mirror of
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.git
synced 2024-11-30 02:04:35 +00:00
20942 lines
766 KiB
C++
20942 lines
766 KiB
C++
//
|
|
// Copyright (c) 2017-2021 Advanced Micro Devices, Inc. All rights reserved.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
//
|
|
|
|
#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
#define AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
|
/** \mainpage Vulkan Memory Allocator
|
|
|
|
<b>Version 3.0.0-development</b>
|
|
|
|
Copyright (c) 2017-2021 Advanced Micro Devices, Inc. All rights reserved. \n
|
|
License: MIT
|
|
|
|
Documentation of all members: vk_mem_alloc.h
|
|
|
|
\section main_table_of_contents Table of contents
|
|
|
|
- <b>User guide</b>
|
|
- \subpage quick_start
|
|
- [Project setup](@ref quick_start_project_setup)
|
|
- [Initialization](@ref quick_start_initialization)
|
|
- [Resource allocation](@ref quick_start_resource_allocation)
|
|
- \subpage choosing_memory_type
|
|
- [Usage](@ref choosing_memory_type_usage)
|
|
- [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
|
|
- [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
|
|
- [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
|
|
- [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
|
|
- \subpage memory_mapping
|
|
- [Mapping functions](@ref memory_mapping_mapping_functions)
|
|
- [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
|
|
- [Cache flush and invalidate](@ref memory_mapping_cache_control)
|
|
- [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable)
|
|
- \subpage staying_within_budget
|
|
- [Querying for budget](@ref staying_within_budget_querying_for_budget)
|
|
- [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
|
|
- \subpage resource_aliasing
|
|
- \subpage custom_memory_pools
|
|
- [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
|
|
- [Linear allocation algorithm](@ref linear_algorithm)
|
|
- [Free-at-once](@ref linear_algorithm_free_at_once)
|
|
- [Stack](@ref linear_algorithm_stack)
|
|
- [Double stack](@ref linear_algorithm_double_stack)
|
|
- [Ring buffer](@ref linear_algorithm_ring_buffer)
|
|
- [Buddy allocation algorithm](@ref buddy_algorithm)
|
|
- \subpage defragmentation
|
|
- [Defragmenting CPU memory](@ref defragmentation_cpu)
|
|
- [Defragmenting GPU memory](@ref defragmentation_gpu)
|
|
- [Additional notes](@ref defragmentation_additional_notes)
|
|
- [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm)
|
|
- \subpage lost_allocations
|
|
- \subpage statistics
|
|
- [Numeric statistics](@ref statistics_numeric_statistics)
|
|
- [JSON dump](@ref statistics_json_dump)
|
|
- \subpage allocation_annotation
|
|
- [Allocation user data](@ref allocation_user_data)
|
|
- [Allocation names](@ref allocation_names)
|
|
- \subpage virtual_allocator
|
|
- \subpage debugging_memory_usage
|
|
- [Memory initialization](@ref debugging_memory_usage_initialization)
|
|
- [Margins](@ref debugging_memory_usage_margins)
|
|
- [Corruption detection](@ref debugging_memory_usage_corruption_detection)
|
|
- \subpage record_and_replay
|
|
- \subpage opengl_interop
|
|
- \subpage usage_patterns
|
|
- [Common mistakes](@ref usage_patterns_common_mistakes)
|
|
- [Simple patterns](@ref usage_patterns_simple)
|
|
- [Advanced patterns](@ref usage_patterns_advanced)
|
|
- \subpage configuration
|
|
- [Pointers to Vulkan functions](@ref config_Vulkan_functions)
|
|
- [Custom host memory allocator](@ref custom_memory_allocator)
|
|
- [Device memory allocation callbacks](@ref allocation_callbacks)
|
|
- [Device heap memory limit](@ref heap_memory_limit)
|
|
- \subpage vk_khr_dedicated_allocation
|
|
- \subpage enabling_buffer_device_address
|
|
- \subpage vk_amd_device_coherent_memory
|
|
- \subpage general_considerations
|
|
- [Thread safety](@ref general_considerations_thread_safety)
|
|
- [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
|
|
- [Allocation algorithm](@ref general_considerations_allocation_algorithm)
|
|
- [Features not supported](@ref general_considerations_features_not_supported)
|
|
|
|
\section main_see_also See also
|
|
|
|
- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
|
|
- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*
|
|
Define this macro to 0/1 to disable/enable support for recording functionality,
|
|
available through VmaAllocatorCreateInfo::pRecordSettings.
|
|
*/
|
|
#ifndef VMA_RECORDING_ENABLED
|
|
#define VMA_RECORDING_ENABLED 0
|
|
#endif
|
|
|
|
#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS
|
|
extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
|
|
extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;
|
|
extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
|
|
extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
|
|
extern PFN_vkAllocateMemory vkAllocateMemory;
|
|
extern PFN_vkFreeMemory vkFreeMemory;
|
|
extern PFN_vkMapMemory vkMapMemory;
|
|
extern PFN_vkUnmapMemory vkUnmapMemory;
|
|
extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
|
|
extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
|
|
extern PFN_vkBindBufferMemory vkBindBufferMemory;
|
|
extern PFN_vkBindImageMemory vkBindImageMemory;
|
|
extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
|
|
extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
|
|
extern PFN_vkCreateBuffer vkCreateBuffer;
|
|
extern PFN_vkDestroyBuffer vkDestroyBuffer;
|
|
extern PFN_vkCreateImage vkCreateImage;
|
|
extern PFN_vkDestroyImage vkDestroyImage;
|
|
extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;
|
|
extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;
|
|
extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;
|
|
extern PFN_vkBindImageMemory2 vkBindImageMemory2;
|
|
extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;
|
|
#endif // #if VMA_VULKAN_VERSION >= 1001000
|
|
#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES
|
|
|
|
#ifndef VULKAN_H_
|
|
#include <vulkan/vulkan.h>
|
|
#endif
|
|
|
|
#if !defined(VK_VERSION_1_2)
|
|
// This one is tricky. Vulkan specification defines this code as available since
|
|
// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131.
|
|
// See pull request #207.
|
|
#define VK_ERROR_UNKNOWN ((VkResult)-13)
|
|
#endif
|
|
|
|
// Define this macro to declare maximum supported Vulkan version in format AAABBBCCC,
|
|
// where AAA = major, BBB = minor, CCC = patch.
|
|
// If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion.
|
|
#if !defined(VMA_VULKAN_VERSION)
|
|
#if defined(VK_VERSION_1_2)
|
|
#define VMA_VULKAN_VERSION 1002000
|
|
#elif defined(VK_VERSION_1_1)
|
|
#define VMA_VULKAN_VERSION 1001000
|
|
#else
|
|
#define VMA_VULKAN_VERSION 1000000
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(VMA_DEDICATED_ALLOCATION)
|
|
#if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
|
|
#define VMA_DEDICATED_ALLOCATION 1
|
|
#else
|
|
#define VMA_DEDICATED_ALLOCATION 0
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(VMA_BIND_MEMORY2)
|
|
#if VK_KHR_bind_memory2
|
|
#define VMA_BIND_MEMORY2 1
|
|
#else
|
|
#define VMA_BIND_MEMORY2 0
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(VMA_MEMORY_BUDGET)
|
|
#if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
|
|
#define VMA_MEMORY_BUDGET 1
|
|
#else
|
|
#define VMA_MEMORY_BUDGET 0
|
|
#endif
|
|
#endif
|
|
|
|
// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.
|
|
#if !defined(VMA_BUFFER_DEVICE_ADDRESS)
|
|
#if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000
|
|
#define VMA_BUFFER_DEVICE_ADDRESS 1
|
|
#else
|
|
#define VMA_BUFFER_DEVICE_ADDRESS 0
|
|
#endif
|
|
#endif
|
|
|
|
// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers.
|
|
#if !defined(VMA_MEMORY_PRIORITY)
|
|
#if VK_EXT_memory_priority
|
|
#define VMA_MEMORY_PRIORITY 1
|
|
#else
|
|
#define VMA_MEMORY_PRIORITY 0
|
|
#endif
|
|
#endif
|
|
|
|
// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers.
|
|
#if !defined(VMA_EXTERNAL_MEMORY)
|
|
#if VK_KHR_external_memory
|
|
#define VMA_EXTERNAL_MEMORY 1
|
|
#else
|
|
#define VMA_EXTERNAL_MEMORY 0
|
|
#endif
|
|
#endif
|
|
|
|
// Define these macros to decorate all public functions with additional code,
|
|
// before and after returned type, appropriately. This may be useful for
|
|
// exporting the functions when compiling VMA as a separate library. Example:
|
|
// #define VMA_CALL_PRE __declspec(dllexport)
|
|
// #define VMA_CALL_POST __cdecl
|
|
#ifndef VMA_CALL_PRE
|
|
#define VMA_CALL_PRE
|
|
#endif
|
|
#ifndef VMA_CALL_POST
|
|
#define VMA_CALL_POST
|
|
#endif
|
|
|
|
// Define this macro to decorate pointers with an attribute specifying the
|
|
// length of the array they point to if they are not null.
|
|
//
|
|
// The length may be one of
|
|
// - The name of another parameter in the argument list where the pointer is declared
|
|
// - The name of another member in the struct where the pointer is declared
|
|
// - The name of a member of a struct type, meaning the value of that member in
|
|
// the context of the call. For example
|
|
// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),
|
|
// this means the number of memory heaps available in the device associated
|
|
// with the VmaAllocator being dealt with.
|
|
#ifndef VMA_LEN_IF_NOT_NULL
|
|
#define VMA_LEN_IF_NOT_NULL(len)
|
|
#endif
|
|
|
|
// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.
|
|
// see: https://clang.llvm.org/docs/AttributeReference.html#nullable
|
|
#ifndef VMA_NULLABLE
|
|
#ifdef __clang__
|
|
#define VMA_NULLABLE _Nullable
|
|
#else
|
|
#define VMA_NULLABLE
|
|
#endif
|
|
#endif
|
|
|
|
// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.
|
|
// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull
|
|
#ifndef VMA_NOT_NULL
|
|
#ifdef __clang__
|
|
#define VMA_NOT_NULL _Nonnull
|
|
#else
|
|
#define VMA_NOT_NULL
|
|
#endif
|
|
#endif
|
|
|
|
// If non-dispatchable handles are represented as pointers then we can give
|
|
// then nullability annotations
|
|
#ifndef VMA_NOT_NULL_NON_DISPATCHABLE
|
|
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
|
|
#define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL
|
|
#else
|
|
#define VMA_NOT_NULL_NON_DISPATCHABLE
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_NULLABLE_NON_DISPATCHABLE
|
|
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
|
|
#define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE
|
|
#else
|
|
#define VMA_NULLABLE_NON_DISPATCHABLE
|
|
#endif
|
|
#endif
|
|
|
|
/** \struct VmaAllocator
|
|
\brief Represents main object of this library initialized.
|
|
|
|
Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
|
|
Call function vmaDestroyAllocator() to destroy it.
|
|
|
|
It is recommended to create just one object of this type per `VkDevice` object,
|
|
right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaAllocator)
|
|
|
|
/// Callback function called after successful vkAllocateMemory.
|
|
typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryType,
|
|
VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
|
|
VkDeviceSize size,
|
|
void* VMA_NULLABLE pUserData);
|
|
/// Callback function called before vkFreeMemory.
|
|
typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryType,
|
|
VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
|
|
VkDeviceSize size,
|
|
void* VMA_NULLABLE pUserData);
|
|
|
|
/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
|
|
|
|
Provided for informative purpose, e.g. to gather statistics about number of
|
|
allocations or total amount of memory allocated in Vulkan.
|
|
|
|
Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
|
|
*/
|
|
typedef struct VmaDeviceMemoryCallbacks {
|
|
/// Optional, can be null.
|
|
PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;
|
|
/// Optional, can be null.
|
|
PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;
|
|
/// Optional, can be null.
|
|
void* VMA_NULLABLE pUserData;
|
|
} VmaDeviceMemoryCallbacks;
|
|
|
|
/// Flags for created #VmaAllocator.
|
|
typedef enum VmaAllocatorCreateFlagBits {
|
|
/** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
|
|
|
|
Using this flag may increase performance because internal mutexes are not used.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
|
|
/** \brief Enables usage of VK_KHR_dedicated_allocation extension.
|
|
|
|
The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
|
|
When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
|
|
|
|
Using this extension will automatically allocate dedicated blocks of memory for
|
|
some buffers and images instead of suballocating place for them out of bigger
|
|
memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
|
|
flag) when it is recommended by the driver. It may improve performance on some
|
|
GPUs.
|
|
|
|
You may set this flag only if you found out that following device extensions are
|
|
supported, you enabled them while creating Vulkan device passed as
|
|
VmaAllocatorCreateInfo::device, and you want them to be used internally by this
|
|
library:
|
|
|
|
- VK_KHR_get_memory_requirements2 (device extension)
|
|
- VK_KHR_dedicated_allocation (device extension)
|
|
|
|
When this flag is set, you can experience following warnings reported by Vulkan
|
|
validation layer. You can ignore them.
|
|
|
|
> vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
|
|
/**
|
|
Enables usage of VK_KHR_bind_memory2 extension.
|
|
|
|
The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
|
|
When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
|
|
|
|
You may set this flag only if you found out that this device extension is supported,
|
|
you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
|
|
and you want it to be used internally by this library.
|
|
|
|
The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
|
|
which allow to pass a chain of `pNext` structures while binding.
|
|
This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
|
|
/**
|
|
Enables usage of VK_EXT_memory_budget extension.
|
|
|
|
You may set this flag only if you found out that this device extension is supported,
|
|
you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
|
|
and you want it to be used internally by this library, along with another instance extension
|
|
VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
|
|
|
|
The extension provides query for current memory usage and budget, which will probably
|
|
be more accurate than an estimation used by the library otherwise.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
|
|
/**
|
|
Enables usage of VK_AMD_device_coherent_memory extension.
|
|
|
|
You may set this flag only if you:
|
|
|
|
- found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
|
|
- checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,
|
|
- want it to be used internally by this library.
|
|
|
|
The extension and accompanying device feature provide access to memory types with
|
|
`VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.
|
|
They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.
|
|
|
|
When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.
|
|
To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,
|
|
returning `VK_ERROR_FEATURE_NOT_PRESENT`.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,
|
|
/**
|
|
Enables usage of "buffer device address" feature, which allows you to use function
|
|
`vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.
|
|
|
|
You may set this flag only if you:
|
|
|
|
1. (For Vulkan version < 1.2) Found as available and enabled device extension
|
|
VK_KHR_buffer_device_address.
|
|
This extension is promoted to core Vulkan 1.2.
|
|
2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`.
|
|
|
|
When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA.
|
|
The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to
|
|
allocated memory blocks wherever it might be needed.
|
|
|
|
For more information, see documentation chapter \ref enabling_buffer_device_address.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,
|
|
/**
|
|
Enables usage of VK_EXT_memory_priority extension in the library.
|
|
|
|
You may set this flag only if you found available and enabled this device extension,
|
|
along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`,
|
|
while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
|
|
|
|
When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority
|
|
are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored.
|
|
|
|
A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
|
|
Larger values are higher priority. The granularity of the priorities is implementation-dependent.
|
|
It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`.
|
|
The value to be used for default priority is 0.5.
|
|
For more details, see the documentation of the VK_EXT_memory_priority extension.
|
|
*/
|
|
VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040,
|
|
|
|
VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaAllocatorCreateFlagBits;
|
|
typedef VkFlags VmaAllocatorCreateFlags;
|
|
|
|
/** \brief Pointers to some Vulkan functions - a subset used by the library.
|
|
|
|
Used in VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
*/
|
|
typedef struct VmaVulkanFunctions {
|
|
/// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
|
|
PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr;
|
|
/// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
|
|
PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr;
|
|
PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;
|
|
PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;
|
|
PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;
|
|
PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;
|
|
PFN_vkMapMemory VMA_NULLABLE vkMapMemory;
|
|
PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;
|
|
PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;
|
|
PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;
|
|
PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;
|
|
PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;
|
|
PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;
|
|
PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;
|
|
PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;
|
|
PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;
|
|
PFN_vkCreateImage VMA_NULLABLE vkCreateImage;
|
|
PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;
|
|
PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
/// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
|
|
PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;
|
|
/// Fetch "vkGetImageMemoryRequirements 2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
|
|
PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;
|
|
#endif
|
|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
|
|
/// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension.
|
|
PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;
|
|
/// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension.
|
|
PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;
|
|
#endif
|
|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
|
|
PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;
|
|
#endif
|
|
} VmaVulkanFunctions;
|
|
|
|
/// Flags to be used in VmaRecordSettings::flags.
|
|
typedef enum VmaRecordFlagBits {
|
|
/** \brief Enables flush after recording every function call.
|
|
|
|
Enable it if you expect your application to crash, which may leave recording file truncated.
|
|
It may degrade performance though.
|
|
*/
|
|
VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001,
|
|
|
|
VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaRecordFlagBits;
|
|
typedef VkFlags VmaRecordFlags;
|
|
|
|
/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings.
|
|
typedef struct VmaRecordSettings
|
|
{
|
|
/// Flags for recording. Use #VmaRecordFlagBits enum.
|
|
VmaRecordFlags flags;
|
|
/** \brief Path to the file that should be written by the recording.
|
|
|
|
Suggested extension: "csv".
|
|
If the file already exists, it will be overwritten.
|
|
It will be opened for the whole time #VmaAllocator object is alive.
|
|
If opening this file fails, creation of the whole allocator object fails.
|
|
*/
|
|
const char* VMA_NOT_NULL pFilePath;
|
|
} VmaRecordSettings;
|
|
|
|
/// Description of a Allocator to be created.
|
|
typedef struct VmaAllocatorCreateInfo
|
|
{
|
|
/// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
|
|
VmaAllocatorCreateFlags flags;
|
|
/// Vulkan physical device.
|
|
/** It must be valid throughout whole lifetime of created allocator. */
|
|
VkPhysicalDevice VMA_NOT_NULL physicalDevice;
|
|
/// Vulkan device.
|
|
/** It must be valid throughout whole lifetime of created allocator. */
|
|
VkDevice VMA_NOT_NULL device;
|
|
/// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
|
|
/** Set to 0 to use default, which is currently 256 MiB. */
|
|
VkDeviceSize preferredLargeHeapBlockSize;
|
|
/// Custom CPU memory allocation callbacks. Optional.
|
|
/** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
|
|
const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
|
|
/// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
|
|
/** Optional, can be null. */
|
|
const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;
|
|
/** \brief Maximum number of additional frames that are in use at the same time as current frame.
|
|
|
|
This value is used only when you make allocations with
|
|
VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
|
|
lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
|
|
|
|
For example, if you double-buffer your command buffers, so resources used for
|
|
rendering in previous frame may still be in use by the GPU at the moment you
|
|
allocate resources needed for the current frame, set this value to 1.
|
|
|
|
If you want to allow any allocations other than used in the current frame to
|
|
become lost, set this value to 0.
|
|
*/
|
|
uint32_t frameInUseCount;
|
|
/** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
|
|
|
|
If not NULL, it must be a pointer to an array of
|
|
`VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
|
|
maximum number of bytes that can be allocated out of particular Vulkan memory
|
|
heap.
|
|
|
|
Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
|
|
heap. This is also the default in case of `pHeapSizeLimit` = NULL.
|
|
|
|
If there is a limit defined for a heap:
|
|
|
|
- If user tries to allocate more memory from that heap using this allocator,
|
|
the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
- If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
|
|
value of this limit will be reported instead when using vmaGetMemoryProperties().
|
|
|
|
Warning! Using this feature may not be equivalent to installing a GPU with
|
|
smaller amount of memory, because graphics driver doesn't necessary fail new
|
|
allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
|
|
exceeded. It may return success and just silently migrate some device memory
|
|
blocks to system RAM. This driver behavior can also be controlled using
|
|
VK_AMD_memory_overallocation_behavior extension.
|
|
*/
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;
|
|
|
|
/** \brief Pointers to Vulkan functions. Can be null.
|
|
|
|
For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).
|
|
*/
|
|
const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;
|
|
/** \brief Parameters for recording of VMA calls. Can be null.
|
|
|
|
If not null, it enables recording of calls to VMA functions to a file.
|
|
If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro,
|
|
creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`.
|
|
*/
|
|
const VmaRecordSettings* VMA_NULLABLE pRecordSettings;
|
|
/** \brief Handle to Vulkan instance object.
|
|
|
|
Starting from version 3.0.0 this member is no longer optional, it must be set!
|
|
*/
|
|
VkInstance VMA_NOT_NULL instance;
|
|
/** \brief Optional. The highest version of Vulkan that the application is designed to use.
|
|
|
|
It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
|
|
The patch version number specified is ignored. Only the major and minor versions are considered.
|
|
It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`.
|
|
Only versions 1.0, 1.1, 1.2 are supported by the current implementation.
|
|
Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
|
|
*/
|
|
uint32_t vulkanApiVersion;
|
|
#if VMA_EXTERNAL_MEMORY
|
|
/** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type.
|
|
|
|
If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount`
|
|
elements, defining external memory handle types of particular Vulkan memory type,
|
|
to be passed using `VkExportMemoryAllocateInfoKHR`.
|
|
|
|
Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type.
|
|
This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL.
|
|
*/
|
|
const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes;
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
} VmaAllocatorCreateInfo;
|
|
|
|
/// Creates Allocator object.
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
|
|
const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaAllocator VMA_NULLABLE * VMA_NOT_NULL pAllocator);
|
|
|
|
/// Destroys allocator object.
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
|
|
VmaAllocator VMA_NULLABLE allocator);
|
|
|
|
/** \brief Information about existing #VmaAllocator object.
|
|
*/
|
|
typedef struct VmaAllocatorInfo
|
|
{
|
|
/** \brief Handle to Vulkan instance object.
|
|
|
|
This is the same value as has been passed through VmaAllocatorCreateInfo::instance.
|
|
*/
|
|
VkInstance VMA_NOT_NULL instance;
|
|
/** \brief Handle to Vulkan physical device object.
|
|
|
|
This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.
|
|
*/
|
|
VkPhysicalDevice VMA_NOT_NULL physicalDevice;
|
|
/** \brief Handle to Vulkan device object.
|
|
|
|
This is the same value as has been passed through VmaAllocatorCreateInfo::device.
|
|
*/
|
|
VkDevice VMA_NOT_NULL device;
|
|
} VmaAllocatorInfo;
|
|
|
|
/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.
|
|
|
|
It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to
|
|
`VkPhysicalDevice`, `VkDevice` etc. every time using this function.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator VMA_NOT_NULL allocator, VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);
|
|
|
|
/**
|
|
PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
|
|
You can access it here, without fetching it again on your own.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkPhysicalDeviceProperties* VMA_NULLABLE * VMA_NOT_NULL ppPhysicalDeviceProperties);
|
|
|
|
/**
|
|
PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
|
|
You can access it here, without fetching it again on your own.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE * VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);
|
|
|
|
/**
|
|
\brief Given Memory Type Index, returns Property Flags of this memory type.
|
|
|
|
This is just a convenience function. Same information can be obtained using
|
|
vmaGetMemoryProperties().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryTypeIndex,
|
|
VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
|
|
|
|
/** \brief Sets index of the current frame.
|
|
|
|
This function must be used if you make allocations with
|
|
#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and
|
|
#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator
|
|
when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot
|
|
become lost in the current frame.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t frameIndex);
|
|
|
|
/** \brief Calculated statistics of memory usage in entire allocator.
|
|
*/
|
|
typedef struct VmaStatInfo
|
|
{
|
|
/// Number of `VkDeviceMemory` Vulkan memory blocks allocated.
|
|
uint32_t blockCount;
|
|
/// Number of #VmaAllocation allocation objects allocated.
|
|
uint32_t allocationCount;
|
|
/// Number of free ranges of memory between allocations.
|
|
uint32_t unusedRangeCount;
|
|
/// Total number of bytes occupied by all allocations.
|
|
VkDeviceSize usedBytes;
|
|
/// Total number of bytes occupied by unused ranges.
|
|
VkDeviceSize unusedBytes;
|
|
VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
|
|
VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
|
|
} VmaStatInfo;
|
|
|
|
/// General statistics from current state of Allocator.
|
|
typedef struct VmaStats
|
|
{
|
|
VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
|
|
VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
|
|
VmaStatInfo total;
|
|
} VmaStats;
|
|
|
|
/** \brief Retrieves statistics from current state of the Allocator.
|
|
|
|
This function is called "calculate" not "get" because it has to traverse all
|
|
internal data structures, so it may be quite slow. For faster but more brief statistics
|
|
suitable to be called every frame or every allocation, use vmaGetHeapBudgets().
|
|
|
|
Note that when using allocator from multiple threads, returned information may immediately
|
|
become outdated.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaStats* VMA_NOT_NULL pStats);
|
|
|
|
/** \brief Statistics of current memory usage and available budget, in bytes, for specific memory heap.
|
|
*/
|
|
typedef struct VmaBudget
|
|
{
|
|
/** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes.
|
|
*/
|
|
VkDeviceSize blockBytes;
|
|
|
|
/** \brief Sum size of all allocations created in particular heap, in bytes.
|
|
|
|
Usually less or equal than `blockBytes`.
|
|
Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused -
|
|
available for new allocations or wasted due to fragmentation.
|
|
|
|
It might be greater than `blockBytes` if there are some allocations in lost state, as they account
|
|
to this value as well.
|
|
*/
|
|
VkDeviceSize allocationBytes;
|
|
|
|
/** \brief Estimated current memory usage of the program, in bytes.
|
|
|
|
Fetched from system using `VK_EXT_memory_budget` extension if enabled.
|
|
|
|
It might be different than `blockBytes` (usually higher) due to additional implicit objects
|
|
also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
|
|
`VkDeviceMemory` blocks allocated outside of this library, if any.
|
|
*/
|
|
VkDeviceSize usage;
|
|
|
|
/** \brief Estimated amount of memory available to the program, in bytes.
|
|
|
|
Fetched from system using `VK_EXT_memory_budget` extension if enabled.
|
|
|
|
It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
|
|
external to the program, like other programs also consuming system resources.
|
|
Difference `budget - usage` is the amount of additional memory that can probably
|
|
be allocated without problems. Exceeding the budget may result in various problems.
|
|
*/
|
|
VkDeviceSize budget;
|
|
} VmaBudget;
|
|
|
|
/** \brief Retrieves information about current memory budget for all memory heaps.
|
|
|
|
\param allocator
|
|
\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used.
|
|
|
|
This function is called "get" not "calculate" because it is very fast, suitable to be called
|
|
every frame or every allocation. For more detailed statistics use vmaCalculateStats().
|
|
|
|
Note that when using allocator from multiple threads, returned information may immediately
|
|
become outdated.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaBudget* VMA_NOT_NULL pBudgets);
|
|
|
|
#ifndef VMA_STATS_STRING_ENABLED
|
|
#define VMA_STATS_STRING_ENABLED 1
|
|
#endif
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
/// Builds and returns statistics as a null-terminated string in JSON format.
|
|
/**
|
|
@param allocator
|
|
@param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
|
|
@param detailedMap
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString,
|
|
VkBool32 detailedMap);
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
char* VMA_NULLABLE pStatsString);
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
/** \struct VmaPool
|
|
\brief Represents custom memory pool
|
|
|
|
Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
|
|
Call function vmaDestroyPool() to destroy it.
|
|
|
|
For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaPool)
|
|
|
|
typedef enum VmaMemoryUsage
|
|
{
|
|
/** No intended memory usage specified.
|
|
Use other members of VmaAllocationCreateInfo to specify your requirements.
|
|
*/
|
|
VMA_MEMORY_USAGE_UNKNOWN = 0,
|
|
/** Memory will be used on device only, so fast access from the device is preferred.
|
|
It usually means device-local GPU (video) memory.
|
|
No need to be mappable on host.
|
|
It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`.
|
|
|
|
Usage:
|
|
|
|
- Resources written and read by device, e.g. images used as attachments.
|
|
- Resources transferred from host once (immutable) or infrequently and read by
|
|
device multiple times, e.g. textures to be sampled, vertex buffers, uniform
|
|
(constant) buffers, and majority of other types of resources used on GPU.
|
|
|
|
Allocation may still end up in `HOST_VISIBLE` memory on some implementations.
|
|
In such case, you are free to map it.
|
|
You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type.
|
|
*/
|
|
VMA_MEMORY_USAGE_GPU_ONLY = 1,
|
|
/** Memory will be mappable on host.
|
|
It usually means CPU (system) memory.
|
|
Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.
|
|
CPU access is typically uncached. Writes may be write-combined.
|
|
Resources created in this pool may still be accessible to the device, but access to them can be slow.
|
|
It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`.
|
|
|
|
Usage: Staging copy of resources used as transfer source.
|
|
*/
|
|
VMA_MEMORY_USAGE_CPU_ONLY = 2,
|
|
/**
|
|
Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU.
|
|
CPU access is typically uncached. Writes may be write-combined.
|
|
|
|
Usage: Resources written frequently by host (dynamic), read by device. E.g. textures (with LINEAR layout), vertex buffers, uniform buffers updated every frame or every draw call.
|
|
*/
|
|
VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
|
|
/** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached.
|
|
It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`.
|
|
|
|
Usage:
|
|
|
|
- Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping.
|
|
- Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection.
|
|
*/
|
|
VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
|
|
/** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`.
|
|
|
|
Usage: Staging copy of resources moved from GPU memory to CPU memory as part
|
|
of custom paging/residency mechanism, to be moved back to GPU memory when needed.
|
|
*/
|
|
VMA_MEMORY_USAGE_CPU_COPY = 5,
|
|
/** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
|
|
Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
|
|
|
|
Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
|
|
|
|
Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
*/
|
|
VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
|
|
|
|
VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaMemoryUsage;
|
|
|
|
/// Flags to be passed as VmaAllocationCreateInfo::flags.
|
|
typedef enum VmaAllocationCreateFlagBits {
|
|
/** \brief Set this flag if the allocation should have its own memory block.
|
|
|
|
Use it for special, big resources, like fullscreen images used as attachments.
|
|
|
|
You should not use this flag if VmaAllocationCreateInfo::pool is not null.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
|
|
|
|
/** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
|
|
|
|
If new allocation cannot be placed in any of the existing blocks, allocation
|
|
fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
|
|
|
|
You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
|
|
#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
|
|
|
|
If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */
|
|
VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
|
|
/** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
|
|
|
|
Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
|
|
|
|
It is valid to use this flag for allocation made from memory type that is not
|
|
`HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
|
|
useful if you need an allocation that is efficient to use on GPU
|
|
(`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
|
|
support it (e.g. Intel GPU).
|
|
|
|
You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
|
|
/** Allocation created with this flag can become lost as a result of another
|
|
allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you
|
|
must check it before use.
|
|
|
|
To check if allocation is not lost, call vmaGetAllocationInfo() and check if
|
|
VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.
|
|
|
|
For details about supporting lost allocations, see Lost Allocations
|
|
chapter of User Guide on Main Page.
|
|
|
|
You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,
|
|
/** While creating allocation using this flag, other allocations that were
|
|
created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost.
|
|
|
|
For details about supporting lost allocations, see Lost Allocations
|
|
chapter of User Guide on Main Page.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,
|
|
/** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
|
|
null-terminated string. Instead of copying pointer value, a local copy of the
|
|
string is made and stored in allocation's `pUserData`. The string is automatically
|
|
freed together with the allocation. It is also used in vmaBuildStatsString().
|
|
*/
|
|
VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
|
|
/** Allocation will be created from upper stack in a double stack pool.
|
|
|
|
This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
|
|
/** Create both buffer/image and allocation, but don't bind them together.
|
|
It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
|
|
The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
|
|
Otherwise it is ignored.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
|
|
/** Create allocation only if additional device memory required for it, if any, won't exceed
|
|
memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
|
|
/** \brief Set this flag if the allocated memory will have aliasing resources.
|
|
*
|
|
Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified.
|
|
Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200,
|
|
|
|
/** Allocation strategy that chooses smallest possible free range for the
|
|
allocation.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000,
|
|
/** Allocation strategy that chooses biggest possible free range for the
|
|
allocation.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000,
|
|
/** Allocation strategy that chooses first suitable free range for the
|
|
allocation.
|
|
|
|
"First" doesn't necessarily means the one with smallest offset in memory,
|
|
but rather the one that is easiest and fastest to find.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000,
|
|
|
|
/** Allocation strategy that tries to minimize memory usage.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT,
|
|
/** Allocation strategy that tries to minimize allocation time.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
|
|
/** Allocation strategy that tries to minimize memory fragmentation.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT,
|
|
|
|
/** A bit mask to extract only `STRATEGY` bits from entire set of flags.
|
|
*/
|
|
VMA_ALLOCATION_CREATE_STRATEGY_MASK =
|
|
VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT |
|
|
VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT |
|
|
VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
|
|
|
|
VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaAllocationCreateFlagBits;
|
|
typedef VkFlags VmaAllocationCreateFlags;
|
|
|
|
typedef struct VmaAllocationCreateInfo
|
|
{
|
|
/// Use #VmaAllocationCreateFlagBits enum.
|
|
VmaAllocationCreateFlags flags;
|
|
/** \brief Intended usage of memory.
|
|
|
|
You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
|
|
If `pool` is not null, this member is ignored.
|
|
*/
|
|
VmaMemoryUsage usage;
|
|
/** \brief Flags that must be set in a Memory Type chosen for an allocation.
|
|
|
|
Leave 0 if you specify memory requirements in other way. \n
|
|
If `pool` is not null, this member is ignored.*/
|
|
VkMemoryPropertyFlags requiredFlags;
|
|
/** \brief Flags that preferably should be set in a memory type chosen for an allocation.
|
|
|
|
Set to 0 if no additional flags are preferred. \n
|
|
If `pool` is not null, this member is ignored. */
|
|
VkMemoryPropertyFlags preferredFlags;
|
|
/** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
|
|
|
|
Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
|
|
it meets other requirements specified by this structure, with no further
|
|
restrictions on memory type index. \n
|
|
If `pool` is not null, this member is ignored.
|
|
*/
|
|
uint32_t memoryTypeBits;
|
|
/** \brief Pool that this allocation should be created in.
|
|
|
|
Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
|
|
`usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
|
|
*/
|
|
VmaPool VMA_NULLABLE pool;
|
|
/** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
|
|
|
|
If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
|
|
null or pointer to a null-terminated string. The string will be then copied to
|
|
internal buffer, so it doesn't need to be valid after allocation call.
|
|
*/
|
|
void* VMA_NULLABLE pUserData;
|
|
/** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
|
|
|
|
It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object
|
|
and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
Otherwise, it has the priority of a memory block where it is placed and this variable is ignored.
|
|
*/
|
|
float priority;
|
|
} VmaAllocationCreateInfo;
|
|
|
|
/**
|
|
\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
|
|
|
|
This algorithm tries to find a memory type that:
|
|
|
|
- Is allowed by memoryTypeBits.
|
|
- Contains all the flags from pAllocationCreateInfo->requiredFlags.
|
|
- Matches intended usage.
|
|
- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
|
|
|
|
\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
|
|
from this function or any other allocating function probably means that your
|
|
device doesn't support any memory type with requested features for the specific
|
|
type of resource you want to use it for. Please check parameters of your
|
|
resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t memoryTypeBits,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
|
|
|
|
/**
|
|
\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
|
|
|
|
It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
|
|
It internally creates a temporary, dummy buffer that never has memory bound.
|
|
It is just a convenience function, equivalent to calling:
|
|
|
|
- `vkCreateBuffer`
|
|
- `vkGetBufferMemoryRequirements`
|
|
- `vmaFindMemoryTypeIndex`
|
|
- `vkDestroyBuffer`
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
|
|
|
|
/**
|
|
\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
|
|
|
|
It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
|
|
It internally creates a temporary, dummy image that never has memory bound.
|
|
It is just a convenience function, equivalent to calling:
|
|
|
|
- `vkCreateImage`
|
|
- `vkGetImageMemoryRequirements`
|
|
- `vmaFindMemoryTypeIndex`
|
|
- `vkDestroyImage`
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
|
|
|
|
/// Flags to be passed as VmaPoolCreateInfo::flags.
|
|
typedef enum VmaPoolCreateFlagBits {
|
|
/** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
|
|
|
|
This is an optional optimization flag.
|
|
|
|
If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
|
|
vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
|
|
knows exact type of your allocations so it can handle Buffer-Image Granularity
|
|
in the optimal way.
|
|
|
|
If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
|
|
exact type of such allocations is not known, so allocator must be conservative
|
|
in handling Buffer-Image Granularity, which can lead to suboptimal allocation
|
|
(wasted memory). In that case, if you can make sure you always allocate only
|
|
buffers and linear images or only optimal images out of this pool, use this flag
|
|
to make allocator disregard Buffer-Image Granularity and so make allocations
|
|
faster and more optimal.
|
|
*/
|
|
VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
|
|
|
|
/** \brief Enables alternative, linear allocation algorithm in this pool.
|
|
|
|
Specify this flag to enable linear allocation algorithm, which always creates
|
|
new allocations after last one and doesn't reuse space from allocations freed in
|
|
between. It trades memory consumption for simplified algorithm and data
|
|
structure, which has better performance and uses less memory for metadata.
|
|
|
|
By using this flag, you can achieve behavior of free-at-once, stack,
|
|
ring buffer, and double stack.
|
|
For details, see documentation chapter \ref linear_algorithm.
|
|
|
|
When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default).
|
|
*/
|
|
VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
|
|
|
|
/** \brief Enables alternative, buddy allocation algorithm in this pool.
|
|
|
|
It operates on a tree of blocks, each having size that is a power of two and
|
|
a half of its parent's size. Comparing to default algorithm, this one provides
|
|
faster allocation and deallocation and decreased external fragmentation,
|
|
at the expense of more memory wasted (internal fragmentation).
|
|
For details, see documentation chapter \ref buddy_algorithm.
|
|
*/
|
|
VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008,
|
|
|
|
/** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
|
|
*/
|
|
VMA_POOL_CREATE_ALGORITHM_MASK =
|
|
VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT |
|
|
VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT,
|
|
|
|
VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaPoolCreateFlagBits;
|
|
/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits.
|
|
typedef VkFlags VmaPoolCreateFlags;
|
|
|
|
/** \brief Describes parameter of created #VmaPool.
|
|
*/
|
|
typedef struct VmaPoolCreateInfo {
|
|
/** \brief Vulkan memory type index to allocate this pool from.
|
|
*/
|
|
uint32_t memoryTypeIndex;
|
|
/** \brief Use combination of #VmaPoolCreateFlagBits.
|
|
*/
|
|
VmaPoolCreateFlags flags;
|
|
/** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
|
|
|
|
Specify nonzero to set explicit, constant size of memory blocks used by this
|
|
pool.
|
|
|
|
Leave 0 to use default and let the library manage block sizes automatically.
|
|
Sizes of particular blocks may vary.
|
|
*/
|
|
VkDeviceSize blockSize;
|
|
/** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
|
|
|
|
Set to 0 to have no preallocated blocks and allow the pool be completely empty.
|
|
*/
|
|
size_t minBlockCount;
|
|
/** \brief Maximum number of blocks that can be allocated in this pool. Optional.
|
|
|
|
Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
|
|
|
|
Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
|
|
throughout whole lifetime of this pool.
|
|
*/
|
|
size_t maxBlockCount;
|
|
/** \brief Maximum number of additional frames that are in use at the same time as current frame.
|
|
|
|
This value is used only when you make allocations with
|
|
#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
|
|
lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
|
|
|
|
For example, if you double-buffer your command buffers, so resources used for
|
|
rendering in previous frame may still be in use by the GPU at the moment you
|
|
allocate resources needed for the current frame, set this value to 1.
|
|
|
|
If you want to allow any allocations other than used in the current frame to
|
|
become lost, set this value to 0.
|
|
*/
|
|
uint32_t frameInUseCount;
|
|
/** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations.
|
|
|
|
It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object.
|
|
Otherwise, this variable is ignored.
|
|
*/
|
|
float priority;
|
|
/** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0.
|
|
|
|
Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two.
|
|
It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough,
|
|
e.g. when doing interop with OpenGL.
|
|
*/
|
|
VkDeviceSize minAllocationAlignment;
|
|
/** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional.
|
|
|
|
Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`.
|
|
It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`.
|
|
Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool.
|
|
|
|
Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`,
|
|
can be attached automatically by this library when using other, more convenient of its features.
|
|
*/
|
|
void* VMA_NULLABLE pMemoryAllocateNext;
|
|
} VmaPoolCreateInfo;
|
|
|
|
/** \brief Describes parameter of existing #VmaPool.
|
|
*/
|
|
typedef struct VmaPoolStats {
|
|
/** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.
|
|
*/
|
|
VkDeviceSize size;
|
|
/** \brief Total number of bytes in the pool not used by any #VmaAllocation.
|
|
*/
|
|
VkDeviceSize unusedSize;
|
|
/** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost.
|
|
*/
|
|
size_t allocationCount;
|
|
/** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.
|
|
*/
|
|
size_t unusedRangeCount;
|
|
/** \brief Size of the largest continuous free memory region available for new allocation.
|
|
|
|
Making a new allocation of that size is not guaranteed to succeed because of
|
|
possible additional margin required to respect alignment and buffer/image
|
|
granularity.
|
|
*/
|
|
VkDeviceSize unusedRangeSizeMax;
|
|
/** \brief Number of `VkDeviceMemory` blocks allocated for this pool.
|
|
*/
|
|
size_t blockCount;
|
|
} VmaPoolStats;
|
|
|
|
/** \brief Allocates Vulkan device memory and creates #VmaPool object.
|
|
|
|
@param allocator Allocator object.
|
|
@param pCreateInfo Parameters of pool to create.
|
|
@param[out] pPool Handle to created pool.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaPool VMA_NULLABLE * VMA_NOT_NULL pPool);
|
|
|
|
/** \brief Destroys #VmaPool object and frees Vulkan device memory.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NULLABLE pool);
|
|
|
|
/** \brief Retrieves statistics of existing #VmaPool object.
|
|
|
|
@param allocator Allocator object.
|
|
@param pool Pool object.
|
|
@param[out] pPoolStats Statistics of specified pool.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool,
|
|
VmaPoolStats* VMA_NOT_NULL pPoolStats);
|
|
|
|
/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.
|
|
|
|
@param allocator Allocator object.
|
|
@param pool Pool.
|
|
@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool,
|
|
size_t* VMA_NULLABLE pLostAllocationCount);
|
|
|
|
/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
|
|
|
|
Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
|
|
`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
|
|
`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
|
|
|
|
Possible return values:
|
|
|
|
- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
|
|
- `VK_SUCCESS` - corruption detection has been performed and succeeded.
|
|
- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
|
|
`VMA_ASSERT` is also fired in that case.
|
|
- Other value: Error returned by Vulkan, e.g. memory mapping failure.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator VMA_NOT_NULL allocator, VmaPool VMA_NOT_NULL pool);
|
|
|
|
/** \brief Retrieves name of a custom pool.
|
|
|
|
After the call `ppName` is either null or points to an internally-owned null-terminated string
|
|
containing name of the pool that was previously set. The pointer becomes invalid when the pool is
|
|
destroyed or its name is changed using vmaSetPoolName().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool,
|
|
const char* VMA_NULLABLE * VMA_NOT_NULL ppName);
|
|
|
|
/** \brief Sets name of a custom pool.
|
|
|
|
`pName` can be either null or pointer to a null-terminated string with new name for the pool.
|
|
Function makes internal copy of the string, so it can be changed or freed immediately after this call.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaPool VMA_NOT_NULL pool,
|
|
const char* VMA_NULLABLE pName);
|
|
|
|
/** \struct VmaAllocation
|
|
\brief Represents single memory allocation.
|
|
|
|
It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
|
|
plus unique offset.
|
|
|
|
There are multiple ways to create such object.
|
|
You need to fill structure VmaAllocationCreateInfo.
|
|
For more information see [Choosing memory type](@ref choosing_memory_type).
|
|
|
|
Although the library provides convenience functions that create Vulkan buffer or image,
|
|
allocate memory for it and bind them together,
|
|
binding of the allocation to a buffer or an image is out of scope of the allocation itself.
|
|
Allocation object can exist without buffer/image bound,
|
|
binding can be done manually by the user, and destruction of it can be done
|
|
independently of destruction of the allocation.
|
|
|
|
The object also remembers its size and some other information.
|
|
To retrieve this information, use function vmaGetAllocationInfo() and inspect
|
|
returned structure VmaAllocationInfo.
|
|
|
|
Some kinds allocations can be in lost state.
|
|
For more information, see [Lost allocations](@ref lost_allocations).
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaAllocation)
|
|
|
|
/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
|
|
*/
|
|
typedef struct VmaAllocationInfo {
|
|
/** \brief Memory type index that this allocation was allocated from.
|
|
|
|
It never changes.
|
|
*/
|
|
uint32_t memoryType;
|
|
/** \brief Handle to Vulkan memory object.
|
|
|
|
Same memory object can be shared by multiple allocations.
|
|
|
|
It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
|
|
|
|
If the allocation is lost, it is equal to `VK_NULL_HANDLE`.
|
|
*/
|
|
VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;
|
|
/** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation.
|
|
|
|
You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function
|
|
vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image,
|
|
not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation
|
|
and apply this offset automatically.
|
|
|
|
It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
|
|
*/
|
|
VkDeviceSize offset;
|
|
/** \brief Size of this allocation, in bytes.
|
|
|
|
It never changes, unless allocation is lost.
|
|
|
|
\note Allocation size returned in this variable may be greater than the size
|
|
requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the
|
|
allocation is accessible for operations on memory e.g. using a pointer after
|
|
mapping with vmaMapMemory(), but operations on the resource e.g. using
|
|
`vkCmdCopyBuffer` must be limited to the size of the resource.
|
|
*/
|
|
VkDeviceSize size;
|
|
/** \brief Pointer to the beginning of this allocation as mapped data.
|
|
|
|
If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
|
|
created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.
|
|
|
|
It can change after call to vmaMapMemory(), vmaUnmapMemory().
|
|
It can also change after call to vmaDefragment() if this allocation is passed to the function.
|
|
*/
|
|
void* VMA_NULLABLE pMappedData;
|
|
/** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
|
|
|
|
It can change after call to vmaSetAllocationUserData() for this allocation.
|
|
*/
|
|
void* VMA_NULLABLE pUserData;
|
|
} VmaAllocationInfo;
|
|
|
|
/** \brief General purpose memory allocation.
|
|
|
|
@param allocator
|
|
@param pVkMemoryRequirements
|
|
@param pCreateInfo
|
|
@param[out] pAllocation Handle to allocated memory.
|
|
@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
|
You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
|
|
|
|
It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
|
|
vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief General purpose memory allocation for multiple allocation objects at once.
|
|
|
|
@param allocator Allocator object.
|
|
@param pVkMemoryRequirements Memory requirements for each allocation.
|
|
@param pCreateInfo Creation parameters for each alloction.
|
|
@param allocationCount Number of allocations to make.
|
|
@param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
|
|
@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
|
|
|
|
You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
|
|
|
|
Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
|
|
It is just a general purpose allocation function able to make multiple allocations at once.
|
|
It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
|
|
|
|
All allocations are made using same parameters. All of them are created out of the same memory pool and type.
|
|
If any allocation fails, all allocations already made within this function call are also freed, so that when
|
|
returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo,
|
|
size_t allocationCount,
|
|
VmaAllocation VMA_NULLABLE * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
|
|
VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);
|
|
|
|
/**
|
|
@param allocator
|
|
@param buffer
|
|
@param pCreateInfo
|
|
@param[out] pAllocation Handle to allocated memory.
|
|
@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
|
You should free the memory using vmaFreeMemory().
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/// Function similar to vmaAllocateMemoryForBuffer().
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
|
|
|
|
Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VmaAllocation VMA_NULLABLE allocation);
|
|
|
|
/** \brief Frees memory and destroys multiple allocations.
|
|
|
|
Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
|
|
It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
|
|
vmaAllocateMemoryPages() and other functions.
|
|
It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
|
|
|
|
Allocations in `pAllocations` array can come from any memory pools and types.
|
|
Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
size_t allocationCount,
|
|
const VmaAllocation VMA_NULLABLE * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);
|
|
|
|
/** \brief Returns current information about specified allocation and atomically marks it as used in current frame.
|
|
|
|
Current paramteres of given allocation are returned in `pAllocationInfo`.
|
|
|
|
This function also atomically "touches" allocation - marks it as used in current frame,
|
|
just like vmaTouchAllocation().
|
|
If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`.
|
|
|
|
Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient,
|
|
you can avoid calling it too often.
|
|
|
|
- You can retrieve same VmaAllocationInfo structure while creating your resource, from function
|
|
vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
|
|
(e.g. due to defragmentation or allocation becoming lost).
|
|
- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);
|
|
|
|
/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame.
|
|
|
|
If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
|
|
this function returns `VK_TRUE` if it is not in lost state, so it can still be used.
|
|
It then also atomically "touches" the allocation - marks it as used in current frame,
|
|
so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames.
|
|
|
|
If the allocation is in lost state, the function returns `VK_FALSE`.
|
|
Memory of such allocation, as well as buffer or image bound to it, should not be used.
|
|
Lost allocation and the buffer/image still need to be destroyed.
|
|
|
|
If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
|
|
this function always returns `VK_TRUE`.
|
|
*/
|
|
VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation);
|
|
|
|
/** \brief Sets pUserData in given allocation to new value.
|
|
|
|
If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,
|
|
pUserData must be either null, or pointer to a null-terminated string. The function
|
|
makes local copy of the string and sets it as allocation's `pUserData`. String
|
|
passed as pUserData doesn't need to be valid for whole lifetime of the allocation -
|
|
you can free it after this call. String previously pointed by allocation's
|
|
pUserData is freed from memory.
|
|
|
|
If the flag was not used, the value of pointer `pUserData` is just copied to
|
|
allocation's `pUserData`. It is opaque, so you can use it however you want - e.g.
|
|
as a pointer, ordinal number or some handle to you own data.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
void* VMA_NULLABLE pUserData);
|
|
|
|
/** \brief Creates new allocation that is in lost state from the beginning.
|
|
|
|
It can be useful if you need a dummy, non-null allocation.
|
|
|
|
You still need to destroy created object using vmaFreeMemory().
|
|
|
|
Returned allocation is not tied to any specific memory pool or memory type and
|
|
not bound to any image or buffer. It has size = 0. It cannot be turned into
|
|
a real, non-empty allocation.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation);
|
|
|
|
/**
|
|
\brief Given an allocation, returns Property Flags of its memory type.
|
|
|
|
This is just a convenience function. Same information can be obtained using
|
|
vmaGetAllocationInfo() + vmaGetMemoryProperties().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
|
|
|
|
/** \brief Maps memory represented by given allocation and returns pointer to it.
|
|
|
|
Maps memory represented by given allocation to make it accessible to CPU code.
|
|
When succeeded, `*ppData` contains pointer to first byte of this memory.
|
|
If the allocation is part of bigger `VkDeviceMemory` block, the pointer is
|
|
correctly offsetted to the beginning of region assigned to this particular
|
|
allocation.
|
|
|
|
Mapping is internally reference-counted and synchronized, so despite raw Vulkan
|
|
function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
|
|
multiple times simultaneously, it is safe to call this function on allocations
|
|
assigned to the same memory block. Actual Vulkan memory will be mapped on first
|
|
mapping and unmapped on last unmapping.
|
|
|
|
If the function succeeded, you must call vmaUnmapMemory() to unmap the
|
|
allocation when mapping is no longer needed or before freeing the allocation, at
|
|
the latest.
|
|
|
|
It also safe to call this function multiple times on the same allocation. You
|
|
must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
|
|
|
|
It is also safe to call this function on allocation created with
|
|
#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
|
|
You must still call vmaUnmapMemory() same number of times as you called
|
|
vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
|
|
"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
|
|
|
|
This function fails when used on allocation made in memory type that is not
|
|
`HOST_VISIBLE`.
|
|
|
|
This function always fails when called for allocation that was created with
|
|
#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be
|
|
mapped.
|
|
|
|
This function doesn't automatically flush or invalidate caches.
|
|
If the allocation is made from a memory types that is not `HOST_COHERENT`,
|
|
you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
void* VMA_NULLABLE * VMA_NOT_NULL ppData);
|
|
|
|
/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
|
|
|
|
For details, see description of vmaMapMemory().
|
|
|
|
This function doesn't automatically flush or invalidate caches.
|
|
If the allocation is made from a memory types that is not `HOST_COHERENT`,
|
|
you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation);
|
|
|
|
/** \brief Flushes memory of given allocation.
|
|
|
|
Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
|
|
It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
|
|
Unmap operation doesn't do that automatically.
|
|
|
|
- `offset` must be relative to the beginning of allocation.
|
|
- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
|
|
- `offset` and `size` don't have to be aligned.
|
|
They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
|
|
- If `size` is 0, this call is ignored.
|
|
- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
|
|
this call is ignored.
|
|
|
|
Warning! `offset` and `size` are relative to the contents of given `allocation`.
|
|
If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
|
|
Do not pass allocation's offset as `offset`!!!
|
|
|
|
This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
|
|
called, otherwise `VK_SUCCESS`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size);
|
|
|
|
/** \brief Invalidates memory of given allocation.
|
|
|
|
Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
|
|
It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
|
|
Map operation doesn't do that automatically.
|
|
|
|
- `offset` must be relative to the beginning of allocation.
|
|
- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
|
|
- `offset` and `size` don't have to be aligned.
|
|
They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
|
|
- If `size` is 0, this call is ignored.
|
|
- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
|
|
this call is ignored.
|
|
|
|
Warning! `offset` and `size` are relative to the contents of given `allocation`.
|
|
If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
|
|
Do not pass allocation's offset as `offset`!!!
|
|
|
|
This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if
|
|
it is called, otherwise `VK_SUCCESS`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size);
|
|
|
|
/** \brief Flushes memory of given set of allocations.
|
|
|
|
Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations.
|
|
For more information, see documentation of vmaFlushAllocation().
|
|
|
|
\param allocator
|
|
\param allocationCount
|
|
\param allocations
|
|
\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
|
|
\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
|
|
|
|
This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
|
|
called, otherwise `VK_SUCCESS`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t allocationCount,
|
|
const VmaAllocation VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
|
|
|
|
/** \brief Invalidates memory of given set of allocations.
|
|
|
|
Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations.
|
|
For more information, see documentation of vmaInvalidateAllocation().
|
|
|
|
\param allocator
|
|
\param allocationCount
|
|
\param allocations
|
|
\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
|
|
\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
|
|
|
|
This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is
|
|
called, otherwise `VK_SUCCESS`.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
uint32_t allocationCount,
|
|
const VmaAllocation VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
|
|
const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
|
|
|
|
/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
|
|
|
|
@param allocator
|
|
@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
|
|
|
|
Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
|
|
`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
|
|
`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
|
|
|
|
Possible return values:
|
|
|
|
- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
|
|
- `VK_SUCCESS` - corruption detection has been performed and succeeded.
|
|
- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
|
|
`VMA_ASSERT` is also fired in that case.
|
|
- Other value: Error returned by Vulkan, e.g. memory mapping failure.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator VMA_NOT_NULL allocator, uint32_t memoryTypeBits);
|
|
|
|
/** \struct VmaDefragmentationContext
|
|
\brief Represents Opaque object that represents started defragmentation process.
|
|
|
|
Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it.
|
|
Call function vmaDefragmentationEnd() to destroy it.
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaDefragmentationContext)
|
|
|
|
/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use.
|
|
typedef enum VmaDefragmentationFlagBits {
|
|
VMA_DEFRAGMENTATION_FLAG_INCREMENTAL = 0x1,
|
|
VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaDefragmentationFlagBits;
|
|
typedef VkFlags VmaDefragmentationFlags;
|
|
|
|
/** \brief Parameters for defragmentation.
|
|
|
|
To be used with function vmaDefragmentationBegin().
|
|
*/
|
|
typedef struct VmaDefragmentationInfo2 {
|
|
/** \brief Reserved for future use. Should be 0.
|
|
*/
|
|
VmaDefragmentationFlags flags;
|
|
/** \brief Number of allocations in `pAllocations` array.
|
|
*/
|
|
uint32_t allocationCount;
|
|
/** \brief Pointer to array of allocations that can be defragmented.
|
|
|
|
The array should have `allocationCount` elements.
|
|
The array should not contain nulls.
|
|
Elements in the array should be unique - same allocation cannot occur twice.
|
|
It is safe to pass allocations that are in the lost state - they are ignored.
|
|
All allocations not present in this array are considered non-moveable during this defragmentation.
|
|
*/
|
|
const VmaAllocation VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations;
|
|
/** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation.
|
|
|
|
The array should have `allocationCount` elements.
|
|
You can pass null if you are not interested in this information.
|
|
*/
|
|
VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged;
|
|
/** \brief Numer of pools in `pPools` array.
|
|
*/
|
|
uint32_t poolCount;
|
|
/** \brief Either null or pointer to array of pools to be defragmented.
|
|
|
|
All the allocations in the specified pools can be moved during defragmentation
|
|
and there is no way to check if they were really moved as in `pAllocationsChanged`,
|
|
so you must query all the allocations in all these pools for new `VkDeviceMemory`
|
|
and offset using vmaGetAllocationInfo() if you might need to recreate buffers
|
|
and images bound to them.
|
|
|
|
The array should have `poolCount` elements.
|
|
The array should not contain nulls.
|
|
Elements in the array should be unique - same pool cannot occur twice.
|
|
|
|
Using this array is equivalent to specifying all allocations from the pools in `pAllocations`.
|
|
It might be more efficient.
|
|
*/
|
|
const VmaPool VMA_NOT_NULL * VMA_NULLABLE VMA_LEN_IF_NOT_NULL(poolCount) pPools;
|
|
/** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`.
|
|
|
|
`VK_WHOLE_SIZE` means no limit.
|
|
*/
|
|
VkDeviceSize maxCpuBytesToMove;
|
|
/** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`.
|
|
|
|
`UINT32_MAX` means no limit.
|
|
*/
|
|
uint32_t maxCpuAllocationsToMove;
|
|
/** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`.
|
|
|
|
`VK_WHOLE_SIZE` means no limit.
|
|
*/
|
|
VkDeviceSize maxGpuBytesToMove;
|
|
/** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`.
|
|
|
|
`UINT32_MAX` means no limit.
|
|
*/
|
|
uint32_t maxGpuAllocationsToMove;
|
|
/** \brief Optional. Command buffer where GPU copy commands will be posted.
|
|
|
|
If not null, it must be a valid command buffer handle that supports Transfer queue type.
|
|
It must be in the recording state and outside of a render pass instance.
|
|
You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd().
|
|
|
|
Passing null means that only CPU defragmentation will be performed.
|
|
*/
|
|
VkCommandBuffer VMA_NULLABLE commandBuffer;
|
|
} VmaDefragmentationInfo2;
|
|
|
|
typedef struct VmaDefragmentationPassMoveInfo {
|
|
VmaAllocation VMA_NOT_NULL allocation;
|
|
VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory;
|
|
VkDeviceSize offset;
|
|
} VmaDefragmentationPassMoveInfo;
|
|
|
|
/** \brief Parameters for incremental defragmentation steps.
|
|
|
|
To be used with function vmaBeginDefragmentationPass().
|
|
*/
|
|
typedef struct VmaDefragmentationPassInfo {
|
|
uint32_t moveCount;
|
|
VmaDefragmentationPassMoveInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(moveCount) pMoves;
|
|
} VmaDefragmentationPassInfo;
|
|
|
|
/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment().
|
|
|
|
\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
|
|
*/
|
|
typedef struct VmaDefragmentationInfo {
|
|
/** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
|
|
|
|
Default is `VK_WHOLE_SIZE`, which means no limit.
|
|
*/
|
|
VkDeviceSize maxBytesToMove;
|
|
/** \brief Maximum number of allocations that can be moved to different place.
|
|
|
|
Default is `UINT32_MAX`, which means no limit.
|
|
*/
|
|
uint32_t maxAllocationsToMove;
|
|
} VmaDefragmentationInfo;
|
|
|
|
/** \brief Statistics returned by function vmaDefragment(). */
|
|
typedef struct VmaDefragmentationStats {
|
|
/// Total number of bytes that have been copied while moving allocations to different places.
|
|
VkDeviceSize bytesMoved;
|
|
/// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
|
|
VkDeviceSize bytesFreed;
|
|
/// Number of allocations that have been moved to different places.
|
|
uint32_t allocationsMoved;
|
|
/// Number of empty `VkDeviceMemory` objects that have been released to the system.
|
|
uint32_t deviceMemoryBlocksFreed;
|
|
} VmaDefragmentationStats;
|
|
|
|
/** \brief Begins defragmentation process.
|
|
|
|
@param allocator Allocator object.
|
|
@param pInfo Structure filled with parameters of defragmentation.
|
|
@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information.
|
|
@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation.
|
|
@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error.
|
|
|
|
Use this function instead of old, deprecated vmaDefragment().
|
|
|
|
Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd():
|
|
|
|
- You should not use any of allocations passed as `pInfo->pAllocations` or
|
|
any allocations that belong to pools passed as `pInfo->pPools`,
|
|
including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access
|
|
their data.
|
|
- Some mutexes protecting internal data structures may be locked, so trying to
|
|
make or free any allocations, bind buffers or images, map memory, or launch
|
|
another simultaneous defragmentation in between may cause stall (when done on
|
|
another thread) or deadlock (when done on the same thread), unless you are
|
|
100% sure that defragmented allocations are in different pools.
|
|
- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined.
|
|
They become valid after call to vmaDefragmentationEnd().
|
|
- If `pInfo->commandBuffer` is not null, you must submit that command buffer
|
|
and make sure it finished execution before calling vmaDefragmentationEnd().
|
|
|
|
For more information and important limitations regarding defragmentation, see documentation chapter:
|
|
[Defragmentation](@ref defragmentation).
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VmaDefragmentationInfo2* VMA_NOT_NULL pInfo,
|
|
VmaDefragmentationStats* VMA_NULLABLE pStats,
|
|
VmaDefragmentationContext VMA_NULLABLE * VMA_NOT_NULL pContext);
|
|
|
|
/** \brief Ends defragmentation process.
|
|
|
|
Use this function to finish defragmentation started by vmaDefragmentationBegin().
|
|
It is safe to pass `context == null`. The function then does nothing.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaDefragmentationContext VMA_NULLABLE context);
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaDefragmentationContext VMA_NULLABLE context,
|
|
VmaDefragmentationPassInfo* VMA_NOT_NULL pInfo
|
|
);
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaDefragmentationContext VMA_NULLABLE context
|
|
);
|
|
|
|
/** \brief Deprecated. Compacts memory by moving allocations.
|
|
|
|
@param allocator
|
|
@param pAllocations Array of allocations that can be moved during this compation.
|
|
@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
|
|
@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
|
|
@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
|
|
@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
|
|
@return `VK_SUCCESS` if completed, negative error code in case of error.
|
|
|
|
\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
|
|
|
|
This function works by moving allocations to different places (different
|
|
`VkDeviceMemory` objects and/or different offsets) in order to optimize memory
|
|
usage. Only allocations that are in `pAllocations` array can be moved. All other
|
|
allocations are considered nonmovable in this call. Basic rules:
|
|
|
|
- Only allocations made in memory types that have
|
|
`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`
|
|
flags can be compacted. You may pass other allocations but it makes no sense -
|
|
these will never be moved.
|
|
- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or
|
|
#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations
|
|
passed to this function that come from such pools are ignored.
|
|
- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or
|
|
created as dedicated allocations for any other reason are also ignored.
|
|
- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT
|
|
flag can be compacted. If not persistently mapped, memory will be mapped
|
|
temporarily inside this function if needed.
|
|
- You must not pass same #VmaAllocation object multiple times in `pAllocations` array.
|
|
|
|
The function also frees empty `VkDeviceMemory` blocks.
|
|
|
|
Warning: This function may be time-consuming, so you shouldn't call it too often
|
|
(like after every resource creation/destruction).
|
|
You can call it on special occasions (like when reloading a game level or
|
|
when you just destroyed a lot of objects). Calling it every frame may be OK, but
|
|
you should measure that on your platform.
|
|
|
|
For more information, see [Defragmentation](@ref defragmentation) chapter.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VmaAllocation VMA_NOT_NULL * VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
|
|
size_t allocationCount,
|
|
VkBool32* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationsChanged,
|
|
const VmaDefragmentationInfo* VMA_NULLABLE pDefragmentationInfo,
|
|
VmaDefragmentationStats* VMA_NULLABLE pDefragmentationStats);
|
|
|
|
/** \brief Binds buffer to allocation.
|
|
|
|
Binds specified buffer to region of memory represented by specified allocation.
|
|
Gets `VkDeviceMemory` handle and offset from the allocation.
|
|
If you want to create a buffer, allocate memory for it and bind them together separately,
|
|
you should use this function for binding instead of standard `vkBindBufferMemory()`,
|
|
because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
|
|
allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
|
|
(which is illegal in Vulkan).
|
|
|
|
It is recommended to use function vmaCreateBuffer() instead of this one.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);
|
|
|
|
/** \brief Binds buffer to allocation with additional parameters.
|
|
|
|
@param allocator
|
|
@param allocation
|
|
@param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
|
|
@param buffer
|
|
@param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
|
|
|
|
This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
|
|
|
|
If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
|
|
or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
|
|
const void* VMA_NULLABLE pNext);
|
|
|
|
/** \brief Binds image to allocation.
|
|
|
|
Binds specified image to region of memory represented by specified allocation.
|
|
Gets `VkDeviceMemory` handle and offset from the allocation.
|
|
If you want to create an image, allocate memory for it and bind them together separately,
|
|
you should use this function for binding instead of standard `vkBindImageMemory()`,
|
|
because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
|
|
allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
|
|
(which is illegal in Vulkan).
|
|
|
|
It is recommended to use function vmaCreateImage() instead of this one.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);
|
|
|
|
/** \brief Binds image to allocation with additional parameters.
|
|
|
|
@param allocator
|
|
@param allocation
|
|
@param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
|
|
@param image
|
|
@param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
|
|
|
|
This function is similar to vmaBindImageMemory(), but it provides additional parameters.
|
|
|
|
If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
|
|
or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
|
|
const void* VMA_NULLABLE pNext);
|
|
|
|
/**
|
|
@param allocator
|
|
@param pBufferCreateInfo
|
|
@param pAllocationCreateInfo
|
|
@param[out] pBuffer Buffer that was created.
|
|
@param[out] pAllocation Allocation that was created.
|
|
@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
|
|
|
|
This function automatically:
|
|
|
|
-# Creates buffer.
|
|
-# Allocates appropriate memory for it.
|
|
-# Binds the buffer with the memory.
|
|
|
|
If any of these operations fail, buffer and allocation are not created,
|
|
returned value is negative error code, *pBuffer and *pAllocation are null.
|
|
|
|
If the function succeeded, you must destroy both buffer and allocation when you
|
|
no longer need them using either convenience function vmaDestroyBuffer() or
|
|
separately, using `vkDestroyBuffer()` and vmaFreeMemory().
|
|
|
|
If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
|
|
VK_KHR_dedicated_allocation extension is used internally to query driver whether
|
|
it requires or prefers the new buffer to have dedicated allocation. If yes,
|
|
and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null
|
|
and #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
|
|
allocation for this buffer, just like when using
|
|
#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
|
|
\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer,
|
|
although recommended as a good practice, is out of scope of this library and could be implemented
|
|
by the user as a higher-level logic on top of VMA.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pBuffer,
|
|
VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief Creates a buffer with additional minimum alignment.
|
|
|
|
Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom,
|
|
minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g.
|
|
for interop with OpenGL.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
VkDeviceSize minAlignment,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pBuffer,
|
|
VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief Destroys Vulkan buffer and frees allocated memory.
|
|
|
|
This is just a convenience function equivalent to:
|
|
|
|
\code
|
|
vkDestroyBuffer(device, buffer, allocationCallbacks);
|
|
vmaFreeMemory(allocator, allocation);
|
|
\endcode
|
|
|
|
It it safe to pass null as buffer and/or allocation.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,
|
|
VmaAllocation VMA_NULLABLE allocation);
|
|
|
|
/// Function similar to vmaCreateBuffer().
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
|
|
const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE * VMA_NOT_NULL pImage,
|
|
VmaAllocation VMA_NULLABLE * VMA_NOT_NULL pAllocation,
|
|
VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
|
|
|
|
/** \brief Destroys Vulkan image and frees allocated memory.
|
|
|
|
This is just a convenience function equivalent to:
|
|
|
|
\code
|
|
vkDestroyImage(device, image, allocationCallbacks);
|
|
vmaFreeMemory(allocator, allocation);
|
|
\endcode
|
|
|
|
It it safe to pass null as image and/or allocation.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
|
|
VmaAllocation VMA_NULLABLE allocation);
|
|
|
|
/// Flags to be passed as VmaVirtualBlockCreateInfo::flags.
|
|
typedef enum VmaVirtualBlockCreateFlagBits {
|
|
/** \brief Enables alternative, linear allocation algorithm in this virtual block.
|
|
|
|
Specify this flag to enable linear allocation algorithm, which always creates
|
|
new allocations after last one and doesn't reuse space from allocations freed in
|
|
between. It trades memory consumption for simplified algorithm and data
|
|
structure, which has better performance and uses less memory for metadata.
|
|
|
|
By using this flag, you can achieve behavior of free-at-once, stack,
|
|
ring buffer, and double stack.
|
|
For details, see documentation chapter \ref linear_algorithm.
|
|
*/
|
|
VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001,
|
|
|
|
/** \brief Enables alternative, buddy allocation algorithm in this virtual block.
|
|
|
|
It operates on a tree of blocks, each having size that is a power of two and
|
|
a half of its parent's size. Comparing to default algorithm, this one provides
|
|
faster allocation and deallocation and decreased external fragmentation,
|
|
at the expense of more memory wasted (internal fragmentation).
|
|
For details, see documentation chapter \ref buddy_algorithm.
|
|
*/
|
|
VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT = 0x00000002,
|
|
|
|
/** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags.
|
|
*/
|
|
VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK =
|
|
VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT |
|
|
VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT,
|
|
|
|
VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaVirtualBlockCreateFlagBits;
|
|
/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits.
|
|
typedef VkFlags VmaVirtualBlockCreateFlags;
|
|
|
|
/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock().
|
|
typedef struct VmaVirtualBlockCreateInfo
|
|
{
|
|
/** \brief Total size of the virtual block.
|
|
|
|
Sizes can be expressed in bytes or any units you want as long as you are consistent in using them.
|
|
For example, if you allocate from some array of structures, 1 can mean single instance of entire structure.
|
|
*/
|
|
VkDeviceSize size;
|
|
|
|
/** \brief Use combination of #VmaVirtualBlockCreateFlagBits.
|
|
*/
|
|
VmaVirtualBlockCreateFlagBits flags;
|
|
|
|
/** \brief Custom CPU memory allocation callbacks. Optional.
|
|
|
|
Optional, can be null. When specified, they will be used for all CPU-side memory allocations.
|
|
*/
|
|
const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
|
|
} VmaVirtualBlockCreateInfo;
|
|
|
|
/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags.
|
|
typedef enum VmaVirtualAllocationCreateFlagBits {
|
|
/** \brief Allocation will be created from upper stack in a double stack pool.
|
|
|
|
This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT,
|
|
/** \brief Allocation strategy that tries to minimize memory usage.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
|
|
/** \brief Allocation strategy that tries to minimize allocation time.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
|
|
/** \brief Allocation strategy that tries to minimize memory fragmentation.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT,
|
|
/** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags.
|
|
|
|
These stategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits.
|
|
*/
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK,
|
|
|
|
VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
|
|
} VmaVirtualAllocationCreateFlagBits;
|
|
/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits.
|
|
typedef VkFlags VmaVirtualAllocationCreateFlags;
|
|
|
|
/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate().
|
|
typedef struct VmaVirtualAllocationCreateInfo
|
|
{
|
|
/** \brief Size of the allocation.
|
|
|
|
Cannot be zero.
|
|
*/
|
|
VkDeviceSize size;
|
|
/** \brief Required alignment of the allocation. Optional.
|
|
|
|
Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset.
|
|
*/
|
|
VkDeviceSize alignment;
|
|
/** \brief Use combination of #VmaVirtualAllocationCreateFlagBits.
|
|
*/
|
|
VmaVirtualAllocationCreateFlags flags;
|
|
/** \brief Custom pointer to be associated with the allocation. Optional.
|
|
|
|
It can be any value and can be used for user-defined purposes. It can be fetched or changed later.
|
|
*/
|
|
void* VMA_NULLABLE pUserData;
|
|
} VmaVirtualAllocationCreateInfo;
|
|
|
|
/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo().
|
|
typedef struct VmaVirtualAllocationInfo
|
|
{
|
|
/** \brief Size of the allocation.
|
|
|
|
Same value as passed in VmaVirtualAllocationCreateInfo::size.
|
|
*/
|
|
VkDeviceSize size;
|
|
/** \brief Custom pointer associated with the allocation.
|
|
|
|
Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData().
|
|
*/
|
|
void* VMA_NULLABLE pUserData;
|
|
} VmaVirtualAllocationInfo;
|
|
|
|
/** \struct VmaVirtualBlock
|
|
\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory.
|
|
|
|
Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it.
|
|
For more information, see documentation chapter \ref virtual_allocator.
|
|
|
|
This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally.
|
|
*/
|
|
VK_DEFINE_HANDLE(VmaVirtualBlock);
|
|
|
|
/** \brief Creates new #VmaVirtualBlock object.
|
|
|
|
\param pCreateInfo Parameters for creation.
|
|
\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
|
|
const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock);
|
|
|
|
/** \brief Destroys #VmaVirtualBlock object.
|
|
|
|
Please note that you should consciously handle virtual allocations that could remain unfreed in the block.
|
|
You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock()
|
|
if you are sure this is what you want. If you do neither, an assert is called.
|
|
|
|
If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`,
|
|
don't forget to free them.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock);
|
|
|
|
/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations.
|
|
*/
|
|
VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock);
|
|
|
|
/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VkDeviceSize offset, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo);
|
|
|
|
/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock.
|
|
|
|
There is no handle type for a virtual allocation.
|
|
Virtual allocations within a specific virtual block are uniquely identified by their offsets.
|
|
|
|
If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned
|
|
(despite the function doesn't ever allocate actual GPU memory).
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VkDeviceSize* VMA_NOT_NULL pOffset);
|
|
|
|
/** \brief Frees virtual allocation inside given #VmaVirtualBlock.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VkDeviceSize offset);
|
|
|
|
/** \brief Frees all virtual allocations inside given #VmaVirtualBlock.
|
|
|
|
You must either call this function or free each virtual allocation individually with vmaVirtualFree()
|
|
before destroying a virtual block. Otherwise, an assert is called.
|
|
|
|
If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`,
|
|
don't forget to free it as well.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock);
|
|
|
|
/** \brief Changes custom pointer associated with given virtual allocation.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VkDeviceSize offset, void* VMA_NULLABLE pUserData);
|
|
|
|
/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStats(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaStatInfo* VMA_NOT_NULL pStatInfo);
|
|
|
|
/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock.
|
|
\param virtualBlock Virtual block.
|
|
\param[out] ppStatsString Returned string.
|
|
\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStats(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces.
|
|
|
|
Returned string must be freed using vmaFreeVirtualBlockStatsString().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap);
|
|
|
|
/** \brief Frees a string returned by vmaBuildVirtualBlockStatsString().
|
|
*/
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
char* VMA_NULLABLE pStatsString);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPLEMENTATION
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// For Visual Studio IntelliSense.
|
|
#if defined(__cplusplus) && defined(__INTELLISENSE__)
|
|
#define VMA_IMPLEMENTATION
|
|
#endif
|
|
|
|
#ifdef VMA_IMPLEMENTATION
|
|
#undef VMA_IMPLEMENTATION
|
|
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <utility>
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
#include <chrono>
|
|
#if defined(_WIN32)
|
|
#include <windows.h>
|
|
#else
|
|
#include <sstream>
|
|
#include <thread>
|
|
#endif
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
CONFIGURATION SECTION
|
|
|
|
Define some of these macros before each #include of this header or change them
|
|
here if you need other then default behavior depending on your environment.
|
|
*/
|
|
|
|
/*
|
|
Define this macro to 1 to make the library fetch pointers to Vulkan functions
|
|
internally, like:
|
|
|
|
vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
|
|
*/
|
|
#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
|
|
#define VMA_STATIC_VULKAN_FUNCTIONS 1
|
|
#endif
|
|
|
|
/*
|
|
Define this macro to 1 to make the library fetch pointers to Vulkan functions
|
|
internally, like:
|
|
|
|
vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory");
|
|
|
|
To use this feature in new versions of VMA you now have to pass
|
|
VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as
|
|
VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null.
|
|
*/
|
|
#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)
|
|
#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
|
|
#endif
|
|
|
|
// Define this macro to 1 to make the library use STL containers instead of its own implementation.
|
|
//#define VMA_USE_STL_CONTAINERS 1
|
|
|
|
/* Set this macro to 1 to make the library including and using STL containers:
|
|
std::pair, std::vector, std::list, std::unordered_map.
|
|
|
|
Set it to 0 or undefined to make the library using its own implementation of
|
|
the containers.
|
|
*/
|
|
#if VMA_USE_STL_CONTAINERS
|
|
#define VMA_USE_STL_VECTOR 1
|
|
#define VMA_USE_STL_UNORDERED_MAP 1
|
|
#define VMA_USE_STL_LIST 1
|
|
#endif
|
|
|
|
#ifndef VMA_USE_STL_SHARED_MUTEX
|
|
// Compiler conforms to C++17.
|
|
#if __cplusplus >= 201703L
|
|
#define VMA_USE_STL_SHARED_MUTEX 1
|
|
// Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
|
|
// Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
|
|
#elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
|
|
#define VMA_USE_STL_SHARED_MUTEX 1
|
|
#else
|
|
#define VMA_USE_STL_SHARED_MUTEX 0
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
THESE INCLUDES ARE NOT ENABLED BY DEFAULT.
|
|
Library has its own container implementation.
|
|
*/
|
|
#if VMA_USE_STL_VECTOR
|
|
#include <vector>
|
|
#endif
|
|
|
|
#if VMA_USE_STL_UNORDERED_MAP
|
|
#include <unordered_map>
|
|
#endif
|
|
|
|
#if VMA_USE_STL_LIST
|
|
#include <list>
|
|
#endif
|
|
|
|
/*
|
|
Following headers are used in this CONFIGURATION section only, so feel free to
|
|
remove them if not needed.
|
|
*/
|
|
#include <cassert> // for assert
|
|
#include <algorithm> // for min, max
|
|
#include <mutex>
|
|
|
|
#ifndef VMA_NULL
|
|
// Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
|
|
#define VMA_NULL nullptr
|
|
#endif
|
|
|
|
#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
|
|
#include <cstdlib>
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
// alignment must be >= sizeof(void*)
|
|
if(alignment < sizeof(void*))
|
|
{
|
|
alignment = sizeof(void*);
|
|
}
|
|
|
|
return memalign(alignment, size);
|
|
}
|
|
#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
|
|
#include <cstdlib>
|
|
|
|
#if defined(__APPLE__)
|
|
#include <AvailabilityMacros.h>
|
|
#endif
|
|
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
// Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4)
|
|
// Therefore, for now disable this specific exception until a proper solution is found.
|
|
//#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0))
|
|
//#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0
|
|
// // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only
|
|
// // with the MacOSX11.0 SDK in Xcode 12 (which is what adds
|
|
// // MAC_OS_X_VERSION_10_16), even though the function is marked
|
|
// // availabe for 10.15. That is why the preprocessor checks for 10.16 but
|
|
// // the __builtin_available checks for 10.15.
|
|
// // People who use C++17 could call aligned_alloc with the 10.15 SDK already.
|
|
// if (__builtin_available(macOS 10.15, iOS 13, *))
|
|
// return aligned_alloc(alignment, size);
|
|
//#endif
|
|
//#endif
|
|
|
|
// alignment must be >= sizeof(void*)
|
|
if(alignment < sizeof(void*))
|
|
{
|
|
alignment = sizeof(void*);
|
|
}
|
|
|
|
void *pointer;
|
|
if(posix_memalign(&pointer, alignment, size) == 0)
|
|
return pointer;
|
|
return VMA_NULL;
|
|
}
|
|
#elif defined(_WIN32)
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
return _aligned_malloc(size, alignment);
|
|
}
|
|
#else
|
|
static void* vma_aligned_alloc(size_t alignment, size_t size)
|
|
{
|
|
return aligned_alloc(alignment, size);
|
|
}
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
static void vma_aligned_free(void* ptr)
|
|
{
|
|
_aligned_free(ptr);
|
|
}
|
|
#else
|
|
static void vma_aligned_free(void* VMA_NULLABLE ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
#endif
|
|
|
|
// If your compiler is not compatible with C++11 and definition of
|
|
// aligned_alloc() function is missing, uncommeting following line may help:
|
|
|
|
//#include <malloc.h>
|
|
|
|
// Normal assert to check for programmer's errors, especially in Debug configuration.
|
|
#ifndef VMA_ASSERT
|
|
#ifdef NDEBUG
|
|
#define VMA_ASSERT(expr)
|
|
#else
|
|
#define VMA_ASSERT(expr) assert(expr)
|
|
#endif
|
|
#endif
|
|
|
|
// Assert that will be called very often, like inside data structures e.g. operator[].
|
|
// Making it non-empty can make program slow.
|
|
#ifndef VMA_HEAVY_ASSERT
|
|
#ifdef NDEBUG
|
|
#define VMA_HEAVY_ASSERT(expr)
|
|
#else
|
|
#define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_ALIGN_OF
|
|
#define VMA_ALIGN_OF(type) (__alignof(type))
|
|
#endif
|
|
|
|
#ifndef VMA_SYSTEM_ALIGNED_MALLOC
|
|
#define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size))
|
|
#endif
|
|
|
|
#ifndef VMA_SYSTEM_ALIGNED_FREE
|
|
// VMA_SYSTEM_FREE is the old name, but might have been defined by the user
|
|
#if defined(VMA_SYSTEM_FREE)
|
|
#define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr)
|
|
#else
|
|
#define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_MIN
|
|
#define VMA_MIN(v1, v2) ((std::min)((v1), (v2)))
|
|
#endif
|
|
|
|
#ifndef VMA_MAX
|
|
#define VMA_MAX(v1, v2) ((std::max)((v1), (v2)))
|
|
#endif
|
|
|
|
#ifndef VMA_SWAP
|
|
#define VMA_SWAP(v1, v2) std::swap((v1), (v2))
|
|
#endif
|
|
|
|
#ifndef VMA_SORT
|
|
#define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_LOG
|
|
#define VMA_DEBUG_LOG(format, ...)
|
|
/*
|
|
#define VMA_DEBUG_LOG(format, ...) do { \
|
|
printf(format, __VA_ARGS__); \
|
|
printf("\n"); \
|
|
} while(false)
|
|
*/
|
|
#endif
|
|
|
|
// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num)
|
|
{
|
|
snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
|
|
}
|
|
static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num)
|
|
{
|
|
snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
|
|
}
|
|
static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr)
|
|
{
|
|
snprintf(outStr, strLen, "%p", ptr);
|
|
}
|
|
#endif
|
|
|
|
#ifndef VMA_MUTEX
|
|
class VmaMutex
|
|
{
|
|
public:
|
|
void Lock() { m_Mutex.lock(); }
|
|
void Unlock() { m_Mutex.unlock(); }
|
|
bool TryLock() { return m_Mutex.try_lock(); }
|
|
private:
|
|
std::mutex m_Mutex;
|
|
};
|
|
#define VMA_MUTEX VmaMutex
|
|
#endif
|
|
|
|
// Read-write mutex, where "read" is shared access, "write" is exclusive access.
|
|
#ifndef VMA_RW_MUTEX
|
|
#if VMA_USE_STL_SHARED_MUTEX
|
|
// Use std::shared_mutex from C++17.
|
|
#include <shared_mutex>
|
|
class VmaRWMutex
|
|
{
|
|
public:
|
|
void LockRead() { m_Mutex.lock_shared(); }
|
|
void UnlockRead() { m_Mutex.unlock_shared(); }
|
|
bool TryLockRead() { return m_Mutex.try_lock_shared(); }
|
|
void LockWrite() { m_Mutex.lock(); }
|
|
void UnlockWrite() { m_Mutex.unlock(); }
|
|
bool TryLockWrite() { return m_Mutex.try_lock(); }
|
|
private:
|
|
std::shared_mutex m_Mutex;
|
|
};
|
|
#define VMA_RW_MUTEX VmaRWMutex
|
|
#elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
|
|
// Use SRWLOCK from WinAPI.
|
|
// Minimum supported client = Windows Vista, server = Windows Server 2008.
|
|
class VmaRWMutex
|
|
{
|
|
public:
|
|
VmaRWMutex() { InitializeSRWLock(&m_Lock); }
|
|
void LockRead() { AcquireSRWLockShared(&m_Lock); }
|
|
void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
|
|
bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }
|
|
void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
|
|
void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
|
|
bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }
|
|
private:
|
|
SRWLOCK m_Lock;
|
|
};
|
|
#define VMA_RW_MUTEX VmaRWMutex
|
|
#else
|
|
// Less efficient fallback: Use normal mutex.
|
|
class VmaRWMutex
|
|
{
|
|
public:
|
|
void LockRead() { m_Mutex.Lock(); }
|
|
void UnlockRead() { m_Mutex.Unlock(); }
|
|
bool TryLockRead() { return m_Mutex.TryLock(); }
|
|
void LockWrite() { m_Mutex.Lock(); }
|
|
void UnlockWrite() { m_Mutex.Unlock(); }
|
|
bool TryLockWrite() { return m_Mutex.TryLock(); }
|
|
private:
|
|
VMA_MUTEX m_Mutex;
|
|
};
|
|
#define VMA_RW_MUTEX VmaRWMutex
|
|
#endif // #if VMA_USE_STL_SHARED_MUTEX
|
|
#endif // #ifndef VMA_RW_MUTEX
|
|
|
|
/*
|
|
If providing your own implementation, you need to implement a subset of std::atomic.
|
|
*/
|
|
#ifndef VMA_ATOMIC_UINT32
|
|
#include <atomic>
|
|
#define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
|
|
#endif
|
|
|
|
#ifndef VMA_ATOMIC_UINT64
|
|
#include <atomic>
|
|
#define VMA_ATOMIC_UINT64 std::atomic<uint64_t>
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
|
|
/**
|
|
Every allocation will have its own memory block.
|
|
Define to 1 for debugging purposes only.
|
|
*/
|
|
#define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
|
|
#endif
|
|
|
|
#ifndef VMA_MIN_ALIGNMENT
|
|
/**
|
|
Minimum alignment of all allocations, in bytes.
|
|
Set to more than 1 for debugging purposes. Must be power of two.
|
|
*/
|
|
#ifdef VMA_DEBUG_ALIGNMENT // Old name
|
|
#define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT
|
|
#else
|
|
#define VMA_MIN_ALIGNMENT (1)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_MARGIN
|
|
/**
|
|
Minimum margin before and after every allocation, in bytes.
|
|
Set nonzero for debugging purposes only.
|
|
*/
|
|
#define VMA_DEBUG_MARGIN (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
|
|
/**
|
|
Define this macro to 1 to automatically fill new allocations and destroyed
|
|
allocations with some bit pattern.
|
|
*/
|
|
#define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_DETECT_CORRUPTION
|
|
/**
|
|
Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
|
|
enable writing magic value to the margin before and after every allocation and
|
|
validating it, so that memory corruptions (out-of-bounds writes) are detected.
|
|
*/
|
|
#define VMA_DEBUG_DETECT_CORRUPTION (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_GLOBAL_MUTEX
|
|
/**
|
|
Set this to 1 for debugging purposes only, to enable single mutex protecting all
|
|
entry calls to the library. Can be useful for debugging multithreading issues.
|
|
*/
|
|
#define VMA_DEBUG_GLOBAL_MUTEX (0)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
|
|
/**
|
|
Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
|
|
Set to more than 1 for debugging purposes only. Must be power of two.
|
|
*/
|
|
#define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
|
|
#endif
|
|
|
|
#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
|
|
/*
|
|
Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount
|
|
and return error instead of leaving up to Vulkan implementation what to do in such cases.
|
|
*/
|
|
#define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0)
|
|
#endif
|
|
|
|
#ifndef VMA_SMALL_HEAP_MAX_SIZE
|
|
/// Maximum size of a memory heap in Vulkan to consider it "small".
|
|
#define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
|
|
#endif
|
|
|
|
#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
|
|
/// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
|
|
#define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
|
|
#endif
|
|
|
|
#ifndef VMA_CLASS_NO_COPY
|
|
#define VMA_CLASS_NO_COPY(className) \
|
|
private: \
|
|
className(const className&) = delete; \
|
|
className& operator=(const className&) = delete;
|
|
#endif
|
|
|
|
static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
|
|
|
|
// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
|
|
static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
|
|
|
|
static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
|
|
static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
|
|
|
|
/*******************************************************************************
|
|
END OF CONFIGURATION
|
|
*/
|
|
|
|
// # Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.
|
|
|
|
static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;
|
|
static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;
|
|
static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;
|
|
|
|
static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
|
|
|
|
static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
|
|
VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
|
|
|
|
// Returns number of bits set to 1 in (v).
|
|
static inline uint32_t VmaCountBitsSet(uint32_t v)
|
|
{
|
|
uint32_t c = v - ((v >> 1) & 0x55555555);
|
|
c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
|
|
c = ((c >> 4) + c) & 0x0F0F0F0F;
|
|
c = ((c >> 8) + c) & 0x00FF00FF;
|
|
c = ((c >> 16) + c) & 0x0000FFFF;
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
Returns true if given number is a power of two.
|
|
T must be unsigned integer number or signed integer but always nonnegative.
|
|
For 0 returns true.
|
|
*/
|
|
template <typename T>
|
|
inline bool VmaIsPow2(T x)
|
|
{
|
|
return (x & (x-1)) == 0;
|
|
}
|
|
|
|
// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
|
|
// Use types like uint32_t, uint64_t as T.
|
|
template <typename T>
|
|
static inline T VmaAlignUp(T val, T alignment)
|
|
{
|
|
VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
|
|
return (val + alignment - 1) & ~(alignment - 1);
|
|
}
|
|
// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8.
|
|
// Use types like uint32_t, uint64_t as T.
|
|
template <typename T>
|
|
static inline T VmaAlignDown(T val, T alignment)
|
|
{
|
|
VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
|
|
return val & ~(alignment - 1);
|
|
}
|
|
|
|
// Division with mathematical rounding to nearest number.
|
|
template <typename T>
|
|
static inline T VmaRoundDiv(T x, T y)
|
|
{
|
|
return (x + (y / (T)2)) / y;
|
|
}
|
|
|
|
// Returns smallest power of 2 greater or equal to v.
|
|
static inline uint32_t VmaNextPow2(uint32_t v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v++;
|
|
return v;
|
|
}
|
|
static inline uint64_t VmaNextPow2(uint64_t v)
|
|
{
|
|
v--;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v |= v >> 32;
|
|
v++;
|
|
return v;
|
|
}
|
|
|
|
// Returns largest power of 2 less or equal to v.
|
|
static inline uint32_t VmaPrevPow2(uint32_t v)
|
|
{
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v = v ^ (v >> 1);
|
|
return v;
|
|
}
|
|
static inline uint64_t VmaPrevPow2(uint64_t v)
|
|
{
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
v |= v >> 32;
|
|
v = v ^ (v >> 1);
|
|
return v;
|
|
}
|
|
|
|
static inline bool VmaStrIsEmpty(const char* pStr)
|
|
{
|
|
return pStr == VMA_NULL || *pStr == '\0';
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
static const char* VmaAlgorithmToStr(uint32_t algorithm)
|
|
{
|
|
switch(algorithm)
|
|
{
|
|
case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
|
|
return "Linear";
|
|
case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
|
|
return "Buddy";
|
|
case 0:
|
|
return "Default";
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return "";
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
#ifndef VMA_SORT
|
|
|
|
template<typename Iterator, typename Compare>
|
|
Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
|
|
{
|
|
Iterator centerValue = end; --centerValue;
|
|
Iterator insertIndex = beg;
|
|
for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
|
|
{
|
|
if(cmp(*memTypeIndex, *centerValue))
|
|
{
|
|
if(insertIndex != memTypeIndex)
|
|
{
|
|
VMA_SWAP(*memTypeIndex, *insertIndex);
|
|
}
|
|
++insertIndex;
|
|
}
|
|
}
|
|
if(insertIndex != centerValue)
|
|
{
|
|
VMA_SWAP(*insertIndex, *centerValue);
|
|
}
|
|
return insertIndex;
|
|
}
|
|
|
|
template<typename Iterator, typename Compare>
|
|
void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
|
|
{
|
|
if(beg < end)
|
|
{
|
|
Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
|
|
VmaQuickSort<Iterator, Compare>(beg, it, cmp);
|
|
VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
|
|
}
|
|
}
|
|
|
|
#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
|
|
|
|
#endif // #ifndef VMA_SORT
|
|
|
|
/*
|
|
Returns true if two memory blocks occupy overlapping pages.
|
|
ResourceA must be in less memory offset than ResourceB.
|
|
|
|
Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
|
|
chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
|
|
*/
|
|
static inline bool VmaBlocksOnSamePage(
|
|
VkDeviceSize resourceAOffset,
|
|
VkDeviceSize resourceASize,
|
|
VkDeviceSize resourceBOffset,
|
|
VkDeviceSize pageSize)
|
|
{
|
|
VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
|
|
VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
|
|
VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
|
|
VkDeviceSize resourceBStart = resourceBOffset;
|
|
VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
|
|
return resourceAEndPage == resourceBStartPage;
|
|
}
|
|
|
|
enum VmaSuballocationType
|
|
{
|
|
VMA_SUBALLOCATION_TYPE_FREE = 0,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER = 2,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
|
|
VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
|
|
};
|
|
|
|
/*
|
|
Returns true if given suballocation types could conflict and must respect
|
|
VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
|
|
or linear image and another one is optimal image. If type is unknown, behave
|
|
conservatively.
|
|
*/
|
|
static inline bool VmaIsBufferImageGranularityConflict(
|
|
VmaSuballocationType suballocType1,
|
|
VmaSuballocationType suballocType2)
|
|
{
|
|
if(suballocType1 > suballocType2)
|
|
{
|
|
VMA_SWAP(suballocType1, suballocType2);
|
|
}
|
|
|
|
switch(suballocType1)
|
|
{
|
|
case VMA_SUBALLOCATION_TYPE_FREE:
|
|
return false;
|
|
case VMA_SUBALLOCATION_TYPE_UNKNOWN:
|
|
return true;
|
|
case VMA_SUBALLOCATION_TYPE_BUFFER:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
|
|
return
|
|
suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
|
|
case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
|
|
return false;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
|
|
{
|
|
#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
|
|
uint32_t* pDst = (uint32_t*)((char*)pData + offset);
|
|
const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
|
|
for(size_t i = 0; i < numberCount; ++i, ++pDst)
|
|
{
|
|
*pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
|
|
}
|
|
#else
|
|
// no-op
|
|
#endif
|
|
}
|
|
|
|
static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
|
|
{
|
|
#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
|
|
const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
|
|
const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
|
|
for(size_t i = 0; i < numberCount; ++i, ++pSrc)
|
|
{
|
|
if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Fills structure with parameters of an example buffer to be used for transfers
|
|
during GPU memory defragmentation.
|
|
*/
|
|
static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
|
|
{
|
|
memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
|
|
outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
|
|
}
|
|
|
|
// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
|
|
struct VmaMutexLock
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaMutexLock)
|
|
public:
|
|
VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
|
|
m_pMutex(useMutex ? &mutex : VMA_NULL)
|
|
{ if(m_pMutex) { m_pMutex->Lock(); } }
|
|
~VmaMutexLock()
|
|
{ if(m_pMutex) { m_pMutex->Unlock(); } }
|
|
private:
|
|
VMA_MUTEX* m_pMutex;
|
|
};
|
|
|
|
// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
|
|
struct VmaMutexLockRead
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaMutexLockRead)
|
|
public:
|
|
VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
|
|
m_pMutex(useMutex ? &mutex : VMA_NULL)
|
|
{ if(m_pMutex) { m_pMutex->LockRead(); } }
|
|
~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } }
|
|
private:
|
|
VMA_RW_MUTEX* m_pMutex;
|
|
};
|
|
|
|
// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
|
|
struct VmaMutexLockWrite
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaMutexLockWrite)
|
|
public:
|
|
VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) :
|
|
m_pMutex(useMutex ? &mutex : VMA_NULL)
|
|
{ if(m_pMutex) { m_pMutex->LockWrite(); } }
|
|
~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } }
|
|
private:
|
|
VMA_RW_MUTEX* m_pMutex;
|
|
};
|
|
|
|
#if VMA_DEBUG_GLOBAL_MUTEX
|
|
static VMA_MUTEX gDebugGlobalMutex;
|
|
#define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
|
|
#else
|
|
#define VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
#endif
|
|
|
|
/*
|
|
Performs binary search and returns iterator to first element that is greater or
|
|
equal to (key), according to comparison (cmp).
|
|
|
|
Cmp should return true if first argument is less than second argument.
|
|
|
|
Returned value is the found element, if present in the collection or place where
|
|
new element with value (key) should be inserted.
|
|
*/
|
|
template <typename CmpLess, typename IterT, typename KeyT>
|
|
static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, const CmpLess& cmp)
|
|
{
|
|
size_t down = 0, up = (end - beg);
|
|
while(down < up)
|
|
{
|
|
const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation
|
|
if(cmp(*(beg+mid), key))
|
|
{
|
|
down = mid + 1;
|
|
}
|
|
else
|
|
{
|
|
up = mid;
|
|
}
|
|
}
|
|
return beg + down;
|
|
}
|
|
|
|
template<typename CmpLess, typename IterT, typename KeyT>
|
|
IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
|
|
{
|
|
IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
|
|
beg, end, value, cmp);
|
|
if(it == end ||
|
|
(!cmp(*it, value) && !cmp(value, *it)))
|
|
{
|
|
return it;
|
|
}
|
|
return end;
|
|
}
|
|
|
|
/*
|
|
Returns true if all pointers in the array are not-null and unique.
|
|
Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
|
|
T must be pointer type, e.g. VmaAllocation, VmaPool.
|
|
*/
|
|
template<typename T>
|
|
static bool VmaValidatePointerArray(uint32_t count, const T* arr)
|
|
{
|
|
for(uint32_t i = 0; i < count; ++i)
|
|
{
|
|
const T iPtr = arr[i];
|
|
if(iPtr == VMA_NULL)
|
|
{
|
|
return false;
|
|
}
|
|
for(uint32_t j = i + 1; j < count; ++j)
|
|
{
|
|
if(iPtr == arr[j])
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<typename MainT, typename NewT>
|
|
static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)
|
|
{
|
|
newStruct->pNext = mainStruct->pNext;
|
|
mainStruct->pNext = newStruct;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Memory allocation
|
|
|
|
static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
|
|
{
|
|
void* result = VMA_NULL;
|
|
if((pAllocationCallbacks != VMA_NULL) &&
|
|
(pAllocationCallbacks->pfnAllocation != VMA_NULL))
|
|
{
|
|
result = (*pAllocationCallbacks->pfnAllocation)(
|
|
pAllocationCallbacks->pUserData,
|
|
size,
|
|
alignment,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
}
|
|
else
|
|
{
|
|
result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
|
|
}
|
|
VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed.");
|
|
return result;
|
|
}
|
|
|
|
static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
|
|
{
|
|
if((pAllocationCallbacks != VMA_NULL) &&
|
|
(pAllocationCallbacks->pfnFree != VMA_NULL))
|
|
{
|
|
(*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
|
|
}
|
|
else
|
|
{
|
|
VMA_SYSTEM_ALIGNED_FREE(ptr);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
|
|
{
|
|
return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
|
|
{
|
|
return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
|
|
|
|
#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
|
|
|
|
template<typename T>
|
|
static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
|
|
{
|
|
ptr->~T();
|
|
VmaFree(pAllocationCallbacks, ptr);
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
|
|
{
|
|
if(ptr != VMA_NULL)
|
|
{
|
|
for(size_t i = count; i--; )
|
|
{
|
|
ptr[i].~T();
|
|
}
|
|
VmaFree(pAllocationCallbacks, ptr);
|
|
}
|
|
}
|
|
|
|
static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
|
|
{
|
|
if(srcStr != VMA_NULL)
|
|
{
|
|
const size_t len = strlen(srcStr);
|
|
char* const result = vma_new_array(allocs, char, len + 1);
|
|
memcpy(result, srcStr, len + 1);
|
|
return result;
|
|
}
|
|
return VMA_NULL;
|
|
}
|
|
|
|
static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen)
|
|
{
|
|
if(srcStr != VMA_NULL)
|
|
{
|
|
char* const result = vma_new_array(allocs, char, strLen + 1);
|
|
memcpy(result, srcStr, strLen);
|
|
result[strLen] = '\0';
|
|
return result;
|
|
}
|
|
return VMA_NULL;
|
|
}
|
|
|
|
static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
|
|
{
|
|
if(str != VMA_NULL)
|
|
{
|
|
const size_t len = strlen(str);
|
|
vma_delete_array(allocs, str, len + 1);
|
|
}
|
|
}
|
|
|
|
// STL-compatible allocator.
|
|
template<typename T>
|
|
class VmaStlAllocator
|
|
{
|
|
public:
|
|
const VkAllocationCallbacks* const m_pCallbacks;
|
|
typedef T value_type;
|
|
|
|
VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
|
|
template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
|
|
|
|
T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
|
|
void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
|
|
|
|
template<typename U>
|
|
bool operator==(const VmaStlAllocator<U>& rhs) const
|
|
{
|
|
return m_pCallbacks == rhs.m_pCallbacks;
|
|
}
|
|
template<typename U>
|
|
bool operator!=(const VmaStlAllocator<U>& rhs) const
|
|
{
|
|
return m_pCallbacks != rhs.m_pCallbacks;
|
|
}
|
|
|
|
VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
|
|
VmaStlAllocator(const VmaStlAllocator&) = default;
|
|
};
|
|
|
|
#if VMA_USE_STL_VECTOR
|
|
|
|
#define VmaVector std::vector
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
|
|
{
|
|
vec.insert(vec.begin() + index, item);
|
|
}
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)
|
|
{
|
|
vec.erase(vec.begin() + index);
|
|
}
|
|
|
|
#else // #if VMA_USE_STL_VECTOR
|
|
|
|
/* Class with interface compatible with subset of std::vector.
|
|
T must be POD because constructors and destructors are not called and memcpy is
|
|
used for these objects. */
|
|
template<typename T, typename AllocatorT>
|
|
class VmaVector
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
|
|
VmaVector(const AllocatorT& allocator) :
|
|
m_Allocator(allocator),
|
|
m_pArray(VMA_NULL),
|
|
m_Count(0),
|
|
m_Capacity(0)
|
|
{
|
|
}
|
|
|
|
VmaVector(size_t count, const AllocatorT& allocator) :
|
|
m_Allocator(allocator),
|
|
m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
|
|
m_Count(count),
|
|
m_Capacity(count)
|
|
{
|
|
}
|
|
|
|
// This version of the constructor is here for compatibility with pre-C++14 std::vector.
|
|
// value is unused.
|
|
VmaVector(size_t count, const T& value, const AllocatorT& allocator)
|
|
: VmaVector(count, allocator) {}
|
|
|
|
VmaVector(const VmaVector<T, AllocatorT>& src) :
|
|
m_Allocator(src.m_Allocator),
|
|
m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
|
|
m_Count(src.m_Count),
|
|
m_Capacity(src.m_Count)
|
|
{
|
|
if(m_Count != 0)
|
|
{
|
|
memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
|
|
}
|
|
}
|
|
|
|
~VmaVector()
|
|
{
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
}
|
|
|
|
VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
|
|
{
|
|
if(&rhs != this)
|
|
{
|
|
resize(rhs.m_Count);
|
|
if(m_Count != 0)
|
|
{
|
|
memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool empty() const { return m_Count == 0; }
|
|
size_t size() const { return m_Count; }
|
|
T* data() { return m_pArray; }
|
|
const T* data() const { return m_pArray; }
|
|
|
|
T& operator[](size_t index)
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
return m_pArray[index];
|
|
}
|
|
const T& operator[](size_t index) const
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
return m_pArray[index];
|
|
}
|
|
|
|
T& front()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return m_pArray[0];
|
|
}
|
|
const T& front() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return m_pArray[0];
|
|
}
|
|
T& back()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return m_pArray[m_Count - 1];
|
|
}
|
|
const T& back() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return m_pArray[m_Count - 1];
|
|
}
|
|
|
|
void reserve(size_t newCapacity, bool freeMemory = false)
|
|
{
|
|
newCapacity = VMA_MAX(newCapacity, m_Count);
|
|
|
|
if((newCapacity < m_Capacity) && !freeMemory)
|
|
{
|
|
newCapacity = m_Capacity;
|
|
}
|
|
|
|
if(newCapacity != m_Capacity)
|
|
{
|
|
T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
|
|
if(m_Count != 0)
|
|
{
|
|
memcpy(newArray, m_pArray, m_Count * sizeof(T));
|
|
}
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
m_Capacity = newCapacity;
|
|
m_pArray = newArray;
|
|
}
|
|
}
|
|
|
|
void resize(size_t newCount)
|
|
{
|
|
size_t newCapacity = m_Capacity;
|
|
if(newCount > m_Capacity)
|
|
{
|
|
newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
|
|
}
|
|
|
|
if(newCapacity != m_Capacity)
|
|
{
|
|
T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
|
|
const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
|
|
if(elementsToCopy != 0)
|
|
{
|
|
memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
|
|
}
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
m_Capacity = newCapacity;
|
|
m_pArray = newArray;
|
|
}
|
|
|
|
m_Count = newCount;
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
resize(0);
|
|
}
|
|
|
|
void shrink_to_fit()
|
|
{
|
|
if(m_Capacity > m_Count)
|
|
{
|
|
T* newArray = VMA_NULL;
|
|
if(m_Count > 0)
|
|
{
|
|
newArray = VmaAllocateArray<T>(m_Allocator.m_pCallbacks, m_Count);
|
|
memcpy(newArray, m_pArray, m_Count * sizeof(T));
|
|
}
|
|
VmaFree(m_Allocator.m_pCallbacks, m_pArray);
|
|
m_Capacity = m_Count;
|
|
m_pArray = newArray;
|
|
}
|
|
}
|
|
|
|
void insert(size_t index, const T& src)
|
|
{
|
|
VMA_HEAVY_ASSERT(index <= m_Count);
|
|
const size_t oldCount = size();
|
|
resize(oldCount + 1);
|
|
if(index < oldCount)
|
|
{
|
|
memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
|
|
}
|
|
m_pArray[index] = src;
|
|
}
|
|
|
|
void remove(size_t index)
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
const size_t oldCount = size();
|
|
if(index < oldCount - 1)
|
|
{
|
|
memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
|
|
}
|
|
resize(oldCount - 1);
|
|
}
|
|
|
|
void push_back(const T& src)
|
|
{
|
|
const size_t newIndex = size();
|
|
resize(newIndex + 1);
|
|
m_pArray[newIndex] = src;
|
|
}
|
|
|
|
void pop_back()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
resize(size() - 1);
|
|
}
|
|
|
|
void push_front(const T& src)
|
|
{
|
|
insert(0, src);
|
|
}
|
|
|
|
void pop_front()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
remove(0);
|
|
}
|
|
|
|
typedef T* iterator;
|
|
typedef const T* const_iterator;
|
|
|
|
iterator begin() { return m_pArray; }
|
|
iterator end() { return m_pArray + m_Count; }
|
|
const_iterator cbegin() const { return m_pArray; }
|
|
const_iterator cend() const { return m_pArray + m_Count; }
|
|
const_iterator begin() const { return cbegin(); }
|
|
const_iterator end() const { return cend(); }
|
|
|
|
private:
|
|
AllocatorT m_Allocator;
|
|
T* m_pArray;
|
|
size_t m_Count;
|
|
size_t m_Capacity;
|
|
};
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
|
|
{
|
|
vec.insert(index, item);
|
|
}
|
|
|
|
template<typename T, typename allocatorT>
|
|
static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
|
|
{
|
|
vec.remove(index);
|
|
}
|
|
|
|
#endif // #if VMA_USE_STL_VECTOR
|
|
|
|
template<typename CmpLess, typename VectorT>
|
|
size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
|
|
{
|
|
const size_t indexToInsert = VmaBinaryFindFirstNotLess(
|
|
vector.data(),
|
|
vector.data() + vector.size(),
|
|
value,
|
|
CmpLess()) - vector.data();
|
|
VmaVectorInsert(vector, indexToInsert, value);
|
|
return indexToInsert;
|
|
}
|
|
|
|
template<typename CmpLess, typename VectorT>
|
|
bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
|
|
{
|
|
CmpLess comparator;
|
|
typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
|
|
vector.begin(),
|
|
vector.end(),
|
|
value,
|
|
comparator);
|
|
if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
|
|
{
|
|
size_t indexToRemove = it - vector.begin();
|
|
VmaVectorRemove(vector, indexToRemove);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaSmallVector
|
|
|
|
/*
|
|
This is a vector (a variable-sized array), optimized for the case when the array is small.
|
|
|
|
It contains some number of elements in-place, which allows it to avoid heap allocation
|
|
when the actual number of elements is below that threshold. This allows normal "small"
|
|
cases to be fast without losing generality for large inputs.
|
|
*/
|
|
|
|
template<typename T, typename AllocatorT, size_t N>
|
|
class VmaSmallVector
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
|
|
VmaSmallVector(const AllocatorT& allocator) :
|
|
m_Count(0),
|
|
m_DynamicArray(allocator)
|
|
{
|
|
}
|
|
VmaSmallVector(size_t count, const AllocatorT& allocator) :
|
|
m_Count(count),
|
|
m_DynamicArray(count > N ? count : 0, allocator)
|
|
{
|
|
}
|
|
template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
|
|
VmaSmallVector(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>& src) = delete;
|
|
template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
|
|
VmaSmallVector<T, AllocatorT, N>& operator=(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>& rhs) = delete;
|
|
|
|
bool empty() const { return m_Count == 0; }
|
|
size_t size() const { return m_Count; }
|
|
T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
|
|
const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
|
|
|
|
T& operator[](size_t index)
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
return data()[index];
|
|
}
|
|
const T& operator[](size_t index) const
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
return data()[index];
|
|
}
|
|
|
|
T& front()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return data()[0];
|
|
}
|
|
const T& front() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return data()[0];
|
|
}
|
|
T& back()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return data()[m_Count - 1];
|
|
}
|
|
const T& back() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
return data()[m_Count - 1];
|
|
}
|
|
|
|
void resize(size_t newCount, bool freeMemory = false)
|
|
{
|
|
if(newCount > N && m_Count > N)
|
|
{
|
|
// Any direction, staying in m_DynamicArray
|
|
m_DynamicArray.resize(newCount);
|
|
if(freeMemory)
|
|
{
|
|
m_DynamicArray.shrink_to_fit();
|
|
}
|
|
}
|
|
else if(newCount > N && m_Count <= N)
|
|
{
|
|
// Growing, moving from m_StaticArray to m_DynamicArray
|
|
m_DynamicArray.resize(newCount);
|
|
if(m_Count > 0)
|
|
{
|
|
memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T));
|
|
}
|
|
}
|
|
else if(newCount <= N && m_Count > N)
|
|
{
|
|
// Shrinking, moving from m_DynamicArray to m_StaticArray
|
|
if(newCount > 0)
|
|
{
|
|
memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T));
|
|
}
|
|
m_DynamicArray.resize(0);
|
|
if(freeMemory)
|
|
{
|
|
m_DynamicArray.shrink_to_fit();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Any direction, staying in m_StaticArray - nothing to do here
|
|
}
|
|
m_Count = newCount;
|
|
}
|
|
|
|
void clear(bool freeMemory = false)
|
|
{
|
|
m_DynamicArray.clear();
|
|
if(freeMemory)
|
|
{
|
|
m_DynamicArray.shrink_to_fit();
|
|
}
|
|
m_Count = 0;
|
|
}
|
|
|
|
void insert(size_t index, const T& src)
|
|
{
|
|
VMA_HEAVY_ASSERT(index <= m_Count);
|
|
const size_t oldCount = size();
|
|
resize(oldCount + 1);
|
|
T* const dataPtr = data();
|
|
if(index < oldCount)
|
|
{
|
|
// I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray.
|
|
memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T));
|
|
}
|
|
dataPtr[index] = src;
|
|
}
|
|
|
|
void remove(size_t index)
|
|
{
|
|
VMA_HEAVY_ASSERT(index < m_Count);
|
|
const size_t oldCount = size();
|
|
if(index < oldCount - 1)
|
|
{
|
|
// I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray.
|
|
T* const dataPtr = data();
|
|
memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T));
|
|
}
|
|
resize(oldCount - 1);
|
|
}
|
|
|
|
void push_back(const T& src)
|
|
{
|
|
const size_t newIndex = size();
|
|
resize(newIndex + 1);
|
|
data()[newIndex] = src;
|
|
}
|
|
|
|
void pop_back()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
resize(size() - 1);
|
|
}
|
|
|
|
void push_front(const T& src)
|
|
{
|
|
insert(0, src);
|
|
}
|
|
|
|
void pop_front()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
remove(0);
|
|
}
|
|
|
|
typedef T* iterator;
|
|
|
|
iterator begin() { return data(); }
|
|
iterator end() { return data() + m_Count; }
|
|
|
|
private:
|
|
size_t m_Count;
|
|
T m_StaticArray[N]; // Used when m_Size <= N
|
|
VmaVector<T, AllocatorT> m_DynamicArray; // Used when m_Size > N
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaPoolAllocator
|
|
|
|
/*
|
|
Allocator for objects of type T using a list of arrays (pools) to speed up
|
|
allocation. Number of elements that can be allocated is not bounded because
|
|
allocator can create multiple blocks.
|
|
*/
|
|
template<typename T>
|
|
class VmaPoolAllocator
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaPoolAllocator)
|
|
public:
|
|
VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
|
|
~VmaPoolAllocator();
|
|
template<typename... Types> T* Alloc(Types&&... args);
|
|
void Free(T* ptr);
|
|
|
|
private:
|
|
union Item
|
|
{
|
|
uint32_t NextFreeIndex;
|
|
alignas(T) char Value[sizeof(T)];
|
|
};
|
|
|
|
struct ItemBlock
|
|
{
|
|
Item* pItems;
|
|
uint32_t Capacity;
|
|
uint32_t FirstFreeIndex;
|
|
};
|
|
|
|
const VkAllocationCallbacks* m_pAllocationCallbacks;
|
|
const uint32_t m_FirstBlockCapacity;
|
|
VmaVector<ItemBlock, VmaStlAllocator<ItemBlock>> m_ItemBlocks;
|
|
|
|
ItemBlock& CreateNewBlock();
|
|
};
|
|
|
|
template<typename T>
|
|
VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) :
|
|
m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_FirstBlockCapacity(firstBlockCapacity),
|
|
m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
|
|
{
|
|
VMA_ASSERT(m_FirstBlockCapacity > 1);
|
|
}
|
|
|
|
template<typename T>
|
|
VmaPoolAllocator<T>::~VmaPoolAllocator()
|
|
{
|
|
for(size_t i = m_ItemBlocks.size(); i--; )
|
|
vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
|
|
m_ItemBlocks.clear();
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types&&... args)
|
|
{
|
|
for(size_t i = m_ItemBlocks.size(); i--; )
|
|
{
|
|
ItemBlock& block = m_ItemBlocks[i];
|
|
// This block has some free items: Use first one.
|
|
if(block.FirstFreeIndex != UINT32_MAX)
|
|
{
|
|
Item* const pItem = &block.pItems[block.FirstFreeIndex];
|
|
block.FirstFreeIndex = pItem->NextFreeIndex;
|
|
T* result = (T*)&pItem->Value;
|
|
new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// No block has free item: Create new one and use it.
|
|
ItemBlock& newBlock = CreateNewBlock();
|
|
Item* const pItem = &newBlock.pItems[0];
|
|
newBlock.FirstFreeIndex = pItem->NextFreeIndex;
|
|
T* result = (T*)&pItem->Value;
|
|
new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
|
|
return result;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaPoolAllocator<T>::Free(T* ptr)
|
|
{
|
|
// Search all memory blocks to find ptr.
|
|
for(size_t i = m_ItemBlocks.size(); i--; )
|
|
{
|
|
ItemBlock& block = m_ItemBlocks[i];
|
|
|
|
// Casting to union.
|
|
Item* pItemPtr;
|
|
memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
|
|
|
|
// Check if pItemPtr is in address range of this block.
|
|
if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
|
|
{
|
|
ptr->~T(); // Explicit destructor call.
|
|
const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
|
|
pItemPtr->NextFreeIndex = block.FirstFreeIndex;
|
|
block.FirstFreeIndex = index;
|
|
return;
|
|
}
|
|
}
|
|
VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
|
|
}
|
|
|
|
template<typename T>
|
|
typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
|
|
{
|
|
const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
|
|
m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
|
|
|
|
const ItemBlock newBlock = {
|
|
vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
|
|
newBlockCapacity,
|
|
0 };
|
|
|
|
m_ItemBlocks.push_back(newBlock);
|
|
|
|
// Setup singly-linked list of all free items in this block.
|
|
for(uint32_t i = 0; i < newBlockCapacity - 1; ++i)
|
|
newBlock.pItems[i].NextFreeIndex = i + 1;
|
|
newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
|
|
return m_ItemBlocks.back();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaRawList, VmaList
|
|
|
|
#if VMA_USE_STL_LIST
|
|
|
|
#define VmaList std::list
|
|
|
|
#else // #if VMA_USE_STL_LIST
|
|
|
|
template<typename T>
|
|
struct VmaListItem
|
|
{
|
|
VmaListItem* pPrev;
|
|
VmaListItem* pNext;
|
|
T Value;
|
|
};
|
|
|
|
// Doubly linked list.
|
|
template<typename T>
|
|
class VmaRawList
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaRawList)
|
|
public:
|
|
typedef VmaListItem<T> ItemType;
|
|
|
|
VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
|
|
~VmaRawList();
|
|
void Clear();
|
|
|
|
size_t GetCount() const { return m_Count; }
|
|
bool IsEmpty() const { return m_Count == 0; }
|
|
|
|
ItemType* Front() { return m_pFront; }
|
|
const ItemType* Front() const { return m_pFront; }
|
|
ItemType* Back() { return m_pBack; }
|
|
const ItemType* Back() const { return m_pBack; }
|
|
|
|
ItemType* PushBack();
|
|
ItemType* PushFront();
|
|
ItemType* PushBack(const T& value);
|
|
ItemType* PushFront(const T& value);
|
|
void PopBack();
|
|
void PopFront();
|
|
|
|
// Item can be null - it means PushBack.
|
|
ItemType* InsertBefore(ItemType* pItem);
|
|
// Item can be null - it means PushFront.
|
|
ItemType* InsertAfter(ItemType* pItem);
|
|
|
|
ItemType* InsertBefore(ItemType* pItem, const T& value);
|
|
ItemType* InsertAfter(ItemType* pItem, const T& value);
|
|
|
|
void Remove(ItemType* pItem);
|
|
|
|
private:
|
|
const VkAllocationCallbacks* const m_pAllocationCallbacks;
|
|
VmaPoolAllocator<ItemType> m_ItemAllocator;
|
|
ItemType* m_pFront;
|
|
ItemType* m_pBack;
|
|
size_t m_Count;
|
|
};
|
|
|
|
template<typename T>
|
|
VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
|
|
m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_ItemAllocator(pAllocationCallbacks, 128),
|
|
m_pFront(VMA_NULL),
|
|
m_pBack(VMA_NULL),
|
|
m_Count(0)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
VmaRawList<T>::~VmaRawList() = default;
|
|
// Intentionally not calling Clear, because that would be unnecessary
|
|
// computations to return all items to m_ItemAllocator as free.
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::Clear()
|
|
{
|
|
if(IsEmpty() == false)
|
|
{
|
|
ItemType* pItem = m_pBack;
|
|
while(pItem != VMA_NULL)
|
|
{
|
|
ItemType* const pPrevItem = pItem->pPrev;
|
|
m_ItemAllocator.Free(pItem);
|
|
pItem = pPrevItem;
|
|
}
|
|
m_pFront = VMA_NULL;
|
|
m_pBack = VMA_NULL;
|
|
m_Count = 0;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushBack()
|
|
{
|
|
ItemType* const pNewItem = m_ItemAllocator.Alloc();
|
|
pNewItem->pNext = VMA_NULL;
|
|
if(IsEmpty())
|
|
{
|
|
pNewItem->pPrev = VMA_NULL;
|
|
m_pFront = pNewItem;
|
|
m_pBack = pNewItem;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
pNewItem->pPrev = m_pBack;
|
|
m_pBack->pNext = pNewItem;
|
|
m_pBack = pNewItem;
|
|
++m_Count;
|
|
}
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushFront()
|
|
{
|
|
ItemType* const pNewItem = m_ItemAllocator.Alloc();
|
|
pNewItem->pPrev = VMA_NULL;
|
|
if(IsEmpty())
|
|
{
|
|
pNewItem->pNext = VMA_NULL;
|
|
m_pFront = pNewItem;
|
|
m_pBack = pNewItem;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
pNewItem->pNext = m_pFront;
|
|
m_pFront->pPrev = pNewItem;
|
|
m_pFront = pNewItem;
|
|
++m_Count;
|
|
}
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
|
|
{
|
|
ItemType* const pNewItem = PushBack();
|
|
pNewItem->Value = value;
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
|
|
{
|
|
ItemType* const pNewItem = PushFront();
|
|
pNewItem->Value = value;
|
|
return pNewItem;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::PopBack()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const pBackItem = m_pBack;
|
|
ItemType* const pPrevItem = pBackItem->pPrev;
|
|
if(pPrevItem != VMA_NULL)
|
|
{
|
|
pPrevItem->pNext = VMA_NULL;
|
|
}
|
|
m_pBack = pPrevItem;
|
|
m_ItemAllocator.Free(pBackItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::PopFront()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const pFrontItem = m_pFront;
|
|
ItemType* const pNextItem = pFrontItem->pNext;
|
|
if(pNextItem != VMA_NULL)
|
|
{
|
|
pNextItem->pPrev = VMA_NULL;
|
|
}
|
|
m_pFront = pNextItem;
|
|
m_ItemAllocator.Free(pFrontItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
void VmaRawList<T>::Remove(ItemType* pItem)
|
|
{
|
|
VMA_HEAVY_ASSERT(pItem != VMA_NULL);
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
|
|
if(pItem->pPrev != VMA_NULL)
|
|
{
|
|
pItem->pPrev->pNext = pItem->pNext;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pFront == pItem);
|
|
m_pFront = pItem->pNext;
|
|
}
|
|
|
|
if(pItem->pNext != VMA_NULL)
|
|
{
|
|
pItem->pNext->pPrev = pItem->pPrev;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pBack == pItem);
|
|
m_pBack = pItem->pPrev;
|
|
}
|
|
|
|
m_ItemAllocator.Free(pItem);
|
|
--m_Count;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
|
|
{
|
|
if(pItem != VMA_NULL)
|
|
{
|
|
ItemType* const prevItem = pItem->pPrev;
|
|
ItemType* const newItem = m_ItemAllocator.Alloc();
|
|
newItem->pPrev = prevItem;
|
|
newItem->pNext = pItem;
|
|
pItem->pPrev = newItem;
|
|
if(prevItem != VMA_NULL)
|
|
{
|
|
prevItem->pNext = newItem;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pFront == pItem);
|
|
m_pFront = newItem;
|
|
}
|
|
++m_Count;
|
|
return newItem;
|
|
}
|
|
else
|
|
return PushBack();
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
|
|
{
|
|
if(pItem != VMA_NULL)
|
|
{
|
|
ItemType* const nextItem = pItem->pNext;
|
|
ItemType* const newItem = m_ItemAllocator.Alloc();
|
|
newItem->pNext = nextItem;
|
|
newItem->pPrev = pItem;
|
|
pItem->pNext = newItem;
|
|
if(nextItem != VMA_NULL)
|
|
{
|
|
nextItem->pPrev = newItem;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pBack == pItem);
|
|
m_pBack = newItem;
|
|
}
|
|
++m_Count;
|
|
return newItem;
|
|
}
|
|
else
|
|
return PushFront();
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
|
|
{
|
|
ItemType* const newItem = InsertBefore(pItem);
|
|
newItem->Value = value;
|
|
return newItem;
|
|
}
|
|
|
|
template<typename T>
|
|
VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
|
|
{
|
|
ItemType* const newItem = InsertAfter(pItem);
|
|
newItem->Value = value;
|
|
return newItem;
|
|
}
|
|
|
|
template<typename T, typename AllocatorT>
|
|
class VmaList
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaList)
|
|
public:
|
|
class reverse_iterator;
|
|
class iterator
|
|
{
|
|
public:
|
|
iterator() :
|
|
m_pList(VMA_NULL),
|
|
m_pItem(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
iterator(const reverse_iterator& src) :
|
|
m_pList(src.m_pList),
|
|
m_pItem(src.m_pItem)
|
|
{
|
|
}
|
|
|
|
T& operator*() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return m_pItem->Value;
|
|
}
|
|
T* operator->() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return &m_pItem->Value;
|
|
}
|
|
|
|
iterator& operator++()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
m_pItem = m_pItem->pNext;
|
|
return *this;
|
|
}
|
|
iterator& operator--()
|
|
{
|
|
if(m_pItem != VMA_NULL)
|
|
{
|
|
m_pItem = m_pItem->pPrev;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Back();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
iterator operator++(int)
|
|
{
|
|
iterator result = *this;
|
|
++*this;
|
|
return result;
|
|
}
|
|
iterator operator--(int)
|
|
{
|
|
iterator result = *this;
|
|
--*this;
|
|
return result;
|
|
}
|
|
|
|
bool operator==(const iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem == rhs.m_pItem;
|
|
}
|
|
bool operator!=(const iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem != rhs.m_pItem;
|
|
}
|
|
|
|
private:
|
|
VmaRawList<T>* m_pList;
|
|
VmaListItem<T>* m_pItem;
|
|
|
|
iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
|
|
m_pList(pList),
|
|
m_pItem(pItem)
|
|
{
|
|
}
|
|
|
|
friend class VmaList<T, AllocatorT>;
|
|
};
|
|
|
|
class reverse_iterator
|
|
{
|
|
public:
|
|
reverse_iterator() :
|
|
m_pList(VMA_NULL),
|
|
m_pItem(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
reverse_iterator(const iterator& src) :
|
|
m_pList(src.m_pList),
|
|
m_pItem(src.m_pItem)
|
|
{
|
|
}
|
|
|
|
T& operator*() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return m_pItem->Value;
|
|
}
|
|
T* operator->() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return &m_pItem->Value;
|
|
}
|
|
|
|
reverse_iterator& operator++()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
m_pItem = m_pItem->pPrev;
|
|
return *this;
|
|
}
|
|
reverse_iterator& operator--()
|
|
{
|
|
if (m_pItem != VMA_NULL)
|
|
{
|
|
m_pItem = m_pItem->pNext;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Front();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
reverse_iterator operator++(int)
|
|
{
|
|
iterator result = *this;
|
|
++*this;
|
|
return result;
|
|
}
|
|
reverse_iterator operator--(int)
|
|
{
|
|
iterator result = *this;
|
|
--*this;
|
|
return result;
|
|
}
|
|
|
|
bool operator==(const reverse_iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem == rhs.m_pItem;
|
|
}
|
|
bool operator!=(const reverse_iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem != rhs.m_pItem;
|
|
}
|
|
|
|
private:
|
|
VmaRawList<T>* m_pList;
|
|
VmaListItem<T>* m_pItem;
|
|
|
|
reverse_iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
|
|
m_pList(pList),
|
|
m_pItem(pItem)
|
|
{
|
|
}
|
|
|
|
friend class VmaList<T, AllocatorT>;
|
|
};
|
|
|
|
class const_iterator
|
|
{
|
|
public:
|
|
const_iterator() :
|
|
m_pList(VMA_NULL),
|
|
m_pItem(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
const_iterator(const iterator& src) :
|
|
m_pList(src.m_pList),
|
|
m_pItem(src.m_pItem)
|
|
{
|
|
}
|
|
|
|
const_iterator(const reverse_iterator& src) :
|
|
m_pList(src.m_pList),
|
|
m_pItem(src.m_pItem)
|
|
{
|
|
}
|
|
|
|
const T& operator*() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return m_pItem->Value;
|
|
}
|
|
const T* operator->() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return &m_pItem->Value;
|
|
}
|
|
|
|
const_iterator& operator++()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
m_pItem = m_pItem->pNext;
|
|
return *this;
|
|
}
|
|
const_iterator& operator--()
|
|
{
|
|
if(m_pItem != VMA_NULL)
|
|
{
|
|
m_pItem = m_pItem->pPrev;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Back();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
const_iterator operator++(int)
|
|
{
|
|
const_iterator result = *this;
|
|
++*this;
|
|
return result;
|
|
}
|
|
const_iterator operator--(int)
|
|
{
|
|
const_iterator result = *this;
|
|
--*this;
|
|
return result;
|
|
}
|
|
|
|
bool operator==(const const_iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem == rhs.m_pItem;
|
|
}
|
|
bool operator!=(const const_iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem != rhs.m_pItem;
|
|
}
|
|
|
|
private:
|
|
const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
|
|
m_pList(pList),
|
|
m_pItem(pItem)
|
|
{
|
|
}
|
|
|
|
const VmaRawList<T>* m_pList;
|
|
const VmaListItem<T>* m_pItem;
|
|
|
|
friend class VmaList<T, AllocatorT>;
|
|
};
|
|
|
|
class const_reverse_iterator
|
|
{
|
|
public:
|
|
const_reverse_iterator() :
|
|
m_pList(VMA_NULL),
|
|
m_pItem(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
const_reverse_iterator(const reverse_iterator& src) :
|
|
m_pList(src.m_pList),
|
|
m_pItem(src.m_pItem)
|
|
{
|
|
}
|
|
|
|
const_reverse_iterator(const iterator& src) :
|
|
m_pList(src.m_pList),
|
|
m_pItem(src.m_pItem)
|
|
{
|
|
}
|
|
|
|
const T& operator*() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return m_pItem->Value;
|
|
}
|
|
const T* operator->() const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
return &m_pItem->Value;
|
|
}
|
|
|
|
const_reverse_iterator& operator++()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
|
|
m_pItem = m_pItem->pPrev;
|
|
return *this;
|
|
}
|
|
const_reverse_iterator& operator--()
|
|
{
|
|
if (m_pItem != VMA_NULL)
|
|
{
|
|
m_pItem = m_pItem->pNext;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
|
|
m_pItem = m_pList->Back();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
const_reverse_iterator operator++(int)
|
|
{
|
|
const_reverse_iterator result = *this;
|
|
++*this;
|
|
return result;
|
|
}
|
|
const_reverse_iterator operator--(int)
|
|
{
|
|
const_reverse_iterator result = *this;
|
|
--*this;
|
|
return result;
|
|
}
|
|
|
|
bool operator==(const const_reverse_iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem == rhs.m_pItem;
|
|
}
|
|
bool operator!=(const const_reverse_iterator& rhs) const
|
|
{
|
|
VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
|
|
return m_pItem != rhs.m_pItem;
|
|
}
|
|
|
|
private:
|
|
const_reverse_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
|
|
m_pList(pList),
|
|
m_pItem(pItem)
|
|
{
|
|
}
|
|
|
|
const VmaRawList<T>* m_pList;
|
|
const VmaListItem<T>* m_pItem;
|
|
|
|
friend class VmaList<T, AllocatorT>;
|
|
};
|
|
|
|
VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
|
|
|
|
bool empty() const { return m_RawList.IsEmpty(); }
|
|
size_t size() const { return m_RawList.GetCount(); }
|
|
|
|
iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
|
|
iterator end() { return iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
|
|
const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_iterator begin() const { return cbegin(); }
|
|
const_iterator end() const { return cend(); }
|
|
|
|
reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); }
|
|
reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_reverse_iterator crbegin() { return const_reverse_iterator(&m_RawList, m_RawList.Back()); }
|
|
const_reverse_iterator crend() { return const_reverse_iterator(&m_RawList, VMA_NULL); }
|
|
|
|
const_reverse_iterator rbegin() const { return crbegin(); }
|
|
const_reverse_iterator rend() const { return crend(); }
|
|
|
|
void clear() { m_RawList.Clear(); }
|
|
void push_back(const T& value) { m_RawList.PushBack(value); }
|
|
void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
|
|
iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
|
|
|
|
private:
|
|
VmaRawList<T> m_RawList;
|
|
};
|
|
|
|
#endif // #if VMA_USE_STL_LIST
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaIntrusiveLinkedList
|
|
|
|
/*
|
|
Expected interface of ItemTypeTraits:
|
|
struct MyItemTypeTraits
|
|
{
|
|
typedef MyItem ItemType;
|
|
static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; }
|
|
static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; }
|
|
static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; }
|
|
static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; }
|
|
};
|
|
*/
|
|
template<typename ItemTypeTraits>
|
|
class VmaIntrusiveLinkedList
|
|
{
|
|
public:
|
|
typedef typename ItemTypeTraits::ItemType ItemType;
|
|
static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); }
|
|
static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); }
|
|
// Movable, not copyable.
|
|
VmaIntrusiveLinkedList() = default;
|
|
VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList<ItemTypeTraits>& src) = delete;
|
|
VmaIntrusiveLinkedList(VmaIntrusiveLinkedList<ItemTypeTraits>&& src) :
|
|
m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count)
|
|
{
|
|
src.m_Front = src.m_Back = VMA_NULL;
|
|
src.m_Count = 0;
|
|
}
|
|
~VmaIntrusiveLinkedList()
|
|
{
|
|
VMA_HEAVY_ASSERT(IsEmpty());
|
|
}
|
|
VmaIntrusiveLinkedList<ItemTypeTraits>& operator=(const VmaIntrusiveLinkedList<ItemTypeTraits>& src) = delete;
|
|
VmaIntrusiveLinkedList<ItemTypeTraits>& operator=(VmaIntrusiveLinkedList<ItemTypeTraits>&& src)
|
|
{
|
|
if(&src != this)
|
|
{
|
|
VMA_HEAVY_ASSERT(IsEmpty());
|
|
m_Front = src.m_Front;
|
|
m_Back = src.m_Back;
|
|
m_Count = src.m_Count;
|
|
src.m_Front = src.m_Back = VMA_NULL;
|
|
src.m_Count = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
void RemoveAll()
|
|
{
|
|
if(!IsEmpty())
|
|
{
|
|
ItemType* item = m_Back;
|
|
while(item != VMA_NULL)
|
|
{
|
|
ItemType* const prevItem = ItemTypeTraits::AccessPrev(item);
|
|
ItemTypeTraits::AccessPrev(item) = VMA_NULL;
|
|
ItemTypeTraits::AccessNext(item) = VMA_NULL;
|
|
item = prevItem;
|
|
}
|
|
m_Front = VMA_NULL;
|
|
m_Back = VMA_NULL;
|
|
m_Count = 0;
|
|
}
|
|
}
|
|
size_t GetCount() const { return m_Count; }
|
|
bool IsEmpty() const { return m_Count == 0; }
|
|
ItemType* Front() { return m_Front; }
|
|
const ItemType* Front() const { return m_Front; }
|
|
ItemType* Back() { return m_Back; }
|
|
const ItemType* Back() const { return m_Back; }
|
|
void PushBack(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
|
|
if(IsEmpty())
|
|
{
|
|
m_Front = item;
|
|
m_Back = item;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
ItemTypeTraits::AccessPrev(item) = m_Back;
|
|
ItemTypeTraits::AccessNext(m_Back) = item;
|
|
m_Back = item;
|
|
++m_Count;
|
|
}
|
|
}
|
|
void PushFront(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
|
|
if(IsEmpty())
|
|
{
|
|
m_Front = item;
|
|
m_Back = item;
|
|
m_Count = 1;
|
|
}
|
|
else
|
|
{
|
|
ItemTypeTraits::AccessNext(item) = m_Front;
|
|
ItemTypeTraits::AccessPrev(m_Front) = item;
|
|
m_Front = item;
|
|
++m_Count;
|
|
}
|
|
}
|
|
ItemType* PopBack()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const backItem = m_Back;
|
|
ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem);
|
|
if(prevItem != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessNext(prevItem) = VMA_NULL;
|
|
}
|
|
m_Back = prevItem;
|
|
--m_Count;
|
|
ItemTypeTraits::AccessPrev(backItem) = VMA_NULL;
|
|
ItemTypeTraits::AccessNext(backItem) = VMA_NULL;
|
|
return backItem;
|
|
}
|
|
ItemType* PopFront()
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Count > 0);
|
|
ItemType* const frontItem = m_Front;
|
|
ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem);
|
|
if(nextItem != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL;
|
|
}
|
|
m_Front = nextItem;
|
|
--m_Count;
|
|
ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL;
|
|
ItemTypeTraits::AccessNext(frontItem) = VMA_NULL;
|
|
return frontItem;
|
|
}
|
|
|
|
// MyItem can be null - it means PushBack.
|
|
void InsertBefore(ItemType* existingItem, ItemType* newItem)
|
|
{
|
|
VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
|
|
if(existingItem != VMA_NULL)
|
|
{
|
|
ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem);
|
|
ItemTypeTraits::AccessPrev(newItem) = prevItem;
|
|
ItemTypeTraits::AccessNext(newItem) = existingItem;
|
|
ItemTypeTraits::AccessPrev(existingItem) = newItem;
|
|
if(prevItem != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessNext(prevItem) = newItem;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Front == existingItem);
|
|
m_Front = newItem;
|
|
}
|
|
++m_Count;
|
|
}
|
|
else
|
|
PushBack(newItem);
|
|
}
|
|
// MyItem can be null - it means PushFront.
|
|
void InsertAfter(ItemType* existingItem, ItemType* newItem)
|
|
{
|
|
VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
|
|
if(existingItem != VMA_NULL)
|
|
{
|
|
ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem);
|
|
ItemTypeTraits::AccessNext(newItem) = nextItem;
|
|
ItemTypeTraits::AccessPrev(newItem) = existingItem;
|
|
ItemTypeTraits::AccessNext(existingItem) = newItem;
|
|
if(nextItem != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessPrev(nextItem) = newItem;
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Back == existingItem);
|
|
m_Back = newItem;
|
|
}
|
|
++m_Count;
|
|
}
|
|
else
|
|
return PushFront(newItem);
|
|
}
|
|
void Remove(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0);
|
|
if(ItemTypeTraits::GetPrev(item) != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item);
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Front == item);
|
|
m_Front = ItemTypeTraits::GetNext(item);
|
|
}
|
|
|
|
if(ItemTypeTraits::GetNext(item) != VMA_NULL)
|
|
{
|
|
ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item);
|
|
}
|
|
else
|
|
{
|
|
VMA_HEAVY_ASSERT(m_Back == item);
|
|
m_Back = ItemTypeTraits::GetPrev(item);
|
|
}
|
|
ItemTypeTraits::AccessPrev(item) = VMA_NULL;
|
|
ItemTypeTraits::AccessNext(item) = VMA_NULL;
|
|
--m_Count;
|
|
}
|
|
private:
|
|
ItemType* m_Front = VMA_NULL;
|
|
ItemType* m_Back = VMA_NULL;
|
|
size_t m_Count = 0;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaMap
|
|
|
|
// Unused in this version.
|
|
#if 0
|
|
|
|
#if VMA_USE_STL_UNORDERED_MAP
|
|
|
|
#define VmaPair std::pair
|
|
|
|
#define VMA_MAP_TYPE(KeyT, ValueT) \
|
|
std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
|
|
|
|
#else // #if VMA_USE_STL_UNORDERED_MAP
|
|
|
|
template<typename T1, typename T2>
|
|
struct VmaPair
|
|
{
|
|
T1 first;
|
|
T2 second;
|
|
|
|
VmaPair() : first(), second() { }
|
|
VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
|
|
};
|
|
|
|
/* Class compatible with subset of interface of std::unordered_map.
|
|
KeyT, ValueT must be POD because they will be stored in VmaVector.
|
|
*/
|
|
template<typename KeyT, typename ValueT>
|
|
class VmaMap
|
|
{
|
|
public:
|
|
typedef VmaPair<KeyT, ValueT> PairType;
|
|
typedef PairType* iterator;
|
|
|
|
VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
|
|
|
|
iterator begin() { return m_Vector.begin(); }
|
|
iterator end() { return m_Vector.end(); }
|
|
|
|
void insert(const PairType& pair);
|
|
iterator find(const KeyT& key);
|
|
void erase(iterator it);
|
|
|
|
private:
|
|
VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
|
|
};
|
|
|
|
#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
|
|
|
|
template<typename FirstT, typename SecondT>
|
|
struct VmaPairFirstLess
|
|
{
|
|
bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
|
|
{
|
|
return lhs.first < rhs.first;
|
|
}
|
|
bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
|
|
{
|
|
return lhs.first < rhsFirst;
|
|
}
|
|
};
|
|
|
|
template<typename KeyT, typename ValueT>
|
|
void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
|
|
{
|
|
const size_t indexToInsert = VmaBinaryFindFirstNotLess(
|
|
m_Vector.data(),
|
|
m_Vector.data() + m_Vector.size(),
|
|
pair,
|
|
VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
|
|
VmaVectorInsert(m_Vector, indexToInsert, pair);
|
|
}
|
|
|
|
template<typename KeyT, typename ValueT>
|
|
VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
|
|
{
|
|
PairType* it = VmaBinaryFindFirstNotLess(
|
|
m_Vector.data(),
|
|
m_Vector.data() + m_Vector.size(),
|
|
key,
|
|
VmaPairFirstLess<KeyT, ValueT>());
|
|
if((it != m_Vector.end()) && (it->first == key))
|
|
{
|
|
return it;
|
|
}
|
|
else
|
|
{
|
|
return m_Vector.end();
|
|
}
|
|
}
|
|
|
|
template<typename KeyT, typename ValueT>
|
|
void VmaMap<KeyT, ValueT>::erase(iterator it)
|
|
{
|
|
VmaVectorRemove(m_Vector, it - m_Vector.begin());
|
|
}
|
|
|
|
#endif // #if VMA_USE_STL_UNORDERED_MAP
|
|
|
|
#endif // #if 0
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
class VmaDeviceMemoryBlock;
|
|
|
|
enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE };
|
|
|
|
struct VmaAllocation_T
|
|
{
|
|
private:
|
|
static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;
|
|
|
|
enum FLAGS
|
|
{
|
|
FLAG_USER_DATA_STRING = 0x01,
|
|
};
|
|
|
|
public:
|
|
enum ALLOCATION_TYPE
|
|
{
|
|
ALLOCATION_TYPE_NONE,
|
|
ALLOCATION_TYPE_BLOCK,
|
|
ALLOCATION_TYPE_DEDICATED,
|
|
};
|
|
|
|
/*
|
|
This struct is allocated using VmaPoolAllocator.
|
|
*/
|
|
|
|
VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) :
|
|
m_Alignment{1},
|
|
m_Size{0},
|
|
m_pUserData{VMA_NULL},
|
|
m_LastUseFrameIndex{currentFrameIndex},
|
|
m_MemoryTypeIndex{0},
|
|
m_Type{(uint8_t)ALLOCATION_TYPE_NONE},
|
|
m_SuballocationType{(uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN},
|
|
m_MapCount{0},
|
|
m_Flags{userDataString ? (uint8_t)FLAG_USER_DATA_STRING : (uint8_t)0}
|
|
{
|
|
#if VMA_STATS_STRING_ENABLED
|
|
m_CreationFrameIndex = currentFrameIndex;
|
|
m_BufferImageUsage = 0;
|
|
#endif
|
|
}
|
|
|
|
~VmaAllocation_T()
|
|
{
|
|
VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");
|
|
|
|
// Check if owned string was freed.
|
|
VMA_ASSERT(m_pUserData == VMA_NULL);
|
|
}
|
|
|
|
void InitBlockAllocation(
|
|
VmaDeviceMemoryBlock* block,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize alignment,
|
|
VkDeviceSize size,
|
|
uint32_t memoryTypeIndex,
|
|
VmaSuballocationType suballocationType,
|
|
bool mapped,
|
|
bool canBecomeLost)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
VMA_ASSERT(block != VMA_NULL);
|
|
m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
|
|
m_Alignment = alignment;
|
|
m_Size = size;
|
|
m_MemoryTypeIndex = memoryTypeIndex;
|
|
m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
|
|
m_SuballocationType = (uint8_t)suballocationType;
|
|
m_BlockAllocation.m_Block = block;
|
|
m_BlockAllocation.m_Offset = offset;
|
|
m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
|
|
}
|
|
|
|
void InitLost()
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
|
|
m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
|
|
m_MemoryTypeIndex = 0;
|
|
m_BlockAllocation.m_Block = VMA_NULL;
|
|
m_BlockAllocation.m_Offset = 0;
|
|
m_BlockAllocation.m_CanBecomeLost = true;
|
|
}
|
|
|
|
void ChangeBlockAllocation(
|
|
VmaAllocator hAllocator,
|
|
VmaDeviceMemoryBlock* block,
|
|
VkDeviceSize offset);
|
|
|
|
void ChangeOffset(VkDeviceSize newOffset);
|
|
|
|
// pMappedData not null means allocation is created with MAPPED flag.
|
|
void InitDedicatedAllocation(
|
|
uint32_t memoryTypeIndex,
|
|
VkDeviceMemory hMemory,
|
|
VmaSuballocationType suballocationType,
|
|
void* pMappedData,
|
|
VkDeviceSize size)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
|
|
VMA_ASSERT(hMemory != VK_NULL_HANDLE);
|
|
m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
|
|
m_Alignment = 0;
|
|
m_Size = size;
|
|
m_MemoryTypeIndex = memoryTypeIndex;
|
|
m_SuballocationType = (uint8_t)suballocationType;
|
|
m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
|
|
m_DedicatedAllocation.m_hMemory = hMemory;
|
|
m_DedicatedAllocation.m_pMappedData = pMappedData;
|
|
m_DedicatedAllocation.m_Prev = VMA_NULL;
|
|
m_DedicatedAllocation.m_Next = VMA_NULL;
|
|
}
|
|
|
|
ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
|
|
VkDeviceSize GetAlignment() const { return m_Alignment; }
|
|
VkDeviceSize GetSize() const { return m_Size; }
|
|
bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }
|
|
void* GetUserData() const { return m_pUserData; }
|
|
void SetUserData(VmaAllocator hAllocator, void* pUserData);
|
|
VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
|
|
|
|
VmaDeviceMemoryBlock* GetBlock() const
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
return m_BlockAllocation.m_Block;
|
|
}
|
|
VkDeviceSize GetOffset() const;
|
|
VkDeviceMemory GetMemory() const;
|
|
uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
|
|
bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }
|
|
void* GetMappedData() const;
|
|
bool CanBecomeLost() const;
|
|
|
|
uint32_t GetLastUseFrameIndex() const
|
|
{
|
|
return m_LastUseFrameIndex.load();
|
|
}
|
|
bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)
|
|
{
|
|
return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
|
|
}
|
|
/*
|
|
- If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
|
|
makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
|
|
- Else, returns false.
|
|
|
|
If hAllocation is already lost, assert - you should not call it then.
|
|
If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
|
|
*/
|
|
bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
|
|
|
|
void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);
|
|
outInfo.blockCount = 1;
|
|
outInfo.allocationCount = 1;
|
|
outInfo.unusedRangeCount = 0;
|
|
outInfo.usedBytes = m_Size;
|
|
outInfo.unusedBytes = 0;
|
|
outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
|
|
outInfo.unusedRangeSizeMin = UINT64_MAX;
|
|
outInfo.unusedRangeSizeMax = 0;
|
|
}
|
|
|
|
void BlockAllocMap();
|
|
void BlockAllocUnmap();
|
|
VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
|
|
void DedicatedAllocUnmap(VmaAllocator hAllocator);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; }
|
|
uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }
|
|
|
|
void InitBufferImageUsage(uint32_t bufferImageUsage)
|
|
{
|
|
VMA_ASSERT(m_BufferImageUsage == 0);
|
|
m_BufferImageUsage = bufferImageUsage;
|
|
}
|
|
|
|
void PrintParameters(class VmaJsonWriter& json) const;
|
|
#endif
|
|
|
|
private:
|
|
VkDeviceSize m_Alignment;
|
|
VkDeviceSize m_Size;
|
|
void* m_pUserData;
|
|
VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
|
|
uint32_t m_MemoryTypeIndex;
|
|
uint8_t m_Type; // ALLOCATION_TYPE
|
|
uint8_t m_SuballocationType; // VmaSuballocationType
|
|
// Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.
|
|
// Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory().
|
|
uint8_t m_MapCount;
|
|
uint8_t m_Flags; // enum FLAGS
|
|
|
|
// Allocation out of VmaDeviceMemoryBlock.
|
|
struct BlockAllocation
|
|
{
|
|
VmaDeviceMemoryBlock* m_Block;
|
|
VkDeviceSize m_Offset;
|
|
bool m_CanBecomeLost;
|
|
};
|
|
|
|
// Allocation for an object that has its own private VkDeviceMemory.
|
|
struct DedicatedAllocation
|
|
{
|
|
VkDeviceMemory m_hMemory;
|
|
void* m_pMappedData; // Not null means memory is mapped.
|
|
VmaAllocation_T* m_Prev;
|
|
VmaAllocation_T* m_Next;
|
|
};
|
|
|
|
union
|
|
{
|
|
// Allocation out of VmaDeviceMemoryBlock.
|
|
BlockAllocation m_BlockAllocation;
|
|
// Allocation for an object that has its own private VkDeviceMemory.
|
|
DedicatedAllocation m_DedicatedAllocation;
|
|
};
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
uint32_t m_CreationFrameIndex;
|
|
uint32_t m_BufferImageUsage; // 0 if unknown.
|
|
#endif
|
|
|
|
void FreeUserDataString(VmaAllocator hAllocator);
|
|
|
|
friend struct VmaDedicatedAllocationListItemTraits;
|
|
};
|
|
|
|
struct VmaDedicatedAllocationListItemTraits
|
|
{
|
|
typedef VmaAllocation_T ItemType;
|
|
static ItemType* GetPrev(const ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
return item->m_DedicatedAllocation.m_Prev;
|
|
}
|
|
static ItemType* GetNext(const ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
return item->m_DedicatedAllocation.m_Next;
|
|
}
|
|
static ItemType*& AccessPrev(ItemType* item)
|
|
{
|
|
VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
return item->m_DedicatedAllocation.m_Prev;
|
|
}
|
|
static ItemType*& AccessNext(ItemType* item){
|
|
VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
return item->m_DedicatedAllocation.m_Next;
|
|
}
|
|
};
|
|
|
|
/*
|
|
Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
|
|
allocated memory block or free.
|
|
*/
|
|
struct VmaSuballocation
|
|
{
|
|
VkDeviceSize offset;
|
|
VkDeviceSize size;
|
|
void* userData;
|
|
VmaSuballocationType type;
|
|
};
|
|
|
|
// Comparator for offsets.
|
|
struct VmaSuballocationOffsetLess
|
|
{
|
|
bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
|
|
{
|
|
return lhs.offset < rhs.offset;
|
|
}
|
|
};
|
|
struct VmaSuballocationOffsetGreater
|
|
{
|
|
bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
|
|
{
|
|
return lhs.offset > rhs.offset;
|
|
}
|
|
};
|
|
|
|
typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> VmaSuballocationList;
|
|
|
|
// Cost of one additional allocation lost, as equivalent in bytes.
|
|
static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
|
|
|
|
enum class VmaAllocationRequestType
|
|
{
|
|
Normal,
|
|
// Used by "Linear" algorithm.
|
|
UpperAddress,
|
|
EndOf1st,
|
|
EndOf2nd,
|
|
};
|
|
|
|
/*
|
|
Parameters of planned allocation inside a VmaDeviceMemoryBlock.
|
|
|
|
If canMakeOtherLost was false:
|
|
- item points to a FREE suballocation.
|
|
- itemsToMakeLostCount is 0.
|
|
|
|
If canMakeOtherLost was true:
|
|
- item points to first of sequence of suballocations, which are either FREE,
|
|
or point to VmaAllocations that can become lost.
|
|
- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
|
|
the requested allocation to succeed.
|
|
*/
|
|
struct VmaAllocationRequest
|
|
{
|
|
VkDeviceSize offset;
|
|
VkDeviceSize size;
|
|
VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
|
|
VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
|
|
VmaSuballocationList::iterator item;
|
|
size_t itemsToMakeLostCount;
|
|
void* customData;
|
|
VmaAllocationRequestType type;
|
|
|
|
VkDeviceSize CalcCost() const
|
|
{
|
|
return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
|
|
}
|
|
};
|
|
|
|
/*
|
|
Data structure used for bookkeeping of allocations and unused ranges of memory
|
|
in a single VkDeviceMemory block.
|
|
*/
|
|
class VmaBlockMetadata
|
|
{
|
|
public:
|
|
// pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object.
|
|
VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirtual);
|
|
virtual ~VmaBlockMetadata() { }
|
|
virtual void Init(VkDeviceSize size) { m_Size = size; }
|
|
|
|
// Validates all data structures inside this object. If not valid, returns false.
|
|
virtual bool Validate() const = 0;
|
|
bool IsVirtual() const { return m_IsVirtual; }
|
|
VkDeviceSize GetSize() const { return m_Size; }
|
|
virtual size_t GetAllocationCount() const = 0;
|
|
virtual VkDeviceSize GetSumFreeSize() const = 0;
|
|
virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0;
|
|
// Returns true if this block is empty - contains only single free suballocation.
|
|
virtual bool IsEmpty() const = 0;
|
|
virtual void GetAllocationInfo(VkDeviceSize offset, VmaVirtualAllocationInfo& outInfo) = 0;
|
|
|
|
// Must set blockCount to 1.
|
|
virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0;
|
|
// Shouldn't modify blockCount.
|
|
virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
|
|
#endif
|
|
|
|
// Tries to find a place for suballocation with given parameters inside this block.
|
|
// If succeeded, fills pAllocationRequest and returns true.
|
|
// If failed, returns false.
|
|
virtual bool CreateAllocationRequest(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
// Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest) = 0;
|
|
|
|
virtual bool MakeRequestedAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VmaAllocationRequest* pAllocationRequest) = 0;
|
|
|
|
virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0;
|
|
|
|
virtual VkResult CheckCorruption(const void* pBlockData) = 0;
|
|
|
|
// Makes actual allocation based on request. Request must already be checked and valid.
|
|
virtual void Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData) = 0;
|
|
|
|
// Frees suballocation assigned to given memory region.
|
|
virtual void FreeAtOffset(VkDeviceSize offset) = 0;
|
|
|
|
// Frees all allocations.
|
|
// Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations!
|
|
virtual void Clear() = 0;
|
|
|
|
virtual void SetAllocationUserData(VkDeviceSize offset, void* userData) = 0;
|
|
|
|
protected:
|
|
const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
|
|
VkDeviceSize GetDebugMargin() const
|
|
{
|
|
return IsVirtual() ? 0 : VMA_DEBUG_MARGIN;
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap_Begin(class VmaJsonWriter& json,
|
|
VkDeviceSize unusedBytes,
|
|
size_t allocationCount,
|
|
size_t unusedRangeCount) const;
|
|
void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
|
|
VkDeviceSize offset, VkDeviceSize size, void* userData) const;
|
|
void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size) const;
|
|
void PrintDetailedMap_End(class VmaJsonWriter& json) const;
|
|
#endif
|
|
|
|
private:
|
|
VkDeviceSize m_Size;
|
|
const VkAllocationCallbacks* m_pAllocationCallbacks;
|
|
const bool m_IsVirtual;
|
|
};
|
|
|
|
#define VMA_VALIDATE(cond) do { if(!(cond)) { \
|
|
VMA_ASSERT(0 && "Validation failed: " #cond); \
|
|
return false; \
|
|
} } while(false)
|
|
|
|
class VmaBlockMetadata_Generic : public VmaBlockMetadata
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic)
|
|
public:
|
|
VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirtual);
|
|
virtual ~VmaBlockMetadata_Generic();
|
|
virtual void Init(VkDeviceSize size);
|
|
|
|
virtual bool Validate() const;
|
|
virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }
|
|
virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
|
|
virtual VkDeviceSize GetUnusedRangeSizeMax() const;
|
|
virtual bool IsEmpty() const;
|
|
|
|
virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
|
|
virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
|
|
#endif
|
|
|
|
virtual bool CreateAllocationRequest(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
|
|
virtual bool MakeRequestedAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
|
|
virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
|
|
|
|
virtual VkResult CheckCorruption(const void* pBlockData);
|
|
|
|
virtual void Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData);
|
|
|
|
virtual void FreeAtOffset(VkDeviceSize offset);
|
|
virtual void GetAllocationInfo(VkDeviceSize offset, VmaVirtualAllocationInfo& outInfo);
|
|
virtual void Clear();
|
|
virtual void SetAllocationUserData(VkDeviceSize offset, void* userData);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// For defragmentation
|
|
|
|
bool IsBufferImageGranularityConflictPossible(
|
|
VkDeviceSize bufferImageGranularity,
|
|
VmaSuballocationType& inOutPrevSuballocType) const;
|
|
|
|
private:
|
|
friend class VmaDefragmentationAlgorithm_Generic;
|
|
friend class VmaDefragmentationAlgorithm_Fast;
|
|
|
|
uint32_t m_FreeCount;
|
|
VkDeviceSize m_SumFreeSize;
|
|
VmaSuballocationList m_Suballocations;
|
|
// Suballocations that are free. Sorted by size, ascending.
|
|
VmaVector<VmaSuballocationList::iterator, VmaStlAllocator<VmaSuballocationList::iterator>> m_FreeSuballocationsBySize;
|
|
|
|
VkDeviceSize AlignAllocationSize(VkDeviceSize size) const
|
|
{
|
|
return IsVirtual() ? size : VmaAlignUp(size, (VkDeviceSize)16);
|
|
}
|
|
|
|
VmaSuballocationList::iterator FindAtOffest(VkDeviceSize offset);
|
|
bool ValidateFreeSuballocationList() const;
|
|
|
|
// Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
|
|
// If yes, fills pOffset and returns true. If no, returns false.
|
|
bool CheckAllocation(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
VmaSuballocationList::const_iterator suballocItem,
|
|
bool canMakeOtherLost,
|
|
VkDeviceSize* pOffset,
|
|
size_t* itemsToMakeLostCount,
|
|
VkDeviceSize* pSumFreeSize,
|
|
VkDeviceSize* pSumItemSize) const;
|
|
// Given free suballocation, it merges it with following one, which must also be free.
|
|
void MergeFreeWithNext(VmaSuballocationList::iterator item);
|
|
// Releases given suballocation, making it free.
|
|
// Merges it with adjacent free suballocations if applicable.
|
|
// Returns iterator to new free suballocation at this place.
|
|
VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
|
|
// Given free suballocation, it inserts it into sorted list of
|
|
// m_FreeSuballocationsBySize if it is suitable.
|
|
void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
|
|
// Given free suballocation, it removes it from sorted list of
|
|
// m_FreeSuballocationsBySize if it is suitable.
|
|
void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
|
|
};
|
|
|
|
/*
|
|
Allocations and their references in internal data structure look like this:
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
|
|
|
|
0 +-------+
|
|
| |
|
|
| |
|
|
| |
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount]
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount + 1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 1st[1st.size() - 1]
|
|
+-------+
|
|
| |
|
|
| |
|
|
| |
|
|
GetSize() +-------+
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
|
|
|
|
0 +-------+
|
|
| Alloc | 2nd[0]
|
|
+-------+
|
|
| Alloc | 2nd[1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 2nd[2nd.size() - 1]
|
|
+-------+
|
|
| |
|
|
| |
|
|
| |
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount]
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount + 1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 1st[1st.size() - 1]
|
|
+-------+
|
|
| |
|
|
GetSize() +-------+
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
|
|
|
|
0 +-------+
|
|
| |
|
|
| |
|
|
| |
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount]
|
|
+-------+
|
|
| Alloc | 1st[m_1stNullItemsBeginCount + 1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 1st[1st.size() - 1]
|
|
+-------+
|
|
| |
|
|
| |
|
|
| |
|
|
+-------+
|
|
| Alloc | 2nd[2nd.size() - 1]
|
|
+-------+
|
|
| ... |
|
|
+-------+
|
|
| Alloc | 2nd[1]
|
|
+-------+
|
|
| Alloc | 2nd[0]
|
|
GetSize() +-------+
|
|
|
|
*/
|
|
class VmaBlockMetadata_Linear : public VmaBlockMetadata
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear)
|
|
public:
|
|
VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirtual);
|
|
virtual ~VmaBlockMetadata_Linear();
|
|
virtual void Init(VkDeviceSize size);
|
|
|
|
virtual bool Validate() const;
|
|
virtual size_t GetAllocationCount() const;
|
|
virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
|
|
virtual VkDeviceSize GetUnusedRangeSizeMax() const;
|
|
virtual bool IsEmpty() const { return GetAllocationCount() == 0; }
|
|
|
|
virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
|
|
virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
|
|
#endif
|
|
|
|
virtual bool CreateAllocationRequest(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
|
|
virtual bool MakeRequestedAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
|
|
virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
|
|
|
|
virtual VkResult CheckCorruption(const void* pBlockData);
|
|
|
|
virtual void Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData);
|
|
|
|
virtual void FreeAtOffset(VkDeviceSize offset);
|
|
virtual void GetAllocationInfo(VkDeviceSize offset, VmaVirtualAllocationInfo& outInfo);
|
|
virtual void Clear();
|
|
virtual void SetAllocationUserData(VkDeviceSize offset, void* userData);
|
|
|
|
private:
|
|
/*
|
|
There are two suballocation vectors, used in ping-pong way.
|
|
The one with index m_1stVectorIndex is called 1st.
|
|
The one with index (m_1stVectorIndex ^ 1) is called 2nd.
|
|
2nd can be non-empty only when 1st is not empty.
|
|
When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
|
|
*/
|
|
typedef VmaVector< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType;
|
|
|
|
enum SECOND_VECTOR_MODE
|
|
{
|
|
SECOND_VECTOR_EMPTY,
|
|
/*
|
|
Suballocations in 2nd vector are created later than the ones in 1st, but they
|
|
all have smaller offset.
|
|
*/
|
|
SECOND_VECTOR_RING_BUFFER,
|
|
/*
|
|
Suballocations in 2nd vector are upper side of double stack.
|
|
They all have offsets higher than those in 1st vector.
|
|
Top of this stack means smaller offsets, but higher indices in this vector.
|
|
*/
|
|
SECOND_VECTOR_DOUBLE_STACK,
|
|
};
|
|
|
|
VkDeviceSize m_SumFreeSize;
|
|
SuballocationVectorType m_Suballocations0, m_Suballocations1;
|
|
uint32_t m_1stVectorIndex;
|
|
SECOND_VECTOR_MODE m_2ndVectorMode;
|
|
|
|
SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
|
|
SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
|
|
const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
|
|
const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
|
|
VmaSuballocation& FindSuballocation(VkDeviceSize offset);
|
|
|
|
// Number of items in 1st vector with hAllocation = null at the beginning.
|
|
size_t m_1stNullItemsBeginCount;
|
|
// Number of other items in 1st vector with hAllocation = null somewhere in the middle.
|
|
size_t m_1stNullItemsMiddleCount;
|
|
// Number of items in 2nd vector with hAllocation = null.
|
|
size_t m_2ndNullItemsCount;
|
|
|
|
bool ShouldCompact1st() const;
|
|
void CleanupAfterFree();
|
|
|
|
bool CreateAllocationRequest_LowerAddress(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
bool CreateAllocationRequest_UpperAddress(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
};
|
|
|
|
/*
|
|
- GetSize() is the original size of allocated memory block.
|
|
- m_UsableSize is this size aligned down to a power of two.
|
|
All allocations and calculations happen relative to m_UsableSize.
|
|
- GetUnusableSize() is the difference between them.
|
|
It is reported as separate, unused range, not available for allocations.
|
|
|
|
Node at level 0 has size = m_UsableSize.
|
|
Each next level contains nodes with size 2 times smaller than current level.
|
|
m_LevelCount is the maximum number of levels to use in the current object.
|
|
*/
|
|
class VmaBlockMetadata_Buddy : public VmaBlockMetadata
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy)
|
|
public:
|
|
VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirtual);
|
|
virtual ~VmaBlockMetadata_Buddy();
|
|
virtual void Init(VkDeviceSize size);
|
|
|
|
virtual bool Validate() const;
|
|
virtual size_t GetAllocationCount() const { return m_AllocationCount; }
|
|
virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); }
|
|
virtual VkDeviceSize GetUnusedRangeSizeMax() const;
|
|
virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; }
|
|
|
|
virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
|
|
virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
|
|
#endif
|
|
|
|
virtual bool CreateAllocationRequest(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
|
|
virtual bool MakeRequestedAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VmaAllocationRequest* pAllocationRequest);
|
|
|
|
virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
|
|
|
|
virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; }
|
|
|
|
virtual void Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData);
|
|
|
|
virtual void FreeAtOffset(VkDeviceSize offset);
|
|
virtual void GetAllocationInfo(VkDeviceSize offset, VmaVirtualAllocationInfo& outInfo);
|
|
virtual void Clear();
|
|
virtual void SetAllocationUserData(VkDeviceSize offset, void* userData);
|
|
|
|
private:
|
|
static const size_t MAX_LEVELS = 48;
|
|
|
|
struct ValidationContext
|
|
{
|
|
size_t calculatedAllocationCount = 0;
|
|
size_t calculatedFreeCount = 0;
|
|
VkDeviceSize calculatedSumFreeSize = 0;
|
|
};
|
|
|
|
struct Node
|
|
{
|
|
VkDeviceSize offset;
|
|
enum TYPE
|
|
{
|
|
TYPE_FREE,
|
|
TYPE_ALLOCATION,
|
|
TYPE_SPLIT,
|
|
TYPE_COUNT
|
|
} type;
|
|
Node* parent;
|
|
Node* buddy;
|
|
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
Node* prev;
|
|
Node* next;
|
|
} free;
|
|
struct
|
|
{
|
|
void* userData;
|
|
} allocation;
|
|
struct
|
|
{
|
|
Node* leftChild;
|
|
} split;
|
|
};
|
|
};
|
|
|
|
// Size of the memory block aligned down to a power of two.
|
|
VkDeviceSize m_UsableSize;
|
|
uint32_t m_LevelCount;
|
|
|
|
VmaPoolAllocator<Node> m_NodeAllocator;
|
|
|
|
Node* m_Root;
|
|
struct {
|
|
Node* front;
|
|
Node* back;
|
|
} m_FreeList[MAX_LEVELS];
|
|
// Number of nodes in the tree with type == TYPE_ALLOCATION.
|
|
size_t m_AllocationCount;
|
|
// Number of nodes in the tree with type == TYPE_FREE.
|
|
size_t m_FreeCount;
|
|
// Doesn't include space wasted due to internal fragmentation - allocation sizes are just aligned up to node sizes.
|
|
// Doesn't include unusable size.
|
|
VkDeviceSize m_SumFreeSize;
|
|
|
|
VkDeviceSize AlignAllocationSize(VkDeviceSize size) const
|
|
{
|
|
if(!IsVirtual())
|
|
{
|
|
size = VmaAlignUp(size, (VkDeviceSize)16);
|
|
}
|
|
return VmaNextPow2(size);
|
|
}
|
|
VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; }
|
|
Node* FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel);
|
|
void DeleteNodeChildren(Node* node);
|
|
bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const;
|
|
uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const;
|
|
inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; }
|
|
void CalcAllocationStatInfoNode(VmaStatInfo& inoutInfo, const Node* node, VkDeviceSize levelNodeSize) const;
|
|
// Adds node to the front of FreeList at given level.
|
|
// node->type must be FREE.
|
|
// node->free.prev, next can be undefined.
|
|
void AddToFreeListFront(uint32_t level, Node* node);
|
|
// Removes node from FreeList at given level.
|
|
// node->type must be FREE.
|
|
// node->free.prev, next stay untouched.
|
|
void RemoveFromFreeList(uint32_t level, Node* node);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
Represents a single block of device memory (`VkDeviceMemory`) with all the
|
|
data about its regions (aka suballocations, #VmaAllocation), assigned and free.
|
|
|
|
Thread-safety: This class must be externally synchronized.
|
|
*/
|
|
class VmaDeviceMemoryBlock
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock)
|
|
public:
|
|
VmaBlockMetadata* m_pMetadata;
|
|
|
|
VmaDeviceMemoryBlock(VmaAllocator hAllocator);
|
|
|
|
~VmaDeviceMemoryBlock()
|
|
{
|
|
VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
|
|
VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
|
|
}
|
|
|
|
// Always call after construction.
|
|
void Init(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hParentPool,
|
|
uint32_t newMemoryTypeIndex,
|
|
VkDeviceMemory newMemory,
|
|
VkDeviceSize newSize,
|
|
uint32_t id,
|
|
uint32_t algorithm);
|
|
// Always call before destruction.
|
|
void Destroy(VmaAllocator allocator);
|
|
|
|
VmaPool GetParentPool() const { return m_hParentPool; }
|
|
VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
|
|
uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
|
|
uint32_t GetId() const { return m_Id; }
|
|
void* GetMappedData() const { return m_pMappedData; }
|
|
|
|
// Validates all data structures inside this object. If not valid, returns false.
|
|
bool Validate() const;
|
|
|
|
VkResult CheckCorruption(VmaAllocator hAllocator);
|
|
|
|
// ppData can be null.
|
|
VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
|
|
void Unmap(VmaAllocator hAllocator, uint32_t count);
|
|
|
|
VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
|
|
VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
|
|
|
|
VkResult BindBufferMemory(
|
|
const VmaAllocator hAllocator,
|
|
const VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer hBuffer,
|
|
const void* pNext);
|
|
VkResult BindImageMemory(
|
|
const VmaAllocator hAllocator,
|
|
const VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage hImage,
|
|
const void* pNext);
|
|
|
|
private:
|
|
VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
|
|
uint32_t m_MemoryTypeIndex;
|
|
uint32_t m_Id;
|
|
VkDeviceMemory m_hMemory;
|
|
|
|
/*
|
|
Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
|
|
Also protects m_MapCount, m_pMappedData.
|
|
Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
|
|
*/
|
|
VMA_MUTEX m_Mutex;
|
|
uint32_t m_MapCount;
|
|
void* m_pMappedData;
|
|
};
|
|
|
|
struct VmaDefragmentationMove
|
|
{
|
|
size_t srcBlockIndex;
|
|
size_t dstBlockIndex;
|
|
VkDeviceSize srcOffset;
|
|
VkDeviceSize dstOffset;
|
|
VkDeviceSize size;
|
|
VmaAllocation hAllocation;
|
|
VmaDeviceMemoryBlock* pSrcBlock;
|
|
VmaDeviceMemoryBlock* pDstBlock;
|
|
};
|
|
|
|
class VmaDefragmentationAlgorithm;
|
|
|
|
/*
|
|
Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
|
|
Vulkan memory type.
|
|
|
|
Synchronized internally with a mutex.
|
|
*/
|
|
struct VmaBlockVector
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaBlockVector)
|
|
public:
|
|
VmaBlockVector(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hParentPool,
|
|
uint32_t memoryTypeIndex,
|
|
VkDeviceSize preferredBlockSize,
|
|
size_t minBlockCount,
|
|
size_t maxBlockCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
uint32_t frameInUseCount,
|
|
bool explicitBlockSize,
|
|
uint32_t algorithm,
|
|
float priority,
|
|
VkDeviceSize minAllocationAlignment,
|
|
void* pMemoryAllocateNext);
|
|
~VmaBlockVector();
|
|
|
|
VkResult CreateMinBlocks();
|
|
|
|
VmaAllocator GetAllocator() const { return m_hAllocator; }
|
|
VmaPool GetParentPool() const { return m_hParentPool; }
|
|
bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }
|
|
uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
|
|
VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
|
|
VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
|
|
uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
|
|
uint32_t GetAlgorithm() const { return m_Algorithm; }
|
|
|
|
void GetPoolStats(VmaPoolStats* pStats);
|
|
|
|
bool IsEmpty();
|
|
bool IsCorruptionDetectionEnabled() const;
|
|
|
|
VkResult Allocate(
|
|
uint32_t currentFrameIndex,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations);
|
|
|
|
void Free(const VmaAllocation hAllocation);
|
|
|
|
// Adds statistics of this BlockVector to pStats.
|
|
void AddStats(VmaStats* pStats);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaJsonWriter& json);
|
|
#endif
|
|
|
|
void MakePoolAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
size_t* pLostAllocationCount);
|
|
VkResult CheckCorruption();
|
|
|
|
// Saves results in pCtx->res.
|
|
void Defragment(
|
|
class VmaBlockVectorDefragmentationContext* pCtx,
|
|
VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags,
|
|
VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,
|
|
VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,
|
|
VkCommandBuffer commandBuffer);
|
|
void DefragmentationEnd(
|
|
class VmaBlockVectorDefragmentationContext* pCtx,
|
|
uint32_t flags,
|
|
VmaDefragmentationStats* pStats);
|
|
|
|
uint32_t ProcessDefragmentations(
|
|
class VmaBlockVectorDefragmentationContext *pCtx,
|
|
VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves);
|
|
|
|
void CommitDefragmentations(
|
|
class VmaBlockVectorDefragmentationContext *pCtx,
|
|
VmaDefragmentationStats* pStats);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// To be used only while the m_Mutex is locked. Used during defragmentation.
|
|
|
|
size_t GetBlockCount() const { return m_Blocks.size(); }
|
|
VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
|
|
size_t CalcAllocationCount() const;
|
|
bool IsBufferImageGranularityConflictPossible() const;
|
|
|
|
private:
|
|
friend class VmaDefragmentationAlgorithm_Generic;
|
|
|
|
const VmaAllocator m_hAllocator;
|
|
const VmaPool m_hParentPool;
|
|
const uint32_t m_MemoryTypeIndex;
|
|
const VkDeviceSize m_PreferredBlockSize;
|
|
const size_t m_MinBlockCount;
|
|
const size_t m_MaxBlockCount;
|
|
const VkDeviceSize m_BufferImageGranularity;
|
|
const uint32_t m_FrameInUseCount;
|
|
const bool m_ExplicitBlockSize;
|
|
const uint32_t m_Algorithm;
|
|
const float m_Priority;
|
|
const VkDeviceSize m_MinAllocationAlignment;
|
|
void* const m_pMemoryAllocateNext;
|
|
VMA_RW_MUTEX m_Mutex;
|
|
|
|
/* There can be at most one allocation that is completely empty (except when minBlockCount > 0) -
|
|
a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */
|
|
bool m_HasEmptyBlock;
|
|
// Incrementally sorted by sumFreeSize, ascending.
|
|
VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;
|
|
uint32_t m_NextBlockId;
|
|
|
|
VkDeviceSize CalcMaxBlockSize() const;
|
|
|
|
// Finds and removes given block from vector.
|
|
void Remove(VmaDeviceMemoryBlock* pBlock);
|
|
|
|
// Performs single step in sorting m_Blocks. They may not be fully sorted
|
|
// after this call.
|
|
void IncrementallySortBlocks();
|
|
|
|
VkResult AllocatePage(
|
|
uint32_t currentFrameIndex,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation);
|
|
|
|
// To be used only without CAN_MAKE_OTHER_LOST flag.
|
|
VkResult AllocateFromBlock(
|
|
VmaDeviceMemoryBlock* pBlock,
|
|
uint32_t currentFrameIndex,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
VmaAllocationCreateFlags allocFlags,
|
|
void* pUserData,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t strategy,
|
|
VmaAllocation* pAllocation);
|
|
|
|
VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
|
|
|
|
// Saves result to pCtx->res.
|
|
void ApplyDefragmentationMovesCpu(
|
|
class VmaBlockVectorDefragmentationContext* pDefragCtx,
|
|
const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves);
|
|
// Saves result to pCtx->res.
|
|
void ApplyDefragmentationMovesGpu(
|
|
class VmaBlockVectorDefragmentationContext* pDefragCtx,
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkCommandBuffer commandBuffer);
|
|
|
|
/*
|
|
Used during defragmentation. pDefragmentationStats is optional. It is in/out
|
|
- updated with new data.
|
|
*/
|
|
void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats);
|
|
|
|
void UpdateHasEmptyBlock();
|
|
};
|
|
|
|
struct VmaPool_T
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaPool_T)
|
|
public:
|
|
VmaBlockVector m_BlockVector;
|
|
|
|
VmaPool_T(
|
|
VmaAllocator hAllocator,
|
|
const VmaPoolCreateInfo& createInfo,
|
|
VkDeviceSize preferredBlockSize);
|
|
~VmaPool_T();
|
|
|
|
uint32_t GetId() const { return m_Id; }
|
|
void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
|
|
|
|
const char* GetName() const { return m_Name; }
|
|
void SetName(const char* pName);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
//void PrintDetailedMap(class VmaStringBuilder& sb);
|
|
#endif
|
|
|
|
private:
|
|
uint32_t m_Id;
|
|
char* m_Name;
|
|
VmaPool_T* m_PrevPool = VMA_NULL;
|
|
VmaPool_T* m_NextPool = VMA_NULL;
|
|
friend struct VmaPoolListItemTraits;
|
|
};
|
|
|
|
struct VmaPoolListItemTraits
|
|
{
|
|
typedef VmaPool_T ItemType;
|
|
static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; }
|
|
static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; }
|
|
static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; }
|
|
static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; }
|
|
};
|
|
|
|
/*
|
|
Performs defragmentation:
|
|
|
|
- Updates `pBlockVector->m_pMetadata`.
|
|
- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset().
|
|
- Does not move actual data, only returns requested moves as `moves`.
|
|
*/
|
|
class VmaDefragmentationAlgorithm
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm)
|
|
public:
|
|
VmaDefragmentationAlgorithm(
|
|
VmaAllocator hAllocator,
|
|
VmaBlockVector* pBlockVector,
|
|
uint32_t currentFrameIndex) :
|
|
m_hAllocator(hAllocator),
|
|
m_pBlockVector(pBlockVector),
|
|
m_CurrentFrameIndex(currentFrameIndex)
|
|
{
|
|
}
|
|
virtual ~VmaDefragmentationAlgorithm()
|
|
{
|
|
}
|
|
|
|
virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0;
|
|
virtual void AddAll() = 0;
|
|
|
|
virtual VkResult Defragment(
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove,
|
|
VmaDefragmentationFlags flags) = 0;
|
|
|
|
virtual VkDeviceSize GetBytesMoved() const = 0;
|
|
virtual uint32_t GetAllocationsMoved() const = 0;
|
|
|
|
protected:
|
|
VmaAllocator const m_hAllocator;
|
|
VmaBlockVector* const m_pBlockVector;
|
|
const uint32_t m_CurrentFrameIndex;
|
|
|
|
struct AllocationInfo
|
|
{
|
|
VmaAllocation m_hAllocation;
|
|
VkBool32* m_pChanged;
|
|
|
|
AllocationInfo() :
|
|
m_hAllocation(VK_NULL_HANDLE),
|
|
m_pChanged(VMA_NULL)
|
|
{
|
|
}
|
|
AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) :
|
|
m_hAllocation(hAlloc),
|
|
m_pChanged(pChanged)
|
|
{
|
|
}
|
|
};
|
|
};
|
|
|
|
class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic)
|
|
public:
|
|
VmaDefragmentationAlgorithm_Generic(
|
|
VmaAllocator hAllocator,
|
|
VmaBlockVector* pBlockVector,
|
|
uint32_t currentFrameIndex,
|
|
bool overlappingMoveSupported);
|
|
virtual ~VmaDefragmentationAlgorithm_Generic();
|
|
|
|
virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
|
|
virtual void AddAll() { m_AllAllocations = true; }
|
|
|
|
virtual VkResult Defragment(
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove,
|
|
VmaDefragmentationFlags flags);
|
|
|
|
virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
|
|
virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
|
|
|
|
private:
|
|
uint32_t m_AllocationCount;
|
|
bool m_AllAllocations;
|
|
|
|
VkDeviceSize m_BytesMoved;
|
|
uint32_t m_AllocationsMoved;
|
|
|
|
struct AllocationInfoSizeGreater
|
|
{
|
|
bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
|
|
{
|
|
return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
|
|
}
|
|
};
|
|
|
|
struct AllocationInfoOffsetGreater
|
|
{
|
|
bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
|
|
{
|
|
return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset();
|
|
}
|
|
};
|
|
|
|
struct BlockInfo
|
|
{
|
|
size_t m_OriginalBlockIndex;
|
|
VmaDeviceMemoryBlock* m_pBlock;
|
|
bool m_HasNonMovableAllocations;
|
|
VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
|
|
|
|
BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
|
|
m_OriginalBlockIndex(SIZE_MAX),
|
|
m_pBlock(VMA_NULL),
|
|
m_HasNonMovableAllocations(true),
|
|
m_Allocations(pAllocationCallbacks)
|
|
{
|
|
}
|
|
|
|
void CalcHasNonMovableAllocations()
|
|
{
|
|
const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount();
|
|
const size_t defragmentAllocCount = m_Allocations.size();
|
|
m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
|
|
}
|
|
|
|
void SortAllocationsBySizeDescending()
|
|
{
|
|
VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
|
|
}
|
|
|
|
void SortAllocationsByOffsetDescending()
|
|
{
|
|
VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater());
|
|
}
|
|
};
|
|
|
|
struct BlockPointerLess
|
|
{
|
|
bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const
|
|
{
|
|
return pLhsBlockInfo->m_pBlock < pRhsBlock;
|
|
}
|
|
bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
|
|
{
|
|
return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
|
|
}
|
|
};
|
|
|
|
// 1. Blocks with some non-movable allocations go first.
|
|
// 2. Blocks with smaller sumFreeSize go first.
|
|
struct BlockInfoCompareMoveDestination
|
|
{
|
|
bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
|
|
{
|
|
if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
|
|
{
|
|
return true;
|
|
}
|
|
if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
|
|
{
|
|
return false;
|
|
}
|
|
if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize())
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
|
|
BlockInfoVector m_Blocks;
|
|
|
|
VkResult DefragmentRound(
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove,
|
|
bool freeOldAllocations);
|
|
|
|
size_t CalcBlocksWithNonMovableCount() const;
|
|
|
|
static bool MoveMakesSense(
|
|
size_t dstBlockIndex, VkDeviceSize dstOffset,
|
|
size_t srcBlockIndex, VkDeviceSize srcOffset);
|
|
};
|
|
|
|
class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast)
|
|
public:
|
|
VmaDefragmentationAlgorithm_Fast(
|
|
VmaAllocator hAllocator,
|
|
VmaBlockVector* pBlockVector,
|
|
uint32_t currentFrameIndex,
|
|
bool overlappingMoveSupported);
|
|
virtual ~VmaDefragmentationAlgorithm_Fast();
|
|
|
|
virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; }
|
|
virtual void AddAll() { m_AllAllocations = true; }
|
|
|
|
virtual VkResult Defragment(
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove,
|
|
VmaDefragmentationFlags flags);
|
|
|
|
virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
|
|
virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
|
|
|
|
private:
|
|
struct BlockInfo
|
|
{
|
|
size_t origBlockIndex;
|
|
};
|
|
|
|
class FreeSpaceDatabase
|
|
{
|
|
public:
|
|
FreeSpaceDatabase()
|
|
{
|
|
FreeSpace s = {};
|
|
s.blockInfoIndex = SIZE_MAX;
|
|
for(size_t i = 0; i < MAX_COUNT; ++i)
|
|
{
|
|
m_FreeSpaces[i] = s;
|
|
}
|
|
}
|
|
|
|
void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size)
|
|
{
|
|
// Find first invalid or the smallest structure.
|
|
size_t bestIndex = SIZE_MAX;
|
|
for(size_t i = 0; i < MAX_COUNT; ++i)
|
|
{
|
|
// Empty structure.
|
|
if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX)
|
|
{
|
|
bestIndex = i;
|
|
break;
|
|
}
|
|
if(m_FreeSpaces[i].size < size &&
|
|
(bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size))
|
|
{
|
|
bestIndex = i;
|
|
}
|
|
}
|
|
|
|
if(bestIndex != SIZE_MAX)
|
|
{
|
|
m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex;
|
|
m_FreeSpaces[bestIndex].offset = offset;
|
|
m_FreeSpaces[bestIndex].size = size;
|
|
}
|
|
}
|
|
|
|
bool Fetch(VkDeviceSize alignment, VkDeviceSize size,
|
|
size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset)
|
|
{
|
|
size_t bestIndex = SIZE_MAX;
|
|
VkDeviceSize bestFreeSpaceAfter = 0;
|
|
for(size_t i = 0; i < MAX_COUNT; ++i)
|
|
{
|
|
// Structure is valid.
|
|
if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX)
|
|
{
|
|
const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment);
|
|
// Allocation fits into this structure.
|
|
if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size)
|
|
{
|
|
const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) -
|
|
(dstOffset + size);
|
|
if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter)
|
|
{
|
|
bestIndex = i;
|
|
bestFreeSpaceAfter = freeSpaceAfter;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(bestIndex != SIZE_MAX)
|
|
{
|
|
outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex;
|
|
outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment);
|
|
|
|
// Leave this structure for remaining empty space.
|
|
const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size;
|
|
m_FreeSpaces[bestIndex].offset += alignmentPlusSize;
|
|
m_FreeSpaces[bestIndex].size -= alignmentPlusSize;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
static const size_t MAX_COUNT = 4;
|
|
|
|
struct FreeSpace
|
|
{
|
|
size_t blockInfoIndex; // SIZE_MAX means this structure is invalid.
|
|
VkDeviceSize offset;
|
|
VkDeviceSize size;
|
|
} m_FreeSpaces[MAX_COUNT];
|
|
};
|
|
|
|
const bool m_OverlappingMoveSupported;
|
|
|
|
uint32_t m_AllocationCount;
|
|
bool m_AllAllocations;
|
|
|
|
VkDeviceSize m_BytesMoved;
|
|
uint32_t m_AllocationsMoved;
|
|
|
|
VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos;
|
|
|
|
void PreprocessMetadata();
|
|
void PostprocessMetadata();
|
|
void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc);
|
|
};
|
|
|
|
struct VmaBlockDefragmentationContext
|
|
{
|
|
enum BLOCK_FLAG
|
|
{
|
|
BLOCK_FLAG_USED = 0x00000001,
|
|
};
|
|
uint32_t flags;
|
|
VkBuffer hBuffer;
|
|
};
|
|
|
|
class VmaBlockVectorDefragmentationContext
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext)
|
|
public:
|
|
VkResult res;
|
|
bool mutexLocked;
|
|
VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts;
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > defragmentationMoves;
|
|
uint32_t defragmentationMovesProcessed;
|
|
uint32_t defragmentationMovesCommitted;
|
|
bool hasDefragmentationPlan;
|
|
|
|
VmaBlockVectorDefragmentationContext(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hCustomPool, // Optional.
|
|
VmaBlockVector* pBlockVector,
|
|
uint32_t currFrameIndex);
|
|
~VmaBlockVectorDefragmentationContext();
|
|
|
|
VmaPool GetCustomPool() const { return m_hCustomPool; }
|
|
VmaBlockVector* GetBlockVector() const { return m_pBlockVector; }
|
|
VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; }
|
|
|
|
void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
|
|
void AddAll() { m_AllAllocations = true; }
|
|
|
|
void Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags);
|
|
|
|
private:
|
|
const VmaAllocator m_hAllocator;
|
|
// Null if not from custom pool.
|
|
const VmaPool m_hCustomPool;
|
|
// Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors.
|
|
VmaBlockVector* const m_pBlockVector;
|
|
const uint32_t m_CurrFrameIndex;
|
|
// Owner of this object.
|
|
VmaDefragmentationAlgorithm* m_pAlgorithm;
|
|
|
|
struct AllocInfo
|
|
{
|
|
VmaAllocation hAlloc;
|
|
VkBool32* pChanged;
|
|
};
|
|
// Used between constructor and Begin.
|
|
VmaVector< AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations;
|
|
bool m_AllAllocations;
|
|
};
|
|
|
|
struct VmaDefragmentationContext_T
|
|
{
|
|
private:
|
|
VMA_CLASS_NO_COPY(VmaDefragmentationContext_T)
|
|
public:
|
|
VmaDefragmentationContext_T(
|
|
VmaAllocator hAllocator,
|
|
uint32_t currFrameIndex,
|
|
uint32_t flags,
|
|
VmaDefragmentationStats* pStats);
|
|
~VmaDefragmentationContext_T();
|
|
|
|
void AddPools(uint32_t poolCount, const VmaPool* pPools);
|
|
void AddAllocations(
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* pAllocations,
|
|
VkBool32* pAllocationsChanged);
|
|
|
|
/*
|
|
Returns:
|
|
- `VK_SUCCESS` if succeeded and object can be destroyed immediately.
|
|
- `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd().
|
|
- Negative value if error occurred and object can be destroyed immediately.
|
|
*/
|
|
VkResult Defragment(
|
|
VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
|
|
VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
|
|
VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags);
|
|
|
|
VkResult DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo);
|
|
VkResult DefragmentPassEnd();
|
|
|
|
private:
|
|
const VmaAllocator m_hAllocator;
|
|
const uint32_t m_CurrFrameIndex;
|
|
const uint32_t m_Flags;
|
|
VmaDefragmentationStats* const m_pStats;
|
|
|
|
VkDeviceSize m_MaxCpuBytesToMove;
|
|
uint32_t m_MaxCpuAllocationsToMove;
|
|
VkDeviceSize m_MaxGpuBytesToMove;
|
|
uint32_t m_MaxGpuAllocationsToMove;
|
|
|
|
// Owner of these objects.
|
|
VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES];
|
|
// Owner of these objects.
|
|
VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator<VmaBlockVectorDefragmentationContext*> > m_CustomPoolContexts;
|
|
};
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
|
|
class VmaRecorder
|
|
{
|
|
public:
|
|
VmaRecorder();
|
|
VkResult Init(const VmaRecordSettings& settings, bool useMutex);
|
|
void WriteConfiguration(
|
|
const VkPhysicalDeviceProperties& devProps,
|
|
const VkPhysicalDeviceMemoryProperties& memProps,
|
|
uint32_t vulkanApiVersion,
|
|
bool dedicatedAllocationExtensionEnabled,
|
|
bool bindMemory2ExtensionEnabled,
|
|
bool memoryBudgetExtensionEnabled,
|
|
bool deviceCoherentMemoryExtensionEnabled);
|
|
~VmaRecorder();
|
|
|
|
void RecordCreateAllocator(uint32_t frameIndex);
|
|
void RecordDestroyAllocator(uint32_t frameIndex);
|
|
void RecordCreatePool(uint32_t frameIndex,
|
|
const VmaPoolCreateInfo& createInfo,
|
|
VmaPool pool);
|
|
void RecordDestroyPool(uint32_t frameIndex, VmaPool pool);
|
|
void RecordAllocateMemory(uint32_t frameIndex,
|
|
const VkMemoryRequirements& vkMemReq,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaAllocation allocation);
|
|
void RecordAllocateMemoryPages(uint32_t frameIndex,
|
|
const VkMemoryRequirements& vkMemReq,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
uint64_t allocationCount,
|
|
const VmaAllocation* pAllocations);
|
|
void RecordAllocateMemoryForBuffer(uint32_t frameIndex,
|
|
const VkMemoryRequirements& vkMemReq,
|
|
bool requiresDedicatedAllocation,
|
|
bool prefersDedicatedAllocation,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaAllocation allocation);
|
|
void RecordAllocateMemoryForImage(uint32_t frameIndex,
|
|
const VkMemoryRequirements& vkMemReq,
|
|
bool requiresDedicatedAllocation,
|
|
bool prefersDedicatedAllocation,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaAllocation allocation);
|
|
void RecordFreeMemory(uint32_t frameIndex,
|
|
VmaAllocation allocation);
|
|
void RecordFreeMemoryPages(uint32_t frameIndex,
|
|
uint64_t allocationCount,
|
|
const VmaAllocation* pAllocations);
|
|
void RecordSetAllocationUserData(uint32_t frameIndex,
|
|
VmaAllocation allocation,
|
|
const void* pUserData);
|
|
void RecordCreateLostAllocation(uint32_t frameIndex,
|
|
VmaAllocation allocation);
|
|
void RecordMapMemory(uint32_t frameIndex,
|
|
VmaAllocation allocation);
|
|
void RecordUnmapMemory(uint32_t frameIndex,
|
|
VmaAllocation allocation);
|
|
void RecordFlushAllocation(uint32_t frameIndex,
|
|
VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
|
|
void RecordInvalidateAllocation(uint32_t frameIndex,
|
|
VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
|
|
void RecordCreateBuffer(uint32_t frameIndex,
|
|
const VkBufferCreateInfo& bufCreateInfo,
|
|
const VmaAllocationCreateInfo& allocCreateInfo,
|
|
VmaAllocation allocation);
|
|
void RecordCreateImage(uint32_t frameIndex,
|
|
const VkImageCreateInfo& imageCreateInfo,
|
|
const VmaAllocationCreateInfo& allocCreateInfo,
|
|
VmaAllocation allocation);
|
|
void RecordDestroyBuffer(uint32_t frameIndex,
|
|
VmaAllocation allocation);
|
|
void RecordDestroyImage(uint32_t frameIndex,
|
|
VmaAllocation allocation);
|
|
void RecordTouchAllocation(uint32_t frameIndex,
|
|
VmaAllocation allocation);
|
|
void RecordGetAllocationInfo(uint32_t frameIndex,
|
|
VmaAllocation allocation);
|
|
void RecordMakePoolAllocationsLost(uint32_t frameIndex,
|
|
VmaPool pool);
|
|
void RecordDefragmentationBegin(uint32_t frameIndex,
|
|
const VmaDefragmentationInfo2& info,
|
|
VmaDefragmentationContext ctx);
|
|
void RecordDefragmentationEnd(uint32_t frameIndex,
|
|
VmaDefragmentationContext ctx);
|
|
void RecordSetPoolName(uint32_t frameIndex,
|
|
VmaPool pool,
|
|
const char* name);
|
|
|
|
private:
|
|
struct CallParams
|
|
{
|
|
uint32_t threadId;
|
|
double time;
|
|
};
|
|
|
|
class UserDataString
|
|
{
|
|
public:
|
|
UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData);
|
|
const char* GetString() const { return m_Str; }
|
|
|
|
private:
|
|
char m_PtrStr[17];
|
|
const char* m_Str;
|
|
};
|
|
|
|
bool m_UseMutex;
|
|
VmaRecordFlags m_Flags;
|
|
FILE* m_File;
|
|
VMA_MUTEX m_FileMutex;
|
|
std::chrono::time_point<std::chrono::high_resolution_clock> m_RecordingStartTime;
|
|
|
|
void GetBasicParams(CallParams& outParams);
|
|
|
|
// T must be a pointer type, e.g. VmaAllocation, VmaPool.
|
|
template<typename T>
|
|
void PrintPointerList(uint64_t count, const T* pItems)
|
|
{
|
|
if(count)
|
|
{
|
|
fprintf(m_File, "%p", pItems[0]);
|
|
for(uint64_t i = 1; i < count; ++i)
|
|
{
|
|
fprintf(m_File, " %p", pItems[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PrintPointerList(uint64_t count, const VmaAllocation* pItems);
|
|
void Flush();
|
|
};
|
|
|
|
#endif // #if VMA_RECORDING_ENABLED
|
|
|
|
/*
|
|
Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
|
|
*/
|
|
class VmaAllocationObjectAllocator
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator)
|
|
public:
|
|
VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks);
|
|
|
|
template<typename... Types> VmaAllocation Allocate(Types&&... args);
|
|
void Free(VmaAllocation hAlloc);
|
|
|
|
private:
|
|
VMA_MUTEX m_Mutex;
|
|
VmaPoolAllocator<VmaAllocation_T> m_Allocator;
|
|
};
|
|
|
|
struct VmaCurrentBudgetData
|
|
{
|
|
VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];
|
|
VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;
|
|
VMA_RW_MUTEX m_BudgetMutex;
|
|
uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];
|
|
uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];
|
|
uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
|
|
VmaCurrentBudgetData()
|
|
{
|
|
for(uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)
|
|
{
|
|
m_BlockBytes[heapIndex] = 0;
|
|
m_AllocationBytes[heapIndex] = 0;
|
|
#if VMA_MEMORY_BUDGET
|
|
m_VulkanUsage[heapIndex] = 0;
|
|
m_VulkanBudget[heapIndex] = 0;
|
|
m_BlockBytesAtBudgetFetch[heapIndex] = 0;
|
|
#endif
|
|
}
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
m_OperationsSinceBudgetFetch = 0;
|
|
#endif
|
|
}
|
|
|
|
void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
|
|
{
|
|
m_AllocationBytes[heapIndex] += allocationSize;
|
|
#if VMA_MEMORY_BUDGET
|
|
++m_OperationsSinceBudgetFetch;
|
|
#endif
|
|
}
|
|
|
|
void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
|
|
{
|
|
VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize);
|
|
m_AllocationBytes[heapIndex] -= allocationSize;
|
|
#if VMA_MEMORY_BUDGET
|
|
++m_OperationsSinceBudgetFetch;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
// Main allocator object.
|
|
struct VmaAllocator_T
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaAllocator_T)
|
|
public:
|
|
bool m_UseMutex;
|
|
uint32_t m_VulkanApiVersion;
|
|
bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
|
|
bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
|
|
bool m_UseExtMemoryBudget;
|
|
bool m_UseAmdDeviceCoherentMemory;
|
|
bool m_UseKhrBufferDeviceAddress;
|
|
bool m_UseExtMemoryPriority;
|
|
VkDevice m_hDevice;
|
|
VkInstance m_hInstance;
|
|
bool m_AllocationCallbacksSpecified;
|
|
VkAllocationCallbacks m_AllocationCallbacks;
|
|
VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
|
|
VmaAllocationObjectAllocator m_AllocationObjectAllocator;
|
|
|
|
// Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.
|
|
uint32_t m_HeapSizeLimitMask;
|
|
|
|
VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
|
|
VkPhysicalDeviceMemoryProperties m_MemProps;
|
|
|
|
// Default pools.
|
|
VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
|
|
|
|
typedef VmaIntrusiveLinkedList<VmaDedicatedAllocationListItemTraits> DedicatedAllocationLinkedList;
|
|
DedicatedAllocationLinkedList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES];
|
|
VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];
|
|
|
|
VmaCurrentBudgetData m_Budget;
|
|
VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects.
|
|
|
|
VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
|
|
VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
|
|
~VmaAllocator_T();
|
|
|
|
const VkAllocationCallbacks* GetAllocationCallbacks() const
|
|
{
|
|
return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
|
|
}
|
|
const VmaVulkanFunctions& GetVulkanFunctions() const
|
|
{
|
|
return m_VulkanFunctions;
|
|
}
|
|
|
|
VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; }
|
|
|
|
VkDeviceSize GetBufferImageGranularity() const
|
|
{
|
|
return VMA_MAX(
|
|
static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
|
|
m_PhysicalDeviceProperties.limits.bufferImageGranularity);
|
|
}
|
|
|
|
uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
|
|
uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
|
|
|
|
uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
|
|
{
|
|
VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
|
|
return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
|
|
}
|
|
// True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
|
|
bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
|
|
{
|
|
return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
}
|
|
// Minimum alignment for all allocations in specific memory type.
|
|
VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
|
|
{
|
|
return IsMemoryTypeNonCoherent(memTypeIndex) ?
|
|
VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
|
|
(VkDeviceSize)VMA_MIN_ALIGNMENT;
|
|
}
|
|
|
|
bool IsIntegratedGpu() const
|
|
{
|
|
return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
|
|
}
|
|
|
|
uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; }
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
VmaRecorder* GetRecorder() const { return m_pRecorder; }
|
|
#endif
|
|
|
|
void GetBufferMemoryRequirements(
|
|
VkBuffer hBuffer,
|
|
VkMemoryRequirements& memReq,
|
|
bool& requiresDedicatedAllocation,
|
|
bool& prefersDedicatedAllocation) const;
|
|
void GetImageMemoryRequirements(
|
|
VkImage hImage,
|
|
VkMemoryRequirements& memReq,
|
|
bool& requiresDedicatedAllocation,
|
|
bool& prefersDedicatedAllocation) const;
|
|
|
|
// Main allocation function.
|
|
VkResult AllocateMemory(
|
|
const VkMemoryRequirements& vkMemReq,
|
|
bool requiresDedicatedAllocation,
|
|
bool prefersDedicatedAllocation,
|
|
VkBuffer dedicatedBuffer,
|
|
VkBufferUsageFlags dedicatedBufferUsage, // UINT32_MAX when unknown.
|
|
VkImage dedicatedImage,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations);
|
|
|
|
// Main deallocation function.
|
|
void FreeMemory(
|
|
size_t allocationCount,
|
|
const VmaAllocation* pAllocations);
|
|
|
|
void CalculateStats(VmaStats* pStats);
|
|
|
|
void GetHeapBudgets(
|
|
VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount);
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void PrintDetailedMap(class VmaJsonWriter& json);
|
|
#endif
|
|
|
|
VkResult DefragmentationBegin(
|
|
const VmaDefragmentationInfo2& info,
|
|
VmaDefragmentationStats* pStats,
|
|
VmaDefragmentationContext* pContext);
|
|
VkResult DefragmentationEnd(
|
|
VmaDefragmentationContext context);
|
|
|
|
VkResult DefragmentationPassBegin(
|
|
VmaDefragmentationPassInfo* pInfo,
|
|
VmaDefragmentationContext context);
|
|
VkResult DefragmentationPassEnd(
|
|
VmaDefragmentationContext context);
|
|
|
|
void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
|
|
bool TouchAllocation(VmaAllocation hAllocation);
|
|
|
|
VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
|
|
void DestroyPool(VmaPool pool);
|
|
void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);
|
|
|
|
void SetCurrentFrameIndex(uint32_t frameIndex);
|
|
uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
|
|
|
|
void MakePoolAllocationsLost(
|
|
VmaPool hPool,
|
|
size_t* pLostAllocationCount);
|
|
VkResult CheckPoolCorruption(VmaPool hPool);
|
|
VkResult CheckCorruption(uint32_t memoryTypeBits);
|
|
|
|
void CreateLostAllocation(VmaAllocation* pAllocation);
|
|
|
|
// Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
|
|
VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
|
|
// Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
|
|
void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
|
|
// Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
|
|
VkResult BindVulkanBuffer(
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset,
|
|
VkBuffer buffer,
|
|
const void* pNext);
|
|
// Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
|
|
VkResult BindVulkanImage(
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset,
|
|
VkImage image,
|
|
const void* pNext);
|
|
|
|
VkResult Map(VmaAllocation hAllocation, void** ppData);
|
|
void Unmap(VmaAllocation hAllocation);
|
|
|
|
VkResult BindBufferMemory(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer hBuffer,
|
|
const void* pNext);
|
|
VkResult BindImageMemory(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage hImage,
|
|
const void* pNext);
|
|
|
|
VkResult FlushOrInvalidateAllocation(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize offset, VkDeviceSize size,
|
|
VMA_CACHE_OPERATION op);
|
|
VkResult FlushOrInvalidateAllocations(
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* allocations,
|
|
const VkDeviceSize* offsets, const VkDeviceSize* sizes,
|
|
VMA_CACHE_OPERATION op);
|
|
|
|
void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
|
|
|
|
/*
|
|
Returns bit mask of memory types that can support defragmentation on GPU as
|
|
they support creation of required buffer for copy operations.
|
|
*/
|
|
uint32_t GetGpuDefragmentationMemoryTypeBits();
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const
|
|
{
|
|
return m_TypeExternalMemoryHandleTypes[memTypeIndex];
|
|
}
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
private:
|
|
VkDeviceSize m_PreferredLargeHeapBlockSize;
|
|
|
|
VkPhysicalDevice m_PhysicalDevice;
|
|
VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
|
|
VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
|
|
#if VMA_EXTERNAL_MEMORY
|
|
VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES];
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
VMA_RW_MUTEX m_PoolsMutex;
|
|
typedef VmaIntrusiveLinkedList<VmaPoolListItemTraits> PoolList;
|
|
// Protected by m_PoolsMutex.
|
|
PoolList m_Pools;
|
|
uint32_t m_NextPoolId;
|
|
|
|
VmaVulkanFunctions m_VulkanFunctions;
|
|
|
|
// Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types.
|
|
uint32_t m_GlobalMemoryTypeBits;
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
VmaRecorder* m_pRecorder;
|
|
#endif
|
|
|
|
void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
|
|
|
|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
void ImportVulkanFunctions_Static();
|
|
#endif
|
|
|
|
void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions);
|
|
|
|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
|
|
void ImportVulkanFunctions_Dynamic();
|
|
#endif
|
|
|
|
void ValidateVulkanFunctions();
|
|
|
|
VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
|
|
|
|
VkResult AllocateMemoryOfType(
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
bool dedicatedAllocation,
|
|
VkBuffer dedicatedBuffer,
|
|
VkBufferUsageFlags dedicatedBufferUsage,
|
|
VkImage dedicatedImage,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
uint32_t memTypeIndex,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations);
|
|
|
|
// Helper function only to be used inside AllocateDedicatedMemory.
|
|
VkResult AllocateDedicatedMemoryPage(
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t memTypeIndex,
|
|
const VkMemoryAllocateInfo& allocInfo,
|
|
bool map,
|
|
bool isUserDataString,
|
|
void* pUserData,
|
|
VmaAllocation* pAllocation);
|
|
|
|
// Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
|
|
VkResult AllocateDedicatedMemory(
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t memTypeIndex,
|
|
bool withinBudget,
|
|
bool map,
|
|
bool isUserDataString,
|
|
bool canAliasMemory,
|
|
void* pUserData,
|
|
float priority,
|
|
VkBuffer dedicatedBuffer,
|
|
VkBufferUsageFlags dedicatedBufferUsage,
|
|
VkImage dedicatedImage,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations);
|
|
|
|
void FreeDedicatedMemory(const VmaAllocation allocation);
|
|
|
|
/*
|
|
Calculates and returns bit mask of memory types that can support defragmentation
|
|
on GPU as they support creation of required buffer for copy operations.
|
|
*/
|
|
uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
|
|
|
|
uint32_t CalculateGlobalMemoryTypeBits() const;
|
|
|
|
bool GetFlushOrInvalidateRange(
|
|
VmaAllocation allocation,
|
|
VkDeviceSize offset, VkDeviceSize size,
|
|
VkMappedMemoryRange& outRange) const;
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
void UpdateVulkanBudget();
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
};
|
|
|
|
class VmaStringBuilder;
|
|
|
|
static void VmaInitStatInfo(VmaStatInfo& outInfo)
|
|
{
|
|
memset(&outInfo, 0, sizeof(outInfo));
|
|
outInfo.allocationSizeMin = UINT64_MAX;
|
|
outInfo.unusedRangeSizeMin = UINT64_MAX;
|
|
}
|
|
|
|
// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
|
|
static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
|
|
{
|
|
inoutInfo.blockCount += srcInfo.blockCount;
|
|
inoutInfo.allocationCount += srcInfo.allocationCount;
|
|
inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
|
|
inoutInfo.usedBytes += srcInfo.usedBytes;
|
|
inoutInfo.unusedBytes += srcInfo.unusedBytes;
|
|
inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
|
|
inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
|
|
inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
|
|
inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
|
|
}
|
|
|
|
static void VmaAddStatInfoAllocation(VmaStatInfo& inoutInfo, VkDeviceSize size)
|
|
{
|
|
++inoutInfo.allocationCount;
|
|
inoutInfo.usedBytes += size;
|
|
if(size < inoutInfo.allocationSizeMin)
|
|
{
|
|
inoutInfo.allocationSizeMin = size;
|
|
}
|
|
if(size > inoutInfo.allocationSizeMax)
|
|
{
|
|
inoutInfo.allocationSizeMax = size;
|
|
}
|
|
}
|
|
|
|
static void VmaAddStatInfoUnusedRange(VmaStatInfo& inoutInfo, VkDeviceSize size)
|
|
{
|
|
++inoutInfo.unusedRangeCount;
|
|
inoutInfo.unusedBytes += size;
|
|
if(size < inoutInfo.unusedRangeSizeMin)
|
|
{
|
|
inoutInfo.unusedRangeSizeMin = size;
|
|
}
|
|
if(size > inoutInfo.unusedRangeSizeMax)
|
|
{
|
|
inoutInfo.unusedRangeSizeMax = size;
|
|
}
|
|
}
|
|
|
|
static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
|
|
{
|
|
inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
|
|
VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;
|
|
inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
|
|
VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;
|
|
}
|
|
|
|
struct VmaVirtualBlock_T
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaVirtualBlock_T)
|
|
public:
|
|
const bool m_AllocationCallbacksSpecified;
|
|
const VkAllocationCallbacks m_AllocationCallbacks;
|
|
|
|
VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo);
|
|
~VmaVirtualBlock_T();
|
|
VkResult Init()
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
const VkAllocationCallbacks* GetAllocationCallbacks() const
|
|
{
|
|
return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
|
|
}
|
|
bool IsEmpty() const
|
|
{
|
|
return m_Metadata->IsEmpty();
|
|
}
|
|
void GetAllocationInfo(VkDeviceSize offset, VmaVirtualAllocationInfo& outInfo)
|
|
{
|
|
m_Metadata->GetAllocationInfo(offset, outInfo);
|
|
}
|
|
VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VkDeviceSize& outOffset);
|
|
void Free(VkDeviceSize offset)
|
|
{
|
|
m_Metadata->FreeAtOffset(offset);
|
|
}
|
|
void Clear()
|
|
{
|
|
m_Metadata->Clear();
|
|
}
|
|
void SetAllocationUserData(VkDeviceSize offset, void* userData)
|
|
{
|
|
m_Metadata->SetAllocationUserData(offset, userData);
|
|
}
|
|
void CalculateStats(VmaStatInfo& outStatInfo) const
|
|
{
|
|
m_Metadata->CalcAllocationStatInfo(outStatInfo);
|
|
VmaPostprocessCalcStatInfo(outStatInfo);
|
|
}
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const;
|
|
#endif
|
|
|
|
private:
|
|
VmaBlockMetadata* m_Metadata;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Memory allocation #2 after VmaAllocator_T definition
|
|
|
|
static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
|
|
{
|
|
return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
|
|
}
|
|
|
|
static void VmaFree(VmaAllocator hAllocator, void* ptr)
|
|
{
|
|
VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocate(VmaAllocator hAllocator)
|
|
{
|
|
return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
|
|
{
|
|
return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete(VmaAllocator hAllocator, T* ptr)
|
|
{
|
|
if(ptr != VMA_NULL)
|
|
{
|
|
ptr->~T();
|
|
VmaFree(hAllocator, ptr);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
|
|
{
|
|
if(ptr != VMA_NULL)
|
|
{
|
|
for(size_t i = count; i--; )
|
|
ptr[i].~T();
|
|
VmaFree(hAllocator, ptr);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaStringBuilder
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
class VmaStringBuilder
|
|
{
|
|
public:
|
|
VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator<char>(allocationCallbacks)) { }
|
|
size_t GetLength() const { return m_Data.size(); }
|
|
const char* GetData() const { return m_Data.data(); }
|
|
|
|
void Add(char ch) { m_Data.push_back(ch); }
|
|
void Add(const char* pStr);
|
|
void AddNewLine() { Add('\n'); }
|
|
void AddNumber(uint32_t num);
|
|
void AddNumber(uint64_t num);
|
|
void AddPointer(const void* ptr);
|
|
|
|
private:
|
|
VmaVector< char, VmaStlAllocator<char> > m_Data;
|
|
};
|
|
|
|
void VmaStringBuilder::Add(const char* pStr)
|
|
{
|
|
const size_t strLen = strlen(pStr);
|
|
if(strLen > 0)
|
|
{
|
|
const size_t oldCount = m_Data.size();
|
|
m_Data.resize(oldCount + strLen);
|
|
memcpy(m_Data.data() + oldCount, pStr, strLen);
|
|
}
|
|
}
|
|
|
|
void VmaStringBuilder::AddNumber(uint32_t num)
|
|
{
|
|
char buf[11];
|
|
buf[10] = '\0';
|
|
char *p = &buf[10];
|
|
do
|
|
{
|
|
*--p = '0' + (num % 10);
|
|
num /= 10;
|
|
}
|
|
while(num);
|
|
Add(p);
|
|
}
|
|
|
|
void VmaStringBuilder::AddNumber(uint64_t num)
|
|
{
|
|
char buf[21];
|
|
buf[20] = '\0';
|
|
char *p = &buf[20];
|
|
do
|
|
{
|
|
*--p = '0' + (num % 10);
|
|
num /= 10;
|
|
}
|
|
while(num);
|
|
Add(p);
|
|
}
|
|
|
|
void VmaStringBuilder::AddPointer(const void* ptr)
|
|
{
|
|
char buf[21];
|
|
VmaPtrToStr(buf, sizeof(buf), ptr);
|
|
Add(buf);
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaJsonWriter
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
class VmaJsonWriter
|
|
{
|
|
VMA_CLASS_NO_COPY(VmaJsonWriter)
|
|
public:
|
|
VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
|
|
~VmaJsonWriter();
|
|
|
|
void BeginObject(bool singleLine = false);
|
|
void EndObject();
|
|
|
|
void BeginArray(bool singleLine = false);
|
|
void EndArray();
|
|
|
|
void WriteString(const char* pStr);
|
|
void BeginString(const char* pStr = VMA_NULL);
|
|
void ContinueString(const char* pStr);
|
|
void ContinueString(uint32_t n);
|
|
void ContinueString(uint64_t n);
|
|
void ContinueString_Pointer(const void* ptr);
|
|
void EndString(const char* pStr = VMA_NULL);
|
|
|
|
void WriteNumber(uint32_t n);
|
|
void WriteNumber(uint64_t n);
|
|
void WriteBool(bool b);
|
|
void WriteNull();
|
|
|
|
private:
|
|
static const char* const INDENT;
|
|
|
|
enum COLLECTION_TYPE
|
|
{
|
|
COLLECTION_TYPE_OBJECT,
|
|
COLLECTION_TYPE_ARRAY,
|
|
};
|
|
struct StackItem
|
|
{
|
|
COLLECTION_TYPE type;
|
|
uint32_t valueCount;
|
|
bool singleLineMode;
|
|
};
|
|
|
|
VmaStringBuilder& m_SB;
|
|
VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
|
|
bool m_InsideString;
|
|
|
|
void BeginValue(bool isString);
|
|
void WriteIndent(bool oneLess = false);
|
|
};
|
|
|
|
const char* const VmaJsonWriter::INDENT = " ";
|
|
|
|
VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :
|
|
m_SB(sb),
|
|
m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
|
|
m_InsideString(false)
|
|
{
|
|
}
|
|
|
|
VmaJsonWriter::~VmaJsonWriter()
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
VMA_ASSERT(m_Stack.empty());
|
|
}
|
|
|
|
void VmaJsonWriter::BeginObject(bool singleLine)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
BeginValue(false);
|
|
m_SB.Add('{');
|
|
|
|
StackItem item;
|
|
item.type = COLLECTION_TYPE_OBJECT;
|
|
item.valueCount = 0;
|
|
item.singleLineMode = singleLine;
|
|
m_Stack.push_back(item);
|
|
}
|
|
|
|
void VmaJsonWriter::EndObject()
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
WriteIndent(true);
|
|
m_SB.Add('}');
|
|
|
|
VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
|
|
m_Stack.pop_back();
|
|
}
|
|
|
|
void VmaJsonWriter::BeginArray(bool singleLine)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
BeginValue(false);
|
|
m_SB.Add('[');
|
|
|
|
StackItem item;
|
|
item.type = COLLECTION_TYPE_ARRAY;
|
|
item.valueCount = 0;
|
|
item.singleLineMode = singleLine;
|
|
m_Stack.push_back(item);
|
|
}
|
|
|
|
void VmaJsonWriter::EndArray()
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
WriteIndent(true);
|
|
m_SB.Add(']');
|
|
|
|
VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
|
|
m_Stack.pop_back();
|
|
}
|
|
|
|
void VmaJsonWriter::WriteString(const char* pStr)
|
|
{
|
|
BeginString(pStr);
|
|
EndString();
|
|
}
|
|
|
|
void VmaJsonWriter::BeginString(const char* pStr)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
|
|
BeginValue(true);
|
|
m_SB.Add('"');
|
|
m_InsideString = true;
|
|
if(pStr != VMA_NULL && pStr[0] != '\0')
|
|
{
|
|
ContinueString(pStr);
|
|
}
|
|
}
|
|
|
|
void VmaJsonWriter::ContinueString(const char* pStr)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
|
|
const size_t strLen = strlen(pStr);
|
|
for(size_t i = 0; i < strLen; ++i)
|
|
{
|
|
char ch = pStr[i];
|
|
if(ch == '\\')
|
|
{
|
|
m_SB.Add("\\\\");
|
|
}
|
|
else if(ch == '"')
|
|
{
|
|
m_SB.Add("\\\"");
|
|
}
|
|
else if(ch >= 32)
|
|
{
|
|
m_SB.Add(ch);
|
|
}
|
|
else switch(ch)
|
|
{
|
|
case '\b':
|
|
m_SB.Add("\\b");
|
|
break;
|
|
case '\f':
|
|
m_SB.Add("\\f");
|
|
break;
|
|
case '\n':
|
|
m_SB.Add("\\n");
|
|
break;
|
|
case '\r':
|
|
m_SB.Add("\\r");
|
|
break;
|
|
case '\t':
|
|
m_SB.Add("\\t");
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0 && "Character not currently supported.");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaJsonWriter::ContinueString(uint32_t n)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
m_SB.AddNumber(n);
|
|
}
|
|
|
|
void VmaJsonWriter::ContinueString(uint64_t n)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
m_SB.AddNumber(n);
|
|
}
|
|
|
|
void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
m_SB.AddPointer(ptr);
|
|
}
|
|
|
|
void VmaJsonWriter::EndString(const char* pStr)
|
|
{
|
|
VMA_ASSERT(m_InsideString);
|
|
if(pStr != VMA_NULL && pStr[0] != '\0')
|
|
{
|
|
ContinueString(pStr);
|
|
}
|
|
m_SB.Add('"');
|
|
m_InsideString = false;
|
|
}
|
|
|
|
void VmaJsonWriter::WriteNumber(uint32_t n)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
BeginValue(false);
|
|
m_SB.AddNumber(n);
|
|
}
|
|
|
|
void VmaJsonWriter::WriteNumber(uint64_t n)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
BeginValue(false);
|
|
m_SB.AddNumber(n);
|
|
}
|
|
|
|
void VmaJsonWriter::WriteBool(bool b)
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
BeginValue(false);
|
|
m_SB.Add(b ? "true" : "false");
|
|
}
|
|
|
|
void VmaJsonWriter::WriteNull()
|
|
{
|
|
VMA_ASSERT(!m_InsideString);
|
|
BeginValue(false);
|
|
m_SB.Add("null");
|
|
}
|
|
|
|
void VmaJsonWriter::BeginValue(bool isString)
|
|
{
|
|
if(!m_Stack.empty())
|
|
{
|
|
StackItem& currItem = m_Stack.back();
|
|
if(currItem.type == COLLECTION_TYPE_OBJECT &&
|
|
currItem.valueCount % 2 == 0)
|
|
{
|
|
VMA_ASSERT(isString);
|
|
}
|
|
|
|
if(currItem.type == COLLECTION_TYPE_OBJECT &&
|
|
currItem.valueCount % 2 != 0)
|
|
{
|
|
m_SB.Add(": ");
|
|
}
|
|
else if(currItem.valueCount > 0)
|
|
{
|
|
m_SB.Add(", ");
|
|
WriteIndent();
|
|
}
|
|
else
|
|
{
|
|
WriteIndent();
|
|
}
|
|
++currItem.valueCount;
|
|
}
|
|
}
|
|
|
|
void VmaJsonWriter::WriteIndent(bool oneLess)
|
|
{
|
|
if(!m_Stack.empty() && !m_Stack.back().singleLineMode)
|
|
{
|
|
m_SB.AddNewLine();
|
|
|
|
size_t count = m_Stack.size();
|
|
if(count > 0 && oneLess)
|
|
{
|
|
--count;
|
|
}
|
|
for(size_t i = 0; i < count; ++i)
|
|
{
|
|
m_SB.Add(INDENT);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)
|
|
{
|
|
if(IsUserDataString())
|
|
{
|
|
VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);
|
|
|
|
FreeUserDataString(hAllocator);
|
|
|
|
if(pUserData != VMA_NULL)
|
|
{
|
|
m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_pUserData = pUserData;
|
|
}
|
|
}
|
|
|
|
void VmaAllocation_T::ChangeBlockAllocation(
|
|
VmaAllocator hAllocator,
|
|
VmaDeviceMemoryBlock* block,
|
|
VkDeviceSize offset)
|
|
{
|
|
VMA_ASSERT(block != VMA_NULL);
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
|
|
// Move mapping reference counter from old block to new block.
|
|
if(block != m_BlockAllocation.m_Block)
|
|
{
|
|
uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP;
|
|
if(IsPersistentMap())
|
|
++mapRefCount;
|
|
m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount);
|
|
block->Map(hAllocator, mapRefCount, VMA_NULL);
|
|
}
|
|
|
|
m_BlockAllocation.m_Block = block;
|
|
m_BlockAllocation.m_Offset = offset;
|
|
}
|
|
|
|
void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset)
|
|
{
|
|
VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
|
|
m_BlockAllocation.m_Offset = newOffset;
|
|
}
|
|
|
|
VkDeviceSize VmaAllocation_T::GetOffset() const
|
|
{
|
|
switch(m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
return m_BlockAllocation.m_Offset;
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
return 0;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
VkDeviceMemory VmaAllocation_T::GetMemory() const
|
|
{
|
|
switch(m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
return m_BlockAllocation.m_Block->GetDeviceMemory();
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
return m_DedicatedAllocation.m_hMemory;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
void* VmaAllocation_T::GetMappedData() const
|
|
{
|
|
switch(m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
if(m_MapCount != 0)
|
|
{
|
|
void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
|
|
VMA_ASSERT(pBlockData != VMA_NULL);
|
|
return (char*)pBlockData + m_BlockAllocation.m_Offset;
|
|
}
|
|
else
|
|
{
|
|
return VMA_NULL;
|
|
}
|
|
break;
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));
|
|
return m_DedicatedAllocation.m_pMappedData;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VMA_NULL;
|
|
}
|
|
}
|
|
|
|
bool VmaAllocation_T::CanBecomeLost() const
|
|
{
|
|
switch(m_Type)
|
|
{
|
|
case ALLOCATION_TYPE_BLOCK:
|
|
return m_BlockAllocation.m_CanBecomeLost;
|
|
case ALLOCATION_TYPE_DEDICATED:
|
|
return false;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
|
|
{
|
|
VMA_ASSERT(CanBecomeLost());
|
|
|
|
/*
|
|
Warning: This is a carefully designed algorithm.
|
|
Do not modify unless you really know what you're doing :)
|
|
*/
|
|
uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
|
|
for(;;)
|
|
{
|
|
if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
|
|
{
|
|
VMA_ASSERT(0);
|
|
return false;
|
|
}
|
|
else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)
|
|
{
|
|
return false;
|
|
}
|
|
else // Last use time earlier than current time.
|
|
{
|
|
if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))
|
|
{
|
|
// Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
|
|
// Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
// Correspond to values of enum VmaSuballocationType.
|
|
static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
|
|
"FREE",
|
|
"UNKNOWN",
|
|
"BUFFER",
|
|
"IMAGE_UNKNOWN",
|
|
"IMAGE_LINEAR",
|
|
"IMAGE_OPTIMAL",
|
|
};
|
|
|
|
void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
|
|
{
|
|
json.WriteString("Type");
|
|
json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
|
|
|
|
json.WriteString("Size");
|
|
json.WriteNumber(m_Size);
|
|
|
|
if(m_pUserData != VMA_NULL)
|
|
{
|
|
json.WriteString("UserData");
|
|
if(IsUserDataString())
|
|
{
|
|
json.WriteString((const char*)m_pUserData);
|
|
}
|
|
else
|
|
{
|
|
json.BeginString();
|
|
json.ContinueString_Pointer(m_pUserData);
|
|
json.EndString();
|
|
}
|
|
}
|
|
|
|
json.WriteString("CreationFrameIndex");
|
|
json.WriteNumber(m_CreationFrameIndex);
|
|
|
|
json.WriteString("LastUseFrameIndex");
|
|
json.WriteNumber(GetLastUseFrameIndex());
|
|
|
|
if(m_BufferImageUsage != 0)
|
|
{
|
|
json.WriteString("Usage");
|
|
json.WriteNumber(m_BufferImageUsage);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)
|
|
{
|
|
VMA_ASSERT(IsUserDataString());
|
|
VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData);
|
|
m_pUserData = VMA_NULL;
|
|
}
|
|
|
|
void VmaAllocation_T::BlockAllocMap()
|
|
{
|
|
VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
|
|
|
|
if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
|
|
{
|
|
++m_MapCount;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
|
|
}
|
|
}
|
|
|
|
void VmaAllocation_T::BlockAllocUnmap()
|
|
{
|
|
VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
|
|
|
|
if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
|
|
{
|
|
--m_MapCount;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
|
|
{
|
|
VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
|
|
|
|
if(m_MapCount != 0)
|
|
{
|
|
if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
|
|
{
|
|
VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
|
|
*ppData = m_DedicatedAllocation.m_pMappedData;
|
|
++m_MapCount;
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
|
|
return VK_ERROR_MEMORY_MAP_FAILED;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
|
|
hAllocator->m_hDevice,
|
|
m_DedicatedAllocation.m_hMemory,
|
|
0, // offset
|
|
VK_WHOLE_SIZE,
|
|
0, // flags
|
|
ppData);
|
|
if(result == VK_SUCCESS)
|
|
{
|
|
m_DedicatedAllocation.m_pMappedData = *ppData;
|
|
m_MapCount = 1;
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
|
|
{
|
|
VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
|
|
|
|
if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
|
|
{
|
|
--m_MapCount;
|
|
if(m_MapCount == 0)
|
|
{
|
|
m_DedicatedAllocation.m_pMappedData = VMA_NULL;
|
|
(*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
|
|
hAllocator->m_hDevice,
|
|
m_DedicatedAllocation.m_hMemory);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)
|
|
{
|
|
json.BeginObject();
|
|
|
|
json.WriteString("Blocks");
|
|
json.WriteNumber(stat.blockCount);
|
|
|
|
json.WriteString("Allocations");
|
|
json.WriteNumber(stat.allocationCount);
|
|
|
|
json.WriteString("UnusedRanges");
|
|
json.WriteNumber(stat.unusedRangeCount);
|
|
|
|
json.WriteString("UsedBytes");
|
|
json.WriteNumber(stat.usedBytes);
|
|
|
|
json.WriteString("UnusedBytes");
|
|
json.WriteNumber(stat.unusedBytes);
|
|
|
|
if(stat.allocationCount > 1)
|
|
{
|
|
json.WriteString("AllocationSize");
|
|
json.BeginObject(true);
|
|
json.WriteString("Min");
|
|
json.WriteNumber(stat.allocationSizeMin);
|
|
json.WriteString("Avg");
|
|
json.WriteNumber(stat.allocationSizeAvg);
|
|
json.WriteString("Max");
|
|
json.WriteNumber(stat.allocationSizeMax);
|
|
json.EndObject();
|
|
}
|
|
|
|
if(stat.unusedRangeCount > 1)
|
|
{
|
|
json.WriteString("UnusedRangeSize");
|
|
json.BeginObject(true);
|
|
json.WriteString("Min");
|
|
json.WriteNumber(stat.unusedRangeSizeMin);
|
|
json.WriteString("Avg");
|
|
json.WriteNumber(stat.unusedRangeSizeAvg);
|
|
json.WriteString("Max");
|
|
json.WriteNumber(stat.unusedRangeSizeMax);
|
|
json.EndObject();
|
|
}
|
|
|
|
json.EndObject();
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
struct VmaSuballocationItemSizeLess
|
|
{
|
|
bool operator()(
|
|
const VmaSuballocationList::iterator lhs,
|
|
const VmaSuballocationList::iterator rhs) const
|
|
{
|
|
return lhs->size < rhs->size;
|
|
}
|
|
bool operator()(
|
|
const VmaSuballocationList::iterator lhs,
|
|
VkDeviceSize rhsSize) const
|
|
{
|
|
return lhs->size < rhsSize;
|
|
}
|
|
};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaBlockMetadata
|
|
|
|
VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirtual) :
|
|
m_Size(0),
|
|
m_pAllocationCallbacks(pAllocationCallbacks),
|
|
m_IsVirtual(isVirtual)
|
|
{
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
|
|
VkDeviceSize unusedBytes,
|
|
size_t allocationCount,
|
|
size_t unusedRangeCount) const
|
|
{
|
|
json.BeginObject();
|
|
|
|
json.WriteString("TotalBytes");
|
|
json.WriteNumber(GetSize());
|
|
|
|
json.WriteString("UnusedBytes");
|
|
json.WriteNumber(unusedBytes);
|
|
|
|
json.WriteString("Allocations");
|
|
json.WriteNumber((uint64_t)allocationCount);
|
|
|
|
json.WriteString("UnusedRanges");
|
|
json.WriteNumber((uint64_t)unusedRangeCount);
|
|
|
|
json.WriteString("Suballocations");
|
|
json.BeginArray();
|
|
}
|
|
|
|
void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
|
|
VkDeviceSize offset, VkDeviceSize size, void* userData) const
|
|
{
|
|
json.BeginObject(true);
|
|
|
|
json.WriteString("Offset");
|
|
json.WriteNumber(offset);
|
|
|
|
if(IsVirtual())
|
|
{
|
|
json.WriteString("Type");
|
|
json.WriteString("VirtualAllocation");
|
|
|
|
json.WriteString("Size");
|
|
json.WriteNumber(size);
|
|
|
|
if(userData != VMA_NULL)
|
|
{
|
|
json.WriteString("UserData");
|
|
json.BeginString();
|
|
json.ContinueString_Pointer(userData);
|
|
json.EndString();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
((VmaAllocation)userData)->PrintParameters(json);
|
|
}
|
|
|
|
json.EndObject();
|
|
}
|
|
|
|
void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size) const
|
|
{
|
|
json.BeginObject(true);
|
|
|
|
json.WriteString("Offset");
|
|
json.WriteNumber(offset);
|
|
|
|
json.WriteString("Type");
|
|
json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
|
|
|
|
json.WriteString("Size");
|
|
json.WriteNumber(size);
|
|
|
|
json.EndObject();
|
|
}
|
|
|
|
void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
|
|
{
|
|
json.EndArray();
|
|
json.EndObject();
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaBlockMetadata_Generic
|
|
|
|
VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirtual) :
|
|
VmaBlockMetadata(pAllocationCallbacks, isVirtual),
|
|
m_FreeCount(0),
|
|
m_SumFreeSize(0),
|
|
m_Suballocations(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
|
|
m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(pAllocationCallbacks))
|
|
{
|
|
}
|
|
|
|
VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic()
|
|
{
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::Init(VkDeviceSize size)
|
|
{
|
|
VmaBlockMetadata::Init(size);
|
|
|
|
m_FreeCount = 1;
|
|
m_SumFreeSize = size;
|
|
|
|
VmaSuballocation suballoc = {};
|
|
suballoc.offset = 0;
|
|
suballoc.size = size;
|
|
suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
|
|
m_Suballocations.push_back(suballoc);
|
|
m_FreeSuballocationsBySize.push_back(m_Suballocations.begin());
|
|
}
|
|
|
|
bool VmaBlockMetadata_Generic::Validate() const
|
|
{
|
|
VMA_VALIDATE(!m_Suballocations.empty());
|
|
|
|
// Expected offset of new suballocation as calculated from previous ones.
|
|
VkDeviceSize calculatedOffset = 0;
|
|
// Expected number of free suballocations as calculated from traversing their list.
|
|
uint32_t calculatedFreeCount = 0;
|
|
// Expected sum size of free suballocations as calculated from traversing their list.
|
|
VkDeviceSize calculatedSumFreeSize = 0;
|
|
// Expected number of free suballocations that should be registered in
|
|
// m_FreeSuballocationsBySize calculated from traversing their list.
|
|
size_t freeSuballocationsToRegister = 0;
|
|
// True if previous visited suballocation was free.
|
|
bool prevFree = false;
|
|
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
|
|
for(const auto& subAlloc : m_Suballocations)
|
|
{
|
|
// Actual offset of this suballocation doesn't match expected one.
|
|
VMA_VALIDATE(subAlloc.offset == calculatedOffset);
|
|
|
|
const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
// Two adjacent free suballocations are invalid. They should be merged.
|
|
VMA_VALIDATE(!prevFree || !currFree);
|
|
|
|
VmaAllocation alloc = (VmaAllocation)subAlloc.userData;
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
|
|
}
|
|
|
|
if(currFree)
|
|
{
|
|
calculatedSumFreeSize += subAlloc.size;
|
|
++calculatedFreeCount;
|
|
++freeSuballocationsToRegister;
|
|
|
|
// Margin required between allocations - every free space must be at least that large.
|
|
VMA_VALIDATE(subAlloc.size >= debugMargin);
|
|
}
|
|
else
|
|
{
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(alloc->GetOffset() == subAlloc.offset);
|
|
VMA_VALIDATE(alloc->GetSize() == subAlloc.size);
|
|
}
|
|
|
|
// Margin required between allocations - previous allocation must be free.
|
|
VMA_VALIDATE(debugMargin == 0 || prevFree);
|
|
}
|
|
|
|
calculatedOffset += subAlloc.size;
|
|
prevFree = currFree;
|
|
}
|
|
|
|
// Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
|
|
// match expected one.
|
|
VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister);
|
|
|
|
VkDeviceSize lastSize = 0;
|
|
for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
|
|
{
|
|
VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
|
|
|
|
// Only free suballocations can be registered in m_FreeSuballocationsBySize.
|
|
VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
// They must be sorted by size ascending.
|
|
VMA_VALIDATE(suballocItem->size >= lastSize);
|
|
|
|
lastSize = suballocItem->size;
|
|
}
|
|
|
|
// Check if totals match calculated values.
|
|
VMA_VALIDATE(ValidateFreeSuballocationList());
|
|
VMA_VALIDATE(calculatedOffset == GetSize());
|
|
VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize);
|
|
VMA_VALIDATE(calculatedFreeCount == m_FreeCount);
|
|
|
|
return true;
|
|
}
|
|
|
|
VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const
|
|
{
|
|
if(!m_FreeSuballocationsBySize.empty())
|
|
{
|
|
return m_FreeSuballocationsBySize.back()->size;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bool VmaBlockMetadata_Generic::IsEmpty() const
|
|
{
|
|
return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
|
|
{
|
|
const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
|
|
VmaInitStatInfo(outInfo);
|
|
outInfo.blockCount = 1;
|
|
|
|
for(const auto& suballoc : m_Suballocations)
|
|
{
|
|
if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
VmaAddStatInfoAllocation(outInfo, suballoc.size);
|
|
}
|
|
else
|
|
{
|
|
VmaAddStatInfoUnusedRange(outInfo, suballoc.size);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const
|
|
{
|
|
const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
|
|
|
|
inoutStats.size += GetSize();
|
|
inoutStats.unusedSize += m_SumFreeSize;
|
|
inoutStats.allocationCount += rangeCount - m_FreeCount;
|
|
inoutStats.unusedRangeCount += m_FreeCount;
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const
|
|
{
|
|
PrintDetailedMap_Begin(json,
|
|
m_SumFreeSize, // unusedBytes
|
|
m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount
|
|
m_FreeCount); // unusedRangeCount
|
|
|
|
for(const auto& suballoc : m_Suballocations)
|
|
{
|
|
if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
PrintDetailedMap_UnusedRange(json, suballoc.offset, suballoc.size);
|
|
}
|
|
else
|
|
{
|
|
PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
|
|
}
|
|
}
|
|
|
|
PrintDetailedMap_End(json);
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
bool VmaBlockMetadata_Generic::CreateAllocationRequest(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(allocSize > 0);
|
|
VMA_ASSERT(!upperAddress);
|
|
VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(pAllocationRequest != VMA_NULL);
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
|
|
allocSize = AlignAllocationSize(allocSize);
|
|
|
|
pAllocationRequest->type = VmaAllocationRequestType::Normal;
|
|
pAllocationRequest->size = allocSize;
|
|
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
|
|
// There is not enough total free space in this block to fulfill the request: Early return.
|
|
if(canMakeOtherLost == false &&
|
|
m_SumFreeSize < allocSize + 2 * debugMargin)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// New algorithm, efficiently searching freeSuballocationsBySize.
|
|
const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
|
|
if(freeSuballocCount > 0)
|
|
{
|
|
if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
|
|
{
|
|
// Find first free suballocation with size not less than allocSize + 2 * debugMargin.
|
|
VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
|
|
m_FreeSuballocationsBySize.data(),
|
|
m_FreeSuballocationsBySize.data() + freeSuballocCount,
|
|
allocSize + 2 * debugMargin,
|
|
VmaSuballocationItemSizeLess());
|
|
size_t index = it - m_FreeSuballocationsBySize.data();
|
|
for(; index < freeSuballocCount; ++index)
|
|
{
|
|
if(CheckAllocation(
|
|
currentFrameIndex,
|
|
frameInUseCount,
|
|
bufferImageGranularity,
|
|
allocSize,
|
|
allocAlignment,
|
|
allocType,
|
|
m_FreeSuballocationsBySize[index],
|
|
false, // canMakeOtherLost
|
|
&pAllocationRequest->offset,
|
|
&pAllocationRequest->itemsToMakeLostCount,
|
|
&pAllocationRequest->sumFreeSize,
|
|
&pAllocationRequest->sumItemSize))
|
|
{
|
|
pAllocationRequest->item = m_FreeSuballocationsBySize[index];
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET)
|
|
{
|
|
for(VmaSuballocationList::iterator it = m_Suballocations.begin();
|
|
it != m_Suballocations.end();
|
|
++it)
|
|
{
|
|
if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation(
|
|
currentFrameIndex,
|
|
frameInUseCount,
|
|
bufferImageGranularity,
|
|
allocSize,
|
|
allocAlignment,
|
|
allocType,
|
|
it,
|
|
false, // canMakeOtherLost
|
|
&pAllocationRequest->offset,
|
|
&pAllocationRequest->itemsToMakeLostCount,
|
|
&pAllocationRequest->sumFreeSize,
|
|
&pAllocationRequest->sumItemSize))
|
|
{
|
|
pAllocationRequest->item = it;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
else // WORST_FIT, FIRST_FIT
|
|
{
|
|
// Search staring from biggest suballocations.
|
|
for(size_t index = freeSuballocCount; index--; )
|
|
{
|
|
if(CheckAllocation(
|
|
currentFrameIndex,
|
|
frameInUseCount,
|
|
bufferImageGranularity,
|
|
allocSize,
|
|
allocAlignment,
|
|
allocType,
|
|
m_FreeSuballocationsBySize[index],
|
|
false, // canMakeOtherLost
|
|
&pAllocationRequest->offset,
|
|
&pAllocationRequest->itemsToMakeLostCount,
|
|
&pAllocationRequest->sumFreeSize,
|
|
&pAllocationRequest->sumItemSize))
|
|
{
|
|
pAllocationRequest->item = m_FreeSuballocationsBySize[index];
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(canMakeOtherLost)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
// Brute-force algorithm. TODO: Come up with something better.
|
|
|
|
bool found = false;
|
|
VmaAllocationRequest tmpAllocRequest = {};
|
|
tmpAllocRequest.type = VmaAllocationRequestType::Normal;
|
|
tmpAllocRequest.size = allocSize;
|
|
for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
|
|
suballocIt != m_Suballocations.end();
|
|
++suballocIt)
|
|
{
|
|
VmaAllocation const alloc = (VmaAllocation)suballocIt->userData;
|
|
if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
|
|
alloc->CanBecomeLost())
|
|
{
|
|
if(CheckAllocation(
|
|
currentFrameIndex,
|
|
frameInUseCount,
|
|
bufferImageGranularity,
|
|
allocSize,
|
|
allocAlignment,
|
|
allocType,
|
|
suballocIt,
|
|
canMakeOtherLost,
|
|
&tmpAllocRequest.offset,
|
|
&tmpAllocRequest.itemsToMakeLostCount,
|
|
&tmpAllocRequest.sumFreeSize,
|
|
&tmpAllocRequest.sumItemSize))
|
|
{
|
|
if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
|
|
{
|
|
*pAllocationRequest = tmpAllocRequest;
|
|
pAllocationRequest->item = suballocIt;
|
|
break;
|
|
}
|
|
if(!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())
|
|
{
|
|
*pAllocationRequest = tmpAllocRequest;
|
|
pAllocationRequest->item = suballocIt;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal);
|
|
|
|
while(pAllocationRequest->itemsToMakeLostCount > 0)
|
|
{
|
|
if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
++pAllocationRequest->item;
|
|
}
|
|
VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
|
|
VmaAllocation const alloc = (VmaAllocation)pAllocationRequest->item->userData;
|
|
VMA_ASSERT(alloc != VK_NULL_HANDLE && alloc->CanBecomeLost());
|
|
if(alloc->MakeLost(currentFrameIndex, frameInUseCount))
|
|
{
|
|
pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
|
|
--pAllocationRequest->itemsToMakeLostCount;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
|
|
VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
return true;
|
|
}
|
|
|
|
uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
uint32_t lostAllocationCount = 0;
|
|
for(VmaSuballocationList::iterator it = m_Suballocations.begin();
|
|
it != m_Suballocations.end();
|
|
++it)
|
|
{
|
|
VmaAllocation const alloc = (VmaAllocation)it->userData;
|
|
if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&
|
|
alloc->CanBecomeLost() &&
|
|
alloc->MakeLost(currentFrameIndex, frameInUseCount))
|
|
{
|
|
it = FreeSuballocation(it);
|
|
++lostAllocationCount;
|
|
}
|
|
}
|
|
return lostAllocationCount;
|
|
}
|
|
|
|
VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData)
|
|
{
|
|
for(auto& suballoc : m_Suballocations)
|
|
{
|
|
if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
if(!VmaValidateMagicValue(pBlockData, suballoc.offset - GetDebugMargin()))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN;
|
|
}
|
|
if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN;
|
|
}
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData)
|
|
{
|
|
VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
|
|
VMA_ASSERT(request.item != m_Suballocations.end());
|
|
VmaSuballocation& suballoc = *request.item;
|
|
// Given suballocation is a free block.
|
|
VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
// Given offset is inside this suballocation.
|
|
VMA_ASSERT(request.offset >= suballoc.offset);
|
|
const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
|
|
VMA_ASSERT(suballoc.size >= paddingBegin + request.size);
|
|
const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - request.size;
|
|
|
|
// Unregister this free suballocation from m_FreeSuballocationsBySize and update
|
|
// it to become used.
|
|
UnregisterFreeSuballocation(request.item);
|
|
|
|
suballoc.offset = request.offset;
|
|
suballoc.size = request.size;
|
|
suballoc.type = type;
|
|
suballoc.userData = userData;
|
|
|
|
// If there are any free bytes remaining at the end, insert new free suballocation after current one.
|
|
if(paddingEnd)
|
|
{
|
|
VmaSuballocation paddingSuballoc = {};
|
|
paddingSuballoc.offset = request.offset + request.size;
|
|
paddingSuballoc.size = paddingEnd;
|
|
paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
VmaSuballocationList::iterator next = request.item;
|
|
++next;
|
|
const VmaSuballocationList::iterator paddingEndItem =
|
|
m_Suballocations.insert(next, paddingSuballoc);
|
|
RegisterFreeSuballocation(paddingEndItem);
|
|
}
|
|
|
|
// If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
|
|
if(paddingBegin)
|
|
{
|
|
VmaSuballocation paddingSuballoc = {};
|
|
paddingSuballoc.offset = request.offset - paddingBegin;
|
|
paddingSuballoc.size = paddingBegin;
|
|
paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
const VmaSuballocationList::iterator paddingBeginItem =
|
|
m_Suballocations.insert(request.item, paddingSuballoc);
|
|
RegisterFreeSuballocation(paddingBeginItem);
|
|
}
|
|
|
|
// Update totals.
|
|
m_FreeCount = m_FreeCount - 1;
|
|
if(paddingBegin > 0)
|
|
{
|
|
++m_FreeCount;
|
|
}
|
|
if(paddingEnd > 0)
|
|
{
|
|
++m_FreeCount;
|
|
}
|
|
m_SumFreeSize -= request.size;
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset)
|
|
{
|
|
FreeSuballocation(FindAtOffest(offset));
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::GetAllocationInfo(VkDeviceSize offset, VmaVirtualAllocationInfo& outInfo)
|
|
{
|
|
const VmaSuballocation& suballoc = *FindAtOffest(offset);
|
|
outInfo.size = suballoc.size;
|
|
outInfo.pUserData = suballoc.userData;
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::Clear()
|
|
{
|
|
const VkDeviceSize size = GetSize();
|
|
|
|
VMA_ASSERT(IsVirtual());
|
|
m_FreeCount = 1;
|
|
m_SumFreeSize = size;
|
|
m_Suballocations.clear();
|
|
m_FreeSuballocationsBySize.clear();
|
|
|
|
VmaSuballocation suballoc = {};
|
|
suballoc.offset = 0;
|
|
suballoc.size = size;
|
|
suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
m_Suballocations.push_back(suballoc);
|
|
|
|
m_FreeSuballocationsBySize.push_back(m_Suballocations.begin());
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::SetAllocationUserData(VkDeviceSize offset, void* userData)
|
|
{
|
|
VmaSuballocation& suballoc = *FindAtOffest(offset);
|
|
suballoc.userData = userData;
|
|
}
|
|
|
|
VmaSuballocationList::iterator VmaBlockMetadata_Generic::FindAtOffest(VkDeviceSize offset)
|
|
{
|
|
VMA_HEAVY_ASSERT(!m_Suballocations.empty());
|
|
const VkDeviceSize last = m_Suballocations.rbegin()->offset;
|
|
if (last == offset)
|
|
return m_Suballocations.rbegin();
|
|
const VkDeviceSize first = m_Suballocations.begin()->offset;
|
|
if (first == offset)
|
|
return m_Suballocations.begin();
|
|
|
|
const size_t suballocCount = m_Suballocations.size();
|
|
const VkDeviceSize step = (last - first + m_Suballocations.begin()->size) / suballocCount;
|
|
auto findSuballocation = [&](auto begin, auto end) -> VmaSuballocationList::iterator
|
|
{
|
|
for (auto suballocItem = begin;
|
|
suballocItem != end;
|
|
++suballocItem)
|
|
{
|
|
VmaSuballocation& suballoc = *suballocItem;
|
|
if (suballoc.offset == offset)
|
|
return suballocItem;
|
|
}
|
|
VMA_ASSERT(false && "Not found!");
|
|
return m_Suballocations.end();
|
|
};
|
|
// If requested offset is closer to the end of range, search from the end
|
|
if (offset - first > suballocCount * step / 2)
|
|
{
|
|
return findSuballocation(m_Suballocations.rbegin(), m_Suballocations.rend());
|
|
}
|
|
return findSuballocation(m_Suballocations.begin(), m_Suballocations.end());
|
|
}
|
|
|
|
bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const
|
|
{
|
|
VkDeviceSize lastSize = 0;
|
|
for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
|
|
{
|
|
const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
|
|
|
|
VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_VALIDATE(it->size >= lastSize);
|
|
lastSize = it->size;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Generic::CheckAllocation(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
VmaSuballocationList::const_iterator suballocItem,
|
|
bool canMakeOtherLost,
|
|
VkDeviceSize* pOffset,
|
|
size_t* itemsToMakeLostCount,
|
|
VkDeviceSize* pSumFreeSize,
|
|
VkDeviceSize* pSumItemSize) const
|
|
{
|
|
VMA_ASSERT(allocSize > 0);
|
|
VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(suballocItem != m_Suballocations.cend());
|
|
VMA_ASSERT(pOffset != VMA_NULL);
|
|
|
|
*itemsToMakeLostCount = 0;
|
|
*pSumFreeSize = 0;
|
|
*pSumItemSize = 0;
|
|
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
|
|
if(canMakeOtherLost)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
*pSumFreeSize = suballocItem->size;
|
|
}
|
|
else
|
|
{
|
|
VmaAllocation const alloc = (VmaAllocation)suballocItem->userData;
|
|
if(alloc->CanBecomeLost() &&
|
|
alloc->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
|
|
{
|
|
++*itemsToMakeLostCount;
|
|
*pSumItemSize = suballocItem->size;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Remaining size is too small for this request: Early return.
|
|
if(GetSize() - suballocItem->offset < allocSize)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Start from offset equal to beginning of this suballocation.
|
|
*pOffset = suballocItem->offset;
|
|
|
|
// Apply debugMargin at the beginning.
|
|
if(debugMargin > 0)
|
|
{
|
|
*pOffset += debugMargin;
|
|
}
|
|
|
|
// Apply alignment.
|
|
*pOffset = VmaAlignUp(*pOffset, allocAlignment);
|
|
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment)
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
|
|
while(prevSuballocItem != m_Suballocations.cbegin())
|
|
{
|
|
--prevSuballocItem;
|
|
const VmaSuballocation& prevSuballoc = *prevSuballocItem;
|
|
if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if(bufferImageGranularityConflict)
|
|
{
|
|
*pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
|
|
}
|
|
}
|
|
|
|
// Now that we have final *pOffset, check if we are past suballocItem.
|
|
// If yes, return false - this function should be called for another suballocItem as starting point.
|
|
if(*pOffset >= suballocItem->offset + suballocItem->size)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Calculate padding at the beginning based on current offset.
|
|
const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
|
|
|
|
// Calculate required margin at the end.
|
|
const VkDeviceSize requiredEndMargin = debugMargin;
|
|
|
|
const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
|
|
// Another early return check.
|
|
if(suballocItem->offset + totalSize > GetSize())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Advance lastSuballocItem until desired size is reached.
|
|
// Update itemsToMakeLostCount.
|
|
VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
|
|
if(totalSize > suballocItem->size)
|
|
{
|
|
VkDeviceSize remainingSize = totalSize - suballocItem->size;
|
|
while(remainingSize > 0)
|
|
{
|
|
++lastSuballocItem;
|
|
if(lastSuballocItem == m_Suballocations.cend())
|
|
{
|
|
return false;
|
|
}
|
|
if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
*pSumFreeSize += lastSuballocItem->size;
|
|
}
|
|
else
|
|
{
|
|
VmaAllocation const lastSuballocAlloc = (VmaAllocation)lastSuballocItem->userData;
|
|
VMA_ASSERT(lastSuballocAlloc != VK_NULL_HANDLE);
|
|
if(lastSuballocAlloc->CanBecomeLost() &&
|
|
lastSuballocAlloc->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
|
|
{
|
|
++*itemsToMakeLostCount;
|
|
*pSumItemSize += lastSuballocItem->size;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
remainingSize = (lastSuballocItem->size < remainingSize) ?
|
|
remainingSize - lastSuballocItem->size : 0;
|
|
}
|
|
}
|
|
|
|
// Check next suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, we must mark more allocations lost or fail.
|
|
if(allocSize % bufferImageGranularity || *pOffset % bufferImageGranularity)
|
|
{
|
|
VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
|
|
++nextSuballocItem;
|
|
while(nextSuballocItem != m_Suballocations.cend())
|
|
{
|
|
const VmaSuballocation& nextSuballoc = *nextSuballocItem;
|
|
if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
{
|
|
VmaAllocation const nextSuballocAlloc = (VmaAllocation)nextSuballoc.userData;
|
|
VMA_ASSERT(nextSuballocAlloc != VK_NULL_HANDLE);
|
|
if(nextSuballocAlloc->CanBecomeLost() &&
|
|
nextSuballocAlloc->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
|
|
{
|
|
++*itemsToMakeLostCount;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on next page.
|
|
break;
|
|
}
|
|
++nextSuballocItem;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const VmaSuballocation& suballoc = *suballocItem;
|
|
VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
*pSumFreeSize = suballoc.size;
|
|
|
|
// Size of this suballocation is too small for this request: Early return.
|
|
if(suballoc.size < allocSize)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Start from offset equal to beginning of this suballocation.
|
|
*pOffset = suballoc.offset;
|
|
|
|
// Apply debugMargin at the beginning.
|
|
if(debugMargin > 0)
|
|
{
|
|
*pOffset += debugMargin;
|
|
}
|
|
|
|
// Apply alignment.
|
|
*pOffset = VmaAlignUp(*pOffset, allocAlignment);
|
|
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment)
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
|
|
while(prevSuballocItem != m_Suballocations.cbegin())
|
|
{
|
|
--prevSuballocItem;
|
|
const VmaSuballocation& prevSuballoc = *prevSuballocItem;
|
|
if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if(bufferImageGranularityConflict)
|
|
{
|
|
*pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
|
|
}
|
|
}
|
|
|
|
// Calculate padding at the beginning based on current offset.
|
|
const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
|
|
|
|
// Calculate required margin at the end.
|
|
const VkDeviceSize requiredEndMargin = debugMargin;
|
|
|
|
// Fail if requested size plus margin before and after is bigger than size of this suballocation.
|
|
if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Check next suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, allocation cannot be made here.
|
|
if(allocSize % bufferImageGranularity || *pOffset % bufferImageGranularity)
|
|
{
|
|
VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
|
|
++nextSuballocItem;
|
|
while(nextSuballocItem != m_Suballocations.cend())
|
|
{
|
|
const VmaSuballocation& nextSuballoc = *nextSuballocItem;
|
|
if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on next page.
|
|
break;
|
|
}
|
|
++nextSuballocItem;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All tests passed: Success. pOffset is already filled.
|
|
return true;
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item)
|
|
{
|
|
VMA_ASSERT(item != m_Suballocations.end());
|
|
VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
VmaSuballocationList::iterator nextItem = item;
|
|
++nextItem;
|
|
VMA_ASSERT(nextItem != m_Suballocations.end());
|
|
VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
item->size += nextItem->size;
|
|
--m_FreeCount;
|
|
m_Suballocations.erase(nextItem);
|
|
}
|
|
|
|
VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
|
|
{
|
|
// Change this suballocation to be marked as free.
|
|
VmaSuballocation& suballoc = *suballocItem;
|
|
suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
suballoc.userData = VMA_NULL;
|
|
|
|
// Update totals.
|
|
++m_FreeCount;
|
|
m_SumFreeSize += suballoc.size;
|
|
|
|
// Merge with previous and/or next suballocation if it's also free.
|
|
bool mergeWithNext = false;
|
|
bool mergeWithPrev = false;
|
|
|
|
VmaSuballocationList::iterator nextItem = suballocItem;
|
|
++nextItem;
|
|
if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
|
|
{
|
|
mergeWithNext = true;
|
|
}
|
|
|
|
VmaSuballocationList::iterator prevItem = suballocItem;
|
|
if(suballocItem != m_Suballocations.begin())
|
|
{
|
|
--prevItem;
|
|
if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
mergeWithPrev = true;
|
|
}
|
|
}
|
|
|
|
if(mergeWithNext)
|
|
{
|
|
UnregisterFreeSuballocation(nextItem);
|
|
MergeFreeWithNext(suballocItem);
|
|
}
|
|
|
|
if(mergeWithPrev)
|
|
{
|
|
UnregisterFreeSuballocation(prevItem);
|
|
MergeFreeWithNext(prevItem);
|
|
RegisterFreeSuballocation(prevItem);
|
|
return prevItem;
|
|
}
|
|
else
|
|
{
|
|
RegisterFreeSuballocation(suballocItem);
|
|
return suballocItem;
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
|
|
{
|
|
VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(item->size > 0);
|
|
|
|
// You may want to enable this validation at the beginning or at the end of
|
|
// this function, depending on what do you want to check.
|
|
VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
|
|
|
|
if(m_FreeSuballocationsBySize.empty())
|
|
{
|
|
m_FreeSuballocationsBySize.push_back(item);
|
|
}
|
|
else
|
|
{
|
|
VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
|
|
}
|
|
|
|
//VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
|
|
}
|
|
|
|
|
|
void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
|
|
{
|
|
VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(item->size > 0);
|
|
|
|
// You may want to enable this validation at the beginning or at the end of
|
|
// this function, depending on what do you want to check.
|
|
VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
|
|
|
|
VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
|
|
m_FreeSuballocationsBySize.data(),
|
|
m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
|
|
item,
|
|
VmaSuballocationItemSizeLess());
|
|
for(size_t index = it - m_FreeSuballocationsBySize.data();
|
|
index < m_FreeSuballocationsBySize.size();
|
|
++index)
|
|
{
|
|
if(m_FreeSuballocationsBySize[index] == item)
|
|
{
|
|
VmaVectorRemove(m_FreeSuballocationsBySize, index);
|
|
return;
|
|
}
|
|
VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
|
|
}
|
|
VMA_ASSERT(0 && "Not found.");
|
|
|
|
//VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
|
|
}
|
|
|
|
bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible(
|
|
VkDeviceSize bufferImageGranularity,
|
|
VmaSuballocationType& inOutPrevSuballocType) const
|
|
{
|
|
if(bufferImageGranularity == 1 || IsEmpty() || IsVirtual())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
VkDeviceSize minAlignment = VK_WHOLE_SIZE;
|
|
bool typeConflictFound = false;
|
|
for(const auto& suballoc : m_Suballocations)
|
|
{
|
|
const VmaSuballocationType suballocType = suballoc.type;
|
|
if(suballocType != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
minAlignment = VMA_MIN(minAlignment, alloc->GetAlignment());
|
|
if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType))
|
|
{
|
|
typeConflictFound = true;
|
|
}
|
|
inOutPrevSuballocType = suballocType;
|
|
}
|
|
}
|
|
|
|
return typeConflictFound || minAlignment >= bufferImageGranularity;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaBlockMetadata_Linear
|
|
|
|
VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirtual) :
|
|
VmaBlockMetadata(pAllocationCallbacks, isVirtual),
|
|
m_SumFreeSize(0),
|
|
m_Suballocations0(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
|
|
m_Suballocations1(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
|
|
m_1stVectorIndex(0),
|
|
m_2ndVectorMode(SECOND_VECTOR_EMPTY),
|
|
m_1stNullItemsBeginCount(0),
|
|
m_1stNullItemsMiddleCount(0),
|
|
m_2ndNullItemsCount(0)
|
|
{
|
|
}
|
|
|
|
VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear()
|
|
{
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
|
|
{
|
|
VmaBlockMetadata::Init(size);
|
|
m_SumFreeSize = size;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::Validate() const
|
|
{
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
|
|
VMA_VALIDATE(!suballocations1st.empty() ||
|
|
suballocations2nd.empty() ||
|
|
m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
|
|
|
|
if(!suballocations1st.empty())
|
|
{
|
|
// Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
|
|
VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE);
|
|
// Null item at the end should be just pop_back().
|
|
VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE);
|
|
}
|
|
if(!suballocations2nd.empty())
|
|
{
|
|
// Null item at the end should be just pop_back().
|
|
VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE);
|
|
}
|
|
|
|
VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
|
|
VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
|
|
|
|
VkDeviceSize sumUsedSize = 0;
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
VkDeviceSize offset = debugMargin;
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
size_t nullItem2ndCount = 0;
|
|
for(size_t i = 0; i < suballoc2ndCount; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[i];
|
|
const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
|
|
}
|
|
VMA_VALIDATE(suballoc.offset >= offset);
|
|
|
|
if(!currFree)
|
|
{
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(alloc->GetOffset() == suballoc.offset);
|
|
VMA_VALIDATE(alloc->GetSize() == suballoc.size);
|
|
}
|
|
sumUsedSize += suballoc.size;
|
|
}
|
|
else
|
|
{
|
|
++nullItem2ndCount;
|
|
}
|
|
|
|
offset = suballoc.offset + suballoc.size + debugMargin;
|
|
}
|
|
|
|
VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
|
|
}
|
|
|
|
for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[i];
|
|
VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
|
|
suballoc.userData == VMA_NULL);
|
|
}
|
|
|
|
size_t nullItem1stCount = m_1stNullItemsBeginCount;
|
|
|
|
for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[i];
|
|
const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
|
|
}
|
|
VMA_VALIDATE(suballoc.offset >= offset);
|
|
VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
|
|
|
|
if(!currFree)
|
|
{
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(alloc->GetOffset() == suballoc.offset);
|
|
VMA_VALIDATE(alloc->GetSize() == suballoc.size);
|
|
}
|
|
sumUsedSize += suballoc.size;
|
|
}
|
|
else
|
|
{
|
|
++nullItem1stCount;
|
|
}
|
|
|
|
offset = suballoc.offset + suballoc.size + debugMargin;
|
|
}
|
|
VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
size_t nullItem2ndCount = 0;
|
|
for(size_t i = suballoc2ndCount; i--; )
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[i];
|
|
const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
|
|
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
|
|
}
|
|
VMA_VALIDATE(suballoc.offset >= offset);
|
|
|
|
if(!currFree)
|
|
{
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(alloc->GetOffset() == suballoc.offset);
|
|
VMA_VALIDATE(alloc->GetSize() == suballoc.size);
|
|
}
|
|
sumUsedSize += suballoc.size;
|
|
}
|
|
else
|
|
{
|
|
++nullItem2ndCount;
|
|
}
|
|
|
|
offset = suballoc.offset + suballoc.size + debugMargin;
|
|
}
|
|
|
|
VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
|
|
}
|
|
|
|
VMA_VALIDATE(offset <= GetSize());
|
|
VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t VmaBlockMetadata_Linear::GetAllocationCount() const
|
|
{
|
|
return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount +
|
|
AccessSuballocations2nd().size() - m_2ndNullItemsCount;
|
|
}
|
|
|
|
VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const
|
|
{
|
|
const VkDeviceSize size = GetSize();
|
|
|
|
/*
|
|
We don't consider gaps inside allocation vectors with freed allocations because
|
|
they are not suitable for reuse in linear allocator. We consider only space that
|
|
is available for new allocations.
|
|
*/
|
|
if(IsEmpty())
|
|
{
|
|
return size;
|
|
}
|
|
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
|
|
switch(m_2ndVectorMode)
|
|
{
|
|
case SECOND_VECTOR_EMPTY:
|
|
/*
|
|
Available space is after end of 1st, as well as before beginning of 1st (which
|
|
would make it a ring buffer).
|
|
*/
|
|
{
|
|
const size_t suballocations1stCount = suballocations1st.size();
|
|
VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount);
|
|
const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
|
|
const VmaSuballocation& lastSuballoc = suballocations1st[suballocations1stCount - 1];
|
|
return VMA_MAX(
|
|
firstSuballoc.offset,
|
|
size - (lastSuballoc.offset + lastSuballoc.size));
|
|
}
|
|
break;
|
|
|
|
case SECOND_VECTOR_RING_BUFFER:
|
|
/*
|
|
Available space is only between end of 2nd and beginning of 1st.
|
|
*/
|
|
{
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back();
|
|
const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount];
|
|
return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size);
|
|
}
|
|
break;
|
|
|
|
case SECOND_VECTOR_DOUBLE_STACK:
|
|
/*
|
|
Available space is only between end of 1st and top of 2nd.
|
|
*/
|
|
{
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
const VmaSuballocation& topSuballoc2nd = suballocations2nd.back();
|
|
const VmaSuballocation& lastSuballoc1st = suballocations1st.back();
|
|
return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
|
|
{
|
|
const VkDeviceSize size = GetSize();
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
|
|
VmaInitStatInfo(outInfo);
|
|
outInfo.blockCount = 1;
|
|
|
|
VkDeviceSize lastOffset = 0;
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
|
|
size_t nextAlloc2ndIndex = 0;
|
|
while(lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while(nextAlloc2ndIndex < suballoc2ndCount &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc2ndIndex < suballoc2ndCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
VmaAddStatInfoAllocation(outInfo, suballoc.size);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// There is free space from lastOffset to freeSpace2ndTo1stEnd.
|
|
if(lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
|
|
VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace2ndTo1stEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
|
|
const VkDeviceSize freeSpace1stTo2ndEnd =
|
|
m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
|
|
while(lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while(nextAlloc1stIndex < suballoc1stCount &&
|
|
suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc1stIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc1stIndex < suballoc1stCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
VmaAddStatInfoAllocation(outInfo, suballoc.size);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc1stIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// There is free space from lastOffset to freeSpace1stTo2ndEnd.
|
|
if(lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
|
|
VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace1stTo2ndEnd;
|
|
}
|
|
}
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
|
|
while(lastOffset < size)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while(nextAlloc2ndIndex != SIZE_MAX &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc2ndIndex != SIZE_MAX)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
VmaAddStatInfoAllocation(outInfo, suballoc.size);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
// There is free space from lastOffset to size.
|
|
if(lastOffset < size)
|
|
{
|
|
const VkDeviceSize unusedRangeSize = size - lastOffset;
|
|
VmaAddStatInfoUnusedRange(outInfo, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = size;
|
|
}
|
|
}
|
|
}
|
|
|
|
outInfo.unusedBytes = size - outInfo.usedBytes;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const
|
|
{
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
const VkDeviceSize size = GetSize();
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
|
|
inoutStats.size += size;
|
|
|
|
VkDeviceSize lastOffset = 0;
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
|
|
size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
|
|
while(lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while(nextAlloc2ndIndex < suballoc2ndCount &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc2ndIndex < suballoc2ndCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
inoutStats.unusedSize += unusedRangeSize;
|
|
++inoutStats.unusedRangeCount;
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++inoutStats.allocationCount;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace2ndTo1stEnd.
|
|
const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
|
|
inoutStats.unusedSize += unusedRangeSize;
|
|
++inoutStats.unusedRangeCount;
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace2ndTo1stEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
|
|
const VkDeviceSize freeSpace1stTo2ndEnd =
|
|
m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
|
|
while(lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while(nextAlloc1stIndex < suballoc1stCount &&
|
|
suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc1stIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc1stIndex < suballoc1stCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
inoutStats.unusedSize += unusedRangeSize;
|
|
++inoutStats.unusedRangeCount;
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++inoutStats.allocationCount;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc1stIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace1stTo2ndEnd.
|
|
const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
|
|
inoutStats.unusedSize += unusedRangeSize;
|
|
++inoutStats.unusedRangeCount;
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace1stTo2ndEnd;
|
|
}
|
|
}
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
|
|
while(lastOffset < size)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while(nextAlloc2ndIndex != SIZE_MAX &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc2ndIndex != SIZE_MAX)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
inoutStats.unusedSize += unusedRangeSize;
|
|
++inoutStats.unusedRangeCount;
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++inoutStats.allocationCount;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < size)
|
|
{
|
|
// There is free space from lastOffset to size.
|
|
const VkDeviceSize unusedRangeSize = size - lastOffset;
|
|
inoutStats.unusedSize += unusedRangeSize;
|
|
++inoutStats.unusedRangeCount;
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
|
|
{
|
|
const VkDeviceSize size = GetSize();
|
|
const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const size_t suballoc2ndCount = suballocations2nd.size();
|
|
|
|
// FIRST PASS
|
|
|
|
size_t unusedRangeCount = 0;
|
|
VkDeviceSize usedBytes = 0;
|
|
|
|
VkDeviceSize lastOffset = 0;
|
|
|
|
size_t alloc2ndCount = 0;
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
|
|
size_t nextAlloc2ndIndex = 0;
|
|
while(lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while(nextAlloc2ndIndex < suballoc2ndCount &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc2ndIndex < suballoc2ndCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++alloc2ndCount;
|
|
usedBytes += suballoc.size;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace2ndTo1stEnd.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace2ndTo1stEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
|
|
size_t alloc1stCount = 0;
|
|
const VkDeviceSize freeSpace1stTo2ndEnd =
|
|
m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
|
|
while(lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while(nextAlloc1stIndex < suballoc1stCount &&
|
|
suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc1stIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc1stIndex < suballoc1stCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++alloc1stCount;
|
|
usedBytes += suballoc.size;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc1stIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < size)
|
|
{
|
|
// There is free space from lastOffset to freeSpace1stTo2ndEnd.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace1stTo2ndEnd;
|
|
}
|
|
}
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
|
|
while(lastOffset < size)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while(nextAlloc2ndIndex != SIZE_MAX &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc2ndIndex != SIZE_MAX)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
++alloc2ndCount;
|
|
usedBytes += suballoc.size;
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < size)
|
|
{
|
|
// There is free space from lastOffset to size.
|
|
++unusedRangeCount;
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = size;
|
|
}
|
|
}
|
|
}
|
|
|
|
const VkDeviceSize unusedBytes = size - usedBytes;
|
|
PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
|
|
|
|
// SECOND PASS
|
|
lastOffset = 0;
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
|
|
size_t nextAlloc2ndIndex = 0;
|
|
while(lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while(nextAlloc2ndIndex < suballoc2ndCount &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc2ndIndex < suballoc2ndCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < freeSpace2ndTo1stEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace2ndTo1stEnd.
|
|
const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace2ndTo1stEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
nextAlloc1stIndex = m_1stNullItemsBeginCount;
|
|
while(lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// Find next non-null allocation or move nextAllocIndex to the end.
|
|
while(nextAlloc1stIndex < suballoc1stCount &&
|
|
suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
|
|
{
|
|
++nextAlloc1stIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc1stIndex < suballoc1stCount)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
++nextAlloc1stIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < freeSpace1stTo2ndEnd)
|
|
{
|
|
// There is free space from lastOffset to freeSpace1stTo2ndEnd.
|
|
const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = freeSpace1stTo2ndEnd;
|
|
}
|
|
}
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
|
|
while(lastOffset < size)
|
|
{
|
|
// Find next non-null allocation or move nextAlloc2ndIndex to the end.
|
|
while(nextAlloc2ndIndex != SIZE_MAX &&
|
|
suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
|
|
{
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
|
|
// Found non-null allocation.
|
|
if(nextAlloc2ndIndex != SIZE_MAX)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
|
|
|
|
// 1. Process free space before this allocation.
|
|
if(lastOffset < suballoc.offset)
|
|
{
|
|
// There is free space from lastOffset to suballoc.offset.
|
|
const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// 2. Process this allocation.
|
|
// There is allocation with suballoc.offset, suballoc.size.
|
|
PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
|
|
|
|
// 3. Prepare for next iteration.
|
|
lastOffset = suballoc.offset + suballoc.size;
|
|
--nextAlloc2ndIndex;
|
|
}
|
|
// We are at the end.
|
|
else
|
|
{
|
|
if(lastOffset < size)
|
|
{
|
|
// There is free space from lastOffset to size.
|
|
const VkDeviceSize unusedRangeSize = size - lastOffset;
|
|
PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
|
|
}
|
|
|
|
// End of loop.
|
|
lastOffset = size;
|
|
}
|
|
}
|
|
}
|
|
|
|
PrintDetailedMap_End(json);
|
|
}
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
bool VmaBlockMetadata_Linear::CreateAllocationRequest(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(allocSize > 0);
|
|
VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(pAllocationRequest != VMA_NULL);
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
pAllocationRequest->size = allocSize;
|
|
return upperAddress ?
|
|
CreateAllocationRequest_UpperAddress(
|
|
currentFrameIndex, frameInUseCount, bufferImageGranularity,
|
|
allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) :
|
|
CreateAllocationRequest_LowerAddress(
|
|
currentFrameIndex, frameInUseCount, bufferImageGranularity,
|
|
allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest);
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
const VkDeviceSize blockSize = GetSize();
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
|
|
return false;
|
|
}
|
|
|
|
// Try to allocate before 2nd.back(), or end of block if 2nd.empty().
|
|
if(allocSize > blockSize)
|
|
{
|
|
return false;
|
|
}
|
|
VkDeviceSize resultBaseOffset = blockSize - allocSize;
|
|
if(!suballocations2nd.empty())
|
|
{
|
|
const VmaSuballocation& lastSuballoc = suballocations2nd.back();
|
|
resultBaseOffset = lastSuballoc.offset - allocSize;
|
|
if(allocSize > lastSuballoc.offset)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Start from offset equal to end of free space.
|
|
VkDeviceSize resultOffset = resultBaseOffset;
|
|
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
|
|
// Apply debugMargin at the end.
|
|
if(debugMargin > 0)
|
|
{
|
|
if(resultOffset < debugMargin)
|
|
{
|
|
return false;
|
|
}
|
|
resultOffset -= debugMargin;
|
|
}
|
|
|
|
// Apply alignment.
|
|
resultOffset = VmaAlignDown(resultOffset, allocAlignment);
|
|
|
|
// Check next suballocations from 2nd for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
|
|
if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if(bufferImageGranularityConflict)
|
|
{
|
|
resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
|
|
}
|
|
}
|
|
|
|
// There is enough free space.
|
|
const VkDeviceSize endOf1st = !suballocations1st.empty() ?
|
|
suballocations1st.back().offset + suballocations1st.back().size :
|
|
0;
|
|
if(endOf1st + debugMargin <= resultOffset)
|
|
{
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, allocation cannot be made here.
|
|
if(bufferImageGranularity > 1)
|
|
{
|
|
for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
|
|
if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on next page.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All tests passed: Success.
|
|
pAllocationRequest->offset = resultOffset;
|
|
pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st;
|
|
pAllocationRequest->sumItemSize = 0;
|
|
// pAllocationRequest->item unused.
|
|
pAllocationRequest->itemsToMakeLostCount = 0;
|
|
pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
const VkDeviceSize blockSize = GetSize();
|
|
const VkDeviceSize debugMargin = GetDebugMargin();
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
// Try to allocate at the end of 1st vector.
|
|
|
|
VkDeviceSize resultBaseOffset = 0;
|
|
if(!suballocations1st.empty())
|
|
{
|
|
const VmaSuballocation& lastSuballoc = suballocations1st.back();
|
|
resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
|
|
}
|
|
|
|
// Start from offset equal to beginning of free space.
|
|
VkDeviceSize resultOffset = resultBaseOffset;
|
|
|
|
// Apply debugMargin at the beginning.
|
|
if(debugMargin > 0)
|
|
{
|
|
resultOffset += debugMargin;
|
|
}
|
|
|
|
// Apply alignment.
|
|
resultOffset = VmaAlignUp(resultOffset, allocAlignment);
|
|
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty())
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
|
|
if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if(bufferImageGranularityConflict)
|
|
{
|
|
resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
|
|
}
|
|
}
|
|
|
|
const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
|
|
suballocations2nd.back().offset : blockSize;
|
|
|
|
// There is enough free space at the end after alignment.
|
|
if(resultOffset + allocSize + debugMargin <= freeSpaceEnd)
|
|
{
|
|
// Check next suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, allocation cannot be made here.
|
|
if((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
|
|
if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All tests passed: Success.
|
|
pAllocationRequest->offset = resultOffset;
|
|
pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset;
|
|
pAllocationRequest->sumItemSize = 0;
|
|
// pAllocationRequest->item, customData unused.
|
|
pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
|
|
pAllocationRequest->itemsToMakeLostCount = 0;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Wrap-around to end of 2nd vector. Try to allocate there, watching for the
|
|
// beginning of 1st vector as the end of free space.
|
|
if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
VMA_ASSERT(!suballocations1st.empty());
|
|
|
|
VkDeviceSize resultBaseOffset = 0;
|
|
if(!suballocations2nd.empty())
|
|
{
|
|
const VmaSuballocation& lastSuballoc = suballocations2nd.back();
|
|
resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
|
|
}
|
|
|
|
// Start from offset equal to beginning of free space.
|
|
VkDeviceSize resultOffset = resultBaseOffset;
|
|
|
|
// Apply debugMargin at the beginning.
|
|
if(debugMargin > 0)
|
|
{
|
|
resultOffset += debugMargin;
|
|
}
|
|
|
|
// Apply alignment.
|
|
resultOffset = VmaAlignUp(resultOffset, allocAlignment);
|
|
|
|
// Check previous suballocations for BufferImageGranularity conflicts.
|
|
// Make bigger alignment if necessary.
|
|
if(bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
|
|
{
|
|
bool bufferImageGranularityConflict = false;
|
|
for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
|
|
{
|
|
const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
|
|
if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
|
|
{
|
|
bufferImageGranularityConflict = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
// Already on previous page.
|
|
break;
|
|
}
|
|
if(bufferImageGranularityConflict)
|
|
{
|
|
resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
|
|
}
|
|
}
|
|
|
|
pAllocationRequest->itemsToMakeLostCount = 0;
|
|
pAllocationRequest->sumItemSize = 0;
|
|
size_t index1st = m_1stNullItemsBeginCount;
|
|
|
|
if(canMakeOtherLost)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
while(index1st < suballocations1st.size() &&
|
|
resultOffset + allocSize + debugMargin > suballocations1st[index1st].offset)
|
|
{
|
|
// Next colliding allocation at the beginning of 1st vector found. Try to make it lost.
|
|
const VmaSuballocation& suballoc = suballocations1st[index1st];
|
|
if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
// No problem.
|
|
}
|
|
else
|
|
{
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
VMA_ASSERT(alloc != VK_NULL_HANDLE);
|
|
if(alloc->CanBecomeLost() &&
|
|
alloc->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
|
|
{
|
|
++pAllocationRequest->itemsToMakeLostCount;
|
|
pAllocationRequest->sumItemSize += suballoc.size;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
++index1st;
|
|
}
|
|
|
|
// Check next suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, we must mark more allocations lost or fail.
|
|
if(allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity)
|
|
{
|
|
while(index1st < suballocations1st.size())
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[index1st];
|
|
if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity))
|
|
{
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if (alloc != VK_NULL_HANDLE)
|
|
{
|
|
// Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type).
|
|
if(alloc->CanBecomeLost() &&
|
|
alloc->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
|
|
{
|
|
++pAllocationRequest->itemsToMakeLostCount;
|
|
pAllocationRequest->sumItemSize += suballoc.size;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on next page.
|
|
break;
|
|
}
|
|
++index1st;
|
|
}
|
|
}
|
|
|
|
// Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost.
|
|
if(index1st == suballocations1st.size() &&
|
|
resultOffset + allocSize + debugMargin > blockSize)
|
|
{
|
|
// TODO: This is a known bug that it's not yet implemented and the allocation is failing.
|
|
VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost.");
|
|
}
|
|
}
|
|
|
|
// There is enough free space at the end after alignment.
|
|
if((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) ||
|
|
(index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset))
|
|
{
|
|
// Check next suballocations for BufferImageGranularity conflicts.
|
|
// If conflict exists, allocation cannot be made here.
|
|
if(allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity)
|
|
{
|
|
for(size_t nextSuballocIndex = index1st;
|
|
nextSuballocIndex < suballocations1st.size();
|
|
nextSuballocIndex++)
|
|
{
|
|
const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
|
|
if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
|
|
{
|
|
if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Already on next page.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// All tests passed: Success.
|
|
pAllocationRequest->offset = resultOffset;
|
|
pAllocationRequest->sumFreeSize =
|
|
(index1st < suballocations1st.size() ? suballocations1st[index1st].offset : blockSize)
|
|
- resultBaseOffset
|
|
- pAllocationRequest->sumItemSize;
|
|
pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
|
|
// pAllocationRequest->item, customData unused.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
|
|
if(pAllocationRequest->itemsToMakeLostCount == 0)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER);
|
|
|
|
// We always start from 1st.
|
|
SuballocationVectorType* suballocations = &AccessSuballocations1st();
|
|
size_t index = m_1stNullItemsBeginCount;
|
|
size_t madeLostCount = 0;
|
|
while(madeLostCount < pAllocationRequest->itemsToMakeLostCount)
|
|
{
|
|
if(index == suballocations->size())
|
|
{
|
|
index = 0;
|
|
// If we get to the end of 1st, we wrap around to beginning of 2nd of 1st.
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
suballocations = &AccessSuballocations2nd();
|
|
}
|
|
// else: m_2ndVectorMode == SECOND_VECTOR_EMPTY:
|
|
// suballocations continues pointing at AccessSuballocations1st().
|
|
VMA_ASSERT(!suballocations->empty());
|
|
}
|
|
VmaSuballocation& suballoc = (*suballocations)[index];
|
|
if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
VMA_ASSERT(alloc != VK_NULL_HANDLE && alloc->CanBecomeLost());
|
|
if(alloc->MakeLost(currentFrameIndex, frameInUseCount))
|
|
{
|
|
suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
suballoc.userData = VMA_NULL;
|
|
m_SumFreeSize += suballoc.size;
|
|
if(suballocations == &AccessSuballocations1st())
|
|
{
|
|
++m_1stNullItemsMiddleCount;
|
|
}
|
|
else
|
|
{
|
|
++m_2ndNullItemsCount;
|
|
}
|
|
++madeLostCount;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
++index;
|
|
}
|
|
|
|
CleanupAfterFree();
|
|
//VMA_HEAVY_ASSERT(Validate()); // Already called by CleanupAfterFree().
|
|
|
|
return true;
|
|
}
|
|
|
|
uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
|
|
uint32_t lostAllocationCount = 0;
|
|
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
|
|
{
|
|
VmaSuballocation& suballoc = suballocations1st[i];
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
|
|
alloc->CanBecomeLost() &&
|
|
alloc->MakeLost(currentFrameIndex, frameInUseCount))
|
|
{
|
|
suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
suballoc.userData = VMA_NULL;
|
|
++m_1stNullItemsMiddleCount;
|
|
m_SumFreeSize += suballoc.size;
|
|
++lostAllocationCount;
|
|
}
|
|
}
|
|
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
|
|
{
|
|
VmaSuballocation& suballoc = suballocations2nd[i];
|
|
VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
|
|
if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
|
|
alloc->CanBecomeLost() &&
|
|
alloc->MakeLost(currentFrameIndex, frameInUseCount))
|
|
{
|
|
suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
suballoc.userData = VMA_NULL;
|
|
++m_2ndNullItemsCount;
|
|
m_SumFreeSize += suballoc.size;
|
|
++lostAllocationCount;
|
|
}
|
|
}
|
|
|
|
if(lostAllocationCount)
|
|
{
|
|
CleanupAfterFree();
|
|
}
|
|
|
|
return lostAllocationCount;
|
|
}
|
|
|
|
VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
|
|
{
|
|
VMA_ASSERT(!IsVirtual());
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations1st[i];
|
|
if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
if(!VmaValidateMagicValue(pBlockData, suballoc.offset - GetDebugMargin()))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN;
|
|
}
|
|
if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN;
|
|
}
|
|
}
|
|
}
|
|
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
|
|
{
|
|
const VmaSuballocation& suballoc = suballocations2nd[i];
|
|
if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
if(!VmaValidateMagicValue(pBlockData, suballoc.offset - GetDebugMargin()))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN;
|
|
}
|
|
if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
|
|
return VK_ERROR_UNKNOWN;
|
|
}
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData)
|
|
{
|
|
const VmaSuballocation newSuballoc = { request.offset, request.size, userData, type };
|
|
|
|
switch(request.type)
|
|
{
|
|
case VmaAllocationRequestType::UpperAddress:
|
|
{
|
|
VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
|
|
"CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
suballocations2nd.push_back(newSuballoc);
|
|
m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
|
|
}
|
|
break;
|
|
case VmaAllocationRequestType::EndOf1st:
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
|
|
VMA_ASSERT(suballocations1st.empty() ||
|
|
request.offset >= suballocations1st.back().offset + suballocations1st.back().size);
|
|
// Check if it fits before the end of the block.
|
|
VMA_ASSERT(request.offset + request.size <= GetSize());
|
|
|
|
suballocations1st.push_back(newSuballoc);
|
|
}
|
|
break;
|
|
case VmaAllocationRequestType::EndOf2nd:
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
// New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
|
|
VMA_ASSERT(!suballocations1st.empty() &&
|
|
request.offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset);
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
switch(m_2ndVectorMode)
|
|
{
|
|
case SECOND_VECTOR_EMPTY:
|
|
// First allocation from second part ring buffer.
|
|
VMA_ASSERT(suballocations2nd.empty());
|
|
m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
|
|
break;
|
|
case SECOND_VECTOR_RING_BUFFER:
|
|
// 2-part ring buffer is already started.
|
|
VMA_ASSERT(!suballocations2nd.empty());
|
|
break;
|
|
case SECOND_VECTOR_DOUBLE_STACK:
|
|
VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
suballocations2nd.push_back(newSuballoc);
|
|
}
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
|
|
}
|
|
|
|
m_SumFreeSize -= newSuballoc.size;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset)
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
if(!suballocations1st.empty())
|
|
{
|
|
// First allocation: Mark it as next empty at the beginning.
|
|
VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
|
|
if(firstSuballoc.offset == offset)
|
|
{
|
|
firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
firstSuballoc.userData = VMA_NULL;
|
|
m_SumFreeSize += firstSuballoc.size;
|
|
++m_1stNullItemsBeginCount;
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Last allocation in 2-part ring buffer or top of upper stack (same logic).
|
|
if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
|
|
m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
|
|
{
|
|
VmaSuballocation& lastSuballoc = suballocations2nd.back();
|
|
if(lastSuballoc.offset == offset)
|
|
{
|
|
m_SumFreeSize += lastSuballoc.size;
|
|
suballocations2nd.pop_back();
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
// Last allocation in 1st vector.
|
|
else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY)
|
|
{
|
|
VmaSuballocation& lastSuballoc = suballocations1st.back();
|
|
if(lastSuballoc.offset == offset)
|
|
{
|
|
m_SumFreeSize += lastSuballoc.size;
|
|
suballocations1st.pop_back();
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
|
|
VmaSuballocation refSuballoc;
|
|
refSuballoc.offset = offset;
|
|
// Rest of members stays uninitialized intentionally for better performance.
|
|
|
|
// Item from the middle of 1st vector.
|
|
{
|
|
const SuballocationVectorType::iterator it = VmaBinaryFindSorted(
|
|
suballocations1st.begin() + m_1stNullItemsBeginCount,
|
|
suballocations1st.end(),
|
|
refSuballoc,
|
|
VmaSuballocationOffsetLess());
|
|
if(it != suballocations1st.end())
|
|
{
|
|
it->type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
it->userData = VMA_NULL;
|
|
++m_1stNullItemsMiddleCount;
|
|
m_SumFreeSize += it->size;
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if(m_2ndVectorMode != SECOND_VECTOR_EMPTY)
|
|
{
|
|
// Item from the middle of 2nd vector.
|
|
const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
|
|
VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
|
|
VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
|
|
if(it != suballocations2nd.end())
|
|
{
|
|
it->type = VMA_SUBALLOCATION_TYPE_FREE;
|
|
it->userData = VMA_NULL;
|
|
++m_2ndNullItemsCount;
|
|
m_SumFreeSize += it->size;
|
|
CleanupAfterFree();
|
|
return;
|
|
}
|
|
}
|
|
|
|
VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::GetAllocationInfo(VkDeviceSize offset, VmaVirtualAllocationInfo& outInfo)
|
|
{
|
|
VmaSuballocation& suballoc = FindSuballocation(offset);
|
|
outInfo.size = suballoc.size;
|
|
outInfo.pUserData = suballoc.userData;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::Clear()
|
|
{
|
|
m_SumFreeSize = GetSize();
|
|
m_Suballocations0.clear();
|
|
m_Suballocations1.clear();
|
|
// Leaving m_1stVectorIndex unchanged - it doesn't matter.
|
|
m_2ndVectorMode = SECOND_VECTOR_EMPTY;
|
|
m_1stNullItemsBeginCount = 0;
|
|
m_1stNullItemsMiddleCount = 0;
|
|
m_2ndNullItemsCount = 0;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::SetAllocationUserData(VkDeviceSize offset, void* userData)
|
|
{
|
|
VmaSuballocation& suballoc = FindSuballocation(offset);
|
|
suballoc.userData = userData;
|
|
}
|
|
|
|
VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset)
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
VmaSuballocation refSuballoc;
|
|
refSuballoc.offset = offset;
|
|
// Rest of members stays uninitialized intentionally for better performance.
|
|
|
|
// Item from the 1st vector.
|
|
{
|
|
const SuballocationVectorType::iterator it = VmaBinaryFindSorted(
|
|
suballocations1st.begin() + m_1stNullItemsBeginCount,
|
|
suballocations1st.end(),
|
|
refSuballoc,
|
|
VmaSuballocationOffsetLess());
|
|
if(it != suballocations1st.end())
|
|
{
|
|
return *it;
|
|
}
|
|
}
|
|
|
|
if(m_2ndVectorMode != SECOND_VECTOR_EMPTY)
|
|
{
|
|
// Rest of members stays uninitialized intentionally for better performance.
|
|
const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
|
|
VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
|
|
VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
|
|
if(it != suballocations2nd.end())
|
|
{
|
|
return *it;
|
|
}
|
|
}
|
|
|
|
VMA_ASSERT(0 && "Allocation not found in linear allocator!");
|
|
return suballocations1st.back(); // Should never occur.
|
|
}
|
|
|
|
bool VmaBlockMetadata_Linear::ShouldCompact1st() const
|
|
{
|
|
const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
|
|
const size_t suballocCount = AccessSuballocations1st().size();
|
|
return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
|
|
}
|
|
|
|
void VmaBlockMetadata_Linear::CleanupAfterFree()
|
|
{
|
|
SuballocationVectorType& suballocations1st = AccessSuballocations1st();
|
|
SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
|
|
|
|
if(IsEmpty())
|
|
{
|
|
suballocations1st.clear();
|
|
suballocations2nd.clear();
|
|
m_1stNullItemsBeginCount = 0;
|
|
m_1stNullItemsMiddleCount = 0;
|
|
m_2ndNullItemsCount = 0;
|
|
m_2ndVectorMode = SECOND_VECTOR_EMPTY;
|
|
}
|
|
else
|
|
{
|
|
const size_t suballoc1stCount = suballocations1st.size();
|
|
const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
|
|
VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
|
|
|
|
// Find more null items at the beginning of 1st vector.
|
|
while(m_1stNullItemsBeginCount < suballoc1stCount &&
|
|
suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
++m_1stNullItemsBeginCount;
|
|
--m_1stNullItemsMiddleCount;
|
|
}
|
|
|
|
// Find more null items at the end of 1st vector.
|
|
while(m_1stNullItemsMiddleCount > 0 &&
|
|
suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
--m_1stNullItemsMiddleCount;
|
|
suballocations1st.pop_back();
|
|
}
|
|
|
|
// Find more null items at the end of 2nd vector.
|
|
while(m_2ndNullItemsCount > 0 &&
|
|
suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
--m_2ndNullItemsCount;
|
|
suballocations2nd.pop_back();
|
|
}
|
|
|
|
// Find more null items at the beginning of 2nd vector.
|
|
while(m_2ndNullItemsCount > 0 &&
|
|
suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
--m_2ndNullItemsCount;
|
|
VmaVectorRemove(suballocations2nd, 0);
|
|
}
|
|
|
|
if(ShouldCompact1st())
|
|
{
|
|
const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
|
|
size_t srcIndex = m_1stNullItemsBeginCount;
|
|
for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
|
|
{
|
|
while(suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
++srcIndex;
|
|
}
|
|
if(dstIndex != srcIndex)
|
|
{
|
|
suballocations1st[dstIndex] = suballocations1st[srcIndex];
|
|
}
|
|
++srcIndex;
|
|
}
|
|
suballocations1st.resize(nonNullItemCount);
|
|
m_1stNullItemsBeginCount = 0;
|
|
m_1stNullItemsMiddleCount = 0;
|
|
}
|
|
|
|
// 2nd vector became empty.
|
|
if(suballocations2nd.empty())
|
|
{
|
|
m_2ndVectorMode = SECOND_VECTOR_EMPTY;
|
|
}
|
|
|
|
// 1st vector became empty.
|
|
if(suballocations1st.size() - m_1stNullItemsBeginCount == 0)
|
|
{
|
|
suballocations1st.clear();
|
|
m_1stNullItemsBeginCount = 0;
|
|
|
|
if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
|
|
{
|
|
// Swap 1st with 2nd. Now 2nd is empty.
|
|
m_2ndVectorMode = SECOND_VECTOR_EMPTY;
|
|
m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
|
|
while(m_1stNullItemsBeginCount < suballocations2nd.size() &&
|
|
suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
++m_1stNullItemsBeginCount;
|
|
--m_1stNullItemsMiddleCount;
|
|
}
|
|
m_2ndNullItemsCount = 0;
|
|
m_1stVectorIndex ^= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
VMA_HEAVY_ASSERT(Validate());
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaBlockMetadata_Buddy
|
|
|
|
VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks, bool isVirtual) :
|
|
VmaBlockMetadata(pAllocationCallbacks, isVirtual),
|
|
m_NodeAllocator(pAllocationCallbacks,
|
|
32), // firstBlockCapacity
|
|
m_Root(VMA_NULL),
|
|
m_AllocationCount(0),
|
|
m_FreeCount(1),
|
|
m_SumFreeSize(0)
|
|
{
|
|
memset(m_FreeList, 0, sizeof(m_FreeList));
|
|
}
|
|
|
|
VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy()
|
|
{
|
|
DeleteNodeChildren(m_Root);
|
|
m_NodeAllocator.Free(m_Root);
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::Init(VkDeviceSize size)
|
|
{
|
|
VmaBlockMetadata::Init(size);
|
|
|
|
m_UsableSize = VmaPrevPow2(size);
|
|
m_SumFreeSize = m_UsableSize;
|
|
|
|
// Calculate m_LevelCount.
|
|
const VkDeviceSize minNodeSize = IsVirtual() ? 1 : 16;
|
|
m_LevelCount = 1;
|
|
while(m_LevelCount < MAX_LEVELS &&
|
|
LevelToNodeSize(m_LevelCount) >= minNodeSize)
|
|
{
|
|
++m_LevelCount;
|
|
}
|
|
|
|
Node* rootNode = m_NodeAllocator.Alloc();
|
|
rootNode->offset = 0;
|
|
rootNode->type = Node::TYPE_FREE;
|
|
rootNode->parent = VMA_NULL;
|
|
rootNode->buddy = VMA_NULL;
|
|
|
|
m_Root = rootNode;
|
|
AddToFreeListFront(0, rootNode);
|
|
}
|
|
|
|
bool VmaBlockMetadata_Buddy::Validate() const
|
|
{
|
|
// Validate tree.
|
|
ValidationContext ctx;
|
|
if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0)))
|
|
{
|
|
VMA_VALIDATE(false && "ValidateNode failed.");
|
|
}
|
|
VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount);
|
|
VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize);
|
|
|
|
// Validate free node lists.
|
|
for(uint32_t level = 0; level < m_LevelCount; ++level)
|
|
{
|
|
VMA_VALIDATE(m_FreeList[level].front == VMA_NULL ||
|
|
m_FreeList[level].front->free.prev == VMA_NULL);
|
|
|
|
for(Node* node = m_FreeList[level].front;
|
|
node != VMA_NULL;
|
|
node = node->free.next)
|
|
{
|
|
VMA_VALIDATE(node->type == Node::TYPE_FREE);
|
|
|
|
if(node->free.next == VMA_NULL)
|
|
{
|
|
VMA_VALIDATE(m_FreeList[level].back == node);
|
|
}
|
|
else
|
|
{
|
|
VMA_VALIDATE(node->free.next->free.prev == node);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Validate that free lists ar higher levels are empty.
|
|
for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level)
|
|
{
|
|
VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const
|
|
{
|
|
for(uint32_t level = 0; level < m_LevelCount; ++level)
|
|
{
|
|
if(m_FreeList[level].front != VMA_NULL)
|
|
{
|
|
return LevelToNodeSize(level);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
|
|
{
|
|
VmaInitStatInfo(outInfo);
|
|
outInfo.blockCount = 1;
|
|
|
|
CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0));
|
|
|
|
const VkDeviceSize unusableSize = GetUnusableSize();
|
|
if(unusableSize > 0)
|
|
{
|
|
VmaAddStatInfoUnusedRange(outInfo, unusableSize);
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const
|
|
{
|
|
const VkDeviceSize unusableSize = GetUnusableSize();
|
|
|
|
inoutStats.size += GetSize();
|
|
inoutStats.unusedSize += m_SumFreeSize + unusableSize;
|
|
inoutStats.allocationCount += m_AllocationCount;
|
|
inoutStats.unusedRangeCount += m_FreeCount;
|
|
inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
|
|
|
|
if(unusableSize > 0)
|
|
{
|
|
++inoutStats.unusedRangeCount;
|
|
// Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations.
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const
|
|
{
|
|
VmaStatInfo stat;
|
|
CalcAllocationStatInfo(stat);
|
|
|
|
PrintDetailedMap_Begin(
|
|
json,
|
|
stat.unusedBytes,
|
|
stat.allocationCount,
|
|
stat.unusedRangeCount);
|
|
|
|
PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0));
|
|
|
|
const VkDeviceSize unusableSize = GetUnusableSize();
|
|
if(unusableSize > 0)
|
|
{
|
|
PrintDetailedMap_UnusedRange(json,
|
|
m_UsableSize, // offset
|
|
unusableSize); // size
|
|
}
|
|
|
|
PrintDetailedMap_End(json);
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
bool VmaBlockMetadata_Buddy::CreateAllocationRequest(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
VkDeviceSize allocSize,
|
|
VkDeviceSize allocAlignment,
|
|
bool upperAddress,
|
|
VmaSuballocationType allocType,
|
|
bool canMakeOtherLost,
|
|
uint32_t strategy,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
|
|
|
|
allocSize = AlignAllocationSize(allocSize);
|
|
|
|
// Simple way to respect bufferImageGranularity. May be optimized some day.
|
|
// Whenever it might be an OPTIMAL image...
|
|
if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
|
|
allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
|
|
allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
|
|
{
|
|
allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity);
|
|
allocSize = VMA_MAX(allocSize, bufferImageGranularity);
|
|
}
|
|
|
|
if(allocSize > m_UsableSize)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const uint32_t targetLevel = AllocSizeToLevel(allocSize);
|
|
for(uint32_t level = targetLevel; level--; )
|
|
{
|
|
for(Node* freeNode = m_FreeList[level].front;
|
|
freeNode != VMA_NULL;
|
|
freeNode = freeNode->free.next)
|
|
{
|
|
if(freeNode->offset % allocAlignment == 0)
|
|
{
|
|
pAllocationRequest->type = VmaAllocationRequestType::Normal;
|
|
pAllocationRequest->offset = freeNode->offset;
|
|
pAllocationRequest->size = allocSize;
|
|
pAllocationRequest->sumFreeSize = LevelToNodeSize(level);
|
|
pAllocationRequest->sumItemSize = 0;
|
|
pAllocationRequest->itemsToMakeLostCount = 0;
|
|
pAllocationRequest->customData = (void*)(uintptr_t)level;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
uint32_t frameInUseCount,
|
|
VmaAllocationRequest* pAllocationRequest)
|
|
{
|
|
/*
|
|
Lost allocations are not supported in buddy allocator at the moment.
|
|
Support might be added in the future.
|
|
*/
|
|
return pAllocationRequest->itemsToMakeLostCount == 0;
|
|
}
|
|
|
|
uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
|
|
{
|
|
/*
|
|
Lost allocations are not supported in buddy allocator at the moment.
|
|
Support might be added in the future.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::Alloc(
|
|
const VmaAllocationRequest& request,
|
|
VmaSuballocationType type,
|
|
void* userData)
|
|
{
|
|
VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
|
|
|
|
const uint32_t targetLevel = AllocSizeToLevel(request.size);
|
|
uint32_t currLevel = (uint32_t)(uintptr_t)request.customData;
|
|
|
|
Node* currNode = m_FreeList[currLevel].front;
|
|
VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
|
|
while(currNode->offset != request.offset)
|
|
{
|
|
currNode = currNode->free.next;
|
|
VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
|
|
}
|
|
|
|
// Go down, splitting free nodes.
|
|
while(currLevel < targetLevel)
|
|
{
|
|
// currNode is already first free node at currLevel.
|
|
// Remove it from list of free nodes at this currLevel.
|
|
RemoveFromFreeList(currLevel, currNode);
|
|
|
|
const uint32_t childrenLevel = currLevel + 1;
|
|
|
|
// Create two free sub-nodes.
|
|
Node* leftChild = m_NodeAllocator.Alloc();
|
|
Node* rightChild = m_NodeAllocator.Alloc();
|
|
|
|
leftChild->offset = currNode->offset;
|
|
leftChild->type = Node::TYPE_FREE;
|
|
leftChild->parent = currNode;
|
|
leftChild->buddy = rightChild;
|
|
|
|
rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel);
|
|
rightChild->type = Node::TYPE_FREE;
|
|
rightChild->parent = currNode;
|
|
rightChild->buddy = leftChild;
|
|
|
|
// Convert current currNode to split type.
|
|
currNode->type = Node::TYPE_SPLIT;
|
|
currNode->split.leftChild = leftChild;
|
|
|
|
// Add child nodes to free list. Order is important!
|
|
AddToFreeListFront(childrenLevel, rightChild);
|
|
AddToFreeListFront(childrenLevel, leftChild);
|
|
|
|
++m_FreeCount;
|
|
++currLevel;
|
|
currNode = m_FreeList[currLevel].front;
|
|
|
|
/*
|
|
We can be sure that currNode, as left child of node previously split,
|
|
also fulfills the alignment requirement.
|
|
*/
|
|
}
|
|
|
|
// Remove from free list.
|
|
VMA_ASSERT(currLevel == targetLevel &&
|
|
currNode != VMA_NULL &&
|
|
currNode->type == Node::TYPE_FREE);
|
|
RemoveFromFreeList(currLevel, currNode);
|
|
|
|
// Convert to allocation node.
|
|
currNode->type = Node::TYPE_ALLOCATION;
|
|
currNode->allocation.userData = userData;
|
|
|
|
++m_AllocationCount;
|
|
--m_FreeCount;
|
|
m_SumFreeSize -= request.size;
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::GetAllocationInfo(VkDeviceSize offset, VmaVirtualAllocationInfo& outInfo)
|
|
{
|
|
uint32_t level = 0;
|
|
const Node* const node = FindAllocationNode(offset, level);
|
|
outInfo.size = LevelToNodeSize(level);
|
|
outInfo.pUserData = node->allocation.userData;
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::DeleteNodeChildren(Node* node)
|
|
{
|
|
if(node->type == Node::TYPE_SPLIT)
|
|
{
|
|
DeleteNodeChildren(node->split.leftChild->buddy);
|
|
DeleteNodeChildren(node->split.leftChild);
|
|
const VkAllocationCallbacks* allocationCallbacks = GetAllocationCallbacks();
|
|
m_NodeAllocator.Free(node->split.leftChild->buddy);
|
|
m_NodeAllocator.Free(node->split.leftChild);
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::Clear()
|
|
{
|
|
DeleteNodeChildren(m_Root);
|
|
m_Root->type = Node::TYPE_FREE;
|
|
m_AllocationCount = 0;
|
|
m_FreeCount = 1;
|
|
m_SumFreeSize = m_UsableSize;
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::SetAllocationUserData(VkDeviceSize offset, void* userData)
|
|
{
|
|
uint32_t level = 0;
|
|
Node* const node = FindAllocationNode(offset, level);
|
|
node->allocation.userData = userData;
|
|
}
|
|
|
|
VmaBlockMetadata_Buddy::Node* VmaBlockMetadata_Buddy::FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel)
|
|
{
|
|
Node* node = m_Root;
|
|
VkDeviceSize nodeOffset = 0;
|
|
outLevel = 0;
|
|
VkDeviceSize levelNodeSize = LevelToNodeSize(0);
|
|
while(node->type == Node::TYPE_SPLIT)
|
|
{
|
|
const VkDeviceSize nextLevelNodeSize = levelNodeSize >> 1;
|
|
if(offset < nodeOffset + nextLevelNodeSize)
|
|
{
|
|
node = node->split.leftChild;
|
|
}
|
|
else
|
|
{
|
|
node = node->split.leftChild->buddy;
|
|
nodeOffset += nextLevelNodeSize;
|
|
}
|
|
++outLevel;
|
|
levelNodeSize = nextLevelNodeSize;
|
|
}
|
|
|
|
VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION);
|
|
return node;
|
|
}
|
|
|
|
bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const
|
|
{
|
|
VMA_VALIDATE(level < m_LevelCount);
|
|
VMA_VALIDATE(curr->parent == parent);
|
|
VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL));
|
|
VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr);
|
|
switch(curr->type)
|
|
{
|
|
case Node::TYPE_FREE:
|
|
// curr->free.prev, next are validated separately.
|
|
ctx.calculatedSumFreeSize += levelNodeSize;
|
|
++ctx.calculatedFreeCount;
|
|
break;
|
|
case Node::TYPE_ALLOCATION:
|
|
++ctx.calculatedAllocationCount;
|
|
if(!IsVirtual())
|
|
{
|
|
VMA_VALIDATE(curr->allocation.userData != VMA_NULL);
|
|
}
|
|
break;
|
|
case Node::TYPE_SPLIT:
|
|
{
|
|
const uint32_t childrenLevel = level + 1;
|
|
const VkDeviceSize childrenLevelNodeSize = levelNodeSize >> 1;
|
|
const Node* const leftChild = curr->split.leftChild;
|
|
VMA_VALIDATE(leftChild != VMA_NULL);
|
|
VMA_VALIDATE(leftChild->offset == curr->offset);
|
|
if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize))
|
|
{
|
|
VMA_VALIDATE(false && "ValidateNode for left child failed.");
|
|
}
|
|
const Node* const rightChild = leftChild->buddy;
|
|
VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize);
|
|
if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize))
|
|
{
|
|
VMA_VALIDATE(false && "ValidateNode for right child failed.");
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const
|
|
{
|
|
// I know this could be optimized somehow e.g. by using std::log2p1 from C++20.
|
|
uint32_t level = 0;
|
|
VkDeviceSize currLevelNodeSize = m_UsableSize;
|
|
VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1;
|
|
while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount)
|
|
{
|
|
++level;
|
|
currLevelNodeSize >>= 1;
|
|
nextLevelNodeSize >>= 1;
|
|
}
|
|
return level;
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::FreeAtOffset(VkDeviceSize offset)
|
|
{
|
|
uint32_t level = 0;
|
|
Node* node = FindAllocationNode(offset, level);
|
|
|
|
++m_FreeCount;
|
|
--m_AllocationCount;
|
|
m_SumFreeSize += LevelToNodeSize(level);
|
|
|
|
node->type = Node::TYPE_FREE;
|
|
|
|
// Join free nodes if possible.
|
|
while(level > 0 && node->buddy->type == Node::TYPE_FREE)
|
|
{
|
|
RemoveFromFreeList(level, node->buddy);
|
|
Node* const parent = node->parent;
|
|
|
|
m_NodeAllocator.Free(node->buddy);
|
|
m_NodeAllocator.Free(node);
|
|
parent->type = Node::TYPE_FREE;
|
|
|
|
node = parent;
|
|
--level;
|
|
--m_FreeCount;
|
|
}
|
|
|
|
AddToFreeListFront(level, node);
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& inoutInfo, const Node* node, VkDeviceSize levelNodeSize) const
|
|
{
|
|
switch(node->type)
|
|
{
|
|
case Node::TYPE_FREE:
|
|
VmaAddStatInfoUnusedRange(inoutInfo, levelNodeSize);
|
|
break;
|
|
case Node::TYPE_ALLOCATION:
|
|
VmaAddStatInfoAllocation(inoutInfo, levelNodeSize);
|
|
break;
|
|
case Node::TYPE_SPLIT:
|
|
{
|
|
const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
|
|
const Node* const leftChild = node->split.leftChild;
|
|
CalcAllocationStatInfoNode(inoutInfo, leftChild, childrenNodeSize);
|
|
const Node* const rightChild = leftChild->buddy;
|
|
CalcAllocationStatInfoNode(inoutInfo, rightChild, childrenNodeSize);
|
|
}
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node)
|
|
{
|
|
VMA_ASSERT(node->type == Node::TYPE_FREE);
|
|
|
|
// List is empty.
|
|
Node* const frontNode = m_FreeList[level].front;
|
|
if(frontNode == VMA_NULL)
|
|
{
|
|
VMA_ASSERT(m_FreeList[level].back == VMA_NULL);
|
|
node->free.prev = node->free.next = VMA_NULL;
|
|
m_FreeList[level].front = m_FreeList[level].back = node;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(frontNode->free.prev == VMA_NULL);
|
|
node->free.prev = VMA_NULL;
|
|
node->free.next = frontNode;
|
|
frontNode->free.prev = node;
|
|
m_FreeList[level].front = node;
|
|
}
|
|
}
|
|
|
|
void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node)
|
|
{
|
|
VMA_ASSERT(m_FreeList[level].front != VMA_NULL);
|
|
|
|
// It is at the front.
|
|
if(node->free.prev == VMA_NULL)
|
|
{
|
|
VMA_ASSERT(m_FreeList[level].front == node);
|
|
m_FreeList[level].front = node->free.next;
|
|
}
|
|
else
|
|
{
|
|
Node* const prevFreeNode = node->free.prev;
|
|
VMA_ASSERT(prevFreeNode->free.next == node);
|
|
prevFreeNode->free.next = node->free.next;
|
|
}
|
|
|
|
// It is at the back.
|
|
if(node->free.next == VMA_NULL)
|
|
{
|
|
VMA_ASSERT(m_FreeList[level].back == node);
|
|
m_FreeList[level].back = node->free.prev;
|
|
}
|
|
else
|
|
{
|
|
Node* const nextFreeNode = node->free.next;
|
|
VMA_ASSERT(nextFreeNode->free.prev == node);
|
|
nextFreeNode->free.prev = node->free.prev;
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const
|
|
{
|
|
switch(node->type)
|
|
{
|
|
case Node::TYPE_FREE:
|
|
PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize);
|
|
break;
|
|
case Node::TYPE_ALLOCATION:
|
|
PrintDetailedMap_Allocation(json, node->offset, levelNodeSize, node->allocation.userData);
|
|
break;
|
|
case Node::TYPE_SPLIT:
|
|
{
|
|
const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
|
|
const Node* const leftChild = node->split.leftChild;
|
|
PrintDetailedMapNode(json, leftChild, childrenNodeSize);
|
|
const Node* const rightChild = leftChild->buddy;
|
|
PrintDetailedMapNode(json, rightChild, childrenNodeSize);
|
|
}
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// class VmaDeviceMemoryBlock
|
|
|
|
VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
|
|
m_pMetadata(VMA_NULL),
|
|
m_MemoryTypeIndex(UINT32_MAX),
|
|
m_Id(0),
|
|
m_hMemory(VK_NULL_HANDLE),
|
|
m_MapCount(0),
|
|
m_pMappedData(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
void VmaDeviceMemoryBlock::Init(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hParentPool,
|
|
uint32_t newMemoryTypeIndex,
|
|
VkDeviceMemory newMemory,
|
|
VkDeviceSize newSize,
|
|
uint32_t id,
|
|
uint32_t algorithm)
|
|
{
|
|
VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
|
|
|
|
m_hParentPool = hParentPool;
|
|
m_MemoryTypeIndex = newMemoryTypeIndex;
|
|
m_Id = id;
|
|
m_hMemory = newMemory;
|
|
|
|
switch(algorithm)
|
|
{
|
|
case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
|
|
m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(),
|
|
false); // isVirtual
|
|
break;
|
|
case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
|
|
m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator->GetAllocationCallbacks(),
|
|
false); // isVirtual
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
// Fall-through.
|
|
case 0:
|
|
m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator->GetAllocationCallbacks(),
|
|
false); // isVirtual
|
|
}
|
|
m_pMetadata->Init(newSize);
|
|
}
|
|
|
|
void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
|
|
{
|
|
// This is the most important assert in the entire library.
|
|
// Hitting it means you have some memory leak - unreleased VmaAllocation objects.
|
|
VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
|
|
|
|
VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
|
|
allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
|
|
m_hMemory = VK_NULL_HANDLE;
|
|
|
|
vma_delete(allocator, m_pMetadata);
|
|
m_pMetadata = VMA_NULL;
|
|
}
|
|
|
|
bool VmaDeviceMemoryBlock::Validate() const
|
|
{
|
|
VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
|
|
(m_pMetadata->GetSize() != 0));
|
|
|
|
return m_pMetadata->Validate();
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
|
|
{
|
|
void* pData = nullptr;
|
|
VkResult res = Map(hAllocator, 1, &pData);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
res = m_pMetadata->CheckCorruption(pData);
|
|
|
|
Unmap(hAllocator, 1);
|
|
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
|
|
{
|
|
if(count == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
|
|
if(m_MapCount != 0)
|
|
{
|
|
m_MapCount += count;
|
|
VMA_ASSERT(m_pMappedData != VMA_NULL);
|
|
if(ppData != VMA_NULL)
|
|
{
|
|
*ppData = m_pMappedData;
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
|
|
hAllocator->m_hDevice,
|
|
m_hMemory,
|
|
0, // offset
|
|
VK_WHOLE_SIZE,
|
|
0, // flags
|
|
&m_pMappedData);
|
|
if(result == VK_SUCCESS)
|
|
{
|
|
if(ppData != VMA_NULL)
|
|
{
|
|
*ppData = m_pMappedData;
|
|
}
|
|
m_MapCount = count;
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
|
|
{
|
|
if(count == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
|
|
if(m_MapCount >= count)
|
|
{
|
|
m_MapCount -= count;
|
|
if(m_MapCount == 0)
|
|
{
|
|
m_pMappedData = VMA_NULL;
|
|
(*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
|
|
}
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
|
|
{
|
|
VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
|
|
VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
|
|
|
|
void* pData;
|
|
VkResult res = Map(hAllocator, 1, &pData);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN);
|
|
VmaWriteMagicValue(pData, allocOffset + allocSize);
|
|
|
|
Unmap(hAllocator, 1);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
|
|
{
|
|
VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
|
|
VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
|
|
|
|
void* pData;
|
|
VkResult res = Map(hAllocator, 1, &pData);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!");
|
|
}
|
|
else if(!VmaValidateMagicValue(pData, allocOffset + allocSize))
|
|
{
|
|
VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
|
|
}
|
|
|
|
Unmap(hAllocator, 1);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::BindBufferMemory(
|
|
const VmaAllocator hAllocator,
|
|
const VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer hBuffer,
|
|
const void* pNext)
|
|
{
|
|
VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
|
|
hAllocation->GetBlock() == this);
|
|
VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
|
|
"Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
|
|
const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
|
|
// This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
|
|
VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
|
|
return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
|
|
}
|
|
|
|
VkResult VmaDeviceMemoryBlock::BindImageMemory(
|
|
const VmaAllocator hAllocator,
|
|
const VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage hImage,
|
|
const void* pNext)
|
|
{
|
|
VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
|
|
hAllocation->GetBlock() == this);
|
|
VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
|
|
"Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
|
|
const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
|
|
// This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
|
|
VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
|
|
return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
|
|
}
|
|
|
|
VmaPool_T::VmaPool_T(
|
|
VmaAllocator hAllocator,
|
|
const VmaPoolCreateInfo& createInfo,
|
|
VkDeviceSize preferredBlockSize) :
|
|
m_BlockVector(
|
|
hAllocator,
|
|
this, // hParentPool
|
|
createInfo.memoryTypeIndex,
|
|
createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
|
|
createInfo.minBlockCount,
|
|
createInfo.maxBlockCount,
|
|
(createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
|
|
createInfo.frameInUseCount,
|
|
createInfo.blockSize != 0, // explicitBlockSize
|
|
createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
|
|
createInfo.priority,
|
|
VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment),
|
|
createInfo.pMemoryAllocateNext),
|
|
m_Id(0),
|
|
m_Name(VMA_NULL)
|
|
{
|
|
}
|
|
|
|
VmaPool_T::~VmaPool_T()
|
|
{
|
|
VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL);
|
|
}
|
|
|
|
void VmaPool_T::SetName(const char* pName)
|
|
{
|
|
const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
|
|
VmaFreeString(allocs, m_Name);
|
|
|
|
if(pName != VMA_NULL)
|
|
{
|
|
m_Name = VmaCreateStringCopy(allocs, pName);
|
|
}
|
|
else
|
|
{
|
|
m_Name = VMA_NULL;
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
VmaBlockVector::VmaBlockVector(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hParentPool,
|
|
uint32_t memoryTypeIndex,
|
|
VkDeviceSize preferredBlockSize,
|
|
size_t minBlockCount,
|
|
size_t maxBlockCount,
|
|
VkDeviceSize bufferImageGranularity,
|
|
uint32_t frameInUseCount,
|
|
bool explicitBlockSize,
|
|
uint32_t algorithm,
|
|
float priority,
|
|
VkDeviceSize minAllocationAlignment,
|
|
void* pMemoryAllocateNext) :
|
|
m_hAllocator(hAllocator),
|
|
m_hParentPool(hParentPool),
|
|
m_MemoryTypeIndex(memoryTypeIndex),
|
|
m_PreferredBlockSize(preferredBlockSize),
|
|
m_MinBlockCount(minBlockCount),
|
|
m_MaxBlockCount(maxBlockCount),
|
|
m_BufferImageGranularity(bufferImageGranularity),
|
|
m_FrameInUseCount(frameInUseCount),
|
|
m_ExplicitBlockSize(explicitBlockSize),
|
|
m_Algorithm(algorithm),
|
|
m_Priority(priority),
|
|
m_MinAllocationAlignment(minAllocationAlignment),
|
|
m_pMemoryAllocateNext(pMemoryAllocateNext),
|
|
m_HasEmptyBlock(false),
|
|
m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
|
|
m_NextBlockId(0)
|
|
{
|
|
}
|
|
|
|
VmaBlockVector::~VmaBlockVector()
|
|
{
|
|
for(size_t i = m_Blocks.size(); i--; )
|
|
{
|
|
m_Blocks[i]->Destroy(m_hAllocator);
|
|
vma_delete(m_hAllocator, m_Blocks[i]);
|
|
}
|
|
}
|
|
|
|
VkResult VmaBlockVector::CreateMinBlocks()
|
|
{
|
|
for(size_t i = 0; i < m_MinBlockCount; ++i)
|
|
{
|
|
VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
const size_t blockCount = m_Blocks.size();
|
|
|
|
pStats->size = 0;
|
|
pStats->unusedSize = 0;
|
|
pStats->allocationCount = 0;
|
|
pStats->unusedRangeCount = 0;
|
|
pStats->unusedRangeSizeMax = 0;
|
|
pStats->blockCount = blockCount;
|
|
|
|
for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pBlock);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
pBlock->m_pMetadata->AddPoolStats(*pStats);
|
|
}
|
|
}
|
|
|
|
bool VmaBlockVector::IsEmpty()
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
return m_Blocks.empty();
|
|
}
|
|
|
|
bool VmaBlockVector::IsCorruptionDetectionEnabled() const
|
|
{
|
|
const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
|
return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
|
|
(VMA_DEBUG_MARGIN > 0) &&
|
|
(m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
|
|
(m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
|
|
}
|
|
|
|
static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
|
|
|
|
VkResult VmaBlockVector::Allocate(
|
|
uint32_t currentFrameIndex,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations)
|
|
{
|
|
size_t allocIndex;
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
alignment = VMA_MAX(alignment, m_MinAllocationAlignment);
|
|
|
|
if(IsCorruptionDetectionEnabled())
|
|
{
|
|
size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
|
|
alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
|
|
}
|
|
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
res = AllocatePage(
|
|
currentFrameIndex,
|
|
size,
|
|
alignment,
|
|
createInfo,
|
|
suballocType,
|
|
pAllocations + allocIndex);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
// Free all already created allocations.
|
|
const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
|
|
while(allocIndex--)
|
|
{
|
|
VmaAllocation_T* const alloc = pAllocations[allocIndex];
|
|
const VkDeviceSize allocSize = alloc->GetSize();
|
|
Free(alloc);
|
|
m_hAllocator->m_Budget.RemoveAllocation(heapIndex, allocSize);
|
|
}
|
|
memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaBlockVector::AllocatePage(
|
|
uint32_t currentFrameIndex,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
|
|
bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
|
|
const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
|
|
const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
|
|
|
|
VkDeviceSize freeMemory;
|
|
{
|
|
const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
|
|
VmaBudget heapBudget = {};
|
|
m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
|
|
freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;
|
|
}
|
|
|
|
const bool canFallbackToDedicated = !IsCustomPool();
|
|
const bool canCreateNewBlock =
|
|
((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
|
|
(m_Blocks.size() < m_MaxBlockCount) &&
|
|
(freeMemory >= size || !canFallbackToDedicated);
|
|
uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
|
|
|
|
// If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer.
|
|
// Which in turn is available only when maxBlockCount = 1.
|
|
if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1)
|
|
{
|
|
canMakeOtherLost = false;
|
|
}
|
|
|
|
// Upper address can only be used with linear allocator and within single memory block.
|
|
if(isUpperAddress &&
|
|
(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
|
|
{
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
// Validate strategy.
|
|
switch(strategy)
|
|
{
|
|
case 0:
|
|
strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT;
|
|
break;
|
|
case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT:
|
|
case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT:
|
|
case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT:
|
|
break;
|
|
default:
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
// Early reject: requested allocation size is larger that maximum block size for this block vector.
|
|
if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
/*
|
|
Under certain condition, this whole section can be skipped for optimization, so
|
|
we move on directly to trying to allocate with canMakeOtherLost. That is the case
|
|
e.g. for custom pools with linear algorithm.
|
|
*/
|
|
if(!canMakeOtherLost || canCreateNewBlock)
|
|
{
|
|
// 1. Search existing allocations. Try to allocate without making other allocations lost.
|
|
VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags;
|
|
allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
|
|
|
if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
|
|
{
|
|
// Use only last block.
|
|
if(!m_Blocks.empty())
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
|
|
VMA_ASSERT(pCurrBlock);
|
|
VkResult res = AllocateFromBlock(
|
|
pCurrBlock,
|
|
currentFrameIndex,
|
|
size,
|
|
alignment,
|
|
allocFlagsCopy,
|
|
createInfo.pUserData,
|
|
suballocType,
|
|
strategy,
|
|
pAllocation);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG(" Returned from last block #%u", pCurrBlock->GetId());
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
|
|
{
|
|
// Forward order in m_Blocks - prefer blocks with smallest amount of free space.
|
|
for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pCurrBlock);
|
|
VkResult res = AllocateFromBlock(
|
|
pCurrBlock,
|
|
currentFrameIndex,
|
|
size,
|
|
alignment,
|
|
allocFlagsCopy,
|
|
createInfo.pUserData,
|
|
suballocType,
|
|
strategy,
|
|
pAllocation);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId());
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
else // WORST_FIT, FIRST_FIT
|
|
{
|
|
// Backward order in m_Blocks - prefer blocks with largest amount of free space.
|
|
for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pCurrBlock);
|
|
VkResult res = AllocateFromBlock(
|
|
pCurrBlock,
|
|
currentFrameIndex,
|
|
size,
|
|
alignment,
|
|
allocFlagsCopy,
|
|
createInfo.pUserData,
|
|
suballocType,
|
|
strategy,
|
|
pAllocation);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG(" Returned from existing block #%u", pCurrBlock->GetId());
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2. Try to create new block.
|
|
if(canCreateNewBlock)
|
|
{
|
|
// Calculate optimal size for new block.
|
|
VkDeviceSize newBlockSize = m_PreferredBlockSize;
|
|
uint32_t newBlockSizeShift = 0;
|
|
const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
|
|
|
|
if(!m_ExplicitBlockSize)
|
|
{
|
|
// Allocate 1/8, 1/4, 1/2 as first blocks.
|
|
const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
|
|
for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
|
|
{
|
|
const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
|
|
if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
|
|
{
|
|
newBlockSize = smallerNewBlockSize;
|
|
++newBlockSizeShift;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t newBlockIndex = 0;
|
|
VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
|
|
CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
// Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
|
|
if(!m_ExplicitBlockSize)
|
|
{
|
|
while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
|
|
{
|
|
const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
|
|
if(smallerNewBlockSize >= size)
|
|
{
|
|
newBlockSize = smallerNewBlockSize;
|
|
++newBlockSizeShift;
|
|
res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
|
|
CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
|
|
VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
|
|
|
|
res = AllocateFromBlock(
|
|
pBlock,
|
|
currentFrameIndex,
|
|
size,
|
|
alignment,
|
|
allocFlagsCopy,
|
|
createInfo.pUserData,
|
|
suballocType,
|
|
strategy,
|
|
pAllocation);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VMA_DEBUG_LOG(" Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize);
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
// Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 3. Try to allocate from existing blocks with making other allocations lost.
|
|
if(canMakeOtherLost)
|
|
{
|
|
uint32_t tryIndex = 0;
|
|
for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)
|
|
{
|
|
VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;
|
|
VmaAllocationRequest bestRequest = {};
|
|
VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
|
|
|
|
// 1. Search existing allocations.
|
|
if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
|
|
{
|
|
// Forward order in m_Blocks - prefer blocks with smallest amount of free space.
|
|
for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pCurrBlock);
|
|
VmaAllocationRequest currRequest = {};
|
|
if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
|
|
currentFrameIndex,
|
|
m_FrameInUseCount,
|
|
m_BufferImageGranularity,
|
|
size,
|
|
alignment,
|
|
(createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
|
|
suballocType,
|
|
canMakeOtherLost,
|
|
strategy,
|
|
&currRequest))
|
|
{
|
|
const VkDeviceSize currRequestCost = currRequest.CalcCost();
|
|
if(pBestRequestBlock == VMA_NULL ||
|
|
currRequestCost < bestRequestCost)
|
|
{
|
|
pBestRequestBlock = pCurrBlock;
|
|
bestRequest = currRequest;
|
|
bestRequestCost = currRequestCost;
|
|
|
|
if(bestRequestCost == 0)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else // WORST_FIT, FIRST_FIT
|
|
{
|
|
// Backward order in m_Blocks - prefer blocks with largest amount of free space.
|
|
for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
|
|
{
|
|
VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pCurrBlock);
|
|
VmaAllocationRequest currRequest = {};
|
|
if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
|
|
currentFrameIndex,
|
|
m_FrameInUseCount,
|
|
m_BufferImageGranularity,
|
|
size,
|
|
alignment,
|
|
(createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
|
|
suballocType,
|
|
canMakeOtherLost,
|
|
strategy,
|
|
&currRequest))
|
|
{
|
|
const VkDeviceSize currRequestCost = currRequest.CalcCost();
|
|
if(pBestRequestBlock == VMA_NULL ||
|
|
currRequestCost < bestRequestCost ||
|
|
strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
|
|
{
|
|
pBestRequestBlock = pCurrBlock;
|
|
bestRequest = currRequest;
|
|
bestRequestCost = currRequestCost;
|
|
|
|
if(bestRequestCost == 0 ||
|
|
strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(pBestRequestBlock != VMA_NULL)
|
|
{
|
|
if(mapped)
|
|
{
|
|
VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
}
|
|
|
|
if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost(
|
|
currentFrameIndex,
|
|
m_FrameInUseCount,
|
|
&bestRequest))
|
|
{
|
|
// Allocate from this pBlock.
|
|
*pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString);
|
|
pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, *pAllocation);
|
|
UpdateHasEmptyBlock();
|
|
(*pAllocation)->InitBlockAllocation(
|
|
pBestRequestBlock,
|
|
bestRequest.offset,
|
|
alignment,
|
|
bestRequest.size, // Not size, as actual allocation size may be larger than requested!
|
|
m_MemoryTypeIndex,
|
|
suballocType,
|
|
mapped,
|
|
(createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
|
|
VMA_HEAVY_ASSERT(pBestRequestBlock->Validate());
|
|
VMA_DEBUG_LOG(" Returned from existing block #%u", pBestRequestBlock->GetId());
|
|
(*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
|
|
m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), bestRequest.size);
|
|
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
|
{
|
|
m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
|
|
}
|
|
if(IsCorruptionDetectionEnabled())
|
|
{
|
|
VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, bestRequest.size);
|
|
VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
// else: Some allocations must have been touched while we are here. Next try.
|
|
}
|
|
else
|
|
{
|
|
// Could not find place in any of the blocks - break outer loop.
|
|
break;
|
|
}
|
|
}
|
|
/* Maximum number of tries exceeded - a very unlike event when many other
|
|
threads are simultaneously touching allocations making it impossible to make
|
|
lost at the same time as we try to allocate. */
|
|
if(tryIndex == VMA_ALLOCATION_TRY_COUNT)
|
|
{
|
|
return VK_ERROR_TOO_MANY_OBJECTS;
|
|
}
|
|
}
|
|
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
void VmaBlockVector::Free(
|
|
const VmaAllocation hAllocation)
|
|
{
|
|
VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
|
|
|
|
bool budgetExceeded = false;
|
|
{
|
|
const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
|
|
VmaBudget heapBudget = {};
|
|
m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
|
|
budgetExceeded = heapBudget.usage >= heapBudget.budget;
|
|
}
|
|
|
|
// Scope for lock.
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
|
|
|
|
if(IsCorruptionDetectionEnabled())
|
|
{
|
|
VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
|
|
VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
|
|
}
|
|
|
|
if(hAllocation->IsPersistentMap())
|
|
{
|
|
pBlock->Unmap(m_hAllocator, 1);
|
|
}
|
|
|
|
pBlock->m_pMetadata->FreeAtOffset(hAllocation->GetOffset());
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
|
|
VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex);
|
|
|
|
const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;
|
|
// pBlock became empty after this deallocation.
|
|
if(pBlock->m_pMetadata->IsEmpty())
|
|
{
|
|
// Already has empty block. We don't want to have two, so delete this one.
|
|
if((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock)
|
|
{
|
|
pBlockToDelete = pBlock;
|
|
Remove(pBlock);
|
|
}
|
|
// else: We now have an empty block - leave it.
|
|
}
|
|
// pBlock didn't become empty, but we have another empty block - find and free that one.
|
|
// (This is optional, heuristics.)
|
|
else if(m_HasEmptyBlock && canDeleteBlock)
|
|
{
|
|
VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
|
|
if(pLastBlock->m_pMetadata->IsEmpty())
|
|
{
|
|
pBlockToDelete = pLastBlock;
|
|
m_Blocks.pop_back();
|
|
}
|
|
}
|
|
|
|
UpdateHasEmptyBlock();
|
|
IncrementallySortBlocks();
|
|
}
|
|
|
|
// Destruction of a free block. Deferred until this point, outside of mutex
|
|
// lock, for performance reason.
|
|
if(pBlockToDelete != VMA_NULL)
|
|
{
|
|
VMA_DEBUG_LOG(" Deleted empty block #%u", pBlockToDelete->GetId());
|
|
pBlockToDelete->Destroy(m_hAllocator);
|
|
vma_delete(m_hAllocator, pBlockToDelete);
|
|
}
|
|
}
|
|
|
|
VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
|
|
{
|
|
VkDeviceSize result = 0;
|
|
for(size_t i = m_Blocks.size(); i--; )
|
|
{
|
|
result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
|
|
if(result >= m_PreferredBlockSize)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
|
|
{
|
|
for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
if(m_Blocks[blockIndex] == pBlock)
|
|
{
|
|
VmaVectorRemove(m_Blocks, blockIndex);
|
|
return;
|
|
}
|
|
}
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
void VmaBlockVector::IncrementallySortBlocks()
|
|
{
|
|
if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
|
|
{
|
|
// Bubble sort only until first swap.
|
|
for(size_t i = 1; i < m_Blocks.size(); ++i)
|
|
{
|
|
if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
|
|
{
|
|
VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaBlockVector::AllocateFromBlock(
|
|
VmaDeviceMemoryBlock* pBlock,
|
|
uint32_t currentFrameIndex,
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
VmaAllocationCreateFlags allocFlags,
|
|
void* pUserData,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t strategy,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0);
|
|
const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
|
|
const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
|
|
const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
|
|
|
|
VmaAllocationRequest currRequest = {};
|
|
if(pBlock->m_pMetadata->CreateAllocationRequest(
|
|
currentFrameIndex,
|
|
m_FrameInUseCount,
|
|
m_BufferImageGranularity,
|
|
size,
|
|
alignment,
|
|
isUpperAddress,
|
|
suballocType,
|
|
false, // canMakeOtherLost
|
|
strategy,
|
|
&currRequest))
|
|
{
|
|
// Allocate from pCurrBlock.
|
|
VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
|
|
|
|
if(mapped)
|
|
{
|
|
VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
}
|
|
|
|
*pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(currentFrameIndex, isUserDataString);
|
|
pBlock->m_pMetadata->Alloc(currRequest, suballocType, *pAllocation);
|
|
UpdateHasEmptyBlock();
|
|
(*pAllocation)->InitBlockAllocation(
|
|
pBlock,
|
|
currRequest.offset,
|
|
alignment,
|
|
currRequest.size, // Not size, as actual allocation size may be larger than requested!
|
|
m_MemoryTypeIndex,
|
|
suballocType,
|
|
mapped,
|
|
(allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
(*pAllocation)->SetUserData(m_hAllocator, pUserData);
|
|
m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), currRequest.size);
|
|
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
|
{
|
|
m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
|
|
}
|
|
if(IsCorruptionDetectionEnabled())
|
|
{
|
|
VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, currRequest.size);
|
|
VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
|
|
{
|
|
VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
allocInfo.pNext = m_pMemoryAllocateNext;
|
|
allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
|
|
allocInfo.allocationSize = blockSize;
|
|
|
|
#if VMA_BUFFER_DEVICE_ADDRESS
|
|
// Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature.
|
|
VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
|
|
if(m_hAllocator->m_UseKhrBufferDeviceAddress)
|
|
{
|
|
allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
|
|
VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
|
|
}
|
|
#endif // #if VMA_BUFFER_DEVICE_ADDRESS
|
|
|
|
#if VMA_MEMORY_PRIORITY
|
|
VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
|
|
if(m_hAllocator->m_UseExtMemoryPriority)
|
|
{
|
|
priorityInfo.priority = m_Priority;
|
|
VmaPnextChainPushFront(&allocInfo, &priorityInfo);
|
|
}
|
|
#endif // #if VMA_MEMORY_PRIORITY
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
// Attach VkExportMemoryAllocateInfoKHR if necessary.
|
|
VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
|
|
exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex);
|
|
if(exportMemoryAllocInfo.handleTypes != 0)
|
|
{
|
|
VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
|
|
}
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
VkDeviceMemory mem = VK_NULL_HANDLE;
|
|
VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
|
|
if(res < 0)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
// New VkDeviceMemory successfully created.
|
|
|
|
// Create new Allocation for it.
|
|
VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
|
|
pBlock->Init(
|
|
m_hAllocator,
|
|
m_hParentPool,
|
|
m_MemoryTypeIndex,
|
|
mem,
|
|
allocInfo.allocationSize,
|
|
m_NextBlockId++,
|
|
m_Algorithm);
|
|
|
|
m_Blocks.push_back(pBlock);
|
|
if(pNewBlockIndex != VMA_NULL)
|
|
{
|
|
*pNewBlockIndex = m_Blocks.size() - 1;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaBlockVector::ApplyDefragmentationMovesCpu(
|
|
class VmaBlockVectorDefragmentationContext* pDefragCtx,
|
|
const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves)
|
|
{
|
|
const size_t blockCount = m_Blocks.size();
|
|
const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex);
|
|
|
|
enum BLOCK_FLAG
|
|
{
|
|
BLOCK_FLAG_USED = 0x00000001,
|
|
BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002,
|
|
};
|
|
|
|
struct BlockInfo
|
|
{
|
|
uint32_t flags;
|
|
void* pMappedData;
|
|
};
|
|
VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> >
|
|
blockInfo(blockCount, BlockInfo(), VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks()));
|
|
memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo));
|
|
|
|
// Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
|
|
const size_t moveCount = moves.size();
|
|
for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
|
|
{
|
|
const VmaDefragmentationMove& move = moves[moveIndex];
|
|
blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED;
|
|
blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED;
|
|
}
|
|
|
|
VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
|
|
|
|
// Go over all blocks. Get mapped pointer or map if necessary.
|
|
for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
BlockInfo& currBlockInfo = blockInfo[blockIndex];
|
|
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
|
if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0)
|
|
{
|
|
currBlockInfo.pMappedData = pBlock->GetMappedData();
|
|
// It is not originally mapped - map it.
|
|
if(currBlockInfo.pMappedData == VMA_NULL)
|
|
{
|
|
pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData);
|
|
if(pDefragCtx->res == VK_SUCCESS)
|
|
{
|
|
currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Go over all moves. Do actual data transfer.
|
|
if(pDefragCtx->res == VK_SUCCESS)
|
|
{
|
|
const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
|
|
VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
|
|
|
|
for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
|
|
{
|
|
const VmaDefragmentationMove& move = moves[moveIndex];
|
|
|
|
const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex];
|
|
const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex];
|
|
|
|
VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData);
|
|
|
|
// Invalidate source.
|
|
if(isNonCoherent)
|
|
{
|
|
VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex];
|
|
memRange.memory = pSrcBlock->GetDeviceMemory();
|
|
memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize);
|
|
memRange.size = VMA_MIN(
|
|
VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize),
|
|
pSrcBlock->m_pMetadata->GetSize() - memRange.offset);
|
|
(*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
|
|
}
|
|
|
|
// THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
|
|
memmove(
|
|
reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset,
|
|
reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset,
|
|
static_cast<size_t>(move.size));
|
|
|
|
if(IsCorruptionDetectionEnabled())
|
|
{
|
|
VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN);
|
|
VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size);
|
|
}
|
|
|
|
// Flush destination.
|
|
if(isNonCoherent)
|
|
{
|
|
VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex];
|
|
memRange.memory = pDstBlock->GetDeviceMemory();
|
|
memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize);
|
|
memRange.size = VMA_MIN(
|
|
VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize),
|
|
pDstBlock->m_pMetadata->GetSize() - memRange.offset);
|
|
(*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation.
|
|
// Regardless of pCtx->res == VK_SUCCESS.
|
|
for(size_t blockIndex = blockCount; blockIndex--; )
|
|
{
|
|
const BlockInfo& currBlockInfo = blockInfo[blockIndex];
|
|
if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0)
|
|
{
|
|
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
|
pBlock->Unmap(m_hAllocator, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaBlockVector::ApplyDefragmentationMovesGpu(
|
|
class VmaBlockVectorDefragmentationContext* pDefragCtx,
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkCommandBuffer commandBuffer)
|
|
{
|
|
const size_t blockCount = m_Blocks.size();
|
|
|
|
pDefragCtx->blockContexts.resize(blockCount);
|
|
memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext));
|
|
|
|
// Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
|
|
const size_t moveCount = moves.size();
|
|
for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
|
|
{
|
|
const VmaDefragmentationMove& move = moves[moveIndex];
|
|
|
|
//if(move.type == VMA_ALLOCATION_TYPE_UNKNOWN)
|
|
{
|
|
// Old school move still require us to map the whole block
|
|
pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
|
|
pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
|
|
}
|
|
}
|
|
|
|
VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
|
|
|
|
// Go over all blocks. Create and bind buffer for whole block if necessary.
|
|
{
|
|
VkBufferCreateInfo bufCreateInfo;
|
|
VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo);
|
|
|
|
for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex];
|
|
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
|
if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0)
|
|
{
|
|
bufCreateInfo.size = pBlock->m_pMetadata->GetSize();
|
|
pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)(
|
|
m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer);
|
|
if(pDefragCtx->res == VK_SUCCESS)
|
|
{
|
|
pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)(
|
|
m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Go over all moves. Post data transfer commands to command buffer.
|
|
if(pDefragCtx->res == VK_SUCCESS)
|
|
{
|
|
for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
|
|
{
|
|
const VmaDefragmentationMove& move = moves[moveIndex];
|
|
|
|
const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex];
|
|
const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex];
|
|
|
|
VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer);
|
|
|
|
VkBufferCopy region = {
|
|
move.srcOffset,
|
|
move.dstOffset,
|
|
move.size };
|
|
(*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)(
|
|
commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion);
|
|
}
|
|
}
|
|
|
|
// Save buffers to defrag context for later destruction.
|
|
if(pDefragCtx->res == VK_SUCCESS && moveCount > 0)
|
|
{
|
|
pDefragCtx->res = VK_NOT_READY;
|
|
}
|
|
}
|
|
|
|
void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats)
|
|
{
|
|
for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
|
|
{
|
|
VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
|
|
if(pBlock->m_pMetadata->IsEmpty())
|
|
{
|
|
if(m_Blocks.size() > m_MinBlockCount)
|
|
{
|
|
if(pDefragmentationStats != VMA_NULL)
|
|
{
|
|
++pDefragmentationStats->deviceMemoryBlocksFreed;
|
|
pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize();
|
|
}
|
|
|
|
VmaVectorRemove(m_Blocks, blockIndex);
|
|
pBlock->Destroy(m_hAllocator);
|
|
vma_delete(m_hAllocator, pBlock);
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
UpdateHasEmptyBlock();
|
|
}
|
|
|
|
void VmaBlockVector::UpdateHasEmptyBlock()
|
|
{
|
|
m_HasEmptyBlock = false;
|
|
for(size_t index = 0, count = m_Blocks.size(); index < count; ++index)
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];
|
|
if(pBlock->m_pMetadata->IsEmpty())
|
|
{
|
|
m_HasEmptyBlock = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
|
|
{
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
json.BeginObject();
|
|
|
|
if(IsCustomPool())
|
|
{
|
|
const char* poolName = m_hParentPool->GetName();
|
|
if(poolName != VMA_NULL && poolName[0] != '\0')
|
|
{
|
|
json.WriteString("Name");
|
|
json.WriteString(poolName);
|
|
}
|
|
|
|
json.WriteString("MemoryTypeIndex");
|
|
json.WriteNumber(m_MemoryTypeIndex);
|
|
|
|
json.WriteString("BlockSize");
|
|
json.WriteNumber(m_PreferredBlockSize);
|
|
|
|
json.WriteString("BlockCount");
|
|
json.BeginObject(true);
|
|
if(m_MinBlockCount > 0)
|
|
{
|
|
json.WriteString("Min");
|
|
json.WriteNumber((uint64_t)m_MinBlockCount);
|
|
}
|
|
if(m_MaxBlockCount < SIZE_MAX)
|
|
{
|
|
json.WriteString("Max");
|
|
json.WriteNumber((uint64_t)m_MaxBlockCount);
|
|
}
|
|
json.WriteString("Cur");
|
|
json.WriteNumber((uint64_t)m_Blocks.size());
|
|
json.EndObject();
|
|
|
|
if(m_FrameInUseCount > 0)
|
|
{
|
|
json.WriteString("FrameInUseCount");
|
|
json.WriteNumber(m_FrameInUseCount);
|
|
}
|
|
|
|
if(m_Algorithm != 0)
|
|
{
|
|
json.WriteString("Algorithm");
|
|
json.WriteString(VmaAlgorithmToStr(m_Algorithm));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
json.WriteString("PreferredBlockSize");
|
|
json.WriteNumber(m_PreferredBlockSize);
|
|
}
|
|
|
|
json.WriteString("Blocks");
|
|
json.BeginObject();
|
|
for(size_t i = 0; i < m_Blocks.size(); ++i)
|
|
{
|
|
json.BeginString();
|
|
json.ContinueString(m_Blocks[i]->GetId());
|
|
json.EndString();
|
|
|
|
m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
|
|
}
|
|
json.EndObject();
|
|
|
|
json.EndObject();
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaBlockVector::Defragment(
|
|
class VmaBlockVectorDefragmentationContext* pCtx,
|
|
VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags,
|
|
VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,
|
|
VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,
|
|
VkCommandBuffer commandBuffer)
|
|
{
|
|
pCtx->res = VK_SUCCESS;
|
|
|
|
const VkMemoryPropertyFlags memPropFlags =
|
|
m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags;
|
|
const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
|
|
|
|
const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 &&
|
|
isHostVisible;
|
|
const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 &&
|
|
!IsCorruptionDetectionEnabled() &&
|
|
((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0;
|
|
|
|
// There are options to defragment this memory type.
|
|
if(canDefragmentOnCpu || canDefragmentOnGpu)
|
|
{
|
|
bool defragmentOnGpu;
|
|
// There is only one option to defragment this memory type.
|
|
if(canDefragmentOnGpu != canDefragmentOnCpu)
|
|
{
|
|
defragmentOnGpu = canDefragmentOnGpu;
|
|
}
|
|
// Both options are available: Heuristics to choose the best one.
|
|
else
|
|
{
|
|
defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 ||
|
|
m_hAllocator->IsIntegratedGpu();
|
|
}
|
|
|
|
bool overlappingMoveSupported = !defragmentOnGpu;
|
|
|
|
if(m_hAllocator->m_UseMutex)
|
|
{
|
|
if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)
|
|
{
|
|
if(!m_Mutex.TryLockWrite())
|
|
{
|
|
pCtx->res = VK_ERROR_INITIALIZATION_FAILED;
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_Mutex.LockWrite();
|
|
pCtx->mutexLocked = true;
|
|
}
|
|
}
|
|
|
|
pCtx->Begin(overlappingMoveSupported, flags);
|
|
|
|
// Defragment.
|
|
|
|
const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove;
|
|
const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove;
|
|
VmaDefragmentationAlgorithm* algo = pCtx->GetAlgorithm();
|
|
pCtx->res = algo->Defragment(pCtx->defragmentationMoves, maxBytesToMove, maxAllocationsToMove, flags);
|
|
|
|
// Accumulate statistics.
|
|
if(pStats != VMA_NULL)
|
|
{
|
|
const VkDeviceSize bytesMoved = algo->GetBytesMoved();
|
|
const uint32_t allocationsMoved = algo->GetAllocationsMoved();
|
|
pStats->bytesMoved += bytesMoved;
|
|
pStats->allocationsMoved += allocationsMoved;
|
|
VMA_ASSERT(bytesMoved <= maxBytesToMove);
|
|
VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
|
|
if(defragmentOnGpu)
|
|
{
|
|
maxGpuBytesToMove -= bytesMoved;
|
|
maxGpuAllocationsToMove -= allocationsMoved;
|
|
}
|
|
else
|
|
{
|
|
maxCpuBytesToMove -= bytesMoved;
|
|
maxCpuAllocationsToMove -= allocationsMoved;
|
|
}
|
|
}
|
|
|
|
if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)
|
|
{
|
|
if(m_hAllocator->m_UseMutex)
|
|
m_Mutex.UnlockWrite();
|
|
|
|
if(pCtx->res >= VK_SUCCESS && !pCtx->defragmentationMoves.empty())
|
|
pCtx->res = VK_NOT_READY;
|
|
|
|
return;
|
|
}
|
|
|
|
if(pCtx->res >= VK_SUCCESS)
|
|
{
|
|
if(defragmentOnGpu)
|
|
{
|
|
ApplyDefragmentationMovesGpu(pCtx, pCtx->defragmentationMoves, commandBuffer);
|
|
}
|
|
else
|
|
{
|
|
ApplyDefragmentationMovesCpu(pCtx, pCtx->defragmentationMoves);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaBlockVector::DefragmentationEnd(
|
|
class VmaBlockVectorDefragmentationContext* pCtx,
|
|
uint32_t flags,
|
|
VmaDefragmentationStats* pStats)
|
|
{
|
|
if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL && m_hAllocator->m_UseMutex)
|
|
{
|
|
VMA_ASSERT(pCtx->mutexLocked == false);
|
|
|
|
// Incremental defragmentation doesn't hold the lock, so when we enter here we don't actually have any
|
|
// lock protecting us. Since we mutate state here, we have to take the lock out now
|
|
m_Mutex.LockWrite();
|
|
pCtx->mutexLocked = true;
|
|
}
|
|
|
|
// If the mutex isn't locked we didn't do any work and there is nothing to delete.
|
|
if(pCtx->mutexLocked || !m_hAllocator->m_UseMutex)
|
|
{
|
|
// Destroy buffers.
|
|
for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;)
|
|
{
|
|
VmaBlockDefragmentationContext &blockCtx = pCtx->blockContexts[blockIndex];
|
|
if(blockCtx.hBuffer)
|
|
{
|
|
(*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks());
|
|
}
|
|
}
|
|
|
|
if(pCtx->res >= VK_SUCCESS)
|
|
{
|
|
FreeEmptyBlocks(pStats);
|
|
}
|
|
}
|
|
|
|
if(pCtx->mutexLocked)
|
|
{
|
|
VMA_ASSERT(m_hAllocator->m_UseMutex);
|
|
m_Mutex.UnlockWrite();
|
|
}
|
|
}
|
|
|
|
uint32_t VmaBlockVector::ProcessDefragmentations(
|
|
class VmaBlockVectorDefragmentationContext *pCtx,
|
|
VmaDefragmentationPassMoveInfo* pMove, uint32_t maxMoves)
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
const uint32_t moveCount = VMA_MIN(uint32_t(pCtx->defragmentationMoves.size()) - pCtx->defragmentationMovesProcessed, maxMoves);
|
|
|
|
for(uint32_t i = 0; i < moveCount; ++ i)
|
|
{
|
|
VmaDefragmentationMove& move = pCtx->defragmentationMoves[pCtx->defragmentationMovesProcessed + i];
|
|
|
|
pMove->allocation = move.hAllocation;
|
|
pMove->memory = move.pDstBlock->GetDeviceMemory();
|
|
pMove->offset = move.dstOffset;
|
|
|
|
++ pMove;
|
|
}
|
|
|
|
pCtx->defragmentationMovesProcessed += moveCount;
|
|
|
|
return moveCount;
|
|
}
|
|
|
|
void VmaBlockVector::CommitDefragmentations(
|
|
class VmaBlockVectorDefragmentationContext *pCtx,
|
|
VmaDefragmentationStats* pStats)
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
for(uint32_t i = pCtx->defragmentationMovesCommitted; i < pCtx->defragmentationMovesProcessed; ++ i)
|
|
{
|
|
const VmaDefragmentationMove &move = pCtx->defragmentationMoves[i];
|
|
|
|
move.pSrcBlock->m_pMetadata->FreeAtOffset(move.srcOffset);
|
|
move.hAllocation->ChangeBlockAllocation(m_hAllocator, move.pDstBlock, move.dstOffset);
|
|
}
|
|
|
|
pCtx->defragmentationMovesCommitted = pCtx->defragmentationMovesProcessed;
|
|
FreeEmptyBlocks(pStats);
|
|
}
|
|
|
|
size_t VmaBlockVector::CalcAllocationCount() const
|
|
{
|
|
size_t result = 0;
|
|
for(size_t i = 0; i < m_Blocks.size(); ++i)
|
|
{
|
|
result += m_Blocks[i]->m_pMetadata->GetAllocationCount();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const
|
|
{
|
|
if(m_BufferImageGranularity == 1)
|
|
{
|
|
return false;
|
|
}
|
|
VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE;
|
|
for(size_t i = 0, count = m_Blocks.size(); i < count; ++i)
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = m_Blocks[i];
|
|
VMA_ASSERT(m_Algorithm == 0);
|
|
VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata;
|
|
if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType))
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VmaBlockVector::MakePoolAllocationsLost(
|
|
uint32_t currentFrameIndex,
|
|
size_t* pLostAllocationCount)
|
|
{
|
|
VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
size_t lostAllocationCount = 0;
|
|
for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pBlock);
|
|
lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
|
|
}
|
|
if(pLostAllocationCount != VMA_NULL)
|
|
{
|
|
*pLostAllocationCount = lostAllocationCount;
|
|
}
|
|
}
|
|
|
|
VkResult VmaBlockVector::CheckCorruption()
|
|
{
|
|
if(!IsCorruptionDetectionEnabled())
|
|
{
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pBlock);
|
|
VkResult res = pBlock->CheckCorruption(m_hAllocator);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaBlockVector::AddStats(VmaStats* pStats)
|
|
{
|
|
const uint32_t memTypeIndex = m_MemoryTypeIndex;
|
|
const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
|
|
VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
|
|
|
|
for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
|
|
{
|
|
const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
|
|
VMA_ASSERT(pBlock);
|
|
VMA_HEAVY_ASSERT(pBlock->Validate());
|
|
VmaStatInfo allocationStatInfo;
|
|
pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo);
|
|
VmaAddStatInfo(pStats->total, allocationStatInfo);
|
|
VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
|
|
VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaDefragmentationAlgorithm_Generic members definition
|
|
|
|
VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic(
|
|
VmaAllocator hAllocator,
|
|
VmaBlockVector* pBlockVector,
|
|
uint32_t currentFrameIndex,
|
|
bool overlappingMoveSupported) :
|
|
VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
|
|
m_AllocationCount(0),
|
|
m_AllAllocations(false),
|
|
m_BytesMoved(0),
|
|
m_AllocationsMoved(0),
|
|
m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))
|
|
{
|
|
// Create block info for each block.
|
|
const size_t blockCount = m_pBlockVector->m_Blocks.size();
|
|
for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
|
|
pBlockInfo->m_OriginalBlockIndex = blockIndex;
|
|
pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
|
|
m_Blocks.push_back(pBlockInfo);
|
|
}
|
|
|
|
// Sort them by m_pBlock pointer value.
|
|
VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
|
|
}
|
|
|
|
VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic()
|
|
{
|
|
for(size_t i = m_Blocks.size(); i--; )
|
|
{
|
|
vma_delete(m_hAllocator, m_Blocks[i]);
|
|
}
|
|
}
|
|
|
|
void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
|
|
{
|
|
// Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
|
|
if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
|
|
{
|
|
VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock();
|
|
BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
|
|
if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
|
|
{
|
|
AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged);
|
|
(*it)->m_Allocations.push_back(allocInfo);
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
++m_AllocationCount;
|
|
}
|
|
}
|
|
|
|
VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound(
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove,
|
|
bool freeOldAllocations)
|
|
{
|
|
if(m_Blocks.empty())
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// This is a choice based on research.
|
|
// Option 1:
|
|
uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT;
|
|
// Option 2:
|
|
//uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT;
|
|
// Option 3:
|
|
//uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT;
|
|
|
|
size_t srcBlockMinIndex = 0;
|
|
// When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations.
|
|
/*
|
|
if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT)
|
|
{
|
|
const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount();
|
|
if(blocksWithNonMovableCount > 0)
|
|
{
|
|
srcBlockMinIndex = blocksWithNonMovableCount - 1;
|
|
}
|
|
}
|
|
*/
|
|
|
|
size_t srcBlockIndex = m_Blocks.size() - 1;
|
|
size_t srcAllocIndex = SIZE_MAX;
|
|
for(;;)
|
|
{
|
|
// 1. Find next allocation to move.
|
|
// 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
|
|
// 1.2. Then start from last to first m_Allocations.
|
|
while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
|
|
{
|
|
if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
|
|
{
|
|
// Finished: no more allocations to process.
|
|
if(srcBlockIndex == srcBlockMinIndex)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
--srcBlockIndex;
|
|
srcAllocIndex = SIZE_MAX;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
|
|
}
|
|
}
|
|
|
|
BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
|
|
AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
|
|
|
|
const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
|
|
const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
|
|
const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
|
|
const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
|
|
|
|
// 2. Try to find new place for this allocation in preceding or current block.
|
|
for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
|
|
{
|
|
BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
|
|
VmaAllocationRequest dstAllocRequest;
|
|
if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest(
|
|
m_CurrentFrameIndex,
|
|
m_pBlockVector->GetFrameInUseCount(),
|
|
m_pBlockVector->GetBufferImageGranularity(),
|
|
size,
|
|
alignment,
|
|
false, // upperAddress
|
|
suballocType,
|
|
false, // canMakeOtherLost
|
|
strategy,
|
|
&dstAllocRequest) &&
|
|
MoveMakesSense(
|
|
dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
|
|
{
|
|
VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
|
|
|
|
// Reached limit on number of allocations or bytes to move.
|
|
if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
|
|
(m_BytesMoved + size > maxBytesToMove))
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VmaDefragmentationMove move = {};
|
|
move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex;
|
|
move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex;
|
|
move.srcOffset = srcOffset;
|
|
move.dstOffset = dstAllocRequest.offset;
|
|
move.size = size;
|
|
move.hAllocation = allocInfo.m_hAllocation;
|
|
move.pSrcBlock = pSrcBlockInfo->m_pBlock;
|
|
move.pDstBlock = pDstBlockInfo->m_pBlock;
|
|
|
|
moves.push_back(move);
|
|
|
|
pDstBlockInfo->m_pBlock->m_pMetadata->Alloc(dstAllocRequest, suballocType, allocInfo.m_hAllocation);
|
|
|
|
if(freeOldAllocations)
|
|
{
|
|
pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset);
|
|
allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
|
|
}
|
|
|
|
if(allocInfo.m_pChanged != VMA_NULL)
|
|
{
|
|
*allocInfo.m_pChanged = VK_TRUE;
|
|
}
|
|
|
|
++m_AllocationsMoved;
|
|
m_BytesMoved += size;
|
|
|
|
VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
|
|
|
|
if(srcAllocIndex > 0)
|
|
{
|
|
--srcAllocIndex;
|
|
}
|
|
else
|
|
{
|
|
if(srcBlockIndex > 0)
|
|
{
|
|
--srcBlockIndex;
|
|
srcAllocIndex = SIZE_MAX;
|
|
}
|
|
else
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const
|
|
{
|
|
size_t result = 0;
|
|
for(size_t i = 0; i < m_Blocks.size(); ++i)
|
|
{
|
|
if(m_Blocks[i]->m_HasNonMovableAllocations)
|
|
{
|
|
++result;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
VkResult VmaDefragmentationAlgorithm_Generic::Defragment(
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove,
|
|
VmaDefragmentationFlags flags)
|
|
{
|
|
if(!m_AllAllocations && m_AllocationCount == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
const size_t blockCount = m_Blocks.size();
|
|
for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
BlockInfo* pBlockInfo = m_Blocks[blockIndex];
|
|
|
|
if(m_AllAllocations)
|
|
{
|
|
VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata;
|
|
VMA_ASSERT(!pMetadata->IsVirtual());
|
|
for (VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin();
|
|
it != pMetadata->m_Suballocations.end();
|
|
++it)
|
|
{
|
|
if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
AllocationInfo allocInfo = AllocationInfo((VmaAllocation)it->userData, VMA_NULL);
|
|
pBlockInfo->m_Allocations.push_back(allocInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
pBlockInfo->CalcHasNonMovableAllocations();
|
|
|
|
// This is a choice based on research.
|
|
// Option 1:
|
|
pBlockInfo->SortAllocationsByOffsetDescending();
|
|
// Option 2:
|
|
//pBlockInfo->SortAllocationsBySizeDescending();
|
|
}
|
|
|
|
// Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
|
|
VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
|
|
|
|
// This is a choice based on research.
|
|
const uint32_t roundCount = 2;
|
|
|
|
// Execute defragmentation rounds (the main part).
|
|
VkResult result = VK_SUCCESS;
|
|
for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round)
|
|
{
|
|
result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove, !(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense(
|
|
size_t dstBlockIndex, VkDeviceSize dstOffset,
|
|
size_t srcBlockIndex, VkDeviceSize srcOffset)
|
|
{
|
|
if(dstBlockIndex < srcBlockIndex)
|
|
{
|
|
return true;
|
|
}
|
|
if(dstBlockIndex > srcBlockIndex)
|
|
{
|
|
return false;
|
|
}
|
|
if(dstOffset < srcOffset)
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaDefragmentationAlgorithm_Fast
|
|
|
|
VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast(
|
|
VmaAllocator hAllocator,
|
|
VmaBlockVector* pBlockVector,
|
|
uint32_t currentFrameIndex,
|
|
bool overlappingMoveSupported) :
|
|
VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
|
|
m_OverlappingMoveSupported(overlappingMoveSupported),
|
|
m_AllocationCount(0),
|
|
m_AllAllocations(false),
|
|
m_BytesMoved(0),
|
|
m_AllocationsMoved(0),
|
|
m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks()))
|
|
{
|
|
VMA_ASSERT(VMA_DEBUG_MARGIN == 0);
|
|
|
|
}
|
|
|
|
VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast()
|
|
{
|
|
}
|
|
|
|
VkResult VmaDefragmentationAlgorithm_Fast::Defragment(
|
|
VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
|
|
VkDeviceSize maxBytesToMove,
|
|
uint32_t maxAllocationsToMove,
|
|
VmaDefragmentationFlags flags)
|
|
{
|
|
VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount);
|
|
|
|
const size_t blockCount = m_pBlockVector->GetBlockCount();
|
|
if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
PreprocessMetadata();
|
|
|
|
// Sort blocks in order from most destination.
|
|
|
|
m_BlockInfos.resize(blockCount);
|
|
for(size_t i = 0; i < blockCount; ++i)
|
|
{
|
|
m_BlockInfos[i].origBlockIndex = i;
|
|
}
|
|
|
|
VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool {
|
|
return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() <
|
|
m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize();
|
|
});
|
|
|
|
// THE MAIN ALGORITHM
|
|
|
|
FreeSpaceDatabase freeSpaceDb;
|
|
|
|
size_t dstBlockInfoIndex = 0;
|
|
size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
|
|
VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
|
|
VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;
|
|
VkDeviceSize dstBlockSize = pDstMetadata->GetSize();
|
|
VkDeviceSize dstOffset = 0;
|
|
|
|
bool end = false;
|
|
for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex)
|
|
{
|
|
const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex;
|
|
VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex);
|
|
VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata;
|
|
for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin();
|
|
!end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); )
|
|
{
|
|
VmaAllocation const pAlloc = (VmaAllocation)srcSuballocIt->userData;
|
|
const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment();
|
|
const VkDeviceSize srcAllocSize = srcSuballocIt->size;
|
|
if(m_AllocationsMoved == maxAllocationsToMove ||
|
|
m_BytesMoved + srcAllocSize > maxBytesToMove)
|
|
{
|
|
end = true;
|
|
break;
|
|
}
|
|
const VkDeviceSize srcAllocOffset = srcSuballocIt->offset;
|
|
|
|
VmaDefragmentationMove move = {};
|
|
// Try to place it in one of free spaces from the database.
|
|
size_t freeSpaceInfoIndex;
|
|
VkDeviceSize dstAllocOffset;
|
|
if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize,
|
|
freeSpaceInfoIndex, dstAllocOffset))
|
|
{
|
|
size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex;
|
|
VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex);
|
|
VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata;
|
|
|
|
// Same block
|
|
if(freeSpaceInfoIndex == srcBlockInfoIndex)
|
|
{
|
|
VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
|
|
|
|
// MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
|
|
|
|
VmaSuballocation suballoc = *srcSuballocIt;
|
|
suballoc.offset = dstAllocOffset;
|
|
((VmaAllocation)(suballoc.userData))->ChangeOffset(dstAllocOffset);
|
|
m_BytesMoved += srcAllocSize;
|
|
++m_AllocationsMoved;
|
|
|
|
VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
|
|
++nextSuballocIt;
|
|
pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
|
|
srcSuballocIt = nextSuballocIt;
|
|
|
|
InsertSuballoc(pFreeSpaceMetadata, suballoc);
|
|
|
|
move.srcBlockIndex = srcOrigBlockIndex;
|
|
move.dstBlockIndex = freeSpaceOrigBlockIndex;
|
|
move.srcOffset = srcAllocOffset;
|
|
move.dstOffset = dstAllocOffset;
|
|
move.size = srcAllocSize;
|
|
|
|
moves.push_back(move);
|
|
}
|
|
// Different block
|
|
else
|
|
{
|
|
// MOVE OPTION 2: Move the allocation to a different block.
|
|
|
|
VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex);
|
|
|
|
VmaSuballocation suballoc = *srcSuballocIt;
|
|
suballoc.offset = dstAllocOffset;
|
|
((VmaAllocation)(suballoc.userData))->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset);
|
|
m_BytesMoved += srcAllocSize;
|
|
++m_AllocationsMoved;
|
|
|
|
VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
|
|
++nextSuballocIt;
|
|
pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
|
|
srcSuballocIt = nextSuballocIt;
|
|
|
|
InsertSuballoc(pFreeSpaceMetadata, suballoc);
|
|
|
|
move.srcBlockIndex = srcOrigBlockIndex;
|
|
move.dstBlockIndex = freeSpaceOrigBlockIndex;
|
|
move.srcOffset = srcAllocOffset;
|
|
move.dstOffset = dstAllocOffset;
|
|
move.size = srcAllocSize;
|
|
|
|
moves.push_back(move);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment);
|
|
|
|
// If the allocation doesn't fit before the end of dstBlock, forward to next block.
|
|
while(dstBlockInfoIndex < srcBlockInfoIndex &&
|
|
dstAllocOffset + srcAllocSize > dstBlockSize)
|
|
{
|
|
// But before that, register remaining free space at the end of dst block.
|
|
freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset);
|
|
|
|
++dstBlockInfoIndex;
|
|
dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
|
|
pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
|
|
pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;
|
|
dstBlockSize = pDstMetadata->GetSize();
|
|
dstOffset = 0;
|
|
dstAllocOffset = 0;
|
|
}
|
|
|
|
// Same block
|
|
if(dstBlockInfoIndex == srcBlockInfoIndex)
|
|
{
|
|
VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
|
|
|
|
const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset;
|
|
|
|
bool skipOver = overlap;
|
|
if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset)
|
|
{
|
|
// If destination and source place overlap, skip if it would move it
|
|
// by only < 1/64 of its size.
|
|
skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize;
|
|
}
|
|
|
|
if(skipOver)
|
|
{
|
|
freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset);
|
|
|
|
dstOffset = srcAllocOffset + srcAllocSize;
|
|
++srcSuballocIt;
|
|
}
|
|
// MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
|
|
else
|
|
{
|
|
srcSuballocIt->offset = dstAllocOffset;
|
|
((VmaAllocation)(srcSuballocIt->userData))->ChangeOffset(dstAllocOffset);
|
|
dstOffset = dstAllocOffset + srcAllocSize;
|
|
m_BytesMoved += srcAllocSize;
|
|
++m_AllocationsMoved;
|
|
++srcSuballocIt;
|
|
|
|
move.srcBlockIndex = srcOrigBlockIndex;
|
|
move.dstBlockIndex = dstOrigBlockIndex;
|
|
move.srcOffset = srcAllocOffset;
|
|
move.dstOffset = dstAllocOffset;
|
|
move.size = srcAllocSize;
|
|
|
|
moves.push_back(move);
|
|
}
|
|
}
|
|
// Different block
|
|
else
|
|
{
|
|
// MOVE OPTION 2: Move the allocation to a different block.
|
|
|
|
VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex);
|
|
VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize);
|
|
|
|
VmaSuballocation suballoc = *srcSuballocIt;
|
|
suballoc.offset = dstAllocOffset;
|
|
((VmaAllocation)(suballoc.userData))->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset);
|
|
dstOffset = dstAllocOffset + srcAllocSize;
|
|
m_BytesMoved += srcAllocSize;
|
|
++m_AllocationsMoved;
|
|
|
|
VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
|
|
++nextSuballocIt;
|
|
pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
|
|
srcSuballocIt = nextSuballocIt;
|
|
|
|
pDstMetadata->m_Suballocations.push_back(suballoc);
|
|
|
|
move.srcBlockIndex = srcOrigBlockIndex;
|
|
move.dstBlockIndex = dstOrigBlockIndex;
|
|
move.srcOffset = srcAllocOffset;
|
|
move.dstOffset = dstAllocOffset;
|
|
move.size = srcAllocSize;
|
|
|
|
moves.push_back(move);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
m_BlockInfos.clear();
|
|
|
|
PostprocessMetadata();
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata()
|
|
{
|
|
const size_t blockCount = m_pBlockVector->GetBlockCount();
|
|
for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
VmaBlockMetadata_Generic* const pMetadata =
|
|
(VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
|
|
pMetadata->m_FreeCount = 0;
|
|
pMetadata->m_SumFreeSize = pMetadata->GetSize();
|
|
pMetadata->m_FreeSuballocationsBySize.clear();
|
|
for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
|
|
it != pMetadata->m_Suballocations.end(); )
|
|
{
|
|
if(it->type == VMA_SUBALLOCATION_TYPE_FREE)
|
|
{
|
|
VmaSuballocationList::iterator nextIt = it;
|
|
++nextIt;
|
|
pMetadata->m_Suballocations.erase(it);
|
|
it = nextIt;
|
|
}
|
|
else
|
|
{
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata()
|
|
{
|
|
const size_t blockCount = m_pBlockVector->GetBlockCount();
|
|
for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
|
|
{
|
|
VmaBlockMetadata_Generic* const pMetadata =
|
|
(VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
|
|
const VkDeviceSize blockSize = pMetadata->GetSize();
|
|
|
|
// No allocations in this block - entire area is free.
|
|
if(pMetadata->m_Suballocations.empty())
|
|
{
|
|
pMetadata->m_FreeCount = 1;
|
|
//pMetadata->m_SumFreeSize is already set to blockSize.
|
|
VmaSuballocation suballoc = {
|
|
0, // offset
|
|
blockSize, // size
|
|
VMA_NULL, // hAllocation
|
|
VMA_SUBALLOCATION_TYPE_FREE };
|
|
pMetadata->m_Suballocations.push_back(suballoc);
|
|
pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin());
|
|
}
|
|
// There are some allocations in this block.
|
|
else
|
|
{
|
|
VkDeviceSize offset = 0;
|
|
VmaSuballocationList::iterator it;
|
|
for(it = pMetadata->m_Suballocations.begin();
|
|
it != pMetadata->m_Suballocations.end();
|
|
++it)
|
|
{
|
|
VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE);
|
|
VMA_ASSERT(it->offset >= offset);
|
|
|
|
// Need to insert preceding free space.
|
|
if(it->offset > offset)
|
|
{
|
|
++pMetadata->m_FreeCount;
|
|
const VkDeviceSize freeSize = it->offset - offset;
|
|
VmaSuballocation suballoc = {
|
|
offset, // offset
|
|
freeSize, // size
|
|
VMA_NULL, // hAllocation
|
|
VMA_SUBALLOCATION_TYPE_FREE };
|
|
VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
|
|
pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt);
|
|
}
|
|
|
|
pMetadata->m_SumFreeSize -= it->size;
|
|
offset = it->offset + it->size;
|
|
}
|
|
|
|
// Need to insert trailing free space.
|
|
if(offset < blockSize)
|
|
{
|
|
++pMetadata->m_FreeCount;
|
|
const VkDeviceSize freeSize = blockSize - offset;
|
|
VmaSuballocation suballoc = {
|
|
offset, // offset
|
|
freeSize, // size
|
|
VMA_NULL, // hAllocation
|
|
VMA_SUBALLOCATION_TYPE_FREE };
|
|
VMA_ASSERT(it == pMetadata->m_Suballocations.end());
|
|
VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
|
|
pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt);
|
|
}
|
|
|
|
VMA_SORT(
|
|
pMetadata->m_FreeSuballocationsBySize.begin(),
|
|
pMetadata->m_FreeSuballocationsBySize.end(),
|
|
VmaSuballocationItemSizeLess());
|
|
}
|
|
|
|
VMA_HEAVY_ASSERT(pMetadata->Validate());
|
|
}
|
|
}
|
|
|
|
void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc)
|
|
{
|
|
VmaSuballocationList& suballocs = pMetadata->m_Suballocations;
|
|
VmaSuballocationList::iterator elementAfter;
|
|
const VkDeviceSize last = suballocs.rbegin()->offset;
|
|
const VkDeviceSize first = suballocs.begin()->offset;
|
|
|
|
if(last <= suballoc.offset)
|
|
elementAfter = suballocs.end();
|
|
else if(first >= suballoc.offset)
|
|
elementAfter = suballocs.begin();
|
|
else
|
|
{
|
|
const size_t suballocCount = suballocs.size();
|
|
const VkDeviceSize step = (last - first + suballocs.begin()->size) / suballocCount;
|
|
// If offset to be inserted is closer to the end of range, search from the end
|
|
if ((suballoc.offset - first) / step > suballocCount / 2)
|
|
{
|
|
elementAfter = suballocs.begin();
|
|
for (VmaSuballocationList::reverse_iterator suballocItem = ++suballocs.rbegin();
|
|
suballocItem != suballocs.rend();
|
|
++suballocItem)
|
|
{
|
|
if (suballocItem->offset <= suballoc.offset)
|
|
{
|
|
elementAfter = --suballocItem;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
elementAfter = suballocs.end();
|
|
for (VmaSuballocationList::iterator suballocItem = ++suballocs.begin();
|
|
suballocItem != suballocs.end();
|
|
++suballocItem)
|
|
{
|
|
if (suballocItem->offset >= suballoc.offset)
|
|
{
|
|
elementAfter = suballocItem;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
pMetadata->m_Suballocations.insert(elementAfter, suballoc);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaBlockVectorDefragmentationContext
|
|
|
|
VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext(
|
|
VmaAllocator hAllocator,
|
|
VmaPool hCustomPool,
|
|
VmaBlockVector* pBlockVector,
|
|
uint32_t currFrameIndex) :
|
|
res(VK_SUCCESS),
|
|
mutexLocked(false),
|
|
blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())),
|
|
defragmentationMoves(VmaStlAllocator<VmaDefragmentationMove>(hAllocator->GetAllocationCallbacks())),
|
|
defragmentationMovesProcessed(0),
|
|
defragmentationMovesCommitted(0),
|
|
hasDefragmentationPlan(0),
|
|
m_hAllocator(hAllocator),
|
|
m_hCustomPool(hCustomPool),
|
|
m_pBlockVector(pBlockVector),
|
|
m_CurrFrameIndex(currFrameIndex),
|
|
m_pAlgorithm(VMA_NULL),
|
|
m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())),
|
|
m_AllAllocations(false)
|
|
{
|
|
}
|
|
|
|
VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext()
|
|
{
|
|
vma_delete(m_hAllocator, m_pAlgorithm);
|
|
}
|
|
|
|
void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
|
|
{
|
|
AllocInfo info = { hAlloc, pChanged };
|
|
m_Allocations.push_back(info);
|
|
}
|
|
|
|
void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported, VmaDefragmentationFlags flags)
|
|
{
|
|
const bool allAllocations = m_AllAllocations ||
|
|
m_Allocations.size() == m_pBlockVector->CalcAllocationCount();
|
|
|
|
/********************************
|
|
HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM.
|
|
********************************/
|
|
|
|
/*
|
|
Fast algorithm is supported only when certain criteria are met:
|
|
- VMA_DEBUG_MARGIN is 0.
|
|
- All allocations in this block vector are movable.
|
|
- There is no possibility of image/buffer granularity conflict.
|
|
- The defragmentation is not incremental
|
|
*/
|
|
if(VMA_DEBUG_MARGIN == 0 &&
|
|
allAllocations &&
|
|
!m_pBlockVector->IsBufferImageGranularityConflictPossible() &&
|
|
!(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL))
|
|
{
|
|
m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)(
|
|
m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
|
|
}
|
|
else
|
|
{
|
|
m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)(
|
|
m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
|
|
}
|
|
|
|
if(allAllocations)
|
|
{
|
|
m_pAlgorithm->AddAll();
|
|
}
|
|
else
|
|
{
|
|
for(size_t i = 0, count = m_Allocations.size(); i < count; ++i)
|
|
{
|
|
m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaDefragmentationContext
|
|
|
|
VmaDefragmentationContext_T::VmaDefragmentationContext_T(
|
|
VmaAllocator hAllocator,
|
|
uint32_t currFrameIndex,
|
|
uint32_t flags,
|
|
VmaDefragmentationStats* pStats) :
|
|
m_hAllocator(hAllocator),
|
|
m_CurrFrameIndex(currFrameIndex),
|
|
m_Flags(flags),
|
|
m_pStats(pStats),
|
|
m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext*>(hAllocator->GetAllocationCallbacks()))
|
|
{
|
|
memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts));
|
|
}
|
|
|
|
VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
|
|
{
|
|
for(size_t i = m_CustomPoolContexts.size(); i--; )
|
|
{
|
|
VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i];
|
|
pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats);
|
|
vma_delete(m_hAllocator, pBlockVectorCtx);
|
|
}
|
|
for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; )
|
|
{
|
|
VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i];
|
|
if(pBlockVectorCtx)
|
|
{
|
|
pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_Flags, m_pStats);
|
|
vma_delete(m_hAllocator, pBlockVectorCtx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, const VmaPool* pPools)
|
|
{
|
|
for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
|
|
{
|
|
VmaPool pool = pPools[poolIndex];
|
|
VMA_ASSERT(pool);
|
|
// Pools with algorithm other than default are not defragmented.
|
|
if(pool->m_BlockVector.GetAlgorithm() == 0)
|
|
{
|
|
VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
|
|
|
|
for(size_t i = m_CustomPoolContexts.size(); i--; )
|
|
{
|
|
if(m_CustomPoolContexts[i]->GetCustomPool() == pool)
|
|
{
|
|
pBlockVectorDefragCtx = m_CustomPoolContexts[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(!pBlockVectorDefragCtx)
|
|
{
|
|
pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
|
|
m_hAllocator,
|
|
pool,
|
|
&pool->m_BlockVector,
|
|
m_CurrFrameIndex);
|
|
m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
|
|
}
|
|
|
|
pBlockVectorDefragCtx->AddAll();
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaDefragmentationContext_T::AddAllocations(
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* pAllocations,
|
|
VkBool32* pAllocationsChanged)
|
|
{
|
|
// Dispatch pAllocations among defragmentators. Create them when necessary.
|
|
for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
const VmaAllocation hAlloc = pAllocations[allocIndex];
|
|
VMA_ASSERT(hAlloc);
|
|
// DedicatedAlloc cannot be defragmented.
|
|
if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
|
|
// Lost allocation cannot be defragmented.
|
|
(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))
|
|
{
|
|
VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
|
|
|
|
const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool();
|
|
// This allocation belongs to custom pool.
|
|
if(hAllocPool != VK_NULL_HANDLE)
|
|
{
|
|
// Pools with algorithm other than default are not defragmented.
|
|
if(hAllocPool->m_BlockVector.GetAlgorithm() == 0)
|
|
{
|
|
for(size_t i = m_CustomPoolContexts.size(); i--; )
|
|
{
|
|
if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool)
|
|
{
|
|
pBlockVectorDefragCtx = m_CustomPoolContexts[i];
|
|
break;
|
|
}
|
|
}
|
|
if(!pBlockVectorDefragCtx)
|
|
{
|
|
pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
|
|
m_hAllocator,
|
|
hAllocPool,
|
|
&hAllocPool->m_BlockVector,
|
|
m_CurrFrameIndex);
|
|
m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
|
|
}
|
|
}
|
|
}
|
|
// This allocation belongs to default pool.
|
|
else
|
|
{
|
|
const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
|
|
pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex];
|
|
if(!pBlockVectorDefragCtx)
|
|
{
|
|
VMA_ASSERT(m_hAllocator->m_pBlockVectors[memTypeIndex] && "Trying to use unsupported memory type!");
|
|
|
|
pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
|
|
m_hAllocator,
|
|
VMA_NULL, // hCustomPool
|
|
m_hAllocator->m_pBlockVectors[memTypeIndex],
|
|
m_CurrFrameIndex);
|
|
m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx;
|
|
}
|
|
}
|
|
|
|
if(pBlockVectorDefragCtx)
|
|
{
|
|
VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?
|
|
&pAllocationsChanged[allocIndex] : VMA_NULL;
|
|
pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaDefragmentationContext_T::Defragment(
|
|
VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
|
|
VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
|
|
VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats, VmaDefragmentationFlags flags)
|
|
{
|
|
if(pStats)
|
|
{
|
|
memset(pStats, 0, sizeof(VmaDefragmentationStats));
|
|
}
|
|
|
|
if(flags & VMA_DEFRAGMENTATION_FLAG_INCREMENTAL)
|
|
{
|
|
// For incremental defragmetnations, we just earmark how much we can move
|
|
// The real meat is in the defragmentation steps
|
|
m_MaxCpuBytesToMove = maxCpuBytesToMove;
|
|
m_MaxCpuAllocationsToMove = maxCpuAllocationsToMove;
|
|
|
|
m_MaxGpuBytesToMove = maxGpuBytesToMove;
|
|
m_MaxGpuAllocationsToMove = maxGpuAllocationsToMove;
|
|
|
|
if(m_MaxCpuBytesToMove == 0 && m_MaxCpuAllocationsToMove == 0 &&
|
|
m_MaxGpuBytesToMove == 0 && m_MaxGpuAllocationsToMove == 0)
|
|
return VK_SUCCESS;
|
|
|
|
return VK_NOT_READY;
|
|
}
|
|
|
|
if(commandBuffer == VK_NULL_HANDLE)
|
|
{
|
|
maxGpuBytesToMove = 0;
|
|
maxGpuAllocationsToMove = 0;
|
|
}
|
|
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
// Process default pools.
|
|
for(uint32_t memTypeIndex = 0;
|
|
memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS;
|
|
++memTypeIndex)
|
|
{
|
|
VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
|
|
if(pBlockVectorCtx)
|
|
{
|
|
VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
|
|
pBlockVectorCtx->GetBlockVector()->Defragment(
|
|
pBlockVectorCtx,
|
|
pStats, flags,
|
|
maxCpuBytesToMove, maxCpuAllocationsToMove,
|
|
maxGpuBytesToMove, maxGpuAllocationsToMove,
|
|
commandBuffer);
|
|
if(pBlockVectorCtx->res != VK_SUCCESS)
|
|
{
|
|
res = pBlockVectorCtx->res;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process custom pools.
|
|
for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
|
|
customCtxIndex < customCtxCount && res >= VK_SUCCESS;
|
|
++customCtxIndex)
|
|
{
|
|
VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
|
|
VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
|
|
pBlockVectorCtx->GetBlockVector()->Defragment(
|
|
pBlockVectorCtx,
|
|
pStats, flags,
|
|
maxCpuBytesToMove, maxCpuAllocationsToMove,
|
|
maxGpuBytesToMove, maxGpuAllocationsToMove,
|
|
commandBuffer);
|
|
if(pBlockVectorCtx->res != VK_SUCCESS)
|
|
{
|
|
res = pBlockVectorCtx->res;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassInfo* pInfo)
|
|
{
|
|
VmaDefragmentationPassMoveInfo* pCurrentMove = pInfo->pMoves;
|
|
uint32_t movesLeft = pInfo->moveCount;
|
|
|
|
// Process default pools.
|
|
for(uint32_t memTypeIndex = 0;
|
|
memTypeIndex < m_hAllocator->GetMemoryTypeCount();
|
|
++memTypeIndex)
|
|
{
|
|
VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
|
|
if(pBlockVectorCtx)
|
|
{
|
|
VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
|
|
|
|
if(!pBlockVectorCtx->hasDefragmentationPlan)
|
|
{
|
|
pBlockVectorCtx->GetBlockVector()->Defragment(
|
|
pBlockVectorCtx,
|
|
m_pStats, m_Flags,
|
|
m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove,
|
|
m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove,
|
|
VK_NULL_HANDLE);
|
|
|
|
if(pBlockVectorCtx->res < VK_SUCCESS)
|
|
continue;
|
|
|
|
pBlockVectorCtx->hasDefragmentationPlan = true;
|
|
}
|
|
|
|
const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations(
|
|
pBlockVectorCtx,
|
|
pCurrentMove, movesLeft);
|
|
|
|
movesLeft -= processed;
|
|
pCurrentMove += processed;
|
|
}
|
|
}
|
|
|
|
// Process custom pools.
|
|
for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
|
|
customCtxIndex < customCtxCount;
|
|
++customCtxIndex)
|
|
{
|
|
VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
|
|
VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
|
|
|
|
if(!pBlockVectorCtx->hasDefragmentationPlan)
|
|
{
|
|
pBlockVectorCtx->GetBlockVector()->Defragment(
|
|
pBlockVectorCtx,
|
|
m_pStats, m_Flags,
|
|
m_MaxCpuBytesToMove, m_MaxCpuAllocationsToMove,
|
|
m_MaxGpuBytesToMove, m_MaxGpuAllocationsToMove,
|
|
VK_NULL_HANDLE);
|
|
|
|
if(pBlockVectorCtx->res < VK_SUCCESS)
|
|
continue;
|
|
|
|
pBlockVectorCtx->hasDefragmentationPlan = true;
|
|
}
|
|
|
|
const uint32_t processed = pBlockVectorCtx->GetBlockVector()->ProcessDefragmentations(
|
|
pBlockVectorCtx,
|
|
pCurrentMove, movesLeft);
|
|
|
|
movesLeft -= processed;
|
|
pCurrentMove += processed;
|
|
}
|
|
|
|
pInfo->moveCount = pInfo->moveCount - movesLeft;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
VkResult VmaDefragmentationContext_T::DefragmentPassEnd()
|
|
{
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
// Process default pools.
|
|
for(uint32_t memTypeIndex = 0;
|
|
memTypeIndex < m_hAllocator->GetMemoryTypeCount();
|
|
++memTypeIndex)
|
|
{
|
|
VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
|
|
if(pBlockVectorCtx)
|
|
{
|
|
VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
|
|
|
|
if(!pBlockVectorCtx->hasDefragmentationPlan)
|
|
{
|
|
res = VK_NOT_READY;
|
|
continue;
|
|
}
|
|
|
|
pBlockVectorCtx->GetBlockVector()->CommitDefragmentations(
|
|
pBlockVectorCtx, m_pStats);
|
|
|
|
if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted)
|
|
res = VK_NOT_READY;
|
|
}
|
|
}
|
|
|
|
// Process custom pools.
|
|
for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
|
|
customCtxIndex < customCtxCount;
|
|
++customCtxIndex)
|
|
{
|
|
VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
|
|
VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
|
|
|
|
if(!pBlockVectorCtx->hasDefragmentationPlan)
|
|
{
|
|
res = VK_NOT_READY;
|
|
continue;
|
|
}
|
|
|
|
pBlockVectorCtx->GetBlockVector()->CommitDefragmentations(
|
|
pBlockVectorCtx, m_pStats);
|
|
|
|
if(pBlockVectorCtx->defragmentationMoves.size() != pBlockVectorCtx->defragmentationMovesCommitted)
|
|
res = VK_NOT_READY;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaRecorder
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
|
|
VmaRecorder::VmaRecorder() :
|
|
m_UseMutex(true),
|
|
m_Flags(0),
|
|
m_File(VMA_NULL),
|
|
m_RecordingStartTime(std::chrono::high_resolution_clock::now())
|
|
{
|
|
}
|
|
|
|
VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex)
|
|
{
|
|
m_UseMutex = useMutex;
|
|
m_Flags = settings.flags;
|
|
|
|
#if defined(_WIN32)
|
|
// Open file for writing.
|
|
errno_t err = fopen_s(&m_File, settings.pFilePath, "wb");
|
|
|
|
if(err != 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
#else
|
|
// Open file for writing.
|
|
m_File = fopen(settings.pFilePath, "wb");
|
|
|
|
if(m_File == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
#endif
|
|
|
|
// Write header.
|
|
fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording");
|
|
fprintf(m_File, "%s\n", "1,8");
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VmaRecorder::~VmaRecorder()
|
|
{
|
|
if(m_File != VMA_NULL)
|
|
{
|
|
fclose(m_File);
|
|
}
|
|
}
|
|
|
|
void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
createInfo.memoryTypeIndex,
|
|
createInfo.flags,
|
|
createInfo.blockSize,
|
|
(uint64_t)createInfo.minBlockCount,
|
|
(uint64_t)createInfo.maxBlockCount,
|
|
createInfo.frameInUseCount,
|
|
pool);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
pool);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex,
|
|
const VkMemoryRequirements& vkMemReq,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
vkMemReq.memoryTypeBits,
|
|
createInfo.flags,
|
|
createInfo.usage,
|
|
createInfo.requiredFlags,
|
|
createInfo.preferredFlags,
|
|
createInfo.memoryTypeBits,
|
|
createInfo.pool,
|
|
allocation,
|
|
userDataStr.GetString());
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex,
|
|
const VkMemoryRequirements& vkMemReq,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
uint64_t allocationCount,
|
|
const VmaAllocation* pAllocations)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex,
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
vkMemReq.memoryTypeBits,
|
|
createInfo.flags,
|
|
createInfo.usage,
|
|
createInfo.requiredFlags,
|
|
createInfo.preferredFlags,
|
|
createInfo.memoryTypeBits,
|
|
createInfo.pool);
|
|
PrintPointerList(allocationCount, pAllocations);
|
|
fprintf(m_File, ",%s\n", userDataStr.GetString());
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex,
|
|
const VkMemoryRequirements& vkMemReq,
|
|
bool requiresDedicatedAllocation,
|
|
bool prefersDedicatedAllocation,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
vkMemReq.memoryTypeBits,
|
|
requiresDedicatedAllocation ? 1 : 0,
|
|
prefersDedicatedAllocation ? 1 : 0,
|
|
createInfo.flags,
|
|
createInfo.usage,
|
|
createInfo.requiredFlags,
|
|
createInfo.preferredFlags,
|
|
createInfo.memoryTypeBits,
|
|
createInfo.pool,
|
|
allocation,
|
|
userDataStr.GetString());
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex,
|
|
const VkMemoryRequirements& vkMemReq,
|
|
bool requiresDedicatedAllocation,
|
|
bool prefersDedicatedAllocation,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
vkMemReq.memoryTypeBits,
|
|
requiresDedicatedAllocation ? 1 : 0,
|
|
prefersDedicatedAllocation ? 1 : 0,
|
|
createInfo.flags,
|
|
createInfo.usage,
|
|
createInfo.requiredFlags,
|
|
createInfo.preferredFlags,
|
|
createInfo.memoryTypeBits,
|
|
createInfo.pool,
|
|
allocation,
|
|
userDataStr.GetString());
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordFreeMemory(uint32_t frameIndex,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex,
|
|
uint64_t allocationCount,
|
|
const VmaAllocation* pAllocations)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex);
|
|
PrintPointerList(allocationCount, pAllocations);
|
|
fprintf(m_File, "\n");
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex,
|
|
VmaAllocation allocation,
|
|
const void* pUserData)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
UserDataString userDataStr(
|
|
allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0,
|
|
pUserData);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation,
|
|
userDataStr.GetString());
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordMapMemory(uint32_t frameIndex,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex,
|
|
VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation,
|
|
offset,
|
|
size);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex,
|
|
VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation,
|
|
offset,
|
|
size);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex,
|
|
const VkBufferCreateInfo& bufCreateInfo,
|
|
const VmaAllocationCreateInfo& allocCreateInfo,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
|
|
bufCreateInfo.flags,
|
|
bufCreateInfo.size,
|
|
bufCreateInfo.usage,
|
|
bufCreateInfo.sharingMode,
|
|
allocCreateInfo.flags,
|
|
allocCreateInfo.usage,
|
|
allocCreateInfo.requiredFlags,
|
|
allocCreateInfo.preferredFlags,
|
|
allocCreateInfo.memoryTypeBits,
|
|
allocCreateInfo.pool,
|
|
allocation,
|
|
userDataStr.GetString());
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordCreateImage(uint32_t frameIndex,
|
|
const VkImageCreateInfo& imageCreateInfo,
|
|
const VmaAllocationCreateInfo& allocCreateInfo,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
|
|
imageCreateInfo.flags,
|
|
imageCreateInfo.imageType,
|
|
imageCreateInfo.format,
|
|
imageCreateInfo.extent.width,
|
|
imageCreateInfo.extent.height,
|
|
imageCreateInfo.extent.depth,
|
|
imageCreateInfo.mipLevels,
|
|
imageCreateInfo.arrayLayers,
|
|
imageCreateInfo.samples,
|
|
imageCreateInfo.tiling,
|
|
imageCreateInfo.usage,
|
|
imageCreateInfo.sharingMode,
|
|
imageCreateInfo.initialLayout,
|
|
allocCreateInfo.flags,
|
|
allocCreateInfo.usage,
|
|
allocCreateInfo.requiredFlags,
|
|
allocCreateInfo.preferredFlags,
|
|
allocCreateInfo.memoryTypeBits,
|
|
allocCreateInfo.pool,
|
|
allocation,
|
|
userDataStr.GetString());
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordDestroyImage(uint32_t frameIndex,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex,
|
|
VmaAllocation allocation)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
allocation);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex,
|
|
VmaPool pool)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
pool);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex,
|
|
const VmaDefragmentationInfo2& info,
|
|
VmaDefragmentationContext ctx)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex,
|
|
info.flags);
|
|
PrintPointerList(info.allocationCount, info.pAllocations);
|
|
fprintf(m_File, ",");
|
|
PrintPointerList(info.poolCount, info.pPools);
|
|
fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n",
|
|
info.maxCpuBytesToMove,
|
|
info.maxCpuAllocationsToMove,
|
|
info.maxGpuBytesToMove,
|
|
info.maxGpuAllocationsToMove,
|
|
info.commandBuffer,
|
|
ctx);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex,
|
|
VmaDefragmentationContext ctx)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex,
|
|
ctx);
|
|
Flush();
|
|
}
|
|
|
|
void VmaRecorder::RecordSetPoolName(uint32_t frameIndex,
|
|
VmaPool pool,
|
|
const char* name)
|
|
{
|
|
CallParams callParams;
|
|
GetBasicParams(callParams);
|
|
|
|
VmaMutexLock lock(m_FileMutex, m_UseMutex);
|
|
fprintf(m_File, "%u,%.3f,%u,vmaSetPoolName,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
|
|
pool, name != VMA_NULL ? name : "");
|
|
Flush();
|
|
}
|
|
|
|
VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData)
|
|
{
|
|
if(pUserData != VMA_NULL)
|
|
{
|
|
if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0)
|
|
{
|
|
m_Str = (const char*)pUserData;
|
|
}
|
|
else
|
|
{
|
|
// If VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is not specified, convert the string's memory address to a string and store it.
|
|
snprintf(m_PtrStr, 17, "%p", pUserData);
|
|
m_Str = m_PtrStr;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_Str = "";
|
|
}
|
|
}
|
|
|
|
void VmaRecorder::WriteConfiguration(
|
|
const VkPhysicalDeviceProperties& devProps,
|
|
const VkPhysicalDeviceMemoryProperties& memProps,
|
|
uint32_t vulkanApiVersion,
|
|
bool dedicatedAllocationExtensionEnabled,
|
|
bool bindMemory2ExtensionEnabled,
|
|
bool memoryBudgetExtensionEnabled,
|
|
bool deviceCoherentMemoryExtensionEnabled)
|
|
{
|
|
fprintf(m_File, "Config,Begin\n");
|
|
|
|
fprintf(m_File, "VulkanApiVersion,%u,%u\n", VK_VERSION_MAJOR(vulkanApiVersion), VK_VERSION_MINOR(vulkanApiVersion));
|
|
|
|
fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion);
|
|
fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion);
|
|
fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID);
|
|
fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID);
|
|
fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType);
|
|
fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName);
|
|
|
|
fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount);
|
|
fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity);
|
|
fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize);
|
|
|
|
fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount);
|
|
for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i)
|
|
{
|
|
fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size);
|
|
fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags);
|
|
}
|
|
fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount);
|
|
for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i)
|
|
{
|
|
fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex);
|
|
fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags);
|
|
}
|
|
|
|
fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0);
|
|
fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0);
|
|
fprintf(m_File, "Extension,VK_EXT_memory_budget,%u\n", memoryBudgetExtensionEnabled ? 1 : 0);
|
|
fprintf(m_File, "Extension,VK_AMD_device_coherent_memory,%u\n", deviceCoherentMemoryExtensionEnabled ? 1 : 0);
|
|
|
|
fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0);
|
|
fprintf(m_File, "Macro,VMA_MIN_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_MIN_ALIGNMENT);
|
|
fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN);
|
|
fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0);
|
|
fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0);
|
|
fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0);
|
|
fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY);
|
|
fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE);
|
|
fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
|
|
|
|
fprintf(m_File, "Config,End\n");
|
|
}
|
|
|
|
void VmaRecorder::GetBasicParams(CallParams& outParams)
|
|
{
|
|
#if defined(_WIN32)
|
|
outParams.threadId = GetCurrentThreadId();
|
|
#else
|
|
// Use C++11 features to get thread id and convert it to uint32_t.
|
|
// There is room for optimization since sstream is quite slow.
|
|
// Is there a better way to convert std::this_thread::get_id() to uint32_t?
|
|
std::thread::id thread_id = std::this_thread::get_id();
|
|
std::stringstream thread_id_to_string_converter;
|
|
thread_id_to_string_converter << thread_id;
|
|
std::string thread_id_as_string = thread_id_to_string_converter.str();
|
|
outParams.threadId = static_cast<uint32_t>(std::stoi(thread_id_as_string.c_str()));
|
|
#endif
|
|
|
|
auto current_time = std::chrono::high_resolution_clock::now();
|
|
|
|
outParams.time = std::chrono::duration<double, std::chrono::seconds::period>(current_time - m_RecordingStartTime).count();
|
|
}
|
|
|
|
void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems)
|
|
{
|
|
if(count)
|
|
{
|
|
fprintf(m_File, "%p", pItems[0]);
|
|
for(uint64_t i = 1; i < count; ++i)
|
|
{
|
|
fprintf(m_File, " %p", pItems[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaRecorder::Flush()
|
|
{
|
|
if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0)
|
|
{
|
|
fflush(m_File);
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_RECORDING_ENABLED
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaAllocationObjectAllocator
|
|
|
|
VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) :
|
|
m_Allocator(pAllocationCallbacks, 1024)
|
|
{
|
|
}
|
|
|
|
template<typename... Types> VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args)
|
|
{
|
|
VmaMutexLock mutexLock(m_Mutex);
|
|
return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...);
|
|
}
|
|
|
|
void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
|
|
{
|
|
VmaMutexLock mutexLock(m_Mutex);
|
|
m_Allocator.Free(hAlloc);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaAllocator_T
|
|
|
|
VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
|
|
m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
|
|
m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),
|
|
m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
|
|
m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
|
|
m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),
|
|
m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0),
|
|
m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0),
|
|
m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0),
|
|
m_hDevice(pCreateInfo->device),
|
|
m_hInstance(pCreateInfo->instance),
|
|
m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
|
|
m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
|
|
*pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
|
|
m_AllocationObjectAllocator(&m_AllocationCallbacks),
|
|
m_HeapSizeLimitMask(0),
|
|
m_DeviceMemoryCount(0),
|
|
m_PreferredLargeHeapBlockSize(0),
|
|
m_PhysicalDevice(pCreateInfo->physicalDevice),
|
|
m_CurrentFrameIndex(0),
|
|
m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
|
|
m_NextPoolId(0),
|
|
m_GlobalMemoryTypeBits(UINT32_MAX)
|
|
#if VMA_RECORDING_ENABLED
|
|
,m_pRecorder(VMA_NULL)
|
|
#endif
|
|
{
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
m_UseKhrDedicatedAllocation = false;
|
|
m_UseKhrBindMemory2 = false;
|
|
}
|
|
|
|
if(VMA_DEBUG_DETECT_CORRUPTION)
|
|
{
|
|
// Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
|
|
VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
|
|
}
|
|
|
|
VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance);
|
|
|
|
if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
#if !(VMA_DEDICATED_ALLOCATION)
|
|
if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if !(VMA_BIND_MEMORY2)
|
|
if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
}
|
|
#if !(VMA_MEMORY_BUDGET)
|
|
if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if !(VMA_BUFFER_DEVICE_ADDRESS)
|
|
if(m_UseKhrBufferDeviceAddress)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
|
|
}
|
|
#endif
|
|
#if VMA_VULKAN_VERSION < 1002000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0))
|
|
{
|
|
VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if VMA_VULKAN_VERSION < 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");
|
|
}
|
|
#endif
|
|
#if !(VMA_MEMORY_PRIORITY)
|
|
if(m_UseExtMemoryPriority)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
|
|
}
|
|
#endif
|
|
|
|
memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
|
|
memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
|
|
memset(&m_MemProps, 0, sizeof(m_MemProps));
|
|
|
|
memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
|
|
memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes));
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
|
|
{
|
|
m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData;
|
|
m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
|
|
m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
|
|
}
|
|
|
|
ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
|
|
|
|
(*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
|
|
(*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
|
|
|
|
VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT));
|
|
VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
|
|
VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
|
|
VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
|
|
|
|
m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
|
|
pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
|
|
|
|
m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits();
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL)
|
|
{
|
|
memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes,
|
|
sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount());
|
|
}
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
|
|
{
|
|
for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
|
|
{
|
|
const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
|
|
if(limit != VK_WHOLE_SIZE)
|
|
{
|
|
m_HeapSizeLimitMask |= 1u << heapIndex;
|
|
if(limit < m_MemProps.memoryHeaps[heapIndex].size)
|
|
{
|
|
m_MemProps.memoryHeaps[heapIndex].size = limit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
// Create only supported types
|
|
if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
|
|
{
|
|
const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
|
|
m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
|
|
this,
|
|
VK_NULL_HANDLE, // hParentPool
|
|
memTypeIndex,
|
|
preferredBlockSize,
|
|
0,
|
|
SIZE_MAX,
|
|
GetBufferImageGranularity(),
|
|
pCreateInfo->frameInUseCount,
|
|
false, // explicitBlockSize
|
|
false, // linearAlgorithm
|
|
0.5f, // priority (0.5 is the default per Vulkan spec)
|
|
GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment
|
|
VMA_NULL); // // pMemoryAllocateNext
|
|
// No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
|
|
// becase minBlockCount is 0.
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
|
|
{
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
if(pCreateInfo->pRecordSettings != VMA_NULL &&
|
|
!VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath))
|
|
{
|
|
#if VMA_RECORDING_ENABLED
|
|
m_pRecorder = vma_new(this, VmaRecorder)();
|
|
res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
m_pRecorder->WriteConfiguration(
|
|
m_PhysicalDeviceProperties,
|
|
m_MemProps,
|
|
m_VulkanApiVersion,
|
|
m_UseKhrDedicatedAllocation,
|
|
m_UseKhrBindMemory2,
|
|
m_UseExtMemoryBudget,
|
|
m_UseAmdDeviceCoherentMemory);
|
|
m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex());
|
|
#else
|
|
VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1.");
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
#endif
|
|
}
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
if(m_UseExtMemoryBudget)
|
|
{
|
|
UpdateVulkanBudget();
|
|
}
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
|
|
return res;
|
|
}
|
|
|
|
VmaAllocator_T::~VmaAllocator_T()
|
|
{
|
|
#if VMA_RECORDING_ENABLED
|
|
if(m_pRecorder != VMA_NULL)
|
|
{
|
|
m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex());
|
|
vma_delete(this, m_pRecorder);
|
|
}
|
|
#endif
|
|
|
|
VMA_ASSERT(m_Pools.IsEmpty());
|
|
|
|
for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
|
|
{
|
|
if(!m_DedicatedAllocations[memTypeIndex].IsEmpty())
|
|
{
|
|
VMA_ASSERT(0 && "Unfreed dedicated allocations found.");
|
|
}
|
|
|
|
vma_delete(this, m_pBlockVectors[memTypeIndex]);
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
|
|
{
|
|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
ImportVulkanFunctions_Static();
|
|
#endif
|
|
|
|
if(pVulkanFunctions != VMA_NULL)
|
|
{
|
|
ImportVulkanFunctions_Custom(pVulkanFunctions);
|
|
}
|
|
|
|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
|
|
ImportVulkanFunctions_Dynamic();
|
|
#endif
|
|
|
|
ValidateVulkanFunctions();
|
|
}
|
|
|
|
#if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
|
|
void VmaAllocator_T::ImportVulkanFunctions_Static()
|
|
{
|
|
// Vulkan 1.0
|
|
m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr;
|
|
m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr;
|
|
m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
|
|
m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
|
|
m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
|
|
m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
|
|
m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
|
|
m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
|
|
m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
|
|
m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
|
|
m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
|
|
m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
|
|
m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
|
|
m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
|
|
m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
|
|
m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
|
|
m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
|
|
m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
|
|
m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
|
|
|
|
// Vulkan 1.1
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2;
|
|
m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2;
|
|
m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2;
|
|
m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2;
|
|
m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
|
|
|
|
void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions)
|
|
{
|
|
VMA_ASSERT(pVulkanFunctions != VMA_NULL);
|
|
|
|
#define VMA_COPY_IF_NOT_NULL(funcName) \
|
|
if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
|
|
|
|
VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr);
|
|
VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr);
|
|
VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
|
|
VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
|
|
VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkFreeMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkMapMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
|
|
VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
|
|
VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
|
|
VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
|
|
VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
|
|
VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
|
|
VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
|
|
VMA_COPY_IF_NOT_NULL(vkCreateImage);
|
|
VMA_COPY_IF_NOT_NULL(vkDestroyImage);
|
|
VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
|
|
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
|
|
VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
|
|
#endif
|
|
|
|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
|
|
VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
|
|
VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
|
|
#endif
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);
|
|
#endif
|
|
|
|
#undef VMA_COPY_IF_NOT_NULL
|
|
}
|
|
|
|
#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
|
|
|
|
void VmaAllocator_T::ImportVulkanFunctions_Dynamic()
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr &&
|
|
"To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass "
|
|
"VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. "
|
|
"Other members can be null.");
|
|
|
|
#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \
|
|
if(m_VulkanFunctions.memberName == VMA_NULL) \
|
|
m_VulkanFunctions.memberName = \
|
|
(functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString);
|
|
#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \
|
|
if(m_VulkanFunctions.memberName == VMA_NULL) \
|
|
m_VulkanFunctions.memberName = \
|
|
(functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString);
|
|
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties");
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties");
|
|
VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges");
|
|
VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements");
|
|
VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer");
|
|
VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer");
|
|
VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage");
|
|
VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage");
|
|
VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer");
|
|
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2");
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2");
|
|
}
|
|
#endif
|
|
|
|
#if VMA_DEDICATED_ALLOCATION
|
|
if(m_UseKhrDedicatedAllocation)
|
|
{
|
|
VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR");
|
|
VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR");
|
|
}
|
|
#endif
|
|
|
|
#if VMA_BIND_MEMORY2
|
|
if(m_UseKhrBindMemory2)
|
|
{
|
|
VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR");
|
|
VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR");
|
|
}
|
|
#endif // #if VMA_BIND_MEMORY2
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
if(m_UseExtMemoryBudget)
|
|
{
|
|
VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
|
|
}
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
|
|
#undef VMA_FETCH_DEVICE_FUNC
|
|
#undef VMA_FETCH_INSTANCE_FUNC
|
|
}
|
|
|
|
#endif // #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
|
|
|
|
void VmaAllocator_T::ValidateVulkanFunctions()
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
|
|
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
|
|
}
|
|
#endif
|
|
|
|
#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
|
|
VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
|
|
}
|
|
#endif
|
|
|
|
#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
|
|
{
|
|
const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
|
|
const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
|
|
return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateMemoryOfType(
|
|
VkDeviceSize size,
|
|
VkDeviceSize alignment,
|
|
bool dedicatedAllocation,
|
|
VkBuffer dedicatedBuffer,
|
|
VkBufferUsageFlags dedicatedBufferUsage,
|
|
VkImage dedicatedImage,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
uint32_t memTypeIndex,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations)
|
|
{
|
|
VMA_ASSERT(pAllocations != VMA_NULL);
|
|
VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size);
|
|
|
|
VmaAllocationCreateInfo finalCreateInfo = createInfo;
|
|
|
|
// If memory type is not HOST_VISIBLE, disable MAPPED.
|
|
if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
|
|
(m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
|
|
{
|
|
finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
}
|
|
// If memory is lazily allocated, it should be always dedicated.
|
|
if(finalCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)
|
|
{
|
|
finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
|
}
|
|
|
|
VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];
|
|
VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
|
|
|
|
const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
|
|
bool preferDedicatedMemory =
|
|
VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||
|
|
dedicatedAllocation ||
|
|
// Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
|
|
size > preferredBlockSize / 2;
|
|
|
|
if(preferDedicatedMemory &&
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
|
|
finalCreateInfo.pool == VK_NULL_HANDLE)
|
|
{
|
|
finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
|
}
|
|
|
|
if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
|
|
{
|
|
if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
else
|
|
{
|
|
return AllocateDedicatedMemory(
|
|
size,
|
|
suballocType,
|
|
memTypeIndex,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
|
|
finalCreateInfo.pUserData,
|
|
finalCreateInfo.priority,
|
|
dedicatedBuffer,
|
|
dedicatedBufferUsage,
|
|
dedicatedImage,
|
|
allocationCount,
|
|
pAllocations);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
VkResult res = blockVector->Allocate(
|
|
m_CurrentFrameIndex.load(),
|
|
size,
|
|
alignment,
|
|
finalCreateInfo,
|
|
suballocType,
|
|
allocationCount,
|
|
pAllocations);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
|
|
// 5. Try dedicated memory.
|
|
if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
// Protection against creating each allocation as dedicated when we reach or exceed heap size/budget,
|
|
// which can quickly deplete maxMemoryAllocationCount: Don't try dedicated allocations when above
|
|
// 3/4 of the maximum allocation count.
|
|
if(m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
res = AllocateDedicatedMemory(
|
|
size,
|
|
suballocType,
|
|
memTypeIndex,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
|
|
(finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
|
|
finalCreateInfo.pUserData,
|
|
finalCreateInfo.priority,
|
|
dedicatedBuffer,
|
|
dedicatedBufferUsage,
|
|
dedicatedImage,
|
|
allocationCount,
|
|
pAllocations);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
|
|
VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
|
|
return VK_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
// Everything failed: Return error code.
|
|
VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateDedicatedMemory(
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t memTypeIndex,
|
|
bool withinBudget,
|
|
bool map,
|
|
bool isUserDataString,
|
|
bool canAliasMemory,
|
|
void* pUserData,
|
|
float priority,
|
|
VkBuffer dedicatedBuffer,
|
|
VkBufferUsageFlags dedicatedBufferUsage,
|
|
VkImage dedicatedImage,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations)
|
|
{
|
|
VMA_ASSERT(allocationCount > 0 && pAllocations);
|
|
|
|
if(withinBudget)
|
|
{
|
|
const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
VmaBudget heapBudget = {};
|
|
GetHeapBudgets(&heapBudget, heapIndex, 1);
|
|
if(heapBudget.usage + size * allocationCount > heapBudget.budget)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
}
|
|
|
|
VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
|
|
allocInfo.memoryTypeIndex = memTypeIndex;
|
|
allocInfo.allocationSize = size;
|
|
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
|
|
if(!canAliasMemory)
|
|
{
|
|
if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
if(dedicatedBuffer != VK_NULL_HANDLE)
|
|
{
|
|
VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
|
|
dedicatedAllocInfo.buffer = dedicatedBuffer;
|
|
VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
|
|
}
|
|
else if(dedicatedImage != VK_NULL_HANDLE)
|
|
{
|
|
dedicatedAllocInfo.image = dedicatedImage;
|
|
VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
|
|
}
|
|
}
|
|
}
|
|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
|
|
#if VMA_BUFFER_DEVICE_ADDRESS
|
|
VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
|
|
if(m_UseKhrBufferDeviceAddress)
|
|
{
|
|
bool canContainBufferWithDeviceAddress = true;
|
|
if(dedicatedBuffer != VK_NULL_HANDLE)
|
|
{
|
|
canContainBufferWithDeviceAddress = dedicatedBufferUsage == UINT32_MAX || // Usage flags unknown
|
|
(dedicatedBufferUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0;
|
|
}
|
|
else if(dedicatedImage != VK_NULL_HANDLE)
|
|
{
|
|
canContainBufferWithDeviceAddress = false;
|
|
}
|
|
if(canContainBufferWithDeviceAddress)
|
|
{
|
|
allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
|
|
VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
|
|
}
|
|
}
|
|
#endif // #if VMA_BUFFER_DEVICE_ADDRESS
|
|
|
|
#if VMA_MEMORY_PRIORITY
|
|
VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
|
|
if(m_UseExtMemoryPriority)
|
|
{
|
|
priorityInfo.priority = priority;
|
|
VmaPnextChainPushFront(&allocInfo, &priorityInfo);
|
|
}
|
|
#endif // #if VMA_MEMORY_PRIORITY
|
|
|
|
#if VMA_EXTERNAL_MEMORY
|
|
// Attach VkExportMemoryAllocateInfoKHR if necessary.
|
|
VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
|
|
exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex);
|
|
if(exportMemoryAllocInfo.handleTypes != 0)
|
|
{
|
|
VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
|
|
}
|
|
#endif // #if VMA_EXTERNAL_MEMORY
|
|
|
|
size_t allocIndex;
|
|
VkResult res = VK_SUCCESS;
|
|
for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
res = AllocateDedicatedMemoryPage(
|
|
size,
|
|
suballocType,
|
|
memTypeIndex,
|
|
allocInfo,
|
|
map,
|
|
isUserDataString,
|
|
pUserData,
|
|
pAllocations + allocIndex);
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Register them in m_DedicatedAllocations.
|
|
{
|
|
VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
|
|
DedicatedAllocationLinkedList& dedicatedAllocations = m_DedicatedAllocations[memTypeIndex];
|
|
for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
dedicatedAllocations.PushBack(pAllocations[allocIndex]);
|
|
}
|
|
}
|
|
|
|
VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex);
|
|
}
|
|
else
|
|
{
|
|
// Free all already created allocations.
|
|
while(allocIndex--)
|
|
{
|
|
VmaAllocation currAlloc = pAllocations[allocIndex];
|
|
VkDeviceMemory hMemory = currAlloc->GetMemory();
|
|
|
|
/*
|
|
There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
|
|
before vkFreeMemory.
|
|
|
|
if(currAlloc->GetMappedData() != VMA_NULL)
|
|
{
|
|
(*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
|
|
}
|
|
*/
|
|
|
|
FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
|
|
m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());
|
|
currAlloc->SetUserData(this, VMA_NULL);
|
|
m_AllocationObjectAllocator.Free(currAlloc);
|
|
}
|
|
|
|
memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
|
|
VkDeviceSize size,
|
|
VmaSuballocationType suballocType,
|
|
uint32_t memTypeIndex,
|
|
const VkMemoryAllocateInfo& allocInfo,
|
|
bool map,
|
|
bool isUserDataString,
|
|
void* pUserData,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
VkDeviceMemory hMemory = VK_NULL_HANDLE;
|
|
VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
|
|
if(res < 0)
|
|
{
|
|
VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
|
|
return res;
|
|
}
|
|
|
|
void* pMappedData = VMA_NULL;
|
|
if(map)
|
|
{
|
|
res = (*m_VulkanFunctions.vkMapMemory)(
|
|
m_hDevice,
|
|
hMemory,
|
|
0,
|
|
VK_WHOLE_SIZE,
|
|
0,
|
|
&pMappedData);
|
|
if(res < 0)
|
|
{
|
|
VMA_DEBUG_LOG(" vkMapMemory FAILED");
|
|
FreeVulkanMemory(memTypeIndex, size, hMemory);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
*pAllocation = m_AllocationObjectAllocator.Allocate(m_CurrentFrameIndex.load(), isUserDataString);
|
|
(*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);
|
|
(*pAllocation)->SetUserData(this, pUserData);
|
|
m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);
|
|
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
|
{
|
|
FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaAllocator_T::GetBufferMemoryRequirements(
|
|
VkBuffer hBuffer,
|
|
VkMemoryRequirements& memReq,
|
|
bool& requiresDedicatedAllocation,
|
|
bool& prefersDedicatedAllocation) const
|
|
{
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
|
|
memReqInfo.buffer = hBuffer;
|
|
|
|
VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
|
|
|
|
VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
|
|
VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
|
|
|
|
(*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
|
|
|
|
memReq = memReq2.memoryRequirements;
|
|
requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
|
|
prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
|
|
}
|
|
else
|
|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
{
|
|
(*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
|
|
requiresDedicatedAllocation = false;
|
|
prefersDedicatedAllocation = false;
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::GetImageMemoryRequirements(
|
|
VkImage hImage,
|
|
VkMemoryRequirements& memReq,
|
|
bool& requiresDedicatedAllocation,
|
|
bool& prefersDedicatedAllocation) const
|
|
{
|
|
#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
|
|
{
|
|
VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
|
|
memReqInfo.image = hImage;
|
|
|
|
VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
|
|
|
|
VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
|
|
VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
|
|
|
|
(*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
|
|
|
|
memReq = memReq2.memoryRequirements;
|
|
requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
|
|
prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
|
|
}
|
|
else
|
|
#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
|
|
{
|
|
(*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
|
|
requiresDedicatedAllocation = false;
|
|
prefersDedicatedAllocation = false;
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::AllocateMemory(
|
|
const VkMemoryRequirements& vkMemReq,
|
|
bool requiresDedicatedAllocation,
|
|
bool prefersDedicatedAllocation,
|
|
VkBuffer dedicatedBuffer,
|
|
VkBufferUsageFlags dedicatedBufferUsage,
|
|
VkImage dedicatedImage,
|
|
const VmaAllocationCreateInfo& createInfo,
|
|
VmaSuballocationType suballocType,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations)
|
|
{
|
|
memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
|
|
|
|
VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
|
|
|
|
if(vkMemReq.size == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
|
|
(createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
|
|
(createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
if(requiresDedicatedAllocation)
|
|
{
|
|
if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
|
|
{
|
|
VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
if(createInfo.pool != VK_NULL_HANDLE)
|
|
{
|
|
VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
}
|
|
if((createInfo.pool != VK_NULL_HANDLE) &&
|
|
((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))
|
|
{
|
|
VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
if(createInfo.pool != VK_NULL_HANDLE)
|
|
{
|
|
VmaAllocationCreateInfo createInfoForPool = createInfo;
|
|
// If memory type is not HOST_VISIBLE, disable MAPPED.
|
|
if((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
|
|
(m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
|
|
{
|
|
createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
}
|
|
|
|
return createInfo.pool->m_BlockVector.Allocate(
|
|
m_CurrentFrameIndex.load(),
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
createInfoForPool,
|
|
suballocType,
|
|
allocationCount,
|
|
pAllocations);
|
|
}
|
|
else
|
|
{
|
|
// Bit mask of memory Vulkan types acceptable for this allocation.
|
|
uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
|
|
uint32_t memTypeIndex = UINT32_MAX;
|
|
VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
res = AllocateMemoryOfType(
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
requiresDedicatedAllocation || prefersDedicatedAllocation,
|
|
dedicatedBuffer,
|
|
dedicatedBufferUsage,
|
|
dedicatedImage,
|
|
createInfo,
|
|
memTypeIndex,
|
|
suballocType,
|
|
allocationCount,
|
|
pAllocations);
|
|
// Succeeded on first try.
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
// Allocation from this memory type failed. Try other compatible memory types.
|
|
else
|
|
{
|
|
for(;;)
|
|
{
|
|
// Remove old memTypeIndex from list of possibilities.
|
|
memoryTypeBits &= ~(1u << memTypeIndex);
|
|
// Find alternative memTypeIndex.
|
|
res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
res = AllocateMemoryOfType(
|
|
vkMemReq.size,
|
|
vkMemReq.alignment,
|
|
requiresDedicatedAllocation || prefersDedicatedAllocation,
|
|
dedicatedBuffer,
|
|
dedicatedBufferUsage,
|
|
dedicatedImage,
|
|
createInfo,
|
|
memTypeIndex,
|
|
suballocType,
|
|
allocationCount,
|
|
pAllocations);
|
|
// Allocation from this alternative memory type succeeded.
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
return res;
|
|
}
|
|
// else: Allocation from this memory type failed. Try next one - next loop iteration.
|
|
}
|
|
// No other matching memory type index could be found.
|
|
else
|
|
{
|
|
// Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
|
|
else
|
|
return res;
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::FreeMemory(
|
|
size_t allocationCount,
|
|
const VmaAllocation* pAllocations)
|
|
{
|
|
VMA_ASSERT(pAllocations);
|
|
|
|
for(size_t allocIndex = allocationCount; allocIndex--; )
|
|
{
|
|
VmaAllocation allocation = pAllocations[allocIndex];
|
|
|
|
if(allocation != VK_NULL_HANDLE)
|
|
{
|
|
if(TouchAllocation(allocation))
|
|
{
|
|
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
|
|
{
|
|
FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
|
|
}
|
|
|
|
switch(allocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaBlockVector* pBlockVector = VMA_NULL;
|
|
VmaPool hPool = allocation->GetBlock()->GetParentPool();
|
|
if(hPool != VK_NULL_HANDLE)
|
|
{
|
|
pBlockVector = &hPool->m_BlockVector;
|
|
}
|
|
else
|
|
{
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
|
|
}
|
|
pBlockVector->Free(allocation);
|
|
}
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
FreeDedicatedMemory(allocation);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
// Do this regardless of whether the allocation is lost. Lost allocations still account to Budget.AllocationBytes.
|
|
m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());
|
|
allocation->SetUserData(this, VMA_NULL);
|
|
m_AllocationObjectAllocator.Free(allocation);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::CalculateStats(VmaStats* pStats)
|
|
{
|
|
// Initialize.
|
|
VmaInitStatInfo(pStats->total);
|
|
for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
|
|
VmaInitStatInfo(pStats->memoryType[i]);
|
|
for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
|
|
VmaInitStatInfo(pStats->memoryHeap[i]);
|
|
|
|
// Process default pools.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
if (pBlockVector != VMA_NULL)
|
|
pBlockVector->AddStats(pStats);
|
|
}
|
|
|
|
// Process custom pools.
|
|
{
|
|
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
|
|
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
|
|
{
|
|
pool->m_BlockVector.AddStats(pStats);
|
|
}
|
|
}
|
|
|
|
// Process dedicated allocations.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
|
|
VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
|
|
DedicatedAllocationLinkedList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex];
|
|
for(VmaAllocation alloc = dedicatedAllocList.Front();
|
|
alloc != VMA_NULL; alloc = dedicatedAllocList.GetNext(alloc))
|
|
{
|
|
VmaStatInfo allocationStatInfo;
|
|
alloc->DedicatedAllocCalcStatsInfo(allocationStatInfo);
|
|
VmaAddStatInfo(pStats->total, allocationStatInfo);
|
|
VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
|
|
VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
|
|
}
|
|
}
|
|
|
|
// Postprocess.
|
|
VmaPostprocessCalcStatInfo(pStats->total);
|
|
for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
|
|
VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
|
|
for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
|
|
VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
|
|
}
|
|
|
|
void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount)
|
|
{
|
|
#if VMA_MEMORY_BUDGET
|
|
if(m_UseExtMemoryBudget)
|
|
{
|
|
if(m_Budget.m_OperationsSinceBudgetFetch < 30)
|
|
{
|
|
VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);
|
|
for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
|
|
{
|
|
const uint32_t heapIndex = firstHeap + i;
|
|
|
|
outBudgets->blockBytes = m_Budget.m_BlockBytes[heapIndex];
|
|
outBudgets->allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
|
|
|
|
if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])
|
|
{
|
|
outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] +
|
|
outBudgets->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
|
|
}
|
|
else
|
|
{
|
|
outBudgets->usage = 0;
|
|
}
|
|
|
|
// Have to take MIN with heap size because explicit HeapSizeLimit is included in it.
|
|
outBudgets->budget = VMA_MIN(
|
|
m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
UpdateVulkanBudget(); // Outside of mutex lock
|
|
GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
|
|
{
|
|
const uint32_t heapIndex = firstHeap + i;
|
|
|
|
outBudgets->blockBytes = m_Budget.m_BlockBytes[heapIndex];
|
|
outBudgets->allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
|
|
|
|
outBudgets->usage = outBudgets->blockBytes;
|
|
outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
|
|
}
|
|
}
|
|
}
|
|
|
|
static const uint32_t VMA_VENDOR_ID_AMD = 4098;
|
|
|
|
VkResult VmaAllocator_T::DefragmentationBegin(
|
|
const VmaDefragmentationInfo2& info,
|
|
VmaDefragmentationStats* pStats,
|
|
VmaDefragmentationContext* pContext)
|
|
{
|
|
if(info.pAllocationsChanged != VMA_NULL)
|
|
{
|
|
memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32));
|
|
}
|
|
|
|
*pContext = vma_new(this, VmaDefragmentationContext_T)(
|
|
this, m_CurrentFrameIndex.load(), info.flags, pStats);
|
|
|
|
(*pContext)->AddPools(info.poolCount, info.pPools);
|
|
(*pContext)->AddAllocations(
|
|
info.allocationCount, info.pAllocations, info.pAllocationsChanged);
|
|
|
|
VkResult res = (*pContext)->Defragment(
|
|
info.maxCpuBytesToMove, info.maxCpuAllocationsToMove,
|
|
info.maxGpuBytesToMove, info.maxGpuAllocationsToMove,
|
|
info.commandBuffer, pStats, info.flags);
|
|
|
|
if(res != VK_NOT_READY)
|
|
{
|
|
vma_delete(this, *pContext);
|
|
*pContext = VMA_NULL;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::DefragmentationEnd(
|
|
VmaDefragmentationContext context)
|
|
{
|
|
vma_delete(this, context);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::DefragmentationPassBegin(
|
|
VmaDefragmentationPassInfo* pInfo,
|
|
VmaDefragmentationContext context)
|
|
{
|
|
return context->DefragmentPassBegin(pInfo);
|
|
}
|
|
VkResult VmaAllocator_T::DefragmentationPassEnd(
|
|
VmaDefragmentationContext context)
|
|
{
|
|
return context->DefragmentPassEnd();
|
|
|
|
}
|
|
|
|
void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
if(hAllocation->CanBecomeLost())
|
|
{
|
|
/*
|
|
Warning: This is a carefully designed algorithm.
|
|
Do not modify unless you really know what you are doing :)
|
|
*/
|
|
const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
|
|
uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
|
|
for(;;)
|
|
{
|
|
if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
|
|
{
|
|
pAllocationInfo->memoryType = UINT32_MAX;
|
|
pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
|
|
pAllocationInfo->offset = 0;
|
|
pAllocationInfo->size = hAllocation->GetSize();
|
|
pAllocationInfo->pMappedData = VMA_NULL;
|
|
pAllocationInfo->pUserData = hAllocation->GetUserData();
|
|
return;
|
|
}
|
|
else if(localLastUseFrameIndex == localCurrFrameIndex)
|
|
{
|
|
pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
|
|
pAllocationInfo->deviceMemory = hAllocation->GetMemory();
|
|
pAllocationInfo->offset = hAllocation->GetOffset();
|
|
pAllocationInfo->size = hAllocation->GetSize();
|
|
pAllocationInfo->pMappedData = VMA_NULL;
|
|
pAllocationInfo->pUserData = hAllocation->GetUserData();
|
|
return;
|
|
}
|
|
else // Last use time earlier than current time.
|
|
{
|
|
if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
|
|
{
|
|
localLastUseFrameIndex = localCurrFrameIndex;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#if VMA_STATS_STRING_ENABLED
|
|
uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
|
|
uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
|
|
for(;;)
|
|
{
|
|
VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
|
|
if(localLastUseFrameIndex == localCurrFrameIndex)
|
|
{
|
|
break;
|
|
}
|
|
else // Last use time earlier than current time.
|
|
{
|
|
if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
|
|
{
|
|
localLastUseFrameIndex = localCurrFrameIndex;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
|
|
pAllocationInfo->deviceMemory = hAllocation->GetMemory();
|
|
pAllocationInfo->offset = hAllocation->GetOffset();
|
|
pAllocationInfo->size = hAllocation->GetSize();
|
|
pAllocationInfo->pMappedData = hAllocation->GetMappedData();
|
|
pAllocationInfo->pUserData = hAllocation->GetUserData();
|
|
}
|
|
}
|
|
|
|
bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation)
|
|
{
|
|
// This is a stripped-down version of VmaAllocator_T::GetAllocationInfo.
|
|
if(hAllocation->CanBecomeLost())
|
|
{
|
|
uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
|
|
uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
|
|
for(;;)
|
|
{
|
|
if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
|
|
{
|
|
return false;
|
|
}
|
|
else if(localLastUseFrameIndex == localCurrFrameIndex)
|
|
{
|
|
return true;
|
|
}
|
|
else // Last use time earlier than current time.
|
|
{
|
|
if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
|
|
{
|
|
localLastUseFrameIndex = localCurrFrameIndex;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#if VMA_STATS_STRING_ENABLED
|
|
uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
|
|
uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
|
|
for(;;)
|
|
{
|
|
VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
|
|
if(localLastUseFrameIndex == localCurrFrameIndex)
|
|
{
|
|
break;
|
|
}
|
|
else // Last use time earlier than current time.
|
|
{
|
|
if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
|
|
{
|
|
localLastUseFrameIndex = localCurrFrameIndex;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
|
|
{
|
|
VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
|
|
|
|
VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
|
|
|
|
// Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash.
|
|
if(pCreateInfo->pMemoryAllocateNext)
|
|
{
|
|
VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0);
|
|
}
|
|
|
|
if(newCreateInfo.maxBlockCount == 0)
|
|
{
|
|
newCreateInfo.maxBlockCount = SIZE_MAX;
|
|
}
|
|
if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
// Memory type index out of range or forbidden.
|
|
if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
|
|
((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
|
|
{
|
|
return VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
if(newCreateInfo.minAllocationAlignment > 0)
|
|
{
|
|
VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment));
|
|
}
|
|
|
|
const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
|
|
|
|
*pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
|
|
|
|
VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
|
|
if(res != VK_SUCCESS)
|
|
{
|
|
vma_delete(this, *pPool);
|
|
*pPool = VMA_NULL;
|
|
return res;
|
|
}
|
|
|
|
// Add to m_Pools.
|
|
{
|
|
VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
|
|
(*pPool)->SetId(m_NextPoolId++);
|
|
m_Pools.PushBack(*pPool);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void VmaAllocator_T::DestroyPool(VmaPool pool)
|
|
{
|
|
// Remove from m_Pools.
|
|
{
|
|
VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
|
|
m_Pools.Remove(pool);
|
|
}
|
|
|
|
vma_delete(this, pool);
|
|
}
|
|
|
|
void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
|
|
{
|
|
pool->m_BlockVector.GetPoolStats(pPoolStats);
|
|
}
|
|
|
|
void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
|
|
{
|
|
m_CurrentFrameIndex.store(frameIndex);
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
if(m_UseExtMemoryBudget)
|
|
{
|
|
UpdateVulkanBudget();
|
|
}
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
}
|
|
|
|
void VmaAllocator_T::MakePoolAllocationsLost(
|
|
VmaPool hPool,
|
|
size_t* pLostAllocationCount)
|
|
{
|
|
hPool->m_BlockVector.MakePoolAllocationsLost(
|
|
m_CurrentFrameIndex.load(),
|
|
pLostAllocationCount);
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
|
|
{
|
|
return hPool->m_BlockVector.CheckCorruption();
|
|
}
|
|
|
|
VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
|
|
{
|
|
VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
|
|
|
|
// Process default pools.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
if(pBlockVector != VMA_NULL)
|
|
{
|
|
VkResult localRes = pBlockVector->CheckCorruption();
|
|
switch(localRes)
|
|
{
|
|
case VK_ERROR_FEATURE_NOT_PRESENT:
|
|
break;
|
|
case VK_SUCCESS:
|
|
finalRes = VK_SUCCESS;
|
|
break;
|
|
default:
|
|
return localRes;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Process custom pools.
|
|
{
|
|
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
|
|
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
|
|
{
|
|
if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
|
|
{
|
|
VkResult localRes = pool->m_BlockVector.CheckCorruption();
|
|
switch(localRes)
|
|
{
|
|
case VK_ERROR_FEATURE_NOT_PRESENT:
|
|
break;
|
|
case VK_SUCCESS:
|
|
finalRes = VK_SUCCESS;
|
|
break;
|
|
default:
|
|
return localRes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return finalRes;
|
|
}
|
|
|
|
void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)
|
|
{
|
|
*pAllocation = m_AllocationObjectAllocator.Allocate(VMA_FRAME_INDEX_LOST, false);
|
|
(*pAllocation)->InitLost();
|
|
}
|
|
|
|
// An object that increments given atomic but decrements it back in the destructor unless Commit() is called.
|
|
template<typename T>
|
|
struct AtomicTransactionalIncrement
|
|
{
|
|
public:
|
|
typedef std::atomic<T> AtomicT;
|
|
~AtomicTransactionalIncrement()
|
|
{
|
|
if(m_Atomic)
|
|
--(*m_Atomic);
|
|
}
|
|
T Increment(AtomicT* atomic)
|
|
{
|
|
m_Atomic = atomic;
|
|
return m_Atomic->fetch_add(1);
|
|
}
|
|
void Commit()
|
|
{
|
|
m_Atomic = nullptr;
|
|
}
|
|
|
|
private:
|
|
AtomicT* m_Atomic = nullptr;
|
|
};
|
|
|
|
VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
|
|
{
|
|
AtomicTransactionalIncrement<uint32_t> deviceMemoryCountIncrement;
|
|
const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount);
|
|
#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
|
|
if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount)
|
|
{
|
|
return VK_ERROR_TOO_MANY_OBJECTS;
|
|
}
|
|
#endif
|
|
|
|
const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
|
|
|
|
// HeapSizeLimit is in effect for this heap.
|
|
if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)
|
|
{
|
|
const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
|
|
VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];
|
|
for(;;)
|
|
{
|
|
const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;
|
|
if(blockBytesAfterAllocation > heapSize)
|
|
{
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;
|
|
}
|
|
|
|
// VULKAN CALL vkAllocateMemory.
|
|
VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
|
|
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
#if VMA_MEMORY_BUDGET
|
|
++m_Budget.m_OperationsSinceBudgetFetch;
|
|
#endif
|
|
|
|
// Informative callback.
|
|
if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
|
|
{
|
|
(*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData);
|
|
}
|
|
|
|
deviceMemoryCountIncrement.Commit();
|
|
}
|
|
else
|
|
{
|
|
m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
|
|
{
|
|
// Informative callback.
|
|
if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
|
|
{
|
|
(*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData);
|
|
}
|
|
|
|
// VULKAN CALL vkFreeMemory.
|
|
(*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
|
|
|
|
m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size;
|
|
|
|
--m_DeviceMemoryCount;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::BindVulkanBuffer(
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset,
|
|
VkBuffer buffer,
|
|
const void* pNext)
|
|
{
|
|
if(pNext != VMA_NULL)
|
|
{
|
|
#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
|
|
if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
|
|
m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
|
|
{
|
|
VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
|
|
bindBufferMemoryInfo.pNext = pNext;
|
|
bindBufferMemoryInfo.buffer = buffer;
|
|
bindBufferMemoryInfo.memory = memory;
|
|
bindBufferMemoryInfo.memoryOffset = memoryOffset;
|
|
return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
|
|
}
|
|
else
|
|
#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
|
|
{
|
|
return VK_ERROR_EXTENSION_NOT_PRESENT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::BindVulkanImage(
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset,
|
|
VkImage image,
|
|
const void* pNext)
|
|
{
|
|
if(pNext != VMA_NULL)
|
|
{
|
|
#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
|
|
if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
|
|
m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
|
|
{
|
|
VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
|
|
bindBufferMemoryInfo.pNext = pNext;
|
|
bindBufferMemoryInfo.image = image;
|
|
bindBufferMemoryInfo.memory = memory;
|
|
bindBufferMemoryInfo.memoryOffset = memoryOffset;
|
|
return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
|
|
}
|
|
else
|
|
#endif // #if VMA_BIND_MEMORY2
|
|
{
|
|
return VK_ERROR_EXTENSION_NOT_PRESENT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
|
|
{
|
|
if(hAllocation->CanBecomeLost())
|
|
{
|
|
return VK_ERROR_MEMORY_MAP_FAILED;
|
|
}
|
|
|
|
switch(hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
|
|
char *pBytes = VMA_NULL;
|
|
VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
*ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
|
|
hAllocation->BlockAllocMap();
|
|
}
|
|
return res;
|
|
}
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
return hAllocation->DedicatedAllocMap(this, ppData);
|
|
default:
|
|
VMA_ASSERT(0);
|
|
return VK_ERROR_MEMORY_MAP_FAILED;
|
|
}
|
|
}
|
|
|
|
void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
|
|
{
|
|
switch(hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
|
|
hAllocation->BlockAllocUnmap();
|
|
pBlock->Unmap(this, 1);
|
|
}
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
hAllocation->DedicatedAllocUnmap(this);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
VkResult VmaAllocator_T::BindBufferMemory(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer hBuffer,
|
|
const void* pNext)
|
|
{
|
|
VkResult res = VK_SUCCESS;
|
|
switch(hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
|
|
VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?");
|
|
res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
|
|
break;
|
|
}
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::BindImageMemory(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage hImage,
|
|
const void* pNext)
|
|
{
|
|
VkResult res = VK_SUCCESS;
|
|
switch(hAllocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
|
|
VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?");
|
|
res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
|
|
break;
|
|
}
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::FlushOrInvalidateAllocation(
|
|
VmaAllocation hAllocation,
|
|
VkDeviceSize offset, VkDeviceSize size,
|
|
VMA_CACHE_OPERATION op)
|
|
{
|
|
VkResult res = VK_SUCCESS;
|
|
|
|
VkMappedMemoryRange memRange = {};
|
|
if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange))
|
|
{
|
|
switch(op)
|
|
{
|
|
case VMA_CACHE_FLUSH:
|
|
res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
|
|
break;
|
|
case VMA_CACHE_INVALIDATE:
|
|
res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
// else: Just ignore this call.
|
|
return res;
|
|
}
|
|
|
|
VkResult VmaAllocator_T::FlushOrInvalidateAllocations(
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* allocations,
|
|
const VkDeviceSize* offsets, const VkDeviceSize* sizes,
|
|
VMA_CACHE_OPERATION op)
|
|
{
|
|
typedef VmaStlAllocator<VkMappedMemoryRange> RangeAllocator;
|
|
typedef VmaSmallVector<VkMappedMemoryRange, RangeAllocator, 16> RangeVector;
|
|
RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks()));
|
|
|
|
for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
|
|
{
|
|
const VmaAllocation alloc = allocations[allocIndex];
|
|
const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0;
|
|
const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE;
|
|
VkMappedMemoryRange newRange;
|
|
if(GetFlushOrInvalidateRange(alloc, offset, size, newRange))
|
|
{
|
|
ranges.push_back(newRange);
|
|
}
|
|
}
|
|
|
|
VkResult res = VK_SUCCESS;
|
|
if(!ranges.empty())
|
|
{
|
|
switch(op)
|
|
{
|
|
case VMA_CACHE_FLUSH:
|
|
res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
|
|
break;
|
|
case VMA_CACHE_INVALIDATE:
|
|
res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
}
|
|
// else: Just ignore this call.
|
|
return res;
|
|
}
|
|
|
|
void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
|
|
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
{
|
|
VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
|
|
DedicatedAllocationLinkedList& dedicatedAllocations = m_DedicatedAllocations[memTypeIndex];
|
|
dedicatedAllocations.Remove(allocation);
|
|
}
|
|
|
|
VkDeviceMemory hMemory = allocation->GetMemory();
|
|
|
|
/*
|
|
There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
|
|
before vkFreeMemory.
|
|
|
|
if(allocation->GetMappedData() != VMA_NULL)
|
|
{
|
|
(*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
|
|
}
|
|
*/
|
|
|
|
FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
|
|
|
|
VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
|
|
}
|
|
|
|
uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
|
|
{
|
|
VkBufferCreateInfo dummyBufCreateInfo;
|
|
VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
|
|
|
|
uint32_t memoryTypeBits = 0;
|
|
|
|
// Create buffer.
|
|
VkBuffer buf = VK_NULL_HANDLE;
|
|
VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
|
|
m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Query for supported memory types.
|
|
VkMemoryRequirements memReq;
|
|
(*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
|
|
memoryTypeBits = memReq.memoryTypeBits;
|
|
|
|
// Destroy buffer.
|
|
(*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
|
|
}
|
|
|
|
return memoryTypeBits;
|
|
}
|
|
|
|
uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const
|
|
{
|
|
// Make sure memory information is already fetched.
|
|
VMA_ASSERT(GetMemoryTypeCount() > 0);
|
|
|
|
uint32_t memoryTypeBits = UINT32_MAX;
|
|
|
|
if(!m_UseAmdDeviceCoherentMemory)
|
|
{
|
|
// Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD.
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
|
|
{
|
|
memoryTypeBits &= ~(1u << memTypeIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
return memoryTypeBits;
|
|
}
|
|
|
|
bool VmaAllocator_T::GetFlushOrInvalidateRange(
|
|
VmaAllocation allocation,
|
|
VkDeviceSize offset, VkDeviceSize size,
|
|
VkMappedMemoryRange& outRange) const
|
|
{
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
|
|
{
|
|
const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
|
|
const VkDeviceSize allocationSize = allocation->GetSize();
|
|
VMA_ASSERT(offset <= allocationSize);
|
|
|
|
outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
|
|
outRange.pNext = VMA_NULL;
|
|
outRange.memory = allocation->GetMemory();
|
|
|
|
switch(allocation->GetType())
|
|
{
|
|
case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
|
|
outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
|
|
if(size == VK_WHOLE_SIZE)
|
|
{
|
|
outRange.size = allocationSize - outRange.offset;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(offset + size <= allocationSize);
|
|
outRange.size = VMA_MIN(
|
|
VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize),
|
|
allocationSize - outRange.offset);
|
|
}
|
|
break;
|
|
case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
|
|
{
|
|
// 1. Still within this allocation.
|
|
outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
|
|
if(size == VK_WHOLE_SIZE)
|
|
{
|
|
size = allocationSize - offset;
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(offset + size <= allocationSize);
|
|
}
|
|
outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize);
|
|
|
|
// 2. Adjust to whole block.
|
|
const VkDeviceSize allocationOffset = allocation->GetOffset();
|
|
VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
|
|
const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize();
|
|
outRange.offset += allocationOffset;
|
|
outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#if VMA_MEMORY_BUDGET
|
|
|
|
void VmaAllocator_T::UpdateVulkanBudget()
|
|
{
|
|
VMA_ASSERT(m_UseExtMemoryBudget);
|
|
|
|
VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };
|
|
|
|
VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
|
|
VmaPnextChainPushFront(&memProps, &budgetProps);
|
|
|
|
GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);
|
|
|
|
{
|
|
VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);
|
|
|
|
for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
|
|
{
|
|
m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];
|
|
m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];
|
|
m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();
|
|
|
|
// Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size.
|
|
if(m_Budget.m_VulkanBudget[heapIndex] == 0)
|
|
{
|
|
m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
|
|
}
|
|
else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size)
|
|
{
|
|
m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size;
|
|
}
|
|
if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0)
|
|
{
|
|
m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
|
|
}
|
|
}
|
|
m_Budget.m_OperationsSinceBudgetFetch = 0;
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_MEMORY_BUDGET
|
|
|
|
void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
|
|
{
|
|
if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
|
|
!hAllocation->CanBecomeLost() &&
|
|
(m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
{
|
|
void* pData = VMA_NULL;
|
|
VkResult res = Map(hAllocation, &pData);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
|
|
FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
|
|
Unmap(hAllocation);
|
|
}
|
|
else
|
|
{
|
|
VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
|
|
{
|
|
uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
|
|
if(memoryTypeBits == UINT32_MAX)
|
|
{
|
|
memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
|
|
m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
|
|
}
|
|
return memoryTypeBits;
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
|
|
{
|
|
bool dedicatedAllocationsStarted = false;
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
|
|
DedicatedAllocationLinkedList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex];
|
|
if(!dedicatedAllocList.IsEmpty())
|
|
{
|
|
if(dedicatedAllocationsStarted == false)
|
|
{
|
|
dedicatedAllocationsStarted = true;
|
|
json.WriteString("DedicatedAllocations");
|
|
json.BeginObject();
|
|
}
|
|
|
|
json.BeginString("Type ");
|
|
json.ContinueString(memTypeIndex);
|
|
json.EndString();
|
|
|
|
json.BeginArray();
|
|
|
|
for(VmaAllocation alloc = dedicatedAllocList.Front();
|
|
alloc != VMA_NULL; alloc = dedicatedAllocList.GetNext(alloc))
|
|
{
|
|
json.BeginObject(true);
|
|
alloc->PrintParameters(json);
|
|
json.EndObject();
|
|
}
|
|
|
|
json.EndArray();
|
|
}
|
|
}
|
|
if(dedicatedAllocationsStarted)
|
|
{
|
|
json.EndObject();
|
|
}
|
|
|
|
{
|
|
bool allocationsStarted = false;
|
|
for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
|
|
{
|
|
VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex];
|
|
if(pBlockVector != VMA_NULL)
|
|
{
|
|
if (pBlockVector->IsEmpty() == false)
|
|
{
|
|
if (allocationsStarted == false)
|
|
{
|
|
allocationsStarted = true;
|
|
json.WriteString("DefaultPools");
|
|
json.BeginObject();
|
|
}
|
|
|
|
json.BeginString("Type ");
|
|
json.ContinueString(memTypeIndex);
|
|
json.EndString();
|
|
|
|
pBlockVector->PrintDetailedMap(json);
|
|
}
|
|
}
|
|
}
|
|
if(allocationsStarted)
|
|
{
|
|
json.EndObject();
|
|
}
|
|
}
|
|
|
|
// Custom pools
|
|
{
|
|
VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
|
|
if(!m_Pools.IsEmpty())
|
|
{
|
|
json.WriteString("Pools");
|
|
json.BeginObject();
|
|
for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
|
|
{
|
|
json.BeginString();
|
|
json.ContinueString(pool->GetId());
|
|
json.EndString();
|
|
|
|
pool->m_BlockVector.PrintDetailedMap(json);
|
|
}
|
|
json.EndObject();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// VmaVirtualBlock_T
|
|
|
|
VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo) :
|
|
m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL),
|
|
m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks)
|
|
{
|
|
const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK;
|
|
switch(algorithm)
|
|
{
|
|
case 0:
|
|
m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Generic)(VK_NULL_HANDLE, true);
|
|
break;
|
|
case VMA_VIRTUAL_BLOCK_CREATE_BUDDY_ALGORITHM_BIT:
|
|
m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Buddy)(VK_NULL_HANDLE, true);
|
|
break;
|
|
case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT:
|
|
m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, true);
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
}
|
|
|
|
m_Metadata->Init(createInfo.size);
|
|
}
|
|
|
|
VmaVirtualBlock_T::~VmaVirtualBlock_T()
|
|
{
|
|
// This is an important assert!!!
|
|
// Hitting it means you have some memory leak - unreleased virtual allocations.
|
|
VMA_ASSERT(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!");
|
|
|
|
vma_delete(GetAllocationCallbacks(), m_Metadata);
|
|
}
|
|
|
|
VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VkDeviceSize& outOffset)
|
|
{
|
|
outOffset = VK_WHOLE_SIZE;
|
|
VmaAllocationRequest request = {};
|
|
if(m_Metadata->CreateAllocationRequest(
|
|
0, // currentFrameIndex - unimportant
|
|
0, // frameInUseCount - unimportant
|
|
1, // bufferImageGranularity
|
|
createInfo.size, // allocSize
|
|
VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment
|
|
(createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant
|
|
false, // canMakeOthersLost
|
|
createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy
|
|
&request))
|
|
{
|
|
m_Metadata->Alloc(request,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant
|
|
createInfo.pUserData);
|
|
outOffset = request.offset;
|
|
return VK_SUCCESS;
|
|
}
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const
|
|
{
|
|
VmaJsonWriter json(GetAllocationCallbacks(), sb);
|
|
json.BeginObject();
|
|
|
|
VmaStatInfo stat = {};
|
|
CalculateStats(stat);
|
|
|
|
json.WriteString("Stats");
|
|
VmaPrintStatInfo(json, stat);
|
|
|
|
if(detailedMap)
|
|
{
|
|
json.WriteString("Details");
|
|
m_Metadata->PrintDetailedMap(json);
|
|
}
|
|
|
|
json.EndObject();
|
|
}
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Public interface
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
|
|
const VmaAllocatorCreateInfo* pCreateInfo,
|
|
VmaAllocator* pAllocator)
|
|
{
|
|
VMA_ASSERT(pCreateInfo && pAllocator);
|
|
VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||
|
|
(VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 2));
|
|
VMA_DEBUG_LOG("vmaCreateAllocator");
|
|
*pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
|
|
VkResult result = (*pAllocator)->Init(pCreateInfo);
|
|
if(result < 0)
|
|
{
|
|
vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator);
|
|
*pAllocator = VK_NULL_HANDLE;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
|
|
VmaAllocator allocator)
|
|
{
|
|
if(allocator != VK_NULL_HANDLE)
|
|
{
|
|
VMA_DEBUG_LOG("vmaDestroyAllocator");
|
|
VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
|
|
vma_delete(&allocationCallbacks, allocator);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pAllocatorInfo);
|
|
pAllocatorInfo->instance = allocator->m_hInstance;
|
|
pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice();
|
|
pAllocatorInfo->device = allocator->m_hDevice;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
|
|
VmaAllocator allocator,
|
|
const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
|
|
{
|
|
VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
|
|
*ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
|
|
VmaAllocator allocator,
|
|
const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
|
|
{
|
|
VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
|
|
*ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeIndex,
|
|
VkMemoryPropertyFlags* pFlags)
|
|
{
|
|
VMA_ASSERT(allocator && pFlags);
|
|
VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
|
|
*pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
|
|
VmaAllocator allocator,
|
|
uint32_t frameIndex)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->SetCurrentFrameIndex(frameIndex);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats(
|
|
VmaAllocator allocator,
|
|
VmaStats* pStats)
|
|
{
|
|
VMA_ASSERT(allocator && pStats);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
allocator->CalculateStats(pStats);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
|
|
VmaAllocator allocator,
|
|
VmaBudget* pBudgets)
|
|
{
|
|
VMA_ASSERT(allocator && pBudgets);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount());
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
|
|
VmaAllocator allocator,
|
|
char** ppStatsString,
|
|
VkBool32 detailedMap)
|
|
{
|
|
VMA_ASSERT(allocator && ppStatsString);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VmaStringBuilder sb(allocator->GetAllocationCallbacks());
|
|
{
|
|
VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
|
|
json.BeginObject();
|
|
|
|
VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
|
|
allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount());
|
|
|
|
VmaStats stats;
|
|
allocator->CalculateStats(&stats);
|
|
|
|
json.WriteString("Total");
|
|
VmaPrintStatInfo(json, stats.total);
|
|
|
|
for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
|
|
{
|
|
json.BeginString("Heap ");
|
|
json.ContinueString(heapIndex);
|
|
json.EndString();
|
|
json.BeginObject();
|
|
|
|
json.WriteString("Size");
|
|
json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
|
|
|
|
json.WriteString("Flags");
|
|
json.BeginArray(true);
|
|
if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
|
|
{
|
|
json.WriteString("DEVICE_LOCAL");
|
|
}
|
|
json.EndArray();
|
|
|
|
json.WriteString("Budget");
|
|
json.BeginObject();
|
|
{
|
|
json.WriteString("BlockBytes");
|
|
json.WriteNumber(budgets[heapIndex].blockBytes);
|
|
json.WriteString("AllocationBytes");
|
|
json.WriteNumber(budgets[heapIndex].allocationBytes);
|
|
json.WriteString("Usage");
|
|
json.WriteNumber(budgets[heapIndex].usage);
|
|
json.WriteString("Budget");
|
|
json.WriteNumber(budgets[heapIndex].budget);
|
|
}
|
|
json.EndObject();
|
|
|
|
if(stats.memoryHeap[heapIndex].blockCount > 0)
|
|
{
|
|
json.WriteString("Stats");
|
|
VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
|
|
}
|
|
|
|
for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
|
|
{
|
|
if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
|
|
{
|
|
json.BeginString("Type ");
|
|
json.ContinueString(typeIndex);
|
|
json.EndString();
|
|
|
|
json.BeginObject();
|
|
|
|
json.WriteString("Flags");
|
|
json.BeginArray(true);
|
|
VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
|
|
if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
|
|
{
|
|
json.WriteString("DEVICE_LOCAL");
|
|
}
|
|
if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
{
|
|
json.WriteString("HOST_VISIBLE");
|
|
}
|
|
if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
|
|
{
|
|
json.WriteString("HOST_COHERENT");
|
|
}
|
|
if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
|
|
{
|
|
json.WriteString("HOST_CACHED");
|
|
}
|
|
if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
|
|
{
|
|
json.WriteString("LAZILY_ALLOCATED");
|
|
}
|
|
#if VMA_VULKAN_VERSION >= 1001000
|
|
if((flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) != 0)
|
|
{
|
|
json.WriteString("PROTECTED");
|
|
}
|
|
#endif // #if VMA_VULKAN_VERSION >= 1001000
|
|
#if VK_AMD_device_coherent_memory
|
|
if((flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
|
|
{
|
|
json.WriteString("DEVICE_COHERENT");
|
|
}
|
|
if((flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) != 0)
|
|
{
|
|
json.WriteString("DEVICE_UNCACHED");
|
|
}
|
|
#endif // #if VK_AMD_device_coherent_memory
|
|
json.EndArray();
|
|
|
|
if(stats.memoryType[typeIndex].blockCount > 0)
|
|
{
|
|
json.WriteString("Stats");
|
|
VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
|
|
}
|
|
|
|
json.EndObject();
|
|
}
|
|
}
|
|
|
|
json.EndObject();
|
|
}
|
|
if(detailedMap == VK_TRUE)
|
|
{
|
|
allocator->PrintDetailedMap(json);
|
|
}
|
|
|
|
json.EndObject();
|
|
}
|
|
|
|
*ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength());
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
|
|
VmaAllocator allocator,
|
|
char* pStatsString)
|
|
{
|
|
if(pStatsString != VMA_NULL)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString);
|
|
}
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
/*
|
|
This function is not protected by any mutex because it just reads immutable data.
|
|
*/
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
|
|
VmaAllocator allocator,
|
|
uint32_t memoryTypeBits,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
uint32_t* pMemoryTypeIndex)
|
|
{
|
|
VMA_ASSERT(allocator != VK_NULL_HANDLE);
|
|
VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
|
|
|
|
memoryTypeBits &= allocator->GetGlobalMemoryTypeBits();
|
|
|
|
if(pAllocationCreateInfo->memoryTypeBits != 0)
|
|
{
|
|
memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
|
|
}
|
|
|
|
uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
|
|
uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
|
|
uint32_t notPreferredFlags = 0;
|
|
|
|
// Convert usage to requiredFlags and preferredFlags.
|
|
switch(pAllocationCreateInfo->usage)
|
|
{
|
|
case VMA_MEMORY_USAGE_UNKNOWN:
|
|
break;
|
|
case VMA_MEMORY_USAGE_GPU_ONLY:
|
|
if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
|
|
{
|
|
preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
}
|
|
break;
|
|
case VMA_MEMORY_USAGE_CPU_ONLY:
|
|
requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_CPU_TO_GPU:
|
|
requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
|
|
{
|
|
preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
}
|
|
break;
|
|
case VMA_MEMORY_USAGE_GPU_TO_CPU:
|
|
requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_CPU_COPY:
|
|
notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
|
|
break;
|
|
case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
|
|
requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
|
|
break;
|
|
default:
|
|
VMA_ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
// Avoid DEVICE_COHERENT unless explicitly requested.
|
|
if(((pAllocationCreateInfo->requiredFlags | pAllocationCreateInfo->preferredFlags) &
|
|
(VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)
|
|
{
|
|
notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY;
|
|
}
|
|
|
|
*pMemoryTypeIndex = UINT32_MAX;
|
|
uint32_t minCost = UINT32_MAX;
|
|
for(uint32_t memTypeIndex = 0, memTypeBit = 1;
|
|
memTypeIndex < allocator->GetMemoryTypeCount();
|
|
++memTypeIndex, memTypeBit <<= 1)
|
|
{
|
|
// This memory type is acceptable according to memoryTypeBits bitmask.
|
|
if((memTypeBit & memoryTypeBits) != 0)
|
|
{
|
|
const VkMemoryPropertyFlags currFlags =
|
|
allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
|
|
// This memory type contains requiredFlags.
|
|
if((requiredFlags & ~currFlags) == 0)
|
|
{
|
|
// Calculate cost as number of bits from preferredFlags not present in this memory type.
|
|
uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) +
|
|
VmaCountBitsSet(currFlags & notPreferredFlags);
|
|
// Remember memory type with lowest cost.
|
|
if(currCost < minCost)
|
|
{
|
|
*pMemoryTypeIndex = memTypeIndex;
|
|
if(currCost == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
minCost = currCost;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
|
|
VmaAllocator allocator,
|
|
const VkBufferCreateInfo* pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
uint32_t* pMemoryTypeIndex)
|
|
{
|
|
VMA_ASSERT(allocator != VK_NULL_HANDLE);
|
|
VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
|
|
|
|
const VkDevice hDev = allocator->m_hDevice;
|
|
VkBuffer hBuffer = VK_NULL_HANDLE;
|
|
const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
|
|
VkResult res = funcs->vkCreateBuffer(
|
|
hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VkMemoryRequirements memReq = {};
|
|
funcs->vkGetBufferMemoryRequirements(
|
|
hDev, hBuffer, &memReq);
|
|
|
|
res = vmaFindMemoryTypeIndex(
|
|
allocator,
|
|
memReq.memoryTypeBits,
|
|
pAllocationCreateInfo,
|
|
pMemoryTypeIndex);
|
|
|
|
funcs->vkDestroyBuffer(
|
|
hDev, hBuffer, allocator->GetAllocationCallbacks());
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
|
|
VmaAllocator allocator,
|
|
const VkImageCreateInfo* pImageCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
uint32_t* pMemoryTypeIndex)
|
|
{
|
|
VMA_ASSERT(allocator != VK_NULL_HANDLE);
|
|
VMA_ASSERT(pImageCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
|
|
VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
|
|
|
|
const VkDevice hDev = allocator->m_hDevice;
|
|
VkImage hImage = VK_NULL_HANDLE;
|
|
const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
|
|
VkResult res = funcs->vkCreateImage(
|
|
hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
VkMemoryRequirements memReq = {};
|
|
funcs->vkGetImageMemoryRequirements(
|
|
hDev, hImage, &memReq);
|
|
|
|
res = vmaFindMemoryTypeIndex(
|
|
allocator,
|
|
memReq.memoryTypeBits,
|
|
pAllocationCreateInfo,
|
|
pMemoryTypeIndex);
|
|
|
|
funcs->vkDestroyImage(
|
|
hDev, hImage, allocator->GetAllocationCallbacks());
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
|
|
VmaAllocator allocator,
|
|
const VmaPoolCreateInfo* pCreateInfo,
|
|
VmaPool* pPool)
|
|
{
|
|
VMA_ASSERT(allocator && pCreateInfo && pPool);
|
|
|
|
VMA_DEBUG_LOG("vmaCreatePool");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkResult res = allocator->CreatePool(pCreateInfo, pPool);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool);
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
|
|
VmaAllocator allocator,
|
|
VmaPool pool)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(pool == VK_NULL_HANDLE)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaDestroyPool");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool);
|
|
}
|
|
#endif
|
|
|
|
allocator->DestroyPool(pool);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats(
|
|
VmaAllocator allocator,
|
|
VmaPool pool,
|
|
VmaPoolStats* pPoolStats)
|
|
{
|
|
VMA_ASSERT(allocator && pool && pPoolStats);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocator->GetPoolStats(pool, pPoolStats);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost(
|
|
VmaAllocator allocator,
|
|
VmaPool pool,
|
|
size_t* pLostAllocationCount)
|
|
{
|
|
VMA_ASSERT(allocator && pool);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool);
|
|
}
|
|
#endif
|
|
|
|
allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
|
|
{
|
|
VMA_ASSERT(allocator && pool);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VMA_DEBUG_LOG("vmaCheckPoolCorruption");
|
|
|
|
return allocator->CheckPoolCorruption(pool);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
|
|
VmaAllocator allocator,
|
|
VmaPool pool,
|
|
const char** ppName)
|
|
{
|
|
VMA_ASSERT(allocator && pool && ppName);
|
|
|
|
VMA_DEBUG_LOG("vmaGetPoolName");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*ppName = pool->GetName();
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
|
|
VmaAllocator allocator,
|
|
VmaPool pool,
|
|
const char* pName)
|
|
{
|
|
VMA_ASSERT(allocator && pool);
|
|
|
|
VMA_DEBUG_LOG("vmaSetPoolName");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
pool->SetName(pName);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordSetPoolName(allocator->GetCurrentFrameIndex(), pool, pName);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
|
|
VmaAllocator allocator,
|
|
const VkMemoryRequirements* pVkMemoryRequirements,
|
|
const VmaAllocationCreateInfo* pCreateInfo,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkResult result = allocator->AllocateMemory(
|
|
*pVkMemoryRequirements,
|
|
false, // requiresDedicatedAllocation
|
|
false, // prefersDedicatedAllocation
|
|
VK_NULL_HANDLE, // dedicatedBuffer
|
|
UINT32_MAX, // dedicatedBufferUsage
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
*pCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordAllocateMemory(
|
|
allocator->GetCurrentFrameIndex(),
|
|
*pVkMemoryRequirements,
|
|
*pCreateInfo,
|
|
*pAllocation);
|
|
}
|
|
#endif
|
|
|
|
if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
|
|
VmaAllocator allocator,
|
|
const VkMemoryRequirements* pVkMemoryRequirements,
|
|
const VmaAllocationCreateInfo* pCreateInfo,
|
|
size_t allocationCount,
|
|
VmaAllocation* pAllocations,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
if(allocationCount == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemoryPages");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkResult result = allocator->AllocateMemory(
|
|
*pVkMemoryRequirements,
|
|
false, // requiresDedicatedAllocation
|
|
false, // prefersDedicatedAllocation
|
|
VK_NULL_HANDLE, // dedicatedBuffer
|
|
UINT32_MAX, // dedicatedBufferUsage
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
*pCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_UNKNOWN,
|
|
allocationCount,
|
|
pAllocations);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordAllocateMemoryPages(
|
|
allocator->GetCurrentFrameIndex(),
|
|
*pVkMemoryRequirements,
|
|
*pCreateInfo,
|
|
(uint64_t)allocationCount,
|
|
pAllocations);
|
|
}
|
|
#endif
|
|
|
|
if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
|
|
{
|
|
for(size_t i = 0; i < allocationCount; ++i)
|
|
{
|
|
allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
|
|
VmaAllocator allocator,
|
|
VkBuffer buffer,
|
|
const VmaAllocationCreateInfo* pCreateInfo,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation);
|
|
|
|
VkResult result = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
buffer, // dedicatedBuffer
|
|
UINT32_MAX, // dedicatedBufferUsage
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
*pCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordAllocateMemoryForBuffer(
|
|
allocator->GetCurrentFrameIndex(),
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
*pCreateInfo,
|
|
*pAllocation);
|
|
}
|
|
#endif
|
|
|
|
if(pAllocationInfo && result == VK_SUCCESS)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
|
|
VmaAllocator allocator,
|
|
VkImage image,
|
|
const VmaAllocationCreateInfo* pCreateInfo,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
|
|
|
|
VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetImageMemoryRequirements(image, vkMemReq,
|
|
requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
|
VkResult result = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
VK_NULL_HANDLE, // dedicatedBuffer
|
|
UINT32_MAX, // dedicatedBufferUsage
|
|
image, // dedicatedImage
|
|
*pCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordAllocateMemoryForImage(
|
|
allocator->GetCurrentFrameIndex(),
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
*pCreateInfo,
|
|
*pAllocation);
|
|
}
|
|
#endif
|
|
|
|
if(pAllocationInfo && result == VK_SUCCESS)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(allocation == VK_NULL_HANDLE)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaFreeMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordFreeMemory(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation);
|
|
}
|
|
#endif
|
|
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
&allocation);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
|
|
VmaAllocator allocator,
|
|
size_t allocationCount,
|
|
const VmaAllocation* pAllocations)
|
|
{
|
|
if(allocationCount == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_LOG("vmaFreeMemoryPages");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordFreeMemoryPages(
|
|
allocator->GetCurrentFrameIndex(),
|
|
(uint64_t)allocationCount,
|
|
pAllocations);
|
|
}
|
|
#endif
|
|
|
|
allocator->FreeMemory(allocationCount, pAllocations);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && pAllocationInfo);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordGetAllocationInfo(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation);
|
|
}
|
|
#endif
|
|
|
|
allocator->GetAllocationInfo(allocation, pAllocationInfo);
|
|
}
|
|
|
|
VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordTouchAllocation(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation);
|
|
}
|
|
#endif
|
|
|
|
return allocator->TouchAllocation(allocation);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
void* pUserData)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
allocation->SetUserData(allocator, pUserData);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordSetAllocationUserData(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation,
|
|
pUserData);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation(
|
|
VmaAllocator allocator,
|
|
VmaAllocation* pAllocation)
|
|
{
|
|
VMA_ASSERT(allocator && pAllocation);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
|
|
allocator->CreateLostAllocation(pAllocation);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordCreateLostAllocation(
|
|
allocator->GetCurrentFrameIndex(),
|
|
*pAllocation);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
|
|
VmaAllocator VMA_NOT_NULL allocator,
|
|
VmaAllocation VMA_NOT_NULL allocation,
|
|
VkMemoryPropertyFlags* VMA_NOT_NULL pFlags)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && pFlags);
|
|
const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
|
|
*pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
void** ppData)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && ppData);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkResult res = allocator->Map(allocation, ppData);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordMapMemory(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation);
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordUnmapMemory(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation);
|
|
}
|
|
#endif
|
|
|
|
allocator->Unmap(allocation);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_LOG("vmaFlushAllocation");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordFlushAllocation(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation, offset, size);
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
|
|
{
|
|
VMA_ASSERT(allocator && allocation);
|
|
|
|
VMA_DEBUG_LOG("vmaInvalidateAllocation");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordInvalidateAllocation(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation, offset, size);
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
|
|
VmaAllocator allocator,
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* allocations,
|
|
const VkDeviceSize* offsets,
|
|
const VkDeviceSize* sizes)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(allocationCount == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_ASSERT(allocations);
|
|
|
|
VMA_DEBUG_LOG("vmaFlushAllocations");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
//TODO
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
|
|
VmaAllocator allocator,
|
|
uint32_t allocationCount,
|
|
const VmaAllocation* allocations,
|
|
const VkDeviceSize* offsets,
|
|
const VkDeviceSize* sizes)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(allocationCount == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_ASSERT(allocations);
|
|
|
|
VMA_DEBUG_LOG("vmaInvalidateAllocations");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
//TODO
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_LOG("vmaCheckCorruption");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->CheckCorruption(memoryTypeBits);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment(
|
|
VmaAllocator allocator,
|
|
const VmaAllocation* pAllocations,
|
|
size_t allocationCount,
|
|
VkBool32* pAllocationsChanged,
|
|
const VmaDefragmentationInfo *pDefragmentationInfo,
|
|
VmaDefragmentationStats* pDefragmentationStats)
|
|
{
|
|
// Deprecated interface, reimplemented using new one.
|
|
|
|
VmaDefragmentationInfo2 info2 = {};
|
|
info2.allocationCount = (uint32_t)allocationCount;
|
|
info2.pAllocations = pAllocations;
|
|
info2.pAllocationsChanged = pAllocationsChanged;
|
|
if(pDefragmentationInfo != VMA_NULL)
|
|
{
|
|
info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
|
|
info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove;
|
|
}
|
|
else
|
|
{
|
|
info2.maxCpuAllocationsToMove = UINT32_MAX;
|
|
info2.maxCpuBytesToMove = VK_WHOLE_SIZE;
|
|
}
|
|
// info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero.
|
|
|
|
VmaDefragmentationContext ctx;
|
|
VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx);
|
|
if(res == VK_NOT_READY)
|
|
{
|
|
res = vmaDefragmentationEnd( allocator, ctx);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin(
|
|
VmaAllocator allocator,
|
|
const VmaDefragmentationInfo2* pInfo,
|
|
VmaDefragmentationStats* pStats,
|
|
VmaDefragmentationContext *pContext)
|
|
{
|
|
VMA_ASSERT(allocator && pInfo && pContext);
|
|
|
|
// Degenerate case: Nothing to defragment.
|
|
if(pInfo->allocationCount == 0 && pInfo->poolCount == 0)
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL);
|
|
VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL);
|
|
VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations));
|
|
VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools));
|
|
|
|
VMA_DEBUG_LOG("vmaDefragmentationBegin");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordDefragmentationBegin(
|
|
allocator->GetCurrentFrameIndex(), *pInfo, *pContext);
|
|
}
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd(
|
|
VmaAllocator allocator,
|
|
VmaDefragmentationContext context)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_LOG("vmaDefragmentationEnd");
|
|
|
|
if(context != VK_NULL_HANDLE)
|
|
{
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordDefragmentationEnd(
|
|
allocator->GetCurrentFrameIndex(), context);
|
|
}
|
|
#endif
|
|
|
|
return allocator->DefragmentationEnd(context);
|
|
}
|
|
else
|
|
{
|
|
return VK_SUCCESS;
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
|
|
VmaAllocator allocator,
|
|
VmaDefragmentationContext context,
|
|
VmaDefragmentationPassInfo* pInfo
|
|
)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
VMA_ASSERT(pInfo);
|
|
|
|
VMA_DEBUG_LOG("vmaBeginDefragmentationPass");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
if(context == VK_NULL_HANDLE)
|
|
{
|
|
pInfo->moveCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
return allocator->DefragmentationPassBegin(pInfo, context);
|
|
}
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
|
|
VmaAllocator allocator,
|
|
VmaDefragmentationContext context)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
VMA_DEBUG_LOG("vmaEndDefragmentationPass");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
if(context == VK_NULL_HANDLE)
|
|
return VK_SUCCESS;
|
|
|
|
return allocator->DefragmentationPassEnd(context);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkBuffer buffer)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && buffer);
|
|
|
|
VMA_DEBUG_LOG("vmaBindBufferMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkBuffer buffer,
|
|
const void* pNext)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && buffer);
|
|
|
|
VMA_DEBUG_LOG("vmaBindBufferMemory2");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkImage image)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && image);
|
|
|
|
VMA_DEBUG_LOG("vmaBindImageMemory");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
|
|
VmaAllocator allocator,
|
|
VmaAllocation allocation,
|
|
VkDeviceSize allocationLocalOffset,
|
|
VkImage image,
|
|
const void* pNext)
|
|
{
|
|
VMA_ASSERT(allocator && allocation && image);
|
|
|
|
VMA_DEBUG_LOG("vmaBindImageMemory2");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
|
|
VmaAllocator allocator,
|
|
const VkBufferCreateInfo* pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
VkBuffer* pBuffer,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
|
|
|
|
if(pBufferCreateInfo->size == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
|
|
!allocator->m_UseKhrBufferDeviceAddress)
|
|
{
|
|
VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaCreateBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
|
|
// 1. Create VkBuffer.
|
|
VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
|
|
allocator->m_hDevice,
|
|
pBufferCreateInfo,
|
|
allocator->GetAllocationCallbacks(),
|
|
pBuffer);
|
|
if(res >= 0)
|
|
{
|
|
// 2. vkGetBufferMemoryRequirements.
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
|
|
requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
|
// 3. Allocate memory using allocator.
|
|
res = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
*pBuffer, // dedicatedBuffer
|
|
pBufferCreateInfo->usage, // dedicatedBufferUsage
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
*pAllocationCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordCreateBuffer(
|
|
allocator->GetCurrentFrameIndex(),
|
|
*pBufferCreateInfo,
|
|
*pAllocationCreateInfo,
|
|
*pAllocation);
|
|
}
|
|
#endif
|
|
|
|
if(res >= 0)
|
|
{
|
|
// 3. Bind buffer with memory.
|
|
if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
|
|
{
|
|
res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
|
|
}
|
|
if(res >= 0)
|
|
{
|
|
// All steps succeeded.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
(*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
|
|
#endif
|
|
if(pAllocationInfo != VMA_NULL)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
pAllocation);
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
|
|
VmaAllocator allocator,
|
|
const VkBufferCreateInfo* pBufferCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
VkDeviceSize minAlignment,
|
|
VkBuffer* pBuffer,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation);
|
|
|
|
if(pBufferCreateInfo->size == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
|
|
!allocator->m_UseKhrBufferDeviceAddress)
|
|
{
|
|
VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaCreateBufferWithAlignment");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
|
|
// 1. Create VkBuffer.
|
|
VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
|
|
allocator->m_hDevice,
|
|
pBufferCreateInfo,
|
|
allocator->GetAllocationCallbacks(),
|
|
pBuffer);
|
|
if(res >= 0)
|
|
{
|
|
// 2. vkGetBufferMemoryRequirements.
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
|
|
requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
|
// 2a. Include minAlignment
|
|
vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment);
|
|
|
|
// 3. Allocate memory using allocator.
|
|
res = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
*pBuffer, // dedicatedBuffer
|
|
pBufferCreateInfo->usage, // dedicatedBufferUsage
|
|
VK_NULL_HANDLE, // dedicatedImage
|
|
*pAllocationCreateInfo,
|
|
VMA_SUBALLOCATION_TYPE_BUFFER,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
VMA_ASSERT(0 && "Not implemented.");
|
|
}
|
|
#endif
|
|
|
|
if(res >= 0)
|
|
{
|
|
// 3. Bind buffer with memory.
|
|
if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
|
|
{
|
|
res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
|
|
}
|
|
if(res >= 0)
|
|
{
|
|
// All steps succeeded.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
(*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
|
|
#endif
|
|
if(pAllocationInfo != VMA_NULL)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
pAllocation);
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
|
|
*pBuffer = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
|
|
VmaAllocator allocator,
|
|
VkBuffer buffer,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaDestroyBuffer");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordDestroyBuffer(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation);
|
|
}
|
|
#endif
|
|
|
|
if(buffer != VK_NULL_HANDLE)
|
|
{
|
|
(*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
|
|
}
|
|
|
|
if(allocation != VK_NULL_HANDLE)
|
|
{
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
&allocation);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
|
|
VmaAllocator allocator,
|
|
const VkImageCreateInfo* pImageCreateInfo,
|
|
const VmaAllocationCreateInfo* pAllocationCreateInfo,
|
|
VkImage* pImage,
|
|
VmaAllocation* pAllocation,
|
|
VmaAllocationInfo* pAllocationInfo)
|
|
{
|
|
VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
|
|
|
|
if(pImageCreateInfo->extent.width == 0 ||
|
|
pImageCreateInfo->extent.height == 0 ||
|
|
pImageCreateInfo->extent.depth == 0 ||
|
|
pImageCreateInfo->mipLevels == 0 ||
|
|
pImageCreateInfo->arrayLayers == 0)
|
|
{
|
|
return VK_ERROR_INITIALIZATION_FAILED;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaCreateImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
*pImage = VK_NULL_HANDLE;
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
|
|
// 1. Create VkImage.
|
|
VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
|
|
allocator->m_hDevice,
|
|
pImageCreateInfo,
|
|
allocator->GetAllocationCallbacks(),
|
|
pImage);
|
|
if(res >= 0)
|
|
{
|
|
VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
|
|
VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
|
|
|
|
// 2. Allocate memory using allocator.
|
|
VkMemoryRequirements vkMemReq = {};
|
|
bool requiresDedicatedAllocation = false;
|
|
bool prefersDedicatedAllocation = false;
|
|
allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
|
|
requiresDedicatedAllocation, prefersDedicatedAllocation);
|
|
|
|
res = allocator->AllocateMemory(
|
|
vkMemReq,
|
|
requiresDedicatedAllocation,
|
|
prefersDedicatedAllocation,
|
|
VK_NULL_HANDLE, // dedicatedBuffer
|
|
UINT32_MAX, // dedicatedBufferUsage
|
|
*pImage, // dedicatedImage
|
|
*pAllocationCreateInfo,
|
|
suballocType,
|
|
1, // allocationCount
|
|
pAllocation);
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordCreateImage(
|
|
allocator->GetCurrentFrameIndex(),
|
|
*pImageCreateInfo,
|
|
*pAllocationCreateInfo,
|
|
*pAllocation);
|
|
}
|
|
#endif
|
|
|
|
if(res >= 0)
|
|
{
|
|
// 3. Bind image with memory.
|
|
if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
|
|
{
|
|
res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
|
|
}
|
|
if(res >= 0)
|
|
{
|
|
// All steps succeeded.
|
|
#if VMA_STATS_STRING_ENABLED
|
|
(*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);
|
|
#endif
|
|
if(pAllocationInfo != VMA_NULL)
|
|
{
|
|
allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
pAllocation);
|
|
*pAllocation = VK_NULL_HANDLE;
|
|
(*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
|
|
*pImage = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
(*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
|
|
*pImage = VK_NULL_HANDLE;
|
|
return res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
|
|
VmaAllocator allocator,
|
|
VkImage image,
|
|
VmaAllocation allocation)
|
|
{
|
|
VMA_ASSERT(allocator);
|
|
|
|
if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
|
|
{
|
|
return;
|
|
}
|
|
|
|
VMA_DEBUG_LOG("vmaDestroyImage");
|
|
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK
|
|
|
|
#if VMA_RECORDING_ENABLED
|
|
if(allocator->GetRecorder() != VMA_NULL)
|
|
{
|
|
allocator->GetRecorder()->RecordDestroyImage(
|
|
allocator->GetCurrentFrameIndex(),
|
|
allocation);
|
|
}
|
|
#endif
|
|
|
|
if(image != VK_NULL_HANDLE)
|
|
{
|
|
(*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
|
|
}
|
|
if(allocation != VK_NULL_HANDLE)
|
|
{
|
|
allocator->FreeMemory(
|
|
1, // allocationCount
|
|
&allocation);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
|
|
const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
|
|
VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock)
|
|
{
|
|
VMA_ASSERT(pCreateInfo && pVirtualBlock);
|
|
VMA_ASSERT(pCreateInfo->size > 0);
|
|
VMA_DEBUG_LOG("vmaCreateVirtualBlock");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
*pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo);
|
|
VkResult res = (*pVirtualBlock)->Init();
|
|
if(res < 0)
|
|
{
|
|
vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock);
|
|
*pVirtualBlock = VK_NULL_HANDLE;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock)
|
|
{
|
|
if(virtualBlock != VK_NULL_HANDLE)
|
|
{
|
|
VMA_DEBUG_LOG("vmaDestroyVirtualBlock");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
|
|
vma_delete(&allocationCallbacks, virtualBlock);
|
|
}
|
|
}
|
|
|
|
VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE;
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VkDeviceSize offset, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL);
|
|
VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->GetAllocationInfo(offset, *pVirtualAllocInfo);
|
|
}
|
|
|
|
VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VkDeviceSize* VMA_NOT_NULL pOffset)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pOffset != VMA_NULL);
|
|
VMA_DEBUG_LOG("vmaVirtualAllocate");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
return virtualBlock->Allocate(*pCreateInfo, *pOffset);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VkDeviceSize offset)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_LOG("vmaVirtualFree");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->Free(offset);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_LOG("vmaClearVirtualBlock");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->Clear();
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VkDeviceSize offset, void* VMA_NULLABLE pUserData)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->SetAllocationUserData(offset, pUserData);
|
|
}
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStats(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
VmaStatInfo* VMA_NOT_NULL pStatInfo)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStatInfo != VMA_NULL);
|
|
VMA_DEBUG_LOG("vmaCalculateVirtualBlockStats");
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
virtualBlock->CalculateStats(*pStatInfo);
|
|
}
|
|
|
|
#if VMA_STATS_STRING_ENABLED
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks();
|
|
VmaStringBuilder sb(allocationCallbacks);
|
|
virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb);
|
|
*ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength());
|
|
}
|
|
|
|
#endif // #if VMA_STATS_STRING_ENABLED
|
|
|
|
VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
|
|
char* VMA_NULLABLE pStatsString)
|
|
{
|
|
if(pStatsString != VMA_NULL)
|
|
{
|
|
VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
|
|
VMA_DEBUG_GLOBAL_MUTEX_LOCK;
|
|
VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString);
|
|
}
|
|
}
|
|
|
|
#endif // #ifdef VMA_IMPLEMENTATION
|
|
|
|
/**
|
|
\page quick_start Quick start
|
|
|
|
\section quick_start_project_setup Project setup
|
|
|
|
Vulkan Memory Allocator comes in form of a "stb-style" single header file.
|
|
You don't need to build it as a separate library project.
|
|
You can add this file directly to your project and submit it to code repository next to your other source files.
|
|
|
|
"Single header" doesn't mean that everything is contained in C/C++ declarations,
|
|
like it tends to be in case of inline functions or C++ templates.
|
|
It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
|
|
If you don't do it properly, you will get linker errors.
|
|
|
|
To do it properly:
|
|
|
|
-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
|
|
This includes declarations of all members of the library.
|
|
-# In exactly one CPP file define following macro before this include.
|
|
It enables also internal definitions.
|
|
|
|
\code
|
|
#define VMA_IMPLEMENTATION
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
It may be a good idea to create dedicated CPP file just for this purpose.
|
|
|
|
Note on language: This library is written in C++, but has C-compatible interface.
|
|
Thus you can include and use vk_mem_alloc.h in C or C++ code, but full
|
|
implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
|
|
|
|
Please note that this library includes header `<vulkan/vulkan.h>`, which in turn
|
|
includes `<windows.h>` on Windows. If you need some specific macros defined
|
|
before including these headers (like `WIN32_LEAN_AND_MEAN` or
|
|
`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
|
|
them before every `#include` of this library.
|
|
|
|
You may need to configure the way you import Vulkan functions.
|
|
|
|
- By default, VMA assumes you you link statically with Vulkan API. If this is not the case,
|
|
`#define VMA_STATIC_VULKAN_FUNCTIONS 0` before `#include` of the VMA implementation and use another way.
|
|
- You can `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1` and pass only pointers to `vkGetInstanceProcAddr` and
|
|
`vkGetDeviceProcAddr` functions through VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
All the remaining Vulkan functions will be fetched automatically.
|
|
- Finally, you can provide your own pointers to all Vulkan functions needed by VMA using structure member
|
|
VmaAllocatorCreateInfo::pVulkanFunctions, if you fetched them in some custom way e.g. using some loader like [Volk](https://github.com/zeux/volk).
|
|
|
|
|
|
\section quick_start_initialization Initialization
|
|
|
|
At program startup:
|
|
|
|
-# Initialize Vulkan to have `VkPhysicalDevice`, `VkDevice` and `VkInstance` object.
|
|
-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by
|
|
calling vmaCreateAllocator().
|
|
|
|
\code
|
|
VmaAllocatorCreateInfo allocatorInfo = {};
|
|
allocatorInfo.vulkanApiVersion = VK_API_VERSION_1_2;
|
|
allocatorInfo.physicalDevice = physicalDevice;
|
|
allocatorInfo.device = device;
|
|
allocatorInfo.instance = instance;
|
|
|
|
VmaAllocator allocator;
|
|
vmaCreateAllocator(&allocatorInfo, &allocator);
|
|
\endcode
|
|
|
|
Only members `physicalDevice`, `device`, `instance` are required.
|
|
However, you should inform the library which Vulkan version do you use by setting
|
|
VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable
|
|
by setting VmaAllocatorCreateInfo::flags (like #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT for VK_KHR_buffer_device_address).
|
|
Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions.
|
|
|
|
|
|
\section quick_start_resource_allocation Resource allocation
|
|
|
|
When you want to create a buffer or image:
|
|
|
|
-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
|
|
-# Fill VmaAllocationCreateInfo structure.
|
|
-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
|
|
already allocated and bound to it.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufferInfo.size = 65536;
|
|
bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
Don't forget to destroy your objects when no longer needed:
|
|
|
|
\code
|
|
vmaDestroyBuffer(allocator, buffer, allocation);
|
|
vmaDestroyAllocator(allocator);
|
|
\endcode
|
|
|
|
|
|
\page choosing_memory_type Choosing memory type
|
|
|
|
Physical devices in Vulkan support various combinations of memory heaps and
|
|
types. Help with choosing correct and optimal memory type for your specific
|
|
resource is one of the key features of this library. You can use it by filling
|
|
appropriate members of VmaAllocationCreateInfo structure, as described below.
|
|
You can also combine multiple methods.
|
|
|
|
-# If you just want to find memory type index that meets your requirements, you
|
|
can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(),
|
|
vmaFindMemoryTypeIndexForImageInfo().
|
|
-# If you want to allocate a region of device memory without association with any
|
|
specific image or buffer, you can use function vmaAllocateMemory(). Usage of
|
|
this function is not recommended and usually not needed.
|
|
vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
|
|
which may be useful for sparse binding.
|
|
-# If you already have a buffer or an image created, you want to allocate memory
|
|
for it and then you will bind it yourself, you can use function
|
|
vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
|
|
For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
|
|
or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
|
|
-# If you want to create a buffer or an image, allocate memory for it and bind
|
|
them together, all in one call, you can use function vmaCreateBuffer(),
|
|
vmaCreateImage(). This is the easiest and recommended way to use this library.
|
|
|
|
When using 3. or 4., the library internally queries Vulkan for memory types
|
|
supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
|
|
and uses only one of these types.
|
|
|
|
If no memory type can be found that meets all the requirements, these functions
|
|
return `VK_ERROR_FEATURE_NOT_PRESENT`.
|
|
|
|
You can leave VmaAllocationCreateInfo structure completely filled with zeros.
|
|
It means no requirements are specified for memory type.
|
|
It is valid, although not very useful.
|
|
|
|
\section choosing_memory_type_usage Usage
|
|
|
|
The easiest way to specify memory requirements is to fill member
|
|
VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
|
|
It defines high level, common usage types.
|
|
For more details, see description of this enum.
|
|
|
|
For example, if you want to create a uniform buffer that will be filled using
|
|
transfer only once or infrequently and used for rendering every frame, you can
|
|
do it using following code:
|
|
|
|
\code
|
|
VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufferInfo.size = 65536;
|
|
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
\section choosing_memory_type_required_preferred_flags Required and preferred flags
|
|
|
|
You can specify more detailed requirements by filling members
|
|
VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
|
|
with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
|
|
if you want to create a buffer that will be persistently mapped on host (so it
|
|
must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
|
|
use following code:
|
|
|
|
\code
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
|
allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
A memory type is chosen that has all the required flags and as many preferred
|
|
flags set as possible.
|
|
|
|
If you use VmaAllocationCreateInfo::usage, it is just internally converted to
|
|
a set of required and preferred flags.
|
|
|
|
\section choosing_memory_type_explicit_memory_types Explicit memory types
|
|
|
|
If you inspected memory types available on the physical device and you have
|
|
a preference for memory types that you want to use, you can fill member
|
|
VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
|
|
means that a memory type with that index is allowed to be used for the
|
|
allocation. Special value 0, just like `UINT32_MAX`, means there are no
|
|
restrictions to memory type index.
|
|
|
|
Please note that this member is NOT just a memory type index.
|
|
Still you can use it to choose just one, specific memory type.
|
|
For example, if you already determined that your buffer should be created in
|
|
memory type 2, use following code:
|
|
|
|
\code
|
|
uint32_t memoryTypeIndex = 2;
|
|
|
|
VmaAllocationCreateInfo allocInfo = {};
|
|
allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
|
|
\section choosing_memory_type_custom_memory_pools Custom memory pools
|
|
|
|
If you allocate from custom memory pool, all the ways of specifying memory
|
|
requirements described above are not applicable and the aforementioned members
|
|
of VmaAllocationCreateInfo structure are ignored. Memory type is selected
|
|
explicitly when creating the pool and then used to make all the allocations from
|
|
that pool. For further details, see \ref custom_memory_pools.
|
|
|
|
\section choosing_memory_type_dedicated_allocations Dedicated allocations
|
|
|
|
Memory for allocations is reserved out of larger block of `VkDeviceMemory`
|
|
allocated from Vulkan internally. That is the main feature of this whole library.
|
|
You can still request a separate memory block to be created for an allocation,
|
|
just like you would do in a trivial solution without using any allocator.
|
|
In that case, a buffer or image is always bound to that memory at offset 0.
|
|
This is called a "dedicated allocation".
|
|
You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
The library can also internally decide to use dedicated allocation in some cases, e.g.:
|
|
|
|
- When the size of the allocation is large.
|
|
- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
|
|
and it reports that dedicated allocation is required or recommended for the resource.
|
|
- When allocation of next big memory block fails due to not enough device memory,
|
|
but allocation with the exact requested size succeeds.
|
|
|
|
|
|
\page memory_mapping Memory mapping
|
|
|
|
To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
|
|
to be able to read from it or write to it in CPU code.
|
|
Mapping is possible only of memory allocated from a memory type that has
|
|
`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
|
|
Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
|
|
You can use them directly with memory allocated by this library,
|
|
but it is not recommended because of following issue:
|
|
Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
|
|
This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
|
|
Because of this, Vulkan Memory Allocator provides following facilities:
|
|
|
|
\section memory_mapping_mapping_functions Mapping functions
|
|
|
|
The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().
|
|
They are safer and more convenient to use than standard Vulkan functions.
|
|
You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
|
|
You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
|
|
The way it is implemented is that the library always maps entire memory block, not just region of the allocation.
|
|
For further details, see description of vmaMapMemory() function.
|
|
Example:
|
|
|
|
\code
|
|
// Having these objects initialized:
|
|
|
|
struct ConstantBuffer
|
|
{
|
|
...
|
|
};
|
|
ConstantBuffer constantBufferData;
|
|
|
|
VmaAllocator allocator;
|
|
VkBuffer constantBuffer;
|
|
VmaAllocation constantBufferAllocation;
|
|
|
|
// You can map and fill your buffer using following code:
|
|
|
|
void* mappedData;
|
|
vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
|
|
memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
|
|
vmaUnmapMemory(allocator, constantBufferAllocation);
|
|
\endcode
|
|
|
|
When mapping, you may see a warning from Vulkan validation layer similar to this one:
|
|
|
|
<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
|
|
|
|
It happens because the library maps entire `VkDeviceMemory` block, where different
|
|
types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
|
|
You can safely ignore it if you are sure you access only memory of the intended
|
|
object that you wanted to map.
|
|
|
|
|
|
\section memory_mapping_persistently_mapped_memory Persistently mapped memory
|
|
|
|
Kepping your memory persistently mapped is generally OK in Vulkan.
|
|
You don't need to unmap it before using its data on the GPU.
|
|
The library provides a special feature designed for that:
|
|
Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
|
|
VmaAllocationCreateInfo::flags stay mapped all the time,
|
|
so you can just access CPU pointer to it any time
|
|
without a need to call any "map" or "unmap" function.
|
|
Example:
|
|
|
|
\code
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = sizeof(ConstantBuffer);
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
VmaAllocationInfo allocInfo;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
|
|
// Buffer is already mapped. You can access its memory.
|
|
memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
|
|
\endcode
|
|
|
|
There are some exceptions though, when you should consider mapping memory only for a short period of time:
|
|
|
|
- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2),
|
|
device is discrete AMD GPU,
|
|
and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory
|
|
(selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU),
|
|
then whenever a memory block allocated from this memory type stays mapped
|
|
for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this
|
|
block is migrated by WDDM to system RAM, which degrades performance. It doesn't
|
|
matter if that particular memory block is actually used by the command buffer
|
|
being submitted.
|
|
- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools.
|
|
|
|
\section memory_mapping_cache_control Cache flush and invalidate
|
|
|
|
Memory in Vulkan doesn't need to be unmapped before using it on GPU,
|
|
but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
|
|
you need to manually **invalidate** cache before reading of mapped pointer
|
|
and **flush** cache after writing to mapped pointer.
|
|
Map/unmap operations don't do that automatically.
|
|
Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
|
|
`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
|
|
functions that refer to given allocation object: vmaFlushAllocation(),
|
|
vmaInvalidateAllocation(),
|
|
or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations().
|
|
|
|
Regions of memory specified for flush/invalidate must be aligned to
|
|
`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
|
|
In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
|
|
within blocks are aligned to this value, so their offsets are always multiply of
|
|
`nonCoherentAtomSize` and two different allocations never share same "line" of this size.
|
|
|
|
Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`.
|
|
|
|
Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA)
|
|
currently provide `HOST_COHERENT` flag on all memory types that are
|
|
`HOST_VISIBLE`, so on this platform you may not need to bother.
|
|
|
|
\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable
|
|
|
|
It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping)
|
|
despite it wasn't explicitly requested.
|
|
For example, application may work on integrated graphics with unified memory (like Intel) or
|
|
allocation from video memory might have failed, so the library chose system memory as fallback.
|
|
|
|
You can detect this case and map such allocation to access its memory on CPU directly,
|
|
instead of launching a transfer operation.
|
|
In order to do that: call vmaGetAllocationMemoryProperties()
|
|
and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = sizeof(ConstantBuffer);
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
|
|
|
|
VkMemoryPropertyFlags memFlags;
|
|
vmaGetAllocationMemoryProperties(allocator, alloc, &memFlags);
|
|
if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
|
|
{
|
|
// Allocation ended up in mappable memory. You can map it and access it directly.
|
|
void* mappedData;
|
|
vmaMapMemory(allocator, alloc, &mappedData);
|
|
memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
|
|
vmaUnmapMemory(allocator, alloc);
|
|
}
|
|
else
|
|
{
|
|
// Allocation ended up in non-mappable memory.
|
|
// You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
|
|
}
|
|
\endcode
|
|
|
|
You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations
|
|
that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY).
|
|
If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly.
|
|
If not, the flag is just ignored.
|
|
Example:
|
|
|
|
\code
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = sizeof(ConstantBuffer);
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
VmaAllocationInfo allocInfo;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
|
|
if(allocInfo.pMappedData != nullptr)
|
|
{
|
|
// Allocation ended up in mappable memory.
|
|
// It is persistently mapped. You can access it directly.
|
|
memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
|
|
}
|
|
else
|
|
{
|
|
// Allocation ended up in non-mappable memory.
|
|
// You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
|
|
}
|
|
\endcode
|
|
|
|
|
|
\page staying_within_budget Staying within budget
|
|
|
|
When developing a graphics-intensive game or program, it is important to avoid allocating
|
|
more GPU memory than it is physically available. When the memory is over-committed,
|
|
various bad things can happen, depending on the specific GPU, graphics driver, and
|
|
operating system:
|
|
|
|
- It may just work without any problems.
|
|
- The application may slow down because some memory blocks are moved to system RAM
|
|
and the GPU has to access them through PCI Express bus.
|
|
- A new allocation may take very long time to complete, even few seconds, and possibly
|
|
freeze entire system.
|
|
- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`
|
|
returned somewhere later.
|
|
|
|
\section staying_within_budget_querying_for_budget Querying for budget
|
|
|
|
To query for current memory usage and available budget, use function vmaGetHeapBudgets().
|
|
Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.
|
|
|
|
Please note that this function returns different information and works faster than
|
|
vmaCalculateStats(). vmaGetHeapBudgets() can be called every frame or even before every
|
|
allocation, while vmaCalculateStats() is intended to be used rarely,
|
|
only to obtain statistical information, e.g. for debugging purposes.
|
|
|
|
It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information
|
|
about the budget from Vulkan device. VMA is able to use this extension automatically.
|
|
When not enabled, the allocator behaves same way, but then it estimates current usage
|
|
and available budget based on its internal information and Vulkan memory heap sizes,
|
|
which may be less precise. In order to use this extension:
|
|
|
|
1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2
|
|
required by it are available and enable them. Please note that the first is a device
|
|
extension and the second is instance extension!
|
|
2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.
|
|
3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from
|
|
Vulkan inside of it to avoid overhead of querying it with every allocation.
|
|
|
|
\section staying_within_budget_controlling_memory_usage Controlling memory usage
|
|
|
|
There are many ways in which you can try to stay within the budget.
|
|
|
|
First, when making new allocation requires allocating a new memory block, the library
|
|
tries not to exceed the budget automatically. If a block with default recommended size
|
|
(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even
|
|
dedicated memory for just this resource.
|
|
|
|
If the size of the requested resource plus current memory usage is more than the
|
|
budget, by default the library still tries to create it, leaving it to the Vulkan
|
|
implementation whether the allocation succeeds or fails. You can change this behavior
|
|
by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is
|
|
not made if it would exceed the budget or if the budget is already exceeded.
|
|
Some other allocations become lost instead to make room for it, if the mechanism of
|
|
[lost allocations](@ref lost_allocations) is used.
|
|
If that is not possible, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag
|
|
when creating resources that are not essential for the application (e.g. the texture
|
|
of a specific object) and not to pass it when creating critically important resources
|
|
(e.g. render targets).
|
|
|
|
Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure
|
|
a new allocation is created only when it fits inside one of the existing memory blocks.
|
|
If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
This also ensures that the function call is very fast because it never goes to Vulkan
|
|
to obtain a new block.
|
|
|
|
Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount
|
|
set to more than 0 will try to allocate memory blocks without checking whether they
|
|
fit within budget.
|
|
|
|
|
|
\page resource_aliasing Resource aliasing (overlap)
|
|
|
|
New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory
|
|
management, give an opportunity to alias (overlap) multiple resources in the
|
|
same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL).
|
|
It can be useful to save video memory, but it must be used with caution.
|
|
|
|
For example, if you know the flow of your whole render frame in advance, you
|
|
are going to use some intermediate textures or buffers only during a small range of render passes,
|
|
and you know these ranges don't overlap in time, you can bind these resources to
|
|
the same place in memory, even if they have completely different parameters (width, height, format etc.).
|
|
|
|
![Resource aliasing (overlap)](../gfx/Aliasing.png)
|
|
|
|
Such scenario is possible using VMA, but you need to create your images manually.
|
|
Then you need to calculate parameters of an allocation to be made using formula:
|
|
|
|
- allocation size = max(size of each image)
|
|
- allocation alignment = max(alignment of each image)
|
|
- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image)
|
|
|
|
Following example shows two different images bound to the same place in memory,
|
|
allocated to fit largest of them.
|
|
|
|
\code
|
|
// A 512x512 texture to be sampled.
|
|
VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
|
img1CreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
img1CreateInfo.extent.width = 512;
|
|
img1CreateInfo.extent.height = 512;
|
|
img1CreateInfo.extent.depth = 1;
|
|
img1CreateInfo.mipLevels = 10;
|
|
img1CreateInfo.arrayLayers = 1;
|
|
img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;
|
|
img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
// A full screen texture to be used as color attachment.
|
|
VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
|
img2CreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
img2CreateInfo.extent.width = 1920;
|
|
img2CreateInfo.extent.height = 1080;
|
|
img2CreateInfo.extent.depth = 1;
|
|
img2CreateInfo.mipLevels = 1;
|
|
img2CreateInfo.arrayLayers = 1;
|
|
img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
|
img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
|
img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
|
|
VkImage img1;
|
|
res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1);
|
|
VkImage img2;
|
|
res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2);
|
|
|
|
VkMemoryRequirements img1MemReq;
|
|
vkGetImageMemoryRequirements(device, img1, &img1MemReq);
|
|
VkMemoryRequirements img2MemReq;
|
|
vkGetImageMemoryRequirements(device, img2, &img2MemReq);
|
|
|
|
VkMemoryRequirements finalMemReq = {};
|
|
finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size);
|
|
finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment);
|
|
finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits;
|
|
// Validate if(finalMemReq.memoryTypeBits != 0)
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
|
|
VmaAllocation alloc;
|
|
res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr);
|
|
|
|
res = vmaBindImageMemory(allocator, alloc, img1);
|
|
res = vmaBindImageMemory(allocator, alloc, img2);
|
|
|
|
// You can use img1, img2 here, but not at the same time!
|
|
|
|
vmaFreeMemory(allocator, alloc);
|
|
vkDestroyImage(allocator, img2, nullptr);
|
|
vkDestroyImage(allocator, img1, nullptr);
|
|
\endcode
|
|
|
|
Remember that using resources that alias in memory requires proper synchronization.
|
|
You need to issue a memory barrier to make sure commands that use `img1` and `img2`
|
|
don't overlap on GPU timeline.
|
|
You also need to treat a resource after aliasing as uninitialized - containing garbage data.
|
|
For example, if you use `img1` and then want to use `img2`, you need to issue
|
|
an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`.
|
|
|
|
Additional considerations:
|
|
|
|
- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases.
|
|
See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag.
|
|
- You can create more complex layout where different images and buffers are bound
|
|
at different offsets inside one large allocation. For example, one can imagine
|
|
a big texture used in some render passes, aliasing with a set of many small buffers
|
|
used between in some further passes. To bind a resource at non-zero offset of an allocation,
|
|
use vmaBindBufferMemory2() / vmaBindImageMemory2().
|
|
- Before allocating memory for the resources you want to alias, check `memoryTypeBits`
|
|
returned in memory requirements of each resource to make sure the bits overlap.
|
|
Some GPUs may expose multiple memory types suitable e.g. only for buffers or
|
|
images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your
|
|
resources may be disjoint. Aliasing them is not possible in that case.
|
|
|
|
|
|
\page custom_memory_pools Custom memory pools
|
|
|
|
A memory pool contains a number of `VkDeviceMemory` blocks.
|
|
The library automatically creates and manages default pool for each memory type available on the device.
|
|
Default memory pool automatically grows in size.
|
|
Size of allocated blocks is also variable and managed automatically.
|
|
|
|
You can create custom pool and allocate memory out of it.
|
|
It can be useful if you want to:
|
|
|
|
- Keep certain kind of allocations separate from others.
|
|
- Enforce particular, fixed size of Vulkan memory blocks.
|
|
- Limit maximum amount of Vulkan memory allocated for that pool.
|
|
- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
|
|
- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in
|
|
#VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain.
|
|
|
|
To use custom memory pools:
|
|
|
|
-# Fill VmaPoolCreateInfo structure.
|
|
-# Call vmaCreatePool() to obtain #VmaPool handle.
|
|
-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
|
|
You don't need to specify any other parameters of this structure, like `usage`.
|
|
|
|
Example:
|
|
|
|
\code
|
|
// Create a pool that can have at most 2 blocks, 128 MiB each.
|
|
VmaPoolCreateInfo poolCreateInfo = {};
|
|
poolCreateInfo.memoryTypeIndex = ...
|
|
poolCreateInfo.blockSize = 128ull * 1024 * 1024;
|
|
poolCreateInfo.maxBlockCount = 2;
|
|
|
|
VmaPool pool;
|
|
vmaCreatePool(allocator, &poolCreateInfo, &pool);
|
|
|
|
// Allocate a buffer out of it.
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = 1024;
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.pool = pool;
|
|
|
|
VkBuffer buf;
|
|
VmaAllocation alloc;
|
|
VmaAllocationInfo allocInfo;
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
|
\endcode
|
|
|
|
You have to free all allocations made from this pool before destroying it.
|
|
|
|
\code
|
|
vmaDestroyBuffer(allocator, buf, alloc);
|
|
vmaDestroyPool(allocator, pool);
|
|
\endcode
|
|
|
|
\section custom_memory_pools_MemTypeIndex Choosing memory type index
|
|
|
|
When creating a pool, you must explicitly specify memory type index.
|
|
To find the one suitable for your buffers or images, you can use helper functions
|
|
vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
|
|
You need to provide structures with example parameters of buffers or images
|
|
that you are going to create in that pool.
|
|
|
|
\code
|
|
VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
exampleBufCreateInfo.size = 1024; // Whatever.
|
|
exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed.
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed.
|
|
|
|
uint32_t memTypeIndex;
|
|
vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
|
|
|
|
VmaPoolCreateInfo poolCreateInfo = {};
|
|
poolCreateInfo.memoryTypeIndex = memTypeIndex;
|
|
// ...
|
|
\endcode
|
|
|
|
When creating buffers/images allocated in that pool, provide following parameters:
|
|
|
|
- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
|
|
Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
|
|
Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
|
|
or the other way around.
|
|
- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
|
|
Other members are ignored anyway.
|
|
|
|
\section linear_algorithm Linear allocation algorithm
|
|
|
|
Each Vulkan memory block managed by this library has accompanying metadata that
|
|
keeps track of used and unused regions. By default, the metadata structure and
|
|
algorithm tries to find best place for new allocations among free regions to
|
|
optimize memory usage. This way you can allocate and free objects in any order.
|
|
|
|
![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png)
|
|
|
|
Sometimes there is a need to use simpler, linear allocation algorithm. You can
|
|
create custom pool that uses such algorithm by adding flag
|
|
#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
|
|
#VmaPool object. Then an alternative metadata management is used. It always
|
|
creates new allocations after last one and doesn't reuse free regions after
|
|
allocations freed in the middle. It results in better allocation performance and
|
|
less memory consumed by metadata.
|
|
|
|
![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png)
|
|
|
|
With this one flag, you can create a custom pool that can be used in many ways:
|
|
free-at-once, stack, double stack, and ring buffer. See below for details.
|
|
You don't need to specify explicitly which of these options you are going to use - it is detected automatically.
|
|
|
|
\subsection linear_algorithm_free_at_once Free-at-once
|
|
|
|
In a pool that uses linear algorithm, you still need to free all the allocations
|
|
individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
|
|
them in any order. New allocations are always made after last one - free space
|
|
in the middle is not reused. However, when you release all the allocation and
|
|
the pool becomes empty, allocation starts from the beginning again. This way you
|
|
can use linear algorithm to speed up creation of allocations that you are going
|
|
to release all at once.
|
|
|
|
![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)
|
|
|
|
This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
|
|
value that allows multiple memory blocks.
|
|
|
|
\subsection linear_algorithm_stack Stack
|
|
|
|
When you free an allocation that was created last, its space can be reused.
|
|
Thanks to this, if you always release allocations in the order opposite to their
|
|
creation (LIFO - Last In First Out), you can achieve behavior of a stack.
|
|
|
|
![Stack](../gfx/Linear_allocator_4_stack.png)
|
|
|
|
This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
|
|
value that allows multiple memory blocks.
|
|
|
|
\subsection linear_algorithm_double_stack Double stack
|
|
|
|
The space reserved by a custom pool with linear algorithm may be used by two
|
|
stacks:
|
|
|
|
- First, default one, growing up from offset 0.
|
|
- Second, "upper" one, growing down from the end towards lower offsets.
|
|
|
|
To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
|
|
to VmaAllocationCreateInfo::flags.
|
|
|
|
![Double stack](../gfx/Linear_allocator_7_double_stack.png)
|
|
|
|
Double stack is available only in pools with one memory block -
|
|
VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
|
|
|
|
When the two stacks' ends meet so there is not enough space between them for a
|
|
new allocation, such allocation fails with usual
|
|
`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
|
|
|
|
\subsection linear_algorithm_ring_buffer Ring buffer
|
|
|
|
When you free some allocations from the beginning and there is not enough free space
|
|
for a new one at the end of a pool, allocator's "cursor" wraps around to the
|
|
beginning and starts allocation there. Thanks to this, if you always release
|
|
allocations in the same order as you created them (FIFO - First In First Out),
|
|
you can achieve behavior of a ring buffer / queue.
|
|
|
|
![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png)
|
|
|
|
Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer.
|
|
If there is not enough free space for a new allocation, but existing allocations
|
|
from the front of the queue can become lost, they become lost and the allocation
|
|
succeeds.
|
|
|
|
![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png)
|
|
|
|
Ring buffer is available only in pools with one memory block -
|
|
VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
|
|
|
|
\section buddy_algorithm Buddy allocation algorithm
|
|
|
|
There is another allocation algorithm that can be used with custom pools, called
|
|
"buddy". Its internal data structure is based on a binary tree of blocks, each having
|
|
size that is a power of two and a half of its parent's size. When you want to
|
|
allocate memory of certain size, a free node in the tree is located. If it is too
|
|
large, it is recursively split into two halves (called "buddies"). However, if
|
|
requested allocation size is not a power of two, the size of the allocation is
|
|
aligned up to the nearest power of two and the remaining space is wasted. When
|
|
two buddy nodes become free, they are merged back into one larger node.
|
|
|
|
![Buddy allocator](../gfx/Buddy_allocator.png)
|
|
|
|
The advantage of buddy allocation algorithm over default algorithm is faster
|
|
allocation and deallocation, as well as smaller external fragmentation. The
|
|
disadvantage is more wasted space (internal fragmentation).
|
|
For more information, please search the Internet for "Buddy memory allocation" -
|
|
sources that describe this concept in general.
|
|
|
|
To use buddy allocation algorithm with a custom pool, add flag
|
|
#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
|
|
#VmaPool object.
|
|
|
|
Several limitations apply to pools that use buddy algorithm:
|
|
|
|
- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two.
|
|
Otherwise, only largest power of two smaller than the size is used for
|
|
allocations. The remaining space always stays unused.
|
|
- [Margins](@ref debugging_memory_usage_margins) and
|
|
[corruption detection](@ref debugging_memory_usage_corruption_detection)
|
|
don't work in such pools.
|
|
- [Lost allocations](@ref lost_allocations) don't work in such pools. You can
|
|
use them, but they never become lost. Support may be added in the future.
|
|
- [Defragmentation](@ref defragmentation) doesn't work with allocations made from
|
|
such pool.
|
|
|
|
\page defragmentation Defragmentation
|
|
|
|
Interleaved allocations and deallocations of many objects of varying size can
|
|
cause fragmentation over time, which can lead to a situation where the library is unable
|
|
to find a continuous range of free memory for a new allocation despite there is
|
|
enough free space, just scattered across many small free ranges between existing
|
|
allocations.
|
|
|
|
To mitigate this problem, you can use defragmentation feature:
|
|
structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd().
|
|
Given set of allocations,
|
|
this function can move them to compact used memory, ensure more continuous free
|
|
space and possibly also free some `VkDeviceMemory` blocks.
|
|
|
|
What the defragmentation does is:
|
|
|
|
- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset.
|
|
After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
|
|
VmaAllocationInfo::offset changes. You must query them again using
|
|
vmaGetAllocationInfo() if you need them.
|
|
- Moves actual data in memory.
|
|
|
|
What it doesn't do, so you need to do it yourself:
|
|
|
|
- Recreate buffers and images that were bound to allocations that were defragmented and
|
|
bind them with their new places in memory.
|
|
You must use `vkDestroyBuffer()`, `vkDestroyImage()`,
|
|
`vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory()
|
|
for that purpose and NOT vmaDestroyBuffer(),
|
|
vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to
|
|
destroy or create allocation objects!
|
|
- Recreate views and update descriptors that point to these buffers and images.
|
|
|
|
\section defragmentation_cpu Defragmenting CPU memory
|
|
|
|
Following example demonstrates how you can run defragmentation on CPU.
|
|
Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented.
|
|
Others are ignored.
|
|
|
|
The way it works is:
|
|
|
|
- It temporarily maps entire memory blocks when necessary.
|
|
- It moves data using `memmove()` function.
|
|
|
|
\code
|
|
// Given following variables already initialized:
|
|
VkDevice device;
|
|
VmaAllocator allocator;
|
|
std::vector<VkBuffer> buffers;
|
|
std::vector<VmaAllocation> allocations;
|
|
|
|
|
|
const uint32_t allocCount = (uint32_t)allocations.size();
|
|
std::vector<VkBool32> allocationsChanged(allocCount);
|
|
|
|
VmaDefragmentationInfo2 defragInfo = {};
|
|
defragInfo.allocationCount = allocCount;
|
|
defragInfo.pAllocations = allocations.data();
|
|
defragInfo.pAllocationsChanged = allocationsChanged.data();
|
|
defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit.
|
|
defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit.
|
|
|
|
VmaDefragmentationContext defragCtx;
|
|
vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
|
|
vmaDefragmentationEnd(allocator, defragCtx);
|
|
|
|
for(uint32_t i = 0; i < allocCount; ++i)
|
|
{
|
|
if(allocationsChanged[i])
|
|
{
|
|
// Destroy buffer that is immutably bound to memory region which is no longer valid.
|
|
vkDestroyBuffer(device, buffers[i], nullptr);
|
|
|
|
// Create new buffer with same parameters.
|
|
VkBufferCreateInfo bufferInfo = ...;
|
|
vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
|
|
|
|
// You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
|
|
|
|
// Bind new buffer to new memory region. Data contained in it is already moved.
|
|
VmaAllocationInfo allocInfo;
|
|
vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
|
|
vmaBindBufferMemory(allocator, allocations[i], buffers[i]);
|
|
}
|
|
}
|
|
\endcode
|
|
|
|
Setting VmaDefragmentationInfo2::pAllocationsChanged is optional.
|
|
This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index
|
|
has been modified during defragmentation.
|
|
You can pass null, but you then need to query every allocation passed to defragmentation
|
|
for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it.
|
|
|
|
If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools),
|
|
you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools
|
|
instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations
|
|
to defragment all allocations in given pools.
|
|
You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case.
|
|
You can also combine both methods.
|
|
|
|
\section defragmentation_gpu Defragmenting GPU memory
|
|
|
|
It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`.
|
|
To do that, you need to pass a command buffer that meets requirements as described in
|
|
VmaDefragmentationInfo2::commandBuffer. The way it works is:
|
|
|
|
- It creates temporary buffers and binds them to entire memory blocks when necessary.
|
|
- It issues `vkCmdCopyBuffer()` to passed command buffer.
|
|
|
|
Example:
|
|
|
|
\code
|
|
// Given following variables already initialized:
|
|
VkDevice device;
|
|
VmaAllocator allocator;
|
|
VkCommandBuffer commandBuffer;
|
|
std::vector<VkBuffer> buffers;
|
|
std::vector<VmaAllocation> allocations;
|
|
|
|
|
|
const uint32_t allocCount = (uint32_t)allocations.size();
|
|
std::vector<VkBool32> allocationsChanged(allocCount);
|
|
|
|
VkCommandBufferBeginInfo cmdBufBeginInfo = ...;
|
|
vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo);
|
|
|
|
VmaDefragmentationInfo2 defragInfo = {};
|
|
defragInfo.allocationCount = allocCount;
|
|
defragInfo.pAllocations = allocations.data();
|
|
defragInfo.pAllocationsChanged = allocationsChanged.data();
|
|
defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it is "GPU" this time.
|
|
defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it is "GPU" this time.
|
|
defragInfo.commandBuffer = commandBuffer;
|
|
|
|
VmaDefragmentationContext defragCtx;
|
|
vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
|
|
|
|
vkEndCommandBuffer(commandBuffer);
|
|
|
|
// Submit commandBuffer.
|
|
// Wait for a fence that ensures commandBuffer execution finished.
|
|
|
|
vmaDefragmentationEnd(allocator, defragCtx);
|
|
|
|
for(uint32_t i = 0; i < allocCount; ++i)
|
|
{
|
|
if(allocationsChanged[i])
|
|
{
|
|
// Destroy buffer that is immutably bound to memory region which is no longer valid.
|
|
vkDestroyBuffer(device, buffers[i], nullptr);
|
|
|
|
// Create new buffer with same parameters.
|
|
VkBufferCreateInfo bufferInfo = ...;
|
|
vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
|
|
|
|
// You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
|
|
|
|
// Bind new buffer to new memory region. Data contained in it is already moved.
|
|
VmaAllocationInfo allocInfo;
|
|
vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
|
|
vmaBindBufferMemory(allocator, allocations[i], buffers[i]);
|
|
}
|
|
}
|
|
\endcode
|
|
|
|
You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters.
|
|
The library automatically chooses best method to defragment each memory pool.
|
|
|
|
You may try not to block your entire program to wait until defragmentation finishes,
|
|
but do it in the background, as long as you carefully fullfill requirements described
|
|
in function vmaDefragmentationBegin().
|
|
|
|
\section defragmentation_additional_notes Additional notes
|
|
|
|
It is only legal to defragment allocations bound to:
|
|
|
|
- buffers
|
|
- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and
|
|
being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`.
|
|
|
|
Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other
|
|
layout may give undefined results.
|
|
|
|
If you defragment allocations bound to images, new images to be bound to new
|
|
memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED`
|
|
and then transitioned to their original layout from before defragmentation if
|
|
needed using an image memory barrier.
|
|
|
|
While using defragmentation, you may experience validation layer warnings, which you just need to ignore.
|
|
See [Validation layer warnings](@ref general_considerations_validation_layer_warnings).
|
|
|
|
Please don't expect memory to be fully compacted after defragmentation.
|
|
Algorithms inside are based on some heuristics that try to maximize number of Vulkan
|
|
memory blocks to make totally empty to release them, as well as to maximize continuous
|
|
empty space inside remaining blocks, while minimizing the number and size of allocations that
|
|
need to be moved. Some fragmentation may still remain - this is normal.
|
|
|
|
\section defragmentation_custom_algorithm Writing custom defragmentation algorithm
|
|
|
|
If you want to implement your own, custom defragmentation algorithm,
|
|
there is infrastructure prepared for that,
|
|
but it is not exposed through the library API - you need to hack its source code.
|
|
Here are steps needed to do this:
|
|
|
|
-# Main thing you need to do is to define your own class derived from base abstract
|
|
class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods.
|
|
See definition and comments of this class for details.
|
|
-# Your code needs to interact with device memory block metadata.
|
|
If you need more access to its data than it is provided by its public interface,
|
|
declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`.
|
|
-# If you want to create a flag that would enable your algorithm or pass some additional
|
|
flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in
|
|
VmaDefragmentationInfo2::flags.
|
|
-# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object
|
|
of your new class whenever needed.
|
|
|
|
|
|
\page lost_allocations Lost allocations
|
|
|
|
If your game oversubscribes video memory, if may work OK in previous-generation
|
|
graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically
|
|
paged to system RAM. In Vulkan you can't do it because when you run out of
|
|
memory, an allocation just fails. If you have more data (e.g. textures) that can
|
|
fit into VRAM and you don't need it all at once, you may want to upload them to
|
|
GPU on demand and "push out" ones that are not used for a long time to make room
|
|
for the new ones, effectively using VRAM (or a cartain memory pool) as a form of
|
|
cache. Vulkan Memory Allocator can help you with that by supporting a concept of
|
|
"lost allocations".
|
|
|
|
To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT
|
|
flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to
|
|
such allocation in every new frame, you need to query it if it is not lost.
|
|
To check it, call vmaTouchAllocation().
|
|
If the allocation is lost, you should not use it or buffer/image bound to it.
|
|
You mustn't forget to destroy this allocation and this buffer/image.
|
|
vmaGetAllocationInfo() can also be used for checking status of the allocation.
|
|
Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`.
|
|
|
|
To create an allocation that can make some other allocations lost to make room
|
|
for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will
|
|
usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and
|
|
#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time.
|
|
|
|
Warning! Current implementation uses quite naive, brute force algorithm,
|
|
which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT
|
|
flag quite slow. A new, more optimal algorithm and data structure to speed this
|
|
up is planned for the future.
|
|
|
|
<b>Q: When interleaving creation of new allocations with usage of existing ones,
|
|
how do you make sure that an allocation won't become lost while it is used in the
|
|
current frame?</b>
|
|
|
|
It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation
|
|
status/parameters and checks whether it is not lost, but when it is not, it also
|
|
atomically marks it as used in the current frame, which makes it impossible to
|
|
become lost in that frame. It uses lockless algorithm, so it works fast and
|
|
doesn't involve locking any internal mutex.
|
|
|
|
<b>Q: What if my allocation may still be in use by the GPU when it is rendering a
|
|
previous frame while I already submit new frame on the CPU?</b>
|
|
|
|
You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not
|
|
become lost for a number of additional frames back from the current one by
|
|
specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default
|
|
memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).
|
|
|
|
<b>Q: How do you inform the library when new frame starts?</b>
|
|
|
|
You need to call function vmaSetCurrentFrameIndex().
|
|
|
|
Example code:
|
|
|
|
\code
|
|
struct MyBuffer
|
|
{
|
|
VkBuffer m_Buf = nullptr;
|
|
VmaAllocation m_Alloc = nullptr;
|
|
|
|
// Called when the buffer is really needed in the current frame.
|
|
void EnsureBuffer();
|
|
};
|
|
|
|
void MyBuffer::EnsureBuffer()
|
|
{
|
|
// Buffer has been created.
|
|
if(m_Buf != VK_NULL_HANDLE)
|
|
{
|
|
// Check if its allocation is not lost + mark it as used in current frame.
|
|
if(vmaTouchAllocation(allocator, m_Alloc))
|
|
{
|
|
// It is all OK - safe to use m_Buf.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Buffer not yet exists or lost - destroy and recreate it.
|
|
|
|
vmaDestroyBuffer(allocator, m_Buf, m_Alloc);
|
|
|
|
VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
bufCreateInfo.size = 1024;
|
|
bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
|
|
VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
|
|
|
vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);
|
|
}
|
|
\endcode
|
|
|
|
When using lost allocations, you may see some Vulkan validation layer warnings
|
|
about overlapping regions of memory bound to different kinds of buffers and
|
|
images. This is still valid as long as you implement proper handling of lost
|
|
allocations (like in the example above) and don't use them.
|
|
|
|
You can create an allocation that is already in lost state from the beginning using function
|
|
vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null.
|
|
|
|
You can call function vmaMakePoolAllocationsLost() to set all eligible allocations
|
|
in a specified custom pool to lost state.
|
|
Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back
|
|
cannot become lost.
|
|
|
|
<b>Q: Can I touch allocation that cannot become lost?</b>
|
|
|
|
Yes, although it has no visible effect.
|
|
Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index
|
|
also for allocations that cannot become lost, but the only way to observe it is to dump
|
|
internal allocator state using vmaBuildStatsString().
|
|
You can use this feature for debugging purposes to explicitly mark allocations that you use
|
|
in current frame and then analyze JSON dump to see for how long each allocation stays unused.
|
|
|
|
|
|
\page statistics Statistics
|
|
|
|
This library contains functions that return information about its internal state,
|
|
especially the amount of memory allocated from Vulkan.
|
|
Please keep in mind that these functions need to traverse all internal data structures
|
|
to gather these information, so they may be quite time-consuming.
|
|
Don't call them too often.
|
|
|
|
\section statistics_numeric_statistics Numeric statistics
|
|
|
|
You can query for overall statistics of the allocator using function vmaCalculateStats().
|
|
Information are returned using structure #VmaStats.
|
|
It contains #VmaStatInfo - number of allocated blocks, number of allocations
|
|
(occupied ranges in these blocks), number of unused (free) ranges in these blocks,
|
|
number of bytes used and unused (but still allocated from Vulkan) and other information.
|
|
They are summed across memory heaps, memory types and total for whole allocator.
|
|
|
|
You can query for statistics of a custom pool using function vmaGetPoolStats().
|
|
Information are returned using structure #VmaPoolStats.
|
|
|
|
You can query for information about specific allocation using function vmaGetAllocationInfo().
|
|
It fill structure #VmaAllocationInfo.
|
|
|
|
\section statistics_json_dump JSON dump
|
|
|
|
You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
|
|
The result is guaranteed to be correct JSON.
|
|
It uses ANSI encoding.
|
|
Any strings provided by user (see [Allocation names](@ref allocation_names))
|
|
are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
|
|
this JSON string can be treated as using this encoding.
|
|
It must be freed using function vmaFreeStatsString().
|
|
|
|
The format of this JSON string is not part of official documentation of the library,
|
|
but it will not change in backward-incompatible way without increasing library major version number
|
|
and appropriate mention in changelog.
|
|
|
|
The JSON string contains all the data that can be obtained using vmaCalculateStats().
|
|
It can also contain detailed map of allocated memory blocks and their regions -
|
|
free and occupied by allocations.
|
|
This allows e.g. to visualize the memory or assess fragmentation.
|
|
|
|
|
|
\page allocation_annotation Allocation names and user data
|
|
|
|
\section allocation_user_data Allocation user data
|
|
|
|
You can annotate allocations with your own information, e.g. for debugging purposes.
|
|
To do that, fill VmaAllocationCreateInfo::pUserData field when creating
|
|
an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer,
|
|
some handle, index, key, ordinal number or any other value that would associate
|
|
the allocation with your custom metadata.
|
|
|
|
\code
|
|
VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
|
// Fill bufferInfo...
|
|
|
|
MyBufferMetadata* pMetadata = CreateBufferMetadata();
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
allocCreateInfo.pUserData = pMetadata;
|
|
|
|
VkBuffer buffer;
|
|
VmaAllocation allocation;
|
|
vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
|
|
\endcode
|
|
|
|
The pointer may be later retrieved as VmaAllocationInfo::pUserData:
|
|
|
|
\code
|
|
VmaAllocationInfo allocInfo;
|
|
vmaGetAllocationInfo(allocator, allocation, &allocInfo);
|
|
MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
|
|
\endcode
|
|
|
|
It can also be changed using function vmaSetAllocationUserData().
|
|
|
|
Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
|
|
vmaBuildStatsString(), in hexadecimal form.
|
|
|
|
\section allocation_names Allocation names
|
|
|
|
There is alternative mode available where `pUserData` pointer is used to point to
|
|
a null-terminated string, giving a name to the allocation. To use this mode,
|
|
set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags.
|
|
Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to
|
|
vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.
|
|
The library creates internal copy of the string, so the pointer you pass doesn't need
|
|
to be valid for whole lifetime of the allocation. You can free it after the call.
|
|
|
|
\code
|
|
VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
|
// Fill imageInfo...
|
|
|
|
std::string imageName = "Texture: ";
|
|
imageName += fileName;
|
|
|
|
VmaAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
|
allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
|
|
allocCreateInfo.pUserData = imageName.c_str();
|
|
|
|
VkImage image;
|
|
VmaAllocation allocation;
|
|
vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);
|
|
\endcode
|
|
|
|
The value of `pUserData` pointer of the allocation will be different than the one
|
|
you passed when setting allocation's name - pointing to a buffer managed
|
|
internally that holds copy of the string.
|
|
|
|
\code
|
|
VmaAllocationInfo allocInfo;
|
|
vmaGetAllocationInfo(allocator, allocation, &allocInfo);
|
|
const char* imageName = (const char*)allocInfo.pUserData;
|
|
printf("Image name: %s\n", imageName);
|
|
\endcode
|
|
|
|
That string is also printed in JSON report created by vmaBuildStatsString().
|
|
|
|
\note Passing string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it.
|
|
You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library.
|
|
|
|
|
|
\page virtual_allocator Virtual allocator
|
|
|
|
As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator".
|
|
It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block".
|
|
You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan.
|
|
A common use case is sub-allocation of pieces of one large GPU buffer.
|
|
|
|
\section virtual_allocator_creating_virtual_block Creating virtual block
|
|
|
|
To use this functionality, there is no main "allocator" object.
|
|
You don't need to have #VmaAllocator object created.
|
|
All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator:
|
|
|
|
-# Fill in #VmaVirtualBlockCreateInfo structure.
|
|
-# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object.
|
|
|
|
Example:
|
|
|
|
\code
|
|
VmaVirtualBlockCreateInfo blockCreateInfo = {};
|
|
blockCreateInfo.size = 1048576; // 1 MB
|
|
|
|
VmaVirtualBlock block;
|
|
VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block);
|
|
\endcode
|
|
|
|
\section virtual_allocator_making_virtual_allocations Making virtual allocations
|
|
|
|
#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions
|
|
using the same code as the main Vulkan memory allocator.
|
|
However, there is no "virtual allocation" object.
|
|
When you request a new allocation, a `VkDeviceSize` number is returned.
|
|
It is an offset inside the block where the allocation has been placed, but it also uniquely identifies the allocation within this block.
|
|
|
|
In order to make an allocation:
|
|
|
|
-# Fill in #VmaVirtualAllocationCreateInfo structure.
|
|
-# Call vmaVirtualAllocate(). Get new `VkDeviceSize offset` that identifies the allocation.
|
|
|
|
Example:
|
|
|
|
\code
|
|
VmaVirtualAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.size = 4096; // 4 KB
|
|
|
|
VkDeviceSize allocOffset;
|
|
res = vmaVirtualAllocate(block, &allocCreateInfo, &allocOffset);
|
|
if(res == VK_SUCCESS)
|
|
{
|
|
// Use the 4 KB of your memory starting at allocOffset.
|
|
}
|
|
else
|
|
{
|
|
// Allocation failed - no space for it could be found. Handle this error!
|
|
}
|
|
\endcode
|
|
|
|
\section virtual_allocator_deallocation Deallocation
|
|
|
|
When no longer needed, an allocation can be freed by calling vmaVirtualFree().
|
|
You can only pass to this function the exact offset that was previously returned by vmaVirtualAllocate()
|
|
and not any other location within the memory.
|
|
|
|
When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock().
|
|
All allocations must be freed before the block is destroyed, which is checked internally by an assert.
|
|
However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once -
|
|
a feature not available in normal Vulkan memory allocator. Example:
|
|
|
|
\code
|
|
vmaVirtualFree(block, allocOffset);
|
|
vmaDestroyVirtualBlock(block);
|
|
\endcode
|
|
|
|
\section virtual_allocator_allocation_parameters Allocation parameters
|
|
|
|
You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData().
|
|
Its default value is null.
|
|
It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some
|
|
larger data structure containing more information. Example:
|
|
|
|
\code
|
|
struct CustomAllocData
|
|
{
|
|
std::string m_AllocName;
|
|
};
|
|
CustomAllocData* allocData = new CustomAllocData();
|
|
allocData->m_AllocName = "My allocation 1";
|
|
vmaSetVirtualAllocationUserData(block, allocOffset, allocData);
|
|
\endcode
|
|
|
|
The pointer can later be fetched, along with allocation size, by passing the allocation offset to function
|
|
vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo.
|
|
If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation!
|
|
Example:
|
|
|
|
\code
|
|
VmaVirtualAllocationInfo allocInfo;
|
|
vmaGetVirtualAllocationInfo(block, allocOffset, &allocInfo);
|
|
delete (CustomAllocData*)allocInfo.pUserData;
|
|
|
|
vmaVirtualFree(block, allocOffset);
|
|
\endcode
|
|
|
|
\section virtual_allocator_alignment_and_units Alignment and units
|
|
|
|
It feels natural to express sizes and offsets in bytes.
|
|
If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member
|
|
VmaVirtualAllocationCreateInfo::alignment to request it. Example:
|
|
|
|
\code
|
|
VmaVirtualAllocationCreateInfo allocCreateInfo = {};
|
|
allocCreateInfo.size = 4096; // 4 KB
|
|
allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B
|
|
|
|
VkDeviceSize allocOffset;
|
|
res = vmaVirtualAllocate(block, &allocCreateInfo, &allocOffset);
|
|
\endcode
|
|
|
|
Alignments of different allocations made from one block may vary.
|
|
However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`,
|
|
you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes.
|
|
It might be more convenient, but you need to make sure to use this new unit consistently in all the places:
|
|
|
|
- VmaVirtualBlockCreateInfo::size
|
|
- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment
|
|
- Using offset returned by vmaVirtualAllocate()
|
|
|
|
\section virtual_allocator_statistics Statistics
|
|
|
|
You can obtain statistics of a virtual block using vmaCalculateVirtualBlockStats().
|
|
The function fills structure #VmaStatInfo - same as used by the normal Vulkan memory allocator.
|
|
Example:
|
|
|
|
\code
|
|
VmaStatInfo statInfo;
|
|
vmaCalculateVirtualBlockStats(block, &statInfo);
|
|
printf("My virtual block has %llu bytes used by %u virtual allocations\n",
|
|
statInfo.usedBytes, statInfo.allocationCount);
|
|
\endcode
|
|
|
|
You can also request a full list of allocations and free regions as a string in JSON format by calling
|
|
vmaBuildVirtualBlockStatsString().
|
|
Returned string must be later freed using vmaFreeVirtualBlockStatsString().
|
|
The format of this string differs from the one returned by the main Vulkan allocator, but it is similar.
|
|
|
|
\section virtual_allocator_additional_considerations Additional considerations
|
|
|
|
The "virtual allocator" functionality is implemented on a level of individual memory blocks.
|
|
Keeping track of a whole collection of blocks, allocating new ones when out of free space,
|
|
deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user.
|
|
|
|
Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory.
|
|
See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT).
|
|
You can find their description in chapter \ref custom_memory_pools.
|
|
Allocation strategies are also supported.
|
|
See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT).
|
|
|
|
Following features are supported only by the allocator of the real GPU memory and not by virtual allocations:
|
|
buffer-image granularity, \ref lost_allocations, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`.
|
|
|
|
|
|
\page debugging_memory_usage Debugging incorrect memory usage
|
|
|
|
If you suspect a bug with memory usage, like usage of uninitialized memory or
|
|
memory being overwritten out of bounds of an allocation,
|
|
you can use debug features of this library to verify this.
|
|
|
|
\section debugging_memory_usage_initialization Memory initialization
|
|
|
|
If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
|
|
you can enable automatic memory initialization to verify this.
|
|
To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
|
|
|
|
\code
|
|
#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`.
|
|
Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
|
|
Memory is automatically mapped and unmapped if necessary.
|
|
|
|
If you find these values while debugging your program, good chances are that you incorrectly
|
|
read Vulkan memory that is allocated but not initialized, or already freed, respectively.
|
|
|
|
Memory initialization works only with memory types that are `HOST_VISIBLE`.
|
|
It works also with dedicated allocations.
|
|
It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
|
|
as they cannot be mapped.
|
|
|
|
\section debugging_memory_usage_margins Margins
|
|
|
|
By default, allocations are laid out in memory blocks next to each other if possible
|
|
(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
|
|
|
|
![Allocations without margin](../gfx/Margins_1.png)
|
|
|
|
Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
|
|
number of bytes as a margin before and after every allocation.
|
|
|
|
\code
|
|
#define VMA_DEBUG_MARGIN 16
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
![Allocations with margin](../gfx/Margins_2.png)
|
|
|
|
If your bug goes away after enabling margins, it means it may be caused by memory
|
|
being overwritten outside of allocation boundaries. It is not 100% certain though.
|
|
Change in application behavior may also be caused by different order and distribution
|
|
of allocations across memory blocks after margins are applied.
|
|
|
|
The margin is applied also before first and after last allocation in a block.
|
|
It may occur only once between two adjacent allocations.
|
|
|
|
Margins work with all types of memory.
|
|
|
|
Margin is applied only to allocations made out of memory blocks and not to dedicated
|
|
allocations, which have their own memory block of specific size.
|
|
It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
|
|
or those automatically decided to put into dedicated allocations, e.g. due to its
|
|
large size or recommended by VK_KHR_dedicated_allocation extension.
|
|
Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag.
|
|
|
|
Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
|
|
|
|
Note that enabling margins increases memory usage and fragmentation.
|
|
|
|
\section debugging_memory_usage_corruption_detection Corruption detection
|
|
|
|
You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
|
|
of contents of the margins.
|
|
|
|
\code
|
|
#define VMA_DEBUG_MARGIN 16
|
|
#define VMA_DEBUG_DETECT_CORRUPTION 1
|
|
#include "vk_mem_alloc.h"
|
|
\endcode
|
|
|
|
When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
|
|
(it must be multiply of 4) before and after every allocation is filled with a magic number.
|
|
This idea is also know as "canary".
|
|
Memory is automatically mapped and unmapped if necessary.
|
|
|
|
This number is validated automatically when the allocation is destroyed.
|
|
If it is not equal to the expected value, `VMA_ASSERT()` is executed.
|
|
It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
|
|
which indicates a serious bug.
|
|
|
|
You can also explicitly request checking margins of all allocations in all memory blocks
|
|
that belong to specified memory types by using function vmaCheckCorruption(),
|
|
or in memory blocks that belong to specified custom pool, by using function
|
|
vmaCheckPoolCorruption().
|
|
|
|
Margin validation (corruption detection) works only for memory types that are
|
|
`HOST_VISIBLE` and `HOST_COHERENT`.
|
|
|
|
|
|
\page record_and_replay Record and replay
|
|
|
|
\section record_and_replay_introduction Introduction
|
|
|
|
While using the library, sequence of calls to its functions together with their
|
|
parameters can be recorded to a file and later replayed using standalone player
|
|
application. It can be useful to:
|
|
|
|
- Test correctness - check if same sequence of calls will not cause crash or
|
|
failures on a target platform.
|
|
- Gather statistics - see number of allocations, peak memory usage, number of
|
|
calls etc.
|
|
- Benchmark performance - see how much time it takes to replay the whole
|
|
sequence.
|
|
|
|
\section record_and_replay_usage Usage
|
|
|
|
Recording functionality is disabled by default.
|
|
To enable it, define following macro before every include of this library:
|
|
|
|
\code
|
|
#define VMA_RECORDING_ENABLED 1
|
|
\endcode
|
|
|
|
<b>To record sequence of calls to a file:</b> Fill in
|
|
VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator
|
|
object. File is opened and written during whole lifetime of the allocator.
|
|
|
|
<b>To replay file:</b> Use VmaReplay - standalone command-line program.
|
|
Precompiled binary can be found in "bin" directory.
|
|
Its source can be found in "src/VmaReplay" directory.
|
|
Its project is generated by Premake.
|
|
Command line syntax is printed when the program is launched without parameters.
|
|
Basic usage:
|
|
|
|
VmaReplay.exe MyRecording.csv
|
|
|
|
<b>Documentation of file format</b> can be found in file: "docs/Recording file format.md".
|
|
It is a human-readable, text file in CSV format (Comma Separated Values).
|
|
|
|
\section record_and_replay_additional_considerations Additional considerations
|
|
|
|
- Replaying file that was recorded on a different GPU (with different parameters
|
|
like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different
|
|
set of memory heaps and types) may give different performance and memory usage
|
|
results, as well as issue some warnings and errors.
|
|
- Current implementation of recording in VMA, as well as VmaReplay application, is
|
|
coded and tested only on Windows. Inclusion of recording code is driven by
|
|
`VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to
|
|
add. Contributions are welcomed.
|
|
|
|
|
|
\page opengl_interop OpenGL Interop
|
|
|
|
VMA provides some features that help with interoperability with OpenGL.
|
|
|
|
\section opengl_interop_exporting_memory Exporting memory
|
|
|
|
If you want to attach `VkExportMemoryAllocateInfoKHR` structure to `pNext` chain of memory allocations made by the library:
|
|
|
|
It is recommended to create \ref custom_memory_pools for such allocations.
|
|
Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext
|
|
while creating the custom pool.
|
|
Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool,
|
|
not only while creating it, as no copy of the structure is made,
|
|
but its original pointer is used for each allocation instead.
|
|
|
|
If you want to export all memory allocated by the library from certain memory types,
|
|
also dedicated allocations or other allocations made from default pools,
|
|
an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes.
|
|
It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library
|
|
through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type.
|
|
This is currently the only method to use if you need exported dedicated allocations, as they cannot be created out of custom pools.
|
|
This will change in future versions of the library though.
|
|
|
|
You should not mix these two methods in a way that allows to apply both to the same memory type.
|
|
Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`.
|
|
|
|
|
|
\section opengl_interop_custom_alignment Custom alignment
|
|
|
|
Buffers or images exported to a different API like OpenGL may require a different alignment,
|
|
higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`.
|
|
To impose such alignment:
|
|
|
|
It is recommended to create \ref custom_memory_pools for such allocations.
|
|
Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation
|
|
to be made out of this pool.
|
|
The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image
|
|
from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically.
|
|
|
|
If you want to create a buffer with a specific minimum alignment out of default pools,
|
|
use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`.
|
|
This is currently the only method to use if you need exported dedicated allocations, as they cannot be created out of custom pools.
|
|
This will change in future versions of the library though.
|
|
|
|
Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated
|
|
allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block.
|
|
Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation.
|
|
|
|
|
|
\page usage_patterns Recommended usage patterns
|
|
|
|
See also slides from talk:
|
|
[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
|
|
|
|
|
|
\section usage_patterns_common_mistakes Common mistakes
|
|
|
|
<b>Use of CPU_TO_GPU instead of CPU_ONLY memory</b>
|
|
|
|
#VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be
|
|
mapped and written by the CPU, as well as read directly by the GPU - like some
|
|
buffers or textures updated every frame (dynamic). If you create a staging copy
|
|
of a resource to be written by CPU and then used as a source of transfer to
|
|
another resource placed in the GPU memory, that staging resource should be
|
|
created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these
|
|
enums carefully for details.
|
|
|
|
<b>Unnecessary use of custom pools</b>
|
|
|
|
\ref custom_memory_pools may be useful for special purposes - when you want to
|
|
keep certain type of resources separate e.g. to reserve minimum amount of memory
|
|
for them, limit maximum amount of memory they can occupy, or make some of them
|
|
push out the other through the mechanism of \ref lost_allocations. For most
|
|
resources this is not needed and so it is not recommended to create #VmaPool
|
|
objects and allocations out of them. Allocating from the default pool is sufficient.
|
|
|
|
\section usage_patterns_simple Simple patterns
|
|
|
|
\subsection usage_patterns_simple_render_targets Render targets
|
|
|
|
<b>When:</b>
|
|
Any resources that you frequently write and read on GPU,
|
|
e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
|
|
images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
|
|
|
|
<b>What to do:</b>
|
|
Create them in video memory that is fastest to access from GPU using
|
|
#VMA_MEMORY_USAGE_GPU_ONLY.
|
|
|
|
Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension
|
|
and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
|
|
especially if they are large or if you plan to destroy and recreate them e.g. when
|
|
display resolution changes.
|
|
Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
|
|
|
|
\subsection usage_patterns_simple_immutable_resources Immutable resources
|
|
|
|
<b>When:</b>
|
|
Any resources that you fill on CPU only once (aka "immutable") or infrequently
|
|
and then read frequently on GPU,
|
|
e.g. textures, vertex and index buffers, constant buffers that don't change often.
|
|
|
|
<b>What to do:</b>
|
|
Create them in video memory that is fastest to access from GPU using
|
|
#VMA_MEMORY_USAGE_GPU_ONLY.
|
|
|
|
To initialize content of such resource, create a CPU-side (aka "staging") copy of it
|
|
in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it,
|
|
and submit a transfer from it to the GPU resource.
|
|
You can keep the staging copy if you need it for another upload transfer in the future.
|
|
If you don't, you can destroy it or reuse this buffer for uploading different resource
|
|
after the transfer finishes.
|
|
|
|
Prefer to create just buffers in system memory rather than images, even for uploading textures.
|
|
Use `vkCmdCopyBufferToImage()`.
|
|
Dont use images with `VK_IMAGE_TILING_LINEAR`.
|
|
|
|
\subsection usage_patterns_dynamic_resources Dynamic resources
|
|
|
|
<b>When:</b>
|
|
Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call,
|
|
written on CPU, read on GPU.
|
|
|
|
<b>What to do:</b>
|
|
Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU.
|
|
You can map it and write to it directly on CPU, as well as read from it on GPU.
|
|
|
|
This is a more complex situation. Different solutions are possible,
|
|
and the best one depends on specific GPU type, but you can use this simple approach for the start.
|
|
Prefer to write to such resource sequentially (e.g. using `memcpy`).
|
|
Don't perform random access or any reads from it on CPU, as it may be very slow.
|
|
Also note that textures written directly from the host through a mapped pointer need to be in LINEAR not OPTIMAL layout.
|
|
|
|
\subsection usage_patterns_readback Readback
|
|
|
|
<b>When:</b>
|
|
Resources that contain data written by GPU that you want to read back on CPU,
|
|
e.g. results of some computations.
|
|
|
|
<b>What to do:</b>
|
|
Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU.
|
|
You can write to them directly on GPU, as well as map and read them on CPU.
|
|
|
|
\section usage_patterns_advanced Advanced patterns
|
|
|
|
\subsection usage_patterns_integrated_graphics Detecting integrated graphics
|
|
|
|
You can support integrated graphics (like Intel HD Graphics, AMD APU) better
|
|
by detecting it in Vulkan.
|
|
To do it, call `vkGetPhysicalDeviceProperties()`, inspect
|
|
`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`.
|
|
When you find it, you can assume that memory is unified and all memory types are comparably fast
|
|
to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
|
|
|
|
You can then sum up sizes of all available memory heaps and treat them as useful for
|
|
your GPU resources, instead of only `DEVICE_LOCAL` ones.
|
|
You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them
|
|
directly instead of submitting explicit transfer (see below).
|
|
|
|
\subsection usage_patterns_direct_vs_transfer Direct access versus transfer
|
|
|
|
For resources that you frequently write on CPU and read on GPU, many solutions are possible:
|
|
|
|
-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
|
|
second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit transfer each time.
|
|
-# Create just a single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU,
|
|
read it directly on GPU.
|
|
-# Create just a single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU,
|
|
read it directly on GPU.
|
|
|
|
Which solution is the most efficient depends on your resource and especially on the GPU.
|
|
It is best to measure it and then make the decision.
|
|
Some general recommendations:
|
|
|
|
- On integrated graphics use (2) or (3) to avoid unnecessary time and memory overhead
|
|
related to using a second copy and making transfer.
|
|
- For small resources (e.g. constant buffers) use (2).
|
|
Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable.
|
|
Even if the resource ends up in system memory, its data may be cached on GPU after first
|
|
fetch over PCIe bus.
|
|
- For larger resources (e.g. textures), decide between (1) and (2).
|
|
You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is
|
|
both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1).
|
|
|
|
Similarly, for resources that you frequently write on GPU and read on CPU, multiple
|
|
solutions are possible:
|
|
|
|
-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
|
|
second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time.
|
|
-# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU,
|
|
map it and read it on CPU.
|
|
|
|
You should take some measurements to decide which option is faster in case of your specific
|
|
resource.
|
|
|
|
Note that textures accessed directly from the host through a mapped pointer need to be in LINEAR layout,
|
|
which may slow down their usage on the device.
|
|
Textures accessed only by the device and transfer operations can use OPTIMAL layout.
|
|
|
|
If you don't want to specialize your code for specific types of GPUs, you can still make
|
|
an simple optimization for cases when your resource ends up in mappable memory to use it
|
|
directly in this case instead of creating CPU-side staging copy.
|
|
For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable).
|
|
|
|
|
|
\page configuration Configuration
|
|
|
|
Please check "CONFIGURATION SECTION" in the code to find macros that you can define
|
|
before each include of this file or change directly in this file to provide
|
|
your own implementation of basic facilities like assert, `min()` and `max()` functions,
|
|
mutex, atomic etc.
|
|
The library uses its own implementation of containers by default, but you can switch to using
|
|
STL containers instead.
|
|
|
|
For example, define `VMA_ASSERT(expr)` before including the library to provide
|
|
custom implementation of the assertion, compatible with your project.
|
|
By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
|
|
and empty otherwise.
|
|
|
|
\section config_Vulkan_functions Pointers to Vulkan functions
|
|
|
|
There are multiple ways to import pointers to Vulkan functions in the library.
|
|
In the simplest case you don't need to do anything.
|
|
If the compilation or linking of your program or the initialization of the #VmaAllocator
|
|
doesn't work for you, you can try to reconfigure it.
|
|
|
|
First, the allocator tries to fetch pointers to Vulkan functions linked statically,
|
|
like this:
|
|
|
|
\code
|
|
m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
|
|
\endcode
|
|
|
|
If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`.
|
|
|
|
Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions.
|
|
You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or
|
|
by using a helper library like [volk](https://github.com/zeux/volk).
|
|
|
|
Third, VMA tries to fetch remaining pointers that are still null by calling
|
|
`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own.
|
|
If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`.
|
|
|
|
Finally, all the function pointers required by the library (considering selected
|
|
Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null.
|
|
|
|
|
|
\section custom_memory_allocator Custom host memory allocator
|
|
|
|
If you use custom allocator for CPU memory rather than default operator `new`
|
|
and `delete` from C++, you can make this library using your allocator as well
|
|
by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
|
|
functions will be passed to Vulkan, as well as used by the library itself to
|
|
make any CPU-side allocations.
|
|
|
|
\section allocation_callbacks Device memory allocation callbacks
|
|
|
|
The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
|
|
You can setup callbacks to be informed about these calls, e.g. for the purpose
|
|
of gathering some statistics. To do it, fill optional member
|
|
VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
|
|
|
|
\section heap_memory_limit Device heap memory limit
|
|
|
|
When device memory of certain heap runs out of free space, new allocations may
|
|
fail (returning error code) or they may succeed, silently pushing some existing
|
|
memory blocks from GPU VRAM to system RAM (which degrades performance). This
|
|
behavior is implementation-dependent - it depends on GPU vendor and graphics
|
|
driver.
|
|
|
|
On AMD cards it can be controlled while creating Vulkan device object by using
|
|
VK_AMD_memory_overallocation_behavior extension, if available.
|
|
|
|
Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
|
|
memory available without switching your graphics card to one that really has
|
|
smaller VRAM, you can use a feature of this library intended for this purpose.
|
|
To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
|
|
|
|
|
|
|
|
\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
|
|
|
|
VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
|
|
performance on some GPUs. It augments Vulkan API with possibility to query
|
|
driver whether it prefers particular buffer or image to have its own, dedicated
|
|
allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
|
|
to do some internal optimizations.
|
|
|
|
The extension is supported by this library. It will be used automatically when
|
|
enabled. To enable it:
|
|
|
|
1 . When creating Vulkan device, check if following 2 device extensions are
|
|
supported (call `vkEnumerateDeviceExtensionProperties()`).
|
|
If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
|
|
|
|
- VK_KHR_get_memory_requirements2
|
|
- VK_KHR_dedicated_allocation
|
|
|
|
If you enabled these extensions:
|
|
|
|
2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
|
|
your #VmaAllocator`to inform the library that you enabled required extensions
|
|
and you want the library to use them.
|
|
|
|
\code
|
|
allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
|
|
|
|
vmaCreateAllocator(&allocatorInfo, &allocator);
|
|
\endcode
|
|
|
|
That is all. The extension will be automatically used whenever you create a
|
|
buffer using vmaCreateBuffer() or image using vmaCreateImage().
|
|
|
|
When using the extension together with Vulkan Validation Layer, you will receive
|
|
warnings like this:
|
|
|
|
vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.
|
|
|
|
It is OK, you should just ignore it. It happens because you use function
|
|
`vkGetBufferMemoryRequirements2KHR()` instead of standard
|
|
`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
|
|
unaware of it.
|
|
|
|
To learn more about this extension, see:
|
|
|
|
- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation)
|
|
- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
|
|
|
|
|
|
|
|
\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory
|
|
|
|
VK_AMD_device_coherent_memory is a device extension that enables access to
|
|
additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and
|
|
`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for
|
|
allocation of buffers intended for writing "breadcrumb markers" in between passes
|
|
or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases.
|
|
|
|
When the extension is available but has not been enabled, Vulkan physical device
|
|
still exposes those memory types, but their usage is forbidden. VMA automatically
|
|
takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt
|
|
to allocate memory of such type is made.
|
|
|
|
If you want to use this extension in connection with VMA, follow these steps:
|
|
|
|
\section vk_amd_device_coherent_memory_initialization Initialization
|
|
|
|
1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
|
|
Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory".
|
|
|
|
2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
|
|
Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
|
|
Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true.
|
|
|
|
3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory"
|
|
to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
|
|
|
|
4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
|
|
Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
|
|
Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to
|
|
`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`.
|
|
|
|
5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
|
|
have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
|
|
to VmaAllocatorCreateInfo::flags.
|
|
|
|
\section vk_amd_device_coherent_memory_usage Usage
|
|
|
|
After following steps described above, you can create VMA allocations and custom pools
|
|
out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible
|
|
devices. There are multiple ways to do it, for example:
|
|
|
|
- You can request or prefer to allocate out of such memory types by adding
|
|
`VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags
|
|
or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with
|
|
other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage.
|
|
- If you manually found memory type index to use for this purpose, force allocation
|
|
from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`.
|
|
|
|
\section vk_amd_device_coherent_memory_more_information More information
|
|
|
|
To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html)
|
|
|
|
Example use of this extension can be found in the code of the sample and test suite
|
|
accompanying this library.
|
|
|
|
|
|
\page enabling_buffer_device_address Enabling buffer device address
|
|
|
|
Device extension VK_KHR_buffer_device_address
|
|
allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code.
|
|
It is promoted to core Vulkan 1.2.
|
|
|
|
If you want to use this feature in connection with VMA, follow these steps:
|
|
|
|
\section enabling_buffer_device_address_initialization Initialization
|
|
|
|
1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
|
|
Check if the extension is supported - if returned array of `VkExtensionProperties` contains
|
|
"VK_KHR_buffer_device_address".
|
|
|
|
2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
|
|
Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
|
|
Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true.
|
|
|
|
3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add
|
|
"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
|
|
|
|
4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
|
|
Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
|
|
Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to
|
|
`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`.
|
|
|
|
5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
|
|
have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
|
|
to VmaAllocatorCreateInfo::flags.
|
|
|
|
\section enabling_buffer_device_address_usage Usage
|
|
|
|
After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.
|
|
The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to
|
|
allocated memory blocks wherever it might be needed.
|
|
|
|
Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`.
|
|
The second part of this functionality related to "capture and replay" is not supported,
|
|
as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage.
|
|
|
|
\section enabling_buffer_device_address_more_information More information
|
|
|
|
To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address)
|
|
|
|
Example use of this extension can be found in the code of the sample and test suite
|
|
accompanying this library.
|
|
|
|
\page general_considerations General considerations
|
|
|
|
\section general_considerations_thread_safety Thread safety
|
|
|
|
- The library has no global state, so separate #VmaAllocator objects can be used
|
|
independently.
|
|
There should be no need to create multiple such objects though - one per `VkDevice` is enough.
|
|
- By default, all calls to functions that take #VmaAllocator as first parameter
|
|
are safe to call from multiple threads simultaneously because they are
|
|
synchronized internally when needed.
|
|
This includes allocation and deallocation from default memory pool, as well as custom #VmaPool.
|
|
- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
|
|
flag, calls to functions that take such #VmaAllocator object must be
|
|
synchronized externally.
|
|
- Access to a #VmaAllocation object must be externally synchronized. For example,
|
|
you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
|
|
threads at the same time if you pass the same #VmaAllocation object to these
|
|
functions.
|
|
- #VmaVirtualBlock is also not safe to be used from multiple threads simultaneously.
|
|
|
|
\section general_considerations_validation_layer_warnings Validation layer warnings
|
|
|
|
When using this library, you can meet following types of warnings issued by
|
|
Vulkan validation layer. They don't necessarily indicate a bug, so you may need
|
|
to just ignore them.
|
|
|
|
- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
|
|
- It happens when VK_KHR_dedicated_allocation extension is enabled.
|
|
`vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
|
|
- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
|
|
- It happens when you map a buffer or image, because the library maps entire
|
|
`VkDeviceMemory` block, where different types of images and buffers may end
|
|
up together, especially on GPUs with unified memory like Intel.
|
|
- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
|
|
- It happens when you use lost allocations, and a new image or buffer is
|
|
created in place of an existing object that became lost.
|
|
- It may happen also when you use [defragmentation](@ref defragmentation).
|
|
|
|
\section general_considerations_allocation_algorithm Allocation algorithm
|
|
|
|
The library uses following algorithm for allocation, in order:
|
|
|
|
-# Try to find free range of memory in existing blocks.
|
|
-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
|
|
-# If failed, try to create such block with size/2, size/4, size/8.
|
|
-# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was
|
|
specified, try to find space in existing blocks, possilby making some other
|
|
allocations lost.
|
|
-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
|
|
just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
|
|
-# If failed, choose other memory type that meets the requirements specified in
|
|
VmaAllocationCreateInfo and go to point 1.
|
|
-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
|
|
|
|
\section general_considerations_features_not_supported Features not supported
|
|
|
|
Features deliberately excluded from the scope of this library:
|
|
|
|
- **Data transfer.** Uploading (streaming) and downloading data of buffers and images
|
|
between CPU and GPU memory and related synchronization is responsibility of the user.
|
|
Defining some "texture" object that would automatically stream its data from a
|
|
staging copy in CPU memory to GPU memory would rather be a feature of another,
|
|
higher-level library implemented on top of VMA.
|
|
- **Recreation of buffers and images.** Although the library has functions for
|
|
buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to
|
|
recreate these objects yourself after defragmentation. That is because the big
|
|
structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
|
|
#VmaAllocation object.
|
|
- **Handling CPU memory allocation failures.** When dynamically creating small C++
|
|
objects in CPU memory (not Vulkan memory), allocation failures are not checked
|
|
and handled gracefully, because that would complicate code significantly and
|
|
is usually not needed in desktop PC applications anyway.
|
|
Success of an allocation is just checked with an assert.
|
|
- **Code free of any compiler warnings.** Maintaining the library to compile and
|
|
work correctly on so many different platforms is hard enough. Being free of
|
|
any warnings, on any version of any compiler, is simply not feasible.
|
|
There are many preprocessor macros that make some variables unused, function parameters unreferenced,
|
|
or conditional expressions constant in some configurations.
|
|
The code of this library should not be bigger or more complicated just to silence these warnings.
|
|
It is recommended to disable such warnings instead.
|
|
- This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but
|
|
are not going to be included into this repository.
|
|
*/
|