msg); }
inline void PrintWarning(const wchar_t* msg) { PrintMessage(CONSOLE_COLOR::WARNING, msg); }
inline void PrintError(const char* msg) { PrintMessage(CONSOLE_COLOR::ERROR_, msg); }
inline void PrintError(const wchar_t* msg) { PrintMessage(CONSOLE_COLOR::ERROR_, msg); }
void PrintMessageV(CONSOLE_COLOR color, const char* format, va_list argList);
void PrintMessageV(CONSOLE_COLOR color, const wchar_t* format, va_list argList);
void PrintMessageF(CONSOLE_COLOR color, const char* format, ...);
void PrintMessageF(CONSOLE_COLOR color, const wchar_t* format, ...);
void PrintWarningF(const char* format, ...);
void PrintWarningF(const wchar_t* format, ...);
void PrintErrorF(const char* format, ...);
void PrintErrorF(const wchar_t* format, ...);
void SaveFile(const wchar_t* filePath, const void* data, size_t dataSize);
#endif // #ifdef _WIN32
#endif