mirror of
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.git
synced 2024-11-10 10:41:52 +00:00
1543 lines
58 KiB
C++
1543 lines
58 KiB
C++
/*
|
|
* Copyright 2014 Google Inc. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#ifndef MATHFU_MATRIX_H_
|
|
#define MATHFU_MATRIX_H_
|
|
|
|
#include "mathfu/utilities.h"
|
|
#include "mathfu/vector.h"
|
|
|
|
#include <cmath>
|
|
|
|
#include <assert.h>
|
|
|
|
/// @file mathfu/matrix.h
|
|
/// @brief Matrix class and functions.
|
|
/// @addtogroup mathfu_matrix
|
|
///
|
|
/// MathFu provides a generic Matrix implementation which is specialized
|
|
/// for 4x4 matrices to take advantage of optimization opportunities using
|
|
/// SIMD instructions.
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
// The following disables warnings for MATHFU_MAT_OPERATION.
|
|
// The buffer overrun warning must be disabled as MSVC doesn't treat
|
|
// "columns" as constant and therefore assumes that it's possible
|
|
// to overrun arrays indexed by "i".
|
|
// The conditional expression is constant warning is disabled since
|
|
// MSVC decides that "columns" *is* constant when unrolling the operation
|
|
// loop.
|
|
#pragma warning(disable : 4127) // conditional expression is constant
|
|
#pragma warning(disable : 4789) // buffer overrun
|
|
#if _MSC_VER >= 1900 // MSVC 2015
|
|
#pragma warning(disable : 4456) // allow shadowing in unrolled loops
|
|
#pragma warning(disable : 4723) // suppress "potential divide by 0" warning
|
|
#endif // _MSC_VER >= 1900
|
|
#endif // _MSC_VER
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// The stride of a vector (e.g Vector<T, 3>) when cast as an array of floats.
|
|
#define MATHFU_VECTOR_STRIDE_FLOATS(vector) (sizeof(vector) / sizeof(float))
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// This will unroll loops for matrices with <= 4 columns
|
|
#define MATHFU_MAT_OPERATION(OP) MATHFU_UNROLLED_LOOP(i, columns, OP)
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// This will perform a given OP on each matrix column and return the result
|
|
#define MATHFU_MAT_OPERATOR(OP) \
|
|
{ \
|
|
Matrix<T, rows, columns> result; \
|
|
MATHFU_MAT_OPERATION(result.data_[i] = (OP)); \
|
|
return result; \
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// This will perform a given OP on each matrix column
|
|
#define MATHFU_MAT_SELF_OPERATOR(OP) \
|
|
{ \
|
|
MATHFU_MAT_OPERATION(OP); \
|
|
return *this; \
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// This macro will take the dot product for a row from data1 and a column from
|
|
/// data2.
|
|
#define MATHFU_MATRIX_4X4_DOT(data1, data2, r) \
|
|
((data1)[r] * (data2)[0] + (data1)[(r) + 4] * (data2)[1] + \
|
|
(data1)[(r) + 8] * (data2)[2] + (data1)[(r) + 12] * (data2)[3])
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
#define MATHFU_MATRIX_3X3_DOT(data1, data2, r, size) \
|
|
((data1)[r] * (data2)[0] + (data1)[(r) + (size)] * (data2)[1] + \
|
|
(data1)[(r) + 2 * (size)] * (data2)[2])
|
|
/// @endcond
|
|
|
|
namespace mathfu {
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T, int rows, int columns = rows>
|
|
class Matrix;
|
|
template <class T, int rows, int columns>
|
|
inline Matrix<T, rows, columns> IdentityHelper();
|
|
template <bool check_invertible, class T, int rows, int columns>
|
|
inline bool InverseHelper(const Matrix<T, rows, columns>& m,
|
|
Matrix<T, rows, columns>* const inverse);
|
|
template <class T, int rows, int columns>
|
|
inline void TimesHelper(const Matrix<T, rows, columns>& m1,
|
|
const Matrix<T, rows, columns>& m2,
|
|
Matrix<T, rows, columns>* out_m);
|
|
template <class T, int rows, int columns>
|
|
static inline Matrix<T, rows, columns> OuterProductHelper(
|
|
const Vector<T, rows>& v1, const Vector<T, columns>& v2);
|
|
template <class T>
|
|
inline Matrix<T, 4, 4> PerspectiveHelper(T fovy, T aspect, T znear, T zfar,
|
|
T handedness);
|
|
template <class T>
|
|
static inline Matrix<T, 4, 4> OrthoHelper(T left, T right, T bottom, T top,
|
|
T znear, T zfar, T handedness);
|
|
template <class T>
|
|
static inline Matrix<T, 4, 4> LookAtHelper(const Vector<T, 3>& at,
|
|
const Vector<T, 3>& eye,
|
|
const Vector<T, 3>& up,
|
|
T handedness);
|
|
template <class T>
|
|
static inline bool UnProjectHelper(const Vector<T, 3>& window_coord,
|
|
const Matrix<T, 4, 4>& model_view,
|
|
const Matrix<T, 4, 4>& projection,
|
|
const float window_width,
|
|
const float window_height,
|
|
Vector<T, 3>& result);
|
|
|
|
template <typename T, int rows, int columns, typename CompatibleT>
|
|
static inline Matrix<T, rows, columns> FromTypeHelper(const CompatibleT& compatible);
|
|
|
|
template <typename T, int rows, int columns, typename CompatibleT>
|
|
static inline CompatibleT ToTypeHelper(const Matrix<T, rows, columns>& m);
|
|
/// @endcond
|
|
|
|
/// @addtogroup mathfu_matrix
|
|
/// @{
|
|
/// @class Matrix
|
|
/// @brief Matrix stores a set of "rows" by "columns" elements of type T
|
|
/// and provides functions that operate on the set of elements.
|
|
///
|
|
/// @tparam T type of each element in the matrix.
|
|
/// @tparam rows Number of rows in the matrix.
|
|
/// @tparam columns Number of columns in the matrix.
|
|
template <class T, int rows, int columns>
|
|
class Matrix {
|
|
public:
|
|
/// @brief Construct a Matrix of uninitialized values.
|
|
inline Matrix() {}
|
|
|
|
/// @brief Construct a Matrix from another Matrix copying each element.
|
|
////
|
|
/// @param m Matrix that the data will be copied from.
|
|
inline Matrix(const Matrix<T, rows, columns>& m) {
|
|
MATHFU_MAT_OPERATION(data_[i] = m.data_[i]);
|
|
}
|
|
|
|
/// @brief Construct a Matrix from a single float.
|
|
///
|
|
/// @param s Scalar value used to initialize each element of the matrix.
|
|
explicit inline Matrix(const T& s) {
|
|
MATHFU_MAT_OPERATION((data_[i] = Vector<T, rows>(s)));
|
|
}
|
|
|
|
/// @brief Construct a Matrix from four floats.
|
|
///
|
|
/// @note This method only works with a 2x2 Matrix.
|
|
///
|
|
/// @param s00 Value of the first row and column.
|
|
/// @param s10 Value of the second row, first column.
|
|
/// @param s01 Value of the first row, second column.
|
|
/// @param s11 Value of the second row and column.
|
|
inline Matrix(const T& s00, const T& s10, const T& s01, const T& s11) {
|
|
MATHFU_STATIC_ASSERT(rows == 2 && columns == 2);
|
|
data_[0] = Vector<T, rows>(s00, s10);
|
|
data_[1] = Vector<T, rows>(s01, s11);
|
|
}
|
|
|
|
/// @brief Create a Matrix from nine floats.
|
|
///
|
|
/// @note This method only works with a 3x3 Matrix.
|
|
///
|
|
/// @param s00 Value of the first row and column.
|
|
/// @param s10 Value of the second row, first column.
|
|
/// @param s20 Value of the third row, first column.
|
|
/// @param s01 Value of the first row, second column.
|
|
/// @param s11 Value of the second row and column.
|
|
/// @param s21 Value of the third row, second column.
|
|
/// @param s02 Value of the first row, third column.
|
|
/// @param s12 Value of the second row, third column.
|
|
/// @param s22 Value of the third row and column.
|
|
inline Matrix(const T& s00, const T& s10, const T& s20, const T& s01,
|
|
const T& s11, const T& s21, const T& s02, const T& s12,
|
|
const T& s22) {
|
|
MATHFU_STATIC_ASSERT(rows == 3 && columns == 3);
|
|
data_[0] = Vector<T, rows>(s00, s10, s20);
|
|
data_[1] = Vector<T, rows>(s01, s11, s21);
|
|
data_[2] = Vector<T, rows>(s02, s12, s22);
|
|
}
|
|
|
|
/// @brief Creates a Matrix from twelve floats.
|
|
///
|
|
/// @note This method only works with Matrix<float, 4, 3>.
|
|
///
|
|
///
|
|
/// @param s00 Value of the first row and column.
|
|
/// @param s10 Value of the second row, first column.
|
|
/// @param s20 Value of the third row, first column.
|
|
/// @param s30 Value of the fourth row, first column.
|
|
/// @param s01 Value of the first row, second column.
|
|
/// @param s11 Value of the second row and column.
|
|
/// @param s21 Value of the third row, second column.
|
|
/// @param s31 Value of the fourth row, second column.
|
|
/// @param s02 Value of the first row, third column.
|
|
/// @param s12 Value of the second row, third column.
|
|
/// @param s22 Value of the third row and column.
|
|
/// @param s32 Value of the fourth row, third column.
|
|
inline Matrix(const T& s00, const T& s10, const T& s20, const T& s30,
|
|
const T& s01, const T& s11, const T& s21, const T& s31,
|
|
const T& s02, const T& s12, const T& s22, const T& s32) {
|
|
MATHFU_STATIC_ASSERT(rows == 4 && columns == 3);
|
|
data_[0] = Vector<T, rows>(s00, s10, s20, s30);
|
|
data_[1] = Vector<T, rows>(s01, s11, s21, s31);
|
|
data_[2] = Vector<T, rows>(s02, s12, s22, s32);
|
|
}
|
|
|
|
/// @brief Create a Matrix from sixteen floats.
|
|
///
|
|
/// @note This method only works with a 4x4 Matrix.
|
|
///
|
|
/// @param s00 Value of the first row and column.
|
|
/// @param s10 Value of the second row, first column.
|
|
/// @param s20 Value of the third row, first column.
|
|
/// @param s30 Value of the fourth row, first column.
|
|
/// @param s01 Value of the first row, second column.
|
|
/// @param s11 Value of the second row and column.
|
|
/// @param s21 Value of the third row, second column.
|
|
/// @param s31 Value of the fourth row, second column.
|
|
/// @param s02 Value of the first row, third column.
|
|
/// @param s12 Value of the second row, third column.
|
|
/// @param s22 Value of the third row and column.
|
|
/// @param s32 Value of the fourth row, third column.
|
|
/// @param s03 Value of the first row, fourth column.
|
|
/// @param s13 Value of the second row, fourth column.
|
|
/// @param s23 Value of the third row, fourth column.
|
|
/// @param s33 Value of the fourth row and column.
|
|
inline Matrix(const T& s00, const T& s10, const T& s20, const T& s30,
|
|
const T& s01, const T& s11, const T& s21, const T& s31,
|
|
const T& s02, const T& s12, const T& s22, const T& s32,
|
|
const T& s03, const T& s13, const T& s23, const T& s33) {
|
|
MATHFU_STATIC_ASSERT(rows == 4 && columns == 4);
|
|
data_[0] = Vector<T, rows>(s00, s10, s20, s30);
|
|
data_[1] = Vector<T, rows>(s01, s11, s21, s31);
|
|
data_[2] = Vector<T, rows>(s02, s12, s22, s32);
|
|
data_[3] = Vector<T, rows>(s03, s13, s23, s33);
|
|
}
|
|
|
|
/// @brief Create 4x4 Matrix from 4, 4 element vectors.
|
|
///
|
|
/// @note This method only works with a 4x4 Matrix.
|
|
///
|
|
/// @param column0 Vector used for the first column.
|
|
/// @param column1 Vector used for the second column.
|
|
/// @param column2 Vector used for the third column.
|
|
/// @param column3 Vector used for the fourth column.
|
|
inline Matrix(const Vector<T, 4>& column0, const Vector<T, 4>& column1,
|
|
const Vector<T, 4>& column2, const Vector<T, 4>& column3) {
|
|
MATHFU_STATIC_ASSERT(rows == 4 && columns == 4);
|
|
data_[0] = column0;
|
|
data_[1] = column1;
|
|
data_[2] = column2;
|
|
data_[3] = column3;
|
|
}
|
|
|
|
/// @brief Create a Matrix from the first row * column elements of an array.
|
|
///
|
|
/// @param a Array of values that the matrix will be iniitlized to.
|
|
explicit inline Matrix(const T* const a) {
|
|
MATHFU_MAT_OPERATION((data_[i] = Vector<T, rows>(&a[i * columns])));
|
|
}
|
|
|
|
/// @brief Create a Matrix from an array of "columns", "rows" element packed
|
|
/// vectors.
|
|
///
|
|
/// @param vectors Array of "columns", "rows" element packed vectors.
|
|
explicit inline Matrix(const VectorPacked<T, rows>* const vectors) {
|
|
MATHFU_MAT_OPERATION((data_[i] = Vector<T, rows>(vectors[i])));
|
|
}
|
|
|
|
/// @brief Access an element of the matrix.
|
|
///
|
|
/// @param row Index of the row to access.
|
|
/// @param column Index of the column to access.
|
|
/// @return Const reference to the element.
|
|
inline const T& operator()(const int row, const int column) const {
|
|
return data_[column][row];
|
|
}
|
|
|
|
/// @brief Access an element of the Matrix.
|
|
///
|
|
/// @param row Index of the row to access.
|
|
/// @param column Index of the column to access.
|
|
/// @return Reference to the data that can be modified by the caller.
|
|
inline T& operator()(const int row, const int column) {
|
|
return data_[column][row];
|
|
}
|
|
|
|
/// @brief Access an element of the Matrix.
|
|
///
|
|
/// @param i Index of the element to access in flattened memory. Where
|
|
/// the column accessed is i / rows and the row is i % rows.
|
|
/// @return Reference to the data that can be modified by the caller.
|
|
inline const T& operator()(const int i) const { return operator[](i); }
|
|
|
|
/// @brief Access an element of the Matrix.
|
|
///
|
|
/// @param i Index of the element to access in flattened memory. Where
|
|
/// the column accessed is i / rows and the row is i % rows.
|
|
/// @return Reference to the data that can be modified by the caller.
|
|
inline T& operator()(const int i) { return operator[](i); }
|
|
|
|
/// @brief Access an element of the Matrix.
|
|
///
|
|
/// @param i Index of the element to access in flattened memory. Where
|
|
/// the column accessed is i / rows and the row is i % rows.
|
|
/// @return Const reference to the data.
|
|
inline const T& operator[](const int i) const {
|
|
return const_cast<Matrix<T, rows, columns>*>(this)->operator[](i);
|
|
}
|
|
|
|
/// @brief Access an element of the Matrix.
|
|
///
|
|
/// @param i Index of the element to access in flattened memory. Where
|
|
/// the column accessed is i / rows and the row is i % rows.
|
|
/// @return Reference to the data that can be modified by the caller.
|
|
inline T& operator[](const int i) {
|
|
#if defined(MATHFU_COMPILE_WITH_PADDING)
|
|
// In this case Vector<T, 3> is padded, so the element offset must be
|
|
// accessed using the array operator.
|
|
if (rows == 3) {
|
|
const int row = i % rows;
|
|
const int col = i / rows;
|
|
return data_[col][row];
|
|
} else {
|
|
return reinterpret_cast<T*>(data_)[i];
|
|
}
|
|
#else
|
|
return reinterpret_cast<T*>(data_)[i];
|
|
#endif // defined(MATHFU_COMPILE_WITH_PADDING)
|
|
}
|
|
|
|
/// @brief Pack the matrix to an array of "rows" element vectors,
|
|
/// one vector per matrix column.
|
|
///
|
|
/// @param vector Array of "columns" entries to write to.
|
|
inline void Pack(VectorPacked<T, rows>* const vector) const {
|
|
MATHFU_MAT_OPERATION(GetColumn(i).Pack(&vector[i]));
|
|
}
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// @brief Access a column vector of the Matrix.
|
|
///
|
|
/// @param i Index of the column to access.
|
|
/// @return Reference to the data that can be modified by the caller.
|
|
inline Vector<T, rows>& GetColumn(const int i) { return data_[i]; }
|
|
|
|
/// @brief Access a column vector of the Matrix.
|
|
///
|
|
/// @param i Index of the column to access.
|
|
/// @return Const reference to the data.
|
|
inline const Vector<T, rows>& GetColumn(const int i) const {
|
|
return data_[i];
|
|
}
|
|
/// @endcond
|
|
|
|
/// @brief Negate this Matrix.
|
|
///
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> operator-() const {
|
|
MATHFU_MAT_OPERATOR(-data_[i]);
|
|
}
|
|
|
|
/// @brief Add a Matrix to this Matrix.
|
|
///
|
|
/// @param m Matrix to add to this Matrix.
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> operator+(
|
|
const Matrix<T, rows, columns>& m) const {
|
|
MATHFU_MAT_OPERATOR(data_[i] + m.data_[i]);
|
|
}
|
|
|
|
/// @brief Subtract a Matrix from this Matrix.
|
|
///
|
|
/// @param m Matrix to subtract from this Matrix.
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> operator-(
|
|
const Matrix<T, rows, columns>& m) const {
|
|
MATHFU_MAT_OPERATOR(data_[i] - m.data_[i]);
|
|
}
|
|
|
|
/// @brief Add a scalar to each element of this Matrix.
|
|
///
|
|
/// @param s Scalar to add to this Matrix.
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> operator+(const T& s) const {
|
|
MATHFU_MAT_OPERATOR(data_[i] + s);
|
|
}
|
|
|
|
/// @brief Subtract a scalar from each element of this Matrix.
|
|
///
|
|
/// @param s Scalar to subtract from this matrix.
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> operator-(const T& s) const {
|
|
MATHFU_MAT_OPERATOR(data_[i] - s);
|
|
}
|
|
|
|
/// @brief Multiply each element of this Matrix with a scalar.
|
|
///
|
|
/// @param s Scalar to multiply with this Matrix.
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> operator*(const T& s) const {
|
|
MATHFU_MAT_OPERATOR(data_[i] * s);
|
|
}
|
|
|
|
/// @brief Divide each element of this Matrix with a scalar.
|
|
///
|
|
/// @param s Scalar to divide this Matrix with.
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> operator/(const T& s) const {
|
|
return (*this) * (1 / s);
|
|
}
|
|
|
|
/// @brief Multiply this Matrix with another Matrix.
|
|
///
|
|
/// @param m Matrix to multiply with this Matrix.
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> operator*(
|
|
const Matrix<T, rows, columns>& m) const {
|
|
Matrix<T, rows, columns> result;
|
|
TimesHelper(*this, m, &result);
|
|
return result;
|
|
}
|
|
|
|
/// @brief Add a Matrix to this Matrix (in-place).
|
|
///
|
|
/// @param m Matrix to add to this Matrix.
|
|
/// @return Reference to this class.
|
|
inline Matrix<T, rows, columns>& operator+=(
|
|
const Matrix<T, rows, columns>& m) {
|
|
MATHFU_MAT_SELF_OPERATOR(data_[i] += m.data_[i]);
|
|
}
|
|
|
|
/// @brief Subtract a Matrix from this Matrix (in-place).
|
|
///
|
|
/// @param m Matrix to subtract from this Matrix.
|
|
/// @return Reference to this class.
|
|
inline Matrix<T, rows, columns>& operator-=(
|
|
const Matrix<T, rows, columns>& m) {
|
|
MATHFU_MAT_SELF_OPERATOR(data_[i] -= m.data_[i]);
|
|
}
|
|
|
|
/// @brief Add a scalar to each element of this Matrix (in-place).
|
|
///
|
|
/// @param s Scalar to add to each element of this Matrix.
|
|
/// @return Reference to this class.
|
|
inline Matrix<T, rows, columns>& operator+=(const T& s) {
|
|
MATHFU_MAT_SELF_OPERATOR(data_[i] += s);
|
|
}
|
|
|
|
/// @brief Subtract a scalar from each element of this Matrix (in-place).
|
|
///
|
|
/// @param s Scalar to subtract from each element of this Matrix.
|
|
/// @return Reference to this class.
|
|
inline Matrix<T, rows, columns>& operator-=(const T& s) {
|
|
MATHFU_MAT_SELF_OPERATOR(data_[i] -= s);
|
|
}
|
|
|
|
/// @brief Multiply each element of this Matrix with a scalar (in-place).
|
|
///
|
|
/// @param s Scalar to multiply with each element of this Matrix.
|
|
/// @return Reference to this class.
|
|
inline Matrix<T, rows, columns>& operator*=(const T& s) {
|
|
MATHFU_MAT_SELF_OPERATOR(data_[i] *= s);
|
|
}
|
|
|
|
/// @brief Divide each element of this Matrix by a scalar (in-place).
|
|
///
|
|
/// @param s Scalar to divide this Matrix by.
|
|
/// @return Reference to this class.
|
|
inline Matrix<T, rows, columns>& operator/=(const T& s) {
|
|
return (*this) *= (1 / s);
|
|
}
|
|
|
|
/// @brief Multiply this Matrix with another Matrix (in-place).
|
|
///
|
|
/// @param m Matrix to multiply with this Matrix.
|
|
/// @return Reference to this class.
|
|
inline Matrix<T, rows, columns>& operator*=(
|
|
const Matrix<T, rows, columns>& m) {
|
|
const Matrix<T, rows, columns> copy_of_this(*this);
|
|
TimesHelper(copy_of_this, m, this);
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Calculate the inverse of this Matrix.
|
|
///
|
|
/// This calculates the inverse Matrix such that
|
|
/// <code>(m * m).Inverse()</code> is the identity.
|
|
/// @return Matrix containing the result.
|
|
inline Matrix<T, rows, columns> Inverse() const {
|
|
Matrix<T, rows, columns> inverse;
|
|
InverseHelper<false>(*this, &inverse);
|
|
return inverse;
|
|
}
|
|
|
|
/// @brief Calculate the inverse of this Matrix.
|
|
///
|
|
/// This calculates the inverse Matrix such that
|
|
/// <code>(m * m).Inverse()</code> is the identity.
|
|
/// By contrast to Inverse() this returns whether the matrix is invertible.
|
|
///
|
|
/// The invertible check simply compares the calculated determinant with
|
|
/// Constants<T>::GetDeterminantThreshold() to roughly determine whether the
|
|
/// matrix is invertible. This simple check works in common cases but will
|
|
/// fail for corner cases where the matrix is a combination of huge and tiny
|
|
/// values that can't be accurately represented by the floating point
|
|
/// datatype T. More extensive checks (relative to the input values) are
|
|
/// possible but <b>far</b> more expensive, complicated and difficult to
|
|
/// test.
|
|
/// @return Whether the matrix is invertible.
|
|
inline bool InverseWithDeterminantCheck(
|
|
Matrix<T, rows, columns>* const inverse) const {
|
|
return InverseHelper<true>(*this, inverse);
|
|
}
|
|
|
|
/// @brief Calculate the transpose of this Matrix.
|
|
///
|
|
/// @return The transpose of the specified Matrix.
|
|
inline Matrix<T, columns, rows> Transpose() const {
|
|
Matrix<T, columns, rows> transpose;
|
|
MATHFU_UNROLLED_LOOP(
|
|
i, columns, MATHFU_UNROLLED_LOOP(
|
|
j, rows, transpose.GetColumn(j)[i] = GetColumn(i)[j]))
|
|
return transpose;
|
|
}
|
|
|
|
/// @brief Get the 2-dimensional translation of a 2-dimensional affine
|
|
/// transform.
|
|
///
|
|
/// @note 2-dimensional affine transforms are represented by 3x3 matrices.
|
|
/// @return Vector with the first two components of column 2 of this Matrix.
|
|
inline Vector<T, 2> TranslationVector2D() const {
|
|
MATHFU_STATIC_ASSERT(rows == 3 && columns == 3);
|
|
return Vector<T, 2>(data_[2][0], data_[2][1]);
|
|
}
|
|
|
|
/// @brief Get the 3-dimensional translation of a 3-dimensional affine
|
|
/// transform.
|
|
///
|
|
/// @note 3-dimensional affine transforms are represented by 4x4 matrices.
|
|
/// @return Vector with the first three components of column 3.
|
|
inline Vector<T, 3> TranslationVector3D() const {
|
|
MATHFU_STATIC_ASSERT(rows == 4 && columns == 4);
|
|
return Vector<T, 3>(data_[3][0], data_[3][1], data_[3][2]);
|
|
}
|
|
|
|
/// @brief Load from any byte-wise compatible external matrix.
|
|
///
|
|
/// Format should be `columns` vectors, each holding `rows` values of type T.
|
|
///
|
|
/// Use this for safe conversion from external matrix classes.
|
|
/// Often, external libraries will have their own matrix types that are,
|
|
/// byte-for-byte, exactly the same as mathfu::Matrix. This function allows
|
|
/// you to load a mathfu::Matrix from those external types, without potential
|
|
/// aliasing bugs that are caused by casting.
|
|
///
|
|
/// @note If your external type gives you access to a T*, then you can
|
|
/// equivalently use the Matrix(const T*) constructor.
|
|
///
|
|
/// @param compatible reference to a byte-wise compatible matrix structure;
|
|
/// array of columns x rows Ts.
|
|
/// @returns `compatible` loaded as a mathfu::Matrix.
|
|
template <typename CompatibleT>
|
|
static inline Matrix<T, rows, columns> FromType(const CompatibleT& compatible) {
|
|
return FromTypeHelper<T, rows, columns, CompatibleT>(compatible);
|
|
}
|
|
|
|
/// @brief Load into any byte-wise compatible external matrix.
|
|
///
|
|
/// Format should be `columns` vectors, each holding `rows` values of type T.
|
|
///
|
|
/// Use this for safe conversion to external matrix classes.
|
|
/// Often, external libraries will have their own matrix types that are,
|
|
/// byte-for-byte, exactly the same as mathfu::Matrix. This function allows
|
|
/// you to load an external type from a mathfu::Matrix, without potential
|
|
/// aliasing bugs that are caused by casting.
|
|
///
|
|
/// @param m reference to mathfu::Matrix to convert.
|
|
/// @returns CompatibleT loaded from m.
|
|
template <typename CompatibleT>
|
|
static inline CompatibleT ToType(const Matrix<T, rows, columns>& m) {
|
|
return ToTypeHelper<T, rows, columns, CompatibleT>(m);
|
|
}
|
|
|
|
/// @brief Calculate the outer product of two Vectors.
|
|
///
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, rows, columns> OuterProduct(
|
|
const Vector<T, rows>& v1, const Vector<T, columns>& v2) {
|
|
return OuterProductHelper(v1, v2);
|
|
}
|
|
|
|
/// @brief Calculate the hadamard / component-wise product of two matrices.
|
|
///
|
|
/// @param m1 First Matrix.
|
|
/// @param m2 Second Matrix.
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, rows, columns> HadamardProduct(
|
|
const Matrix<T, rows, columns>& m1, const Matrix<T, rows, columns>& m2) {
|
|
MATHFU_MAT_OPERATOR(m1[i] * m2[i]);
|
|
}
|
|
|
|
/// @brief Calculate the identity Matrix.
|
|
///
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, rows, columns> Identity() {
|
|
return IdentityHelper<T, rows, columns>();
|
|
}
|
|
|
|
/// @brief Create a 3x3 translation Matrix from a 2-dimensional Vector.
|
|
///
|
|
/// This matrix will have an empty or zero rotation component.
|
|
///
|
|
/// @param v Vector of size 2.
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 3> FromTranslationVector(const Vector<T, 2>& v) {
|
|
return Matrix<T, 3>(1, 0, 0, 0, 1, 0, v[0], v[1], 1);
|
|
}
|
|
|
|
/// @brief Create a 4x4 translation Matrix from a 3-dimensional Vector.
|
|
///
|
|
/// This matrix will have an empty or zero rotation component.
|
|
///
|
|
/// @param v The vector of size 3.
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 4> FromTranslationVector(const Vector<T, 3>& v) {
|
|
return Matrix<T, 4>(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, v[0], v[1], v[2],
|
|
1);
|
|
}
|
|
|
|
/// @brief Create a square Matrix with the diagonal component set to v.
|
|
///
|
|
/// This is an affine transform matrix, so the dimension of the vector is
|
|
/// one less than the dimension of the matrix.
|
|
///
|
|
/// @param v Vector containing components for scaling.
|
|
/// @return Matrix with v along the diagonal, and 1 in the bottom right.
|
|
static inline Matrix<T, rows> FromScaleVector(const Vector<T, rows - 1>& v) {
|
|
// TODO OPT: Use a helper function in a similar way to Identity to
|
|
// construct the matrix for the specialized cases 2, 3, 4, and only run
|
|
// this method in the general case. This will also allow you to use the
|
|
// helper methods from specialized classes like Matrix<T, 4, 4>.
|
|
Matrix<T, rows> return_matrix(Identity());
|
|
for (int i = 0; i < rows - 1; ++i) return_matrix(i, i) = v[i];
|
|
return return_matrix;
|
|
}
|
|
|
|
/// @brief Create a 4x4 Matrix from a 3x3 rotation Matrix.
|
|
///
|
|
/// This Matrix will have an empty or zero translation component.
|
|
///
|
|
/// @param m 3x3 rotation Matrix.
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 4> FromRotationMatrix(const Matrix<T, 3>& m) {
|
|
return Matrix<T, 4>(m[0], m[1], m[2], 0, m[3], m[4], m[5], 0, m[6], m[7],
|
|
m[8], 0, 0, 0, 0, 1);
|
|
}
|
|
|
|
/// @brief Constructs a Matrix<float, 4> from an AffineTransform.
|
|
///
|
|
/// @param affine An AffineTransform reference to be used to construct
|
|
/// a Matrix<float, 4> by adding in the 'w' row of [0, 0, 0, 1].
|
|
static inline Matrix<T, 4> FromAffineTransform(
|
|
const Matrix<T, 4, 3>& affine) {
|
|
return Matrix<T, 4>(affine[0], affine[4], affine[8], static_cast<T>(0),
|
|
affine[1], affine[5], affine[9], static_cast<T>(0),
|
|
affine[2], affine[6], affine[10], static_cast<T>(0),
|
|
affine[3], affine[7], affine[11], static_cast<T>(1));
|
|
}
|
|
|
|
/// @brief Converts a Matrix<float, 4> into an AffineTransform.
|
|
///
|
|
/// @param m A Matrix<float, 4> reference to be converted into an
|
|
/// AffineTransform by dropping the fixed 'w' row.
|
|
///
|
|
/// @return Returns an AffineTransform that contains the essential
|
|
/// transformation data from the Matrix<float, 4>.
|
|
static inline Matrix<T, 4, 3> ToAffineTransform(const Matrix<T, 4>& m) {
|
|
return Matrix<T, 4, 3>(m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13],
|
|
m[2], m[6], m[10], m[14]);
|
|
}
|
|
|
|
/// @brief Create a 3x3 rotation Matrix from a 2D normalized directional
|
|
/// Vector around the X axis.
|
|
///
|
|
/// @param v 2D normalized directional Vector.
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 3> RotationX(const Vector<T, 2>& v) {
|
|
return Matrix<T, 3>(1, 0, 0, 0, v.x, v.y, 0, -v.y, v.x);
|
|
}
|
|
|
|
/// @brief Create a 3x3 rotation Matrix from a 2D normalized directional
|
|
/// Vector around the Y axis.
|
|
///
|
|
/// @param v 2D normalized directional Vector.
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 3> RotationY(const Vector<T, 2>& v) {
|
|
return Matrix<T, 3>(v.x, 0, -v.y, 0, 1, 0, v.y, 0, v.x);
|
|
}
|
|
|
|
/// @brief Create a 3x3 rotation Matrix from a 2D normalized directional
|
|
/// Vector around the Z axis.
|
|
///
|
|
/// @param v 2D normalized directional Vector.
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 3> RotationZ(const Vector<T, 2>& v) {
|
|
return Matrix<T, 3>(v.x, v.y, 0, -v.y, v.x, 0, 0, 0, 1);
|
|
}
|
|
|
|
/// @brief Create a 3x3 rotation Matrix from an angle (in radians) around
|
|
/// the X axis.
|
|
///
|
|
/// @param angle Angle (in radians).
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 3> RotationX(T angle) {
|
|
return RotationX(Vector<T, 2>(cosf(angle), sinf(angle)));
|
|
}
|
|
|
|
/// @brief Create a 3x3 rotation Matrix from an angle (in radians) around
|
|
/// the Y axis.
|
|
///
|
|
/// @param angle Angle (in radians).
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 3> RotationY(T angle) {
|
|
return RotationY(Vector<T, 2>(cosf(angle), sinf(angle)));
|
|
}
|
|
|
|
/// @brief Create a 3x3 rotation Matrix from an angle (in radians)
|
|
/// around the Z axis.
|
|
///
|
|
/// @param angle Angle (in radians).
|
|
/// @return Matrix containing the result.
|
|
static inline Matrix<T, 3> RotationZ(T angle) {
|
|
return RotationZ(Vector<T, 2>(cosf(angle), sinf(angle)));
|
|
}
|
|
|
|
/// @brief Create a 4x4 perspective Matrix.
|
|
///
|
|
/// @param fovy Field of view.
|
|
/// @param aspect Aspect ratio.
|
|
/// @param znear Near plane location.
|
|
/// @param zfar Far plane location.
|
|
/// @param handedness 1.0f for RH, -1.0f for LH
|
|
/// @return 4x4 perspective Matrix.
|
|
static inline Matrix<T, 4, 4> Perspective(T fovy, T aspect, T znear, T zfar,
|
|
T handedness = 1) {
|
|
return PerspectiveHelper(fovy, aspect, znear, zfar, handedness);
|
|
}
|
|
|
|
/// @brief Create a 4x4 orthographic Matrix.
|
|
///
|
|
/// @param left Left extent.
|
|
/// @param right Right extent.
|
|
/// @param bottom Bottom extent.
|
|
/// @param top Top extent.
|
|
/// @param znear Near plane location.
|
|
/// @param zfar Far plane location.
|
|
/// @param handedness 1.0f for RH, -1.0f for LH
|
|
/// @return 4x4 orthographic Matrix.
|
|
static inline Matrix<T, 4, 4> Ortho(T left, T right, T bottom, T top, T znear,
|
|
T zfar, T handedness = 1) {
|
|
return OrthoHelper(left, right, bottom, top, znear, zfar, handedness);
|
|
}
|
|
|
|
/// @brief Create a 3-dimensional camera Matrix.
|
|
///
|
|
/// @param at The look-at target of the camera.
|
|
/// @param eye The position of the camera.
|
|
/// @param up The up vector in the world, for example (0, 1, 0) if the
|
|
/// y-axis is up.
|
|
/// @param handedness 1.0f for RH, -1.0f for LH.
|
|
/// @return 3-dimensional camera Matrix.
|
|
/// TODO: Change default handedness to +1 so that it matches Perspective().
|
|
static inline Matrix<T, 4, 4> LookAt(const Vector<T, 3>& at,
|
|
const Vector<T, 3>& eye,
|
|
const Vector<T, 3>& up,
|
|
T handedness = -1) {
|
|
return LookAtHelper(at, eye, up, handedness);
|
|
}
|
|
|
|
/// @brief Get the 3D position in object space from a window coordinate.
|
|
///
|
|
/// @param window_coord The window coordinate. The z value is for depth.
|
|
/// A window coordinate on the near plane will have 0 as the z value.
|
|
/// And a window coordinate on the far plane will have 1 as the z value.
|
|
/// z value should be with in [0, 1] here.
|
|
/// @param model_view The Model View matrix.
|
|
/// @param projection The projection matrix.
|
|
/// @param window_width Width of the window.
|
|
/// @param window_height Height of the window.
|
|
/// @return the mapped 3D position in object space.
|
|
static inline Vector<T, 3> UnProject(const Vector<T, 3>& window_coord,
|
|
const Matrix<T, 4, 4>& model_view,
|
|
const Matrix<T, 4, 4>& projection,
|
|
const float window_width,
|
|
const float window_height) {
|
|
Vector<T, 3> result;
|
|
UnProjectHelper(window_coord, model_view, projection, window_width,
|
|
window_height, result);
|
|
return result;
|
|
}
|
|
|
|
/// @brief Multiply a Vector by a Matrix.
|
|
///
|
|
/// @param v Vector to multiply.
|
|
/// @param m Matrix to multiply.
|
|
/// @return Matrix containing the result.
|
|
friend inline Vector<T, columns> operator*(
|
|
const Vector<T, rows>& v, const Matrix<T, rows, columns>& m) {
|
|
const int d = columns;
|
|
MATHFU_VECTOR_OPERATOR((Vector<T, rows>::DotProduct(m.data_[i], v)));
|
|
}
|
|
|
|
// Dimensions of the matrix.
|
|
/// Number of rows in the matrix.
|
|
static const int kRows = rows;
|
|
/// Number of columns in the matrix.
|
|
static const int kColumns = columns;
|
|
/// Total number of elements in the matrix.
|
|
static const int kElements = rows * columns;
|
|
|
|
MATHFU_DEFINE_CLASS_SIMD_AWARE_NEW_DELETE
|
|
|
|
private:
|
|
Vector<T, rows> data_[columns];
|
|
};
|
|
/// @}
|
|
|
|
/// @addtogroup mathfu_matrix
|
|
/// @{
|
|
|
|
/// @brief Multiply each element of a Matrix by a scalar.
|
|
///
|
|
/// @param s Scalar to multiply by.
|
|
/// @param m Matrix to multiply.
|
|
/// @return Matrix containing the result.
|
|
/// @tparam T Type of each element in the Matrix and the scalar type.
|
|
/// @tparam rows Number of rows in the matrix.
|
|
/// @tparam columns Number of columns in the matrix.
|
|
///
|
|
/// @related mathfu::Matrix
|
|
template <class T, int rows, int columns>
|
|
inline Matrix<T, rows, columns> operator*(const T& s,
|
|
const Matrix<T, columns, rows>& m) {
|
|
return m * s;
|
|
}
|
|
|
|
/// @brief Multiply a Matrix by a Vector.
|
|
///
|
|
/// @note Template specialized versions are implemented for 2x2, 3x3, and 4x4
|
|
/// matrices to increase performance. The 3x3 float is also specialized
|
|
/// to supported padded the 3-dimensional Vector in SIMD build configurations.
|
|
///
|
|
/// @param m Matrix to multiply.
|
|
/// @param v Vector to multiply.
|
|
/// @return Vector containing the result.
|
|
///
|
|
/// @related mathfu::Matrix
|
|
template <class T, int rows, int columns>
|
|
inline Vector<T, rows> operator*(const Matrix<T, rows, columns>& m,
|
|
const Vector<T, columns>& v) {
|
|
const Vector<T, rows> result(0);
|
|
int offset = 0;
|
|
for (int column = 0; column < columns; column++) {
|
|
for (int row = 0; row < rows; row++) {
|
|
result[row] += m[offset + row] * v[column];
|
|
}
|
|
offset += rows;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline Vector<T, 2> operator*(const Matrix<T, 2, 2>& m, const Vector<T, 2>& v) {
|
|
return Vector<T, 2>(m[0] * v[0] + m[2] * v[1], m[1] * v[0] + m[3] * v[1]);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline Vector<T, 3> operator*(const Matrix<T, 3, 3>& m, const Vector<T, 3>& v) {
|
|
return Vector<T, 3>(MATHFU_MATRIX_3X3_DOT(&m[0], v, 0, 3),
|
|
MATHFU_MATRIX_3X3_DOT(&m[0], v, 1, 3),
|
|
MATHFU_MATRIX_3X3_DOT(&m[0], v, 2, 3));
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <>
|
|
inline Vector<float, 3> operator*(const Matrix<float, 3, 3>& m,
|
|
const Vector<float, 3>& v) {
|
|
return Vector<float, 3>(
|
|
MATHFU_MATRIX_3X3_DOT(&m[0], v, 0, MATHFU_VECTOR_STRIDE_FLOATS(v)),
|
|
MATHFU_MATRIX_3X3_DOT(&m[0], v, 1, MATHFU_VECTOR_STRIDE_FLOATS(v)),
|
|
MATHFU_MATRIX_3X3_DOT(&m[0], v, 2, MATHFU_VECTOR_STRIDE_FLOATS(v)));
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline Vector<T, 4> operator*(const Matrix<T, 4, 4>& m, const Vector<T, 4>& v) {
|
|
return Vector<T, 4>(
|
|
MATHFU_MATRIX_4X4_DOT(&m[0], v, 0), MATHFU_MATRIX_4X4_DOT(&m[0], v, 1),
|
|
MATHFU_MATRIX_4X4_DOT(&m[0], v, 2), MATHFU_MATRIX_4X4_DOT(&m[0], v, 3));
|
|
}
|
|
/// @endcond
|
|
|
|
/// @brief Multiply a 4x4 Matrix by a 3-dimensional Vector.
|
|
///
|
|
/// This is provided as a convenience and assumes the vector has a fourth
|
|
/// component equal to 1.
|
|
///
|
|
/// @param m 4x4 Matrix.
|
|
/// @param v 3-dimensional Vector.
|
|
/// @return 3-dimensional Vector result.
|
|
///
|
|
/// @related mathfu::Matrix
|
|
template <class T>
|
|
inline Vector<T, 3> operator*(const Matrix<T, 4, 4>& m, const Vector<T, 3>& v) {
|
|
Vector<T, 4> v4(v[0], v[1], v[2], 1);
|
|
v4 = m * v4;
|
|
return Vector<T, 3>(v4[0] / v4[3], v4[1] / v4[3], v4[2] / v4[3]);
|
|
}
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// @brief Multiply a Matrix with another Matrix.
|
|
///
|
|
/// @note Template specialized versions are implemented for 2x2, 3x3, and 4x4
|
|
/// matrices to improve performance. 3x3 float is also specialized because if
|
|
/// SIMD is used the vectors of this type of length 4.
|
|
///
|
|
/// @param m1 Matrix to multiply.
|
|
/// @param m2 Matrix to multiply.
|
|
/// @param out_m Pointer to a Matrix which receives the result.
|
|
///
|
|
/// @tparam T Type of each element in the returned Matrix.
|
|
/// @tparam size1 Number of rows in the returned Matrix and columns in m1.
|
|
/// @tparam size2 Number of columns in the returned Matrix and rows in m2.
|
|
/// @tparam size3 Number of columns in m3.
|
|
template <class T, int size1, int size2, int size3>
|
|
inline void TimesHelper(const Matrix<T, size1, size2>& m1,
|
|
const Matrix<T, size2, size3>& m2,
|
|
Matrix<T, size1, size3>* out_m) {
|
|
for (int i = 0; i < size1; i++) {
|
|
for (int j = 0; j < size3; j++) {
|
|
Vector<T, size2> row;
|
|
for (int k = 0; k < size2; k++) {
|
|
row[k] = m1(i, k);
|
|
}
|
|
(*out_m)(i, j) = Vector<T, size2>::DotProduct(m2.GetColumn(j), row);
|
|
}
|
|
}
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline void TimesHelper(const Matrix<T, 2, 2>& m1, const Matrix<T, 2, 2>& m2,
|
|
Matrix<T, 2, 2>* out_m) {
|
|
Matrix<T, 2, 2>& out = *out_m;
|
|
out[0] = m1[0] * m2[0] + m1[2] * m2[1];
|
|
out[1] = m1[1] * m2[0] + m1[3] * m2[1];
|
|
out[2] = m1[0] * m2[2] + m1[2] * m2[3];
|
|
out[3] = m1[1] * m2[2] + m1[3] * m2[3];
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <typename T>
|
|
inline void TimesHelper(const Matrix<T, 3, 3>& m1, const Matrix<T, 3, 3>& m2,
|
|
Matrix<T, 3, 3>* out_m) {
|
|
Matrix<T, 3, 3>& out = *out_m;
|
|
{
|
|
Vector<T, 3> row(m1[0], m1[3], m1[6]);
|
|
out[0] = Vector<T, 3>::DotProduct(m2.GetColumn(0), row);
|
|
out[3] = Vector<T, 3>::DotProduct(m2.GetColumn(1), row);
|
|
out[6] = Vector<T, 3>::DotProduct(m2.GetColumn(2), row);
|
|
}
|
|
{
|
|
Vector<T, 3> row(m1[1], m1[4], m1[7]);
|
|
out[1] = Vector<T, 3>::DotProduct(m2.GetColumn(0), row);
|
|
out[4] = Vector<T, 3>::DotProduct(m2.GetColumn(1), row);
|
|
out[7] = Vector<T, 3>::DotProduct(m2.GetColumn(2), row);
|
|
}
|
|
{
|
|
Vector<T, 3> row(m1[2], m1[5], m1[8]);
|
|
out[2] = Vector<T, 3>::DotProduct(m2.GetColumn(0), row);
|
|
out[5] = Vector<T, 3>::DotProduct(m2.GetColumn(1), row);
|
|
out[8] = Vector<T, 3>::DotProduct(m2.GetColumn(2), row);
|
|
}
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline void TimesHelper(const Matrix<T, 4, 4>& m1, const Matrix<T, 4, 4>& m2,
|
|
Matrix<T, 4, 4>* out_m) {
|
|
Matrix<T, 4, 4>& out = *out_m;
|
|
{
|
|
Vector<T, 4> row(m1[0], m1[4], m1[8], m1[12]);
|
|
out[0] = Vector<T, 4>::DotProduct(m2.GetColumn(0), row);
|
|
out[4] = Vector<T, 4>::DotProduct(m2.GetColumn(1), row);
|
|
out[8] = Vector<T, 4>::DotProduct(m2.GetColumn(2), row);
|
|
out[12] = Vector<T, 4>::DotProduct(m2.GetColumn(3), row);
|
|
}
|
|
{
|
|
Vector<T, 4> row(m1[1], m1[5], m1[9], m1[13]);
|
|
out[1] = Vector<T, 4>::DotProduct(m2.GetColumn(0), row);
|
|
out[5] = Vector<T, 4>::DotProduct(m2.GetColumn(1), row);
|
|
out[9] = Vector<T, 4>::DotProduct(m2.GetColumn(2), row);
|
|
out[13] = Vector<T, 4>::DotProduct(m2.GetColumn(3), row);
|
|
}
|
|
{
|
|
Vector<T, 4> row(m1[2], m1[6], m1[10], m1[14]);
|
|
out[2] = Vector<T, 4>::DotProduct(m2.GetColumn(0), row);
|
|
out[6] = Vector<T, 4>::DotProduct(m2.GetColumn(1), row);
|
|
out[10] = Vector<T, 4>::DotProduct(m2.GetColumn(2), row);
|
|
out[14] = Vector<T, 4>::DotProduct(m2.GetColumn(3), row);
|
|
}
|
|
{
|
|
Vector<T, 4> row(m1[3], m1[7], m1[11], m1[15]);
|
|
out[3] = Vector<T, 4>::DotProduct(m2.GetColumn(0), row);
|
|
out[7] = Vector<T, 4>::DotProduct(m2.GetColumn(1), row);
|
|
out[11] = Vector<T, 4>::DotProduct(m2.GetColumn(2), row);
|
|
out[15] = Vector<T, 4>::DotProduct(m2.GetColumn(3), row);
|
|
}
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// @brief Compute the identity matrix.
|
|
///
|
|
/// @note There are template specializations for 2x2, 3x3, and 4x4 matrices to
|
|
/// increase performance.
|
|
///
|
|
/// @return Identity Matrix.
|
|
/// @tparam T Type of each element in the returned Matrix.
|
|
/// @tparam rows Number of rows in the returned Matrix.
|
|
/// @tparam columns Number of columns in the returned Matrix.
|
|
template <class T, int rows, int columns>
|
|
inline Matrix<T, rows, columns> IdentityHelper() {
|
|
Matrix<T, rows, columns> return_matrix(0.f);
|
|
int min_d = rows < columns ? rows : columns;
|
|
for (int i = 0; i < min_d; ++i) return_matrix(i, i) = 1;
|
|
return return_matrix;
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline Matrix<T, 2, 2> IdentityHelper() {
|
|
return Matrix<T, 2, 2>(1, 0, 0, 1);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline Matrix<T, 3, 3> IdentityHelper() {
|
|
return Matrix<T, 3, 3>(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline Matrix<T, 4, 4> IdentityHelper() {
|
|
return Matrix<T, 4, 4>(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// @brief Compute the outer product of two vectors.
|
|
///
|
|
/// @note There are template specialization for 2x2, 3x3, and 4x4 matrices to
|
|
/// increase performance.
|
|
template <class T, int rows, int columns>
|
|
static inline Matrix<T, rows, columns> OuterProductHelper(
|
|
const Vector<T, rows>& v1, const Vector<T, columns>& v2) {
|
|
Matrix<T, rows, columns> result(0);
|
|
int offset = 0;
|
|
for (int column = 0; column < columns; column++) {
|
|
for (int row = 0; row < rows; row++) {
|
|
result[row + offset] = v1[row] * v2[column];
|
|
}
|
|
offset += rows;
|
|
}
|
|
return result;
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
static inline Matrix<T, 2, 2> OuterProductHelper(const Vector<T, 2>& v1,
|
|
const Vector<T, 2>& v2) {
|
|
return Matrix<T, 2, 2>(v1[0] * v2[0], v1[1] * v2[0], v1[0] * v2[1],
|
|
v1[1] * v2[1]);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
static inline Matrix<T, 3, 3> OuterProductHelper(const Vector<T, 3>& v1,
|
|
const Vector<T, 3>& v2) {
|
|
return Matrix<T, 3, 3>(v1[0] * v2[0], v1[1] * v2[0], v1[2] * v2[0],
|
|
v1[0] * v2[1], v1[1] * v2[1], v1[2] * v2[1],
|
|
v1[0] * v2[2], v1[1] * v2[2], v1[2] * v2[2]);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
static inline Matrix<T, 4, 4> OuterProductHelper(const Vector<T, 4>& v1,
|
|
const Vector<T, 4>& v2) {
|
|
return Matrix<T, 4, 4>(
|
|
v1[0] * v2[0], v1[1] * v2[0], v1[2] * v2[0], v1[3] * v2[0], v1[0] * v2[1],
|
|
v1[1] * v2[1], v1[2] * v2[1], v1[3] * v2[1], v1[0] * v2[2], v1[1] * v2[2],
|
|
v1[2] * v2[2], v1[3] * v2[2], v1[0] * v2[3], v1[1] * v2[3], v1[2] * v2[3],
|
|
v1[3] * v2[3]);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// Struct used for template specialization for functions that
|
|
/// returns constants.
|
|
template <class T>
|
|
class Constants {
|
|
public:
|
|
/// Minimum absolute value of the determinant of an invertible matrix.
|
|
static T GetDeterminantThreshold() {
|
|
// No constant defined for the general case.
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
};
|
|
/// @endcond
|
|
|
|
/// Functions that return constants for <code>float</code> values.
|
|
template <>
|
|
class Constants<float> {
|
|
public:
|
|
/// @brief Minimum absolute value of the determinant of an invertible
|
|
/// <code>float</code> Matrix.
|
|
///
|
|
/// <code>float</code> values have 23 bits of precision which is roughly
|
|
/// 1e7f, given that the final step of matrix inversion is multiplication
|
|
/// with the inverse of the determinant, the minimum value of the
|
|
/// determinant is 1e-7f before the precision too low to accurately
|
|
/// calculate the inverse.
|
|
/// @returns Minimum absolute value of the determinant of an invertible
|
|
/// <code>float</code> Matrix.
|
|
///
|
|
/// @related mathfu::Matrix::InverseWithDeterminantCheck()
|
|
static float GetDeterminantThreshold() { return 1e-7f; }
|
|
};
|
|
|
|
/// Functions that return constants for <code>double</code> values.
|
|
template <>
|
|
class Constants<double> {
|
|
public:
|
|
/// @brief Minimum absolute value of the determinant of an invertible
|
|
/// <code>double</code> Matrix.
|
|
///
|
|
/// <code>double</code> values have 46 bits of precision which is roughly
|
|
/// 1e15, given that the final step of matrix inversion is multiplication
|
|
/// with the inverse of the determinant, the minimum value of the
|
|
/// determinant is 1e-15 before the precision too low to accurately
|
|
/// calculate the inverse.
|
|
/// @returns Minimum absolute value of the determinant of an invertible
|
|
/// <code>double</code> Matrix.
|
|
///
|
|
/// @related mathfu::Matrix::InverseWithDeterminantCheck()
|
|
static double GetDeterminantThreshold() { return 1e-15; }
|
|
};
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// @brief Compute the inverse of a matrix.
|
|
///
|
|
/// There is template specialization for 2x2, 3x3, and 4x4 matrices to
|
|
/// increase performance. Inverse is not implemented for dense matrices that
|
|
/// are not of size 2x2, 3x3, and 4x4. If check_invertible is true the
|
|
/// determine of the matrix is compared with
|
|
/// Constants<T>::GetDeterminantThreshold() to roughly determine whether the
|
|
/// Matrix is invertible.
|
|
template <bool check_invertible, class T, int rows, int columns>
|
|
inline bool InverseHelper(const Matrix<T, rows, columns>& m,
|
|
Matrix<T, rows, columns>* const inverse) {
|
|
assert(false);
|
|
(void)m;
|
|
*inverse = T::Identity();
|
|
return false;
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <bool check_invertible, class T>
|
|
inline bool InverseHelper(const Matrix<T, 2, 2>& m,
|
|
Matrix<T, 2, 2>* const inverse) {
|
|
T determinant = m[0] * m[3] - m[1] * m[2];
|
|
if (check_invertible &&
|
|
fabs(determinant) < Constants<T>::GetDeterminantThreshold()) {
|
|
return false;
|
|
}
|
|
T inverseDeterminant = 1 / determinant;
|
|
(*inverse)[0] = inverseDeterminant * m[3];
|
|
(*inverse)[1] = -inverseDeterminant * m[1];
|
|
(*inverse)[2] = -inverseDeterminant * m[2];
|
|
(*inverse)[3] = inverseDeterminant * m[0];
|
|
return true;
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <bool check_invertible, class T>
|
|
inline bool InverseHelper(const Matrix<T, 3, 3>& m,
|
|
Matrix<T, 3, 3>* const inverse) {
|
|
// Find determinant of matrix.
|
|
T sub11 = m[4] * m[8] - m[5] * m[7], sub12 = -m[1] * m[8] + m[2] * m[7],
|
|
sub13 = m[1] * m[5] - m[2] * m[4];
|
|
T determinant = m[0] * sub11 + m[3] * sub12 + m[6] * sub13;
|
|
if (check_invertible &&
|
|
fabs(determinant) < Constants<T>::GetDeterminantThreshold()) {
|
|
return false;
|
|
}
|
|
// Find determinants of 2x2 submatrices for the elements of the inverse.
|
|
*inverse = Matrix<T, 3, 3>(
|
|
sub11, sub12, sub13, m[6] * m[5] - m[3] * m[8], m[0] * m[8] - m[6] * m[2],
|
|
m[3] * m[2] - m[0] * m[5], m[3] * m[7] - m[6] * m[4],
|
|
m[6] * m[1] - m[0] * m[7], m[0] * m[4] - m[3] * m[1]);
|
|
*(inverse) *= 1 / determinant;
|
|
return true;
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <class T>
|
|
inline int FindLargestPivotElem(const Matrix<T, 4, 4>& m) {
|
|
Vector<T, 4> fabs_column(fabs(m[0]), fabs(m[1]), fabs(m[2]), fabs(m[3]));
|
|
if (fabs_column[0] > fabs_column[1]) {
|
|
if (fabs_column[0] > fabs_column[2]) {
|
|
if (fabs_column[0] > fabs_column[3]) {
|
|
return 0;
|
|
} else {
|
|
return 3;
|
|
}
|
|
} else if (fabs_column[2] > fabs_column[3]) {
|
|
return 2;
|
|
} else {
|
|
return 3;
|
|
}
|
|
} else if (fabs_column[1] > fabs_column[2]) {
|
|
if (fabs_column[1] > fabs_column[3]) {
|
|
return 1;
|
|
} else {
|
|
return 3;
|
|
}
|
|
} else if (fabs_column[2] > fabs_column[3]) {
|
|
return 2;
|
|
} else {
|
|
return 3;
|
|
}
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <bool check_invertible, class T>
|
|
bool InverseHelper(const Matrix<T, 4, 4>& m, Matrix<T, 4, 4>* const inverse) {
|
|
// This will find the pivot element.
|
|
int pivot_elem = FindLargestPivotElem(m);
|
|
// This will perform the pivot and find the row, column, and 3x3 submatrix
|
|
// for this pivot.
|
|
Vector<T, 3> row, column;
|
|
Matrix<T, 3> matrix;
|
|
if (pivot_elem == 0) {
|
|
row = Vector<T, 3>(m[4], m[8], m[12]);
|
|
column = Vector<T, 3>(m[1], m[2], m[3]);
|
|
matrix =
|
|
Matrix<T, 3>(m[5], m[6], m[7], m[9], m[10], m[11], m[13], m[14], m[15]);
|
|
} else if (pivot_elem == 1) {
|
|
row = Vector<T, 3>(m[5], m[9], m[13]);
|
|
column = Vector<T, 3>(m[0], m[2], m[3]);
|
|
matrix =
|
|
Matrix<T, 3>(m[4], m[6], m[7], m[8], m[10], m[11], m[12], m[14], m[15]);
|
|
} else if (pivot_elem == 2) {
|
|
row = Vector<T, 3>(m[6], m[10], m[14]);
|
|
column = Vector<T, 3>(m[0], m[1], m[3]);
|
|
matrix =
|
|
Matrix<T, 3>(m[4], m[5], m[7], m[8], m[9], m[11], m[12], m[13], m[15]);
|
|
} else {
|
|
row = Vector<T, 3>(m[7], m[11], m[15]);
|
|
column = Vector<T, 3>(m[0], m[1], m[2]);
|
|
matrix =
|
|
Matrix<T, 3>(m[4], m[5], m[6], m[8], m[9], m[10], m[12], m[13], m[14]);
|
|
}
|
|
T pivot_value = m[pivot_elem];
|
|
if (check_invertible &&
|
|
fabs(pivot_value) < Constants<T>::GetDeterminantThreshold()) {
|
|
return false;
|
|
}
|
|
// This will compute the inverse using the row, column, and 3x3 submatrix.
|
|
T inv = -1 / pivot_value;
|
|
row *= inv;
|
|
matrix += Matrix<T, 3>::OuterProduct(column, row);
|
|
Matrix<T, 3> mat_inverse;
|
|
if (!InverseHelper<check_invertible>(matrix, &mat_inverse) &&
|
|
check_invertible) {
|
|
return false;
|
|
}
|
|
Vector<T, 3> col_inverse = mat_inverse * (column * inv);
|
|
Vector<T, 3> row_inverse = row * mat_inverse;
|
|
T pivot_inverse = Vector<T, 3>::DotProduct(row, col_inverse) - inv;
|
|
if (pivot_elem == 0) {
|
|
*inverse = Matrix<T, 4, 4>(
|
|
pivot_inverse, col_inverse[0], col_inverse[1], col_inverse[2],
|
|
row_inverse[0], mat_inverse[0], mat_inverse[1], mat_inverse[2],
|
|
row_inverse[1], mat_inverse[3], mat_inverse[4], mat_inverse[5],
|
|
row_inverse[2], mat_inverse[6], mat_inverse[7], mat_inverse[8]);
|
|
} else if (pivot_elem == 1) {
|
|
*inverse = Matrix<T, 4, 4>(
|
|
row_inverse[0], mat_inverse[0], mat_inverse[1], mat_inverse[2],
|
|
pivot_inverse, col_inverse[0], col_inverse[1], col_inverse[2],
|
|
row_inverse[1], mat_inverse[3], mat_inverse[4], mat_inverse[5],
|
|
row_inverse[2], mat_inverse[6], mat_inverse[7], mat_inverse[8]);
|
|
} else if (pivot_elem == 2) {
|
|
*inverse = Matrix<T, 4, 4>(
|
|
row_inverse[0], mat_inverse[0], mat_inverse[1], mat_inverse[2],
|
|
row_inverse[1], mat_inverse[3], mat_inverse[4], mat_inverse[5],
|
|
pivot_inverse, col_inverse[0], col_inverse[1], col_inverse[2],
|
|
row_inverse[2], mat_inverse[6], mat_inverse[7], mat_inverse[8]);
|
|
} else {
|
|
*inverse = Matrix<T, 4, 4>(
|
|
row_inverse[0], mat_inverse[0], mat_inverse[1], mat_inverse[2],
|
|
row_inverse[1], mat_inverse[3], mat_inverse[4], mat_inverse[5],
|
|
row_inverse[2], mat_inverse[6], mat_inverse[7], mat_inverse[8],
|
|
pivot_inverse, col_inverse[0], col_inverse[1], col_inverse[2]);
|
|
}
|
|
return true;
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// Create a 4x4 perpective matrix.
|
|
template <class T>
|
|
inline Matrix<T, 4, 4> PerspectiveHelper(T fovy, T aspect, T znear, T zfar,
|
|
T handedness) {
|
|
const T y = 1 / std::tan(fovy * static_cast<T>(.5));
|
|
const T x = y / aspect;
|
|
const T zdist = (znear - zfar);
|
|
const T zfar_per_zdist = zfar / zdist;
|
|
return Matrix<T, 4, 4>(x, 0, 0, 0, 0, y, 0, 0, 0, 0,
|
|
zfar_per_zdist * handedness, -1 * handedness, 0, 0,
|
|
2.0f * znear * zfar_per_zdist, 0);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// Create a 4x4 orthographic matrix.
|
|
template <class T>
|
|
static inline Matrix<T, 4, 4> OrthoHelper(T left, T right, T bottom, T top,
|
|
T znear, T zfar, T handedness) {
|
|
return Matrix<T, 4, 4>(static_cast<T>(2) / (right - left), 0, 0, 0, 0,
|
|
static_cast<T>(2) / (top - bottom), 0, 0, 0, 0,
|
|
-handedness * static_cast<T>(2) / (zfar - znear), 0,
|
|
-(right + left) / (right - left),
|
|
-(top + bottom) / (top - bottom),
|
|
-(zfar + znear) / (zfar - znear), static_cast<T>(1));
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// Calculate the axes required to construct a 3-dimensional camera matrix that
|
|
/// looks at "at" from eye position "eye" with the up vector "up". The axes
|
|
/// are returned in a 4 element "axes" array.
|
|
template <class T>
|
|
static void LookAtHelperCalculateAxes(const Vector<T, 3>& at,
|
|
const Vector<T, 3>& eye,
|
|
const Vector<T, 3>& up, T handedness,
|
|
Vector<T, 3>* const axes) {
|
|
// Notice that y-axis is always the same regardless of handedness.
|
|
axes[2] = (at - eye).Normalized();
|
|
axes[0] = Vector<T, 3>::CrossProduct(up, axes[2]).Normalized();
|
|
axes[1] = Vector<T, 3>::CrossProduct(axes[2], axes[0]);
|
|
axes[3] = Vector<T, 3>(handedness * Vector<T, 3>::DotProduct(axes[0], eye),
|
|
-Vector<T, 3>::DotProduct(axes[1], eye),
|
|
handedness * Vector<T, 3>::DotProduct(axes[2], eye));
|
|
|
|
// Default calculation is left-handed (i.e. handedness=-1).
|
|
// Negate x and z axes for right-handed (i.e. handedness=+1) case.
|
|
const T neg = -handedness;
|
|
axes[0] *= neg;
|
|
axes[2] *= neg;
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// Create a 3-dimensional camera matrix.
|
|
template <class T>
|
|
static inline Matrix<T, 4, 4> LookAtHelper(const Vector<T, 3>& at,
|
|
const Vector<T, 3>& eye,
|
|
const Vector<T, 3>& up,
|
|
T handedness) {
|
|
Vector<T, 3> axes[4];
|
|
LookAtHelperCalculateAxes(at, eye, up, handedness, axes);
|
|
const Vector<T, 4> column0(axes[0][0], axes[1][0], axes[2][0], 0);
|
|
const Vector<T, 4> column1(axes[0][1], axes[1][1], axes[2][1], 0);
|
|
const Vector<T, 4> column2(axes[0][2], axes[1][2], axes[2][2], 0);
|
|
const Vector<T, 4> column3(axes[3], 1);
|
|
return Matrix<T, 4, 4>(column0, column1, column2, column3);
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
/// Get the 3D position in object space from a window coordinate.
|
|
template <class T>
|
|
static inline bool UnProjectHelper(const Vector<T, 3>& window_coord,
|
|
const Matrix<T, 4, 4>& model_view,
|
|
const Matrix<T, 4, 4>& projection,
|
|
const float window_width,
|
|
const float window_height,
|
|
Vector<T, 3>& result) {
|
|
if (window_coord.z < static_cast<T>(0) ||
|
|
window_coord.z > static_cast<T>(1)) {
|
|
// window_coord.z should be with in [0, 1]
|
|
// 0: near plane
|
|
// 1: far plane
|
|
return false;
|
|
}
|
|
Matrix<T, 4, 4> matrix = (projection * model_view).Inverse();
|
|
Vector<T, 4> standardized = Vector<T, 4>(
|
|
static_cast<T>(2) * (window_coord.x - window_width) / window_width +
|
|
static_cast<T>(1),
|
|
static_cast<T>(2) * (window_coord.y - window_height) / window_height +
|
|
static_cast<T>(1),
|
|
static_cast<T>(2) * window_coord.z - static_cast<T>(1),
|
|
static_cast<T>(1));
|
|
|
|
Vector<T, 4> multiply = matrix * standardized;
|
|
if (multiply.w == static_cast<T>(0)) {
|
|
return false;
|
|
}
|
|
result = multiply.xyz() / multiply.w;
|
|
return true;
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <typename T, int rows, int columns, typename CompatibleT>
|
|
static inline Matrix<T, rows, columns> FromTypeHelper(const CompatibleT& compatible) {
|
|
// C++11 is required for constructed unions.
|
|
#if __cplusplus >= 201103L
|
|
// Use a union instead of reinterpret_cast to avoid aliasing bugs.
|
|
union ConversionUnion {
|
|
ConversionUnion() {} // C++11.
|
|
CompatibleT compatible;
|
|
VectorPacked<T, rows> packed[columns];
|
|
} u;
|
|
static_assert(sizeof(u.compatible) == sizeof(u.packed), "Conversion size mismatch.");
|
|
|
|
// The read of `compatible` and write to `u.compatible` gets optimized away,
|
|
// and this becomes essentially a safe reinterpret_cast.
|
|
u.compatible = compatible;
|
|
|
|
// Call the packed vector constructor with the `compatible` data.
|
|
return Matrix<T, rows, columns>(u.packed);
|
|
#else
|
|
// Use the less-desirable memcpy technique if C++11 is not available.
|
|
// Most compilers understand memcpy deep enough to avoid replace the function
|
|
// call with a series of load/stores, which should then get optimized away,
|
|
// however in the worst case the optimize away may not happen.
|
|
// Note: Memcpy avoids aliasing bugs because it operates via unsigned char*,
|
|
// which is allowed to alias any type.
|
|
// See:
|
|
// http://stackoverflow.com/questions/15745030/type-punning-with-void-without-breaking-the-strict-aliasing-rule-in-c99
|
|
Matrix<T, rows, columns> m;
|
|
assert(sizeof(m) == sizeof(compatible));
|
|
memcpy(&m, &compatible, sizeof(m));
|
|
return m;
|
|
#endif // __cplusplus >= 201103L
|
|
}
|
|
/// @endcond
|
|
|
|
/// @cond MATHFU_INTERNAL
|
|
template <typename T, int rows, int columns, typename CompatibleT>
|
|
static inline CompatibleT ToTypeHelper(const Matrix<T, rows, columns>& m) {
|
|
// See FromTypeHelper() for comments.
|
|
#if __cplusplus >= 201103L
|
|
union ConversionUnion {
|
|
ConversionUnion() {}
|
|
CompatibleT compatible;
|
|
VectorPacked<T, rows> packed[columns];
|
|
} u;
|
|
static_assert(sizeof(u.compatible) == sizeof(u.packed), "Conversion size mismatch.");
|
|
m.Pack(u.packed);
|
|
return u.compatible;
|
|
#else
|
|
CompatibleT compatible;
|
|
assert(sizeof(m) == sizeof(compatible));
|
|
memcpy(&compatible, &m, sizeof(compatible));
|
|
return compatible;
|
|
#endif // __cplusplus >= 201103L
|
|
}
|
|
/// @endcond
|
|
|
|
/// @typedef AffineTransform
|
|
///
|
|
/// @brief A typedef representing a 4x3 float affine transformation.
|
|
/// Since the last row ('w' row) of an affine transformation is fixed,
|
|
/// this data type only includes the variable information for the transform.
|
|
typedef Matrix<float, 4, 3> AffineTransform;
|
|
/// @}
|
|
|
|
} // namespace mathfu
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
// Include the specializations to avoid template errors.
|
|
// See includes at bottom of vector.h for further explanation.
|
|
#include "mathfu/matrix_4x4.h"
|
|
|
|
#endif // MATHFU_MATRIX_H_
|