mirror of
https://github.com/1bardesign/batteries.git
synced 2024-11-22 06:04:35 +00:00
[added] vec3.lua (very quick work, probably would benefit from tests)
This commit is contained in:
parent
2069a4b3e7
commit
63448b5d5e
67
vec2.lua
67
vec2.lua
@ -14,8 +14,8 @@
|
||||
]]
|
||||
|
||||
local vec2 = class()
|
||||
vec2.x = 0
|
||||
vec2.y = 0
|
||||
|
||||
vec2.type = "vec2"
|
||||
|
||||
--probably-too-flexible ctor
|
||||
function vec2:new(x, y)
|
||||
@ -24,8 +24,10 @@ function vec2:new(x, y)
|
||||
elseif x then
|
||||
if type(x) == "number" then
|
||||
return vec2:filled(x)
|
||||
elseif x.copy then
|
||||
elseif x.type == "vec2" then
|
||||
return x:copy()
|
||||
elseif type(x) == "table" and x[1] and x[2] then
|
||||
return vec2:xy(x[1], x[2])
|
||||
end
|
||||
end
|
||||
return vec2:zero()
|
||||
@ -187,46 +189,30 @@ end
|
||||
|
||||
--scalar
|
||||
function vec2:saddi(x, y)
|
||||
if y then
|
||||
self.x = self.x + x
|
||||
self.y = self.y + y
|
||||
else
|
||||
self.x = self.x + x
|
||||
self.y = self.y + x
|
||||
end
|
||||
if not y then y = x end
|
||||
self.x = self.x + x
|
||||
self.y = self.y + y
|
||||
return self
|
||||
end
|
||||
|
||||
function vec2:ssubi(x, y)
|
||||
if y then
|
||||
self.x = self.x - x
|
||||
self.y = self.y - y
|
||||
else
|
||||
self.x = self.x - x
|
||||
self.y = self.y - x
|
||||
end
|
||||
if not y then y = x end
|
||||
self.x = self.x - x
|
||||
self.y = self.y - y
|
||||
return self
|
||||
end
|
||||
|
||||
function vec2:smuli(x, y)
|
||||
if y then
|
||||
self.x = self.x * x
|
||||
self.y = self.y * y
|
||||
else
|
||||
self.x = self.x * x
|
||||
self.y = self.y * x
|
||||
end
|
||||
if not y then y = x end
|
||||
self.x = self.x * x
|
||||
self.y = self.y * y
|
||||
return self
|
||||
end
|
||||
|
||||
function vec2:sdivi(x, y)
|
||||
if y then
|
||||
self.x = self.x / x
|
||||
self.y = self.y / y
|
||||
else
|
||||
self.x = self.x / x
|
||||
self.y = self.y / x
|
||||
end
|
||||
if not y then y = x end
|
||||
self.x = self.x / x
|
||||
self.y = self.y / y
|
||||
return self
|
||||
end
|
||||
|
||||
@ -351,19 +337,12 @@ end
|
||||
vec2.rot180i = vec2.inversei --alias
|
||||
|
||||
function vec2:rotate_aroundi(angle, pivot)
|
||||
local s = math.sin(angle)
|
||||
local c = math.cos(angle)
|
||||
local ox = self.x - pivot.x
|
||||
local oy = self.y - pivot.y
|
||||
self.x = (c * ox - s * oy) + pivot.x
|
||||
self.y = (s * ox + c * oy) + pivot.y
|
||||
self:vsubi(pivot)
|
||||
self:rotatei(angle)
|
||||
self:vaddi(pivot)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec2:rotate_around(angle, pivot)
|
||||
return self:copy():rotate_aroundi(angle, pivot)
|
||||
end
|
||||
|
||||
--garbage mode
|
||||
|
||||
function vec2:normalised()
|
||||
@ -394,6 +373,10 @@ end
|
||||
|
||||
vec2.rot180 = vec2.inverse --alias
|
||||
|
||||
function vec2:rotate_around(angle, pivot)
|
||||
return self:copy():rotate_aroundi(angle, pivot)
|
||||
end
|
||||
|
||||
function vec2:angle()
|
||||
return math.atan2(self.y, self.x)
|
||||
end
|
||||
@ -560,7 +543,7 @@ function vec2:apply_friction(mu, dt)
|
||||
end
|
||||
|
||||
--"gamey" friction in one dimension
|
||||
function apply_friction_1d(v, mu, dt)
|
||||
local function apply_friction_1d(v, mu, dt)
|
||||
local friction = mu * v * dt
|
||||
if math.abs(friction) > math.abs(v) then
|
||||
return 0
|
||||
|
633
vec3.lua
Normal file
633
vec3.lua
Normal file
@ -0,0 +1,633 @@
|
||||
--[[
|
||||
3d vector type
|
||||
]]
|
||||
|
||||
--[[
|
||||
notes:
|
||||
|
||||
depends on a class() function as in oo.lua
|
||||
|
||||
some methods depend on math library extensions
|
||||
|
||||
math.clamp(v, min, max) - return v clamped between min and max
|
||||
math.round(v) - round v downwards if fractional part is < 0.5
|
||||
]]
|
||||
|
||||
--defined globally? otherwise import vec2
|
||||
if not vec2 then
|
||||
local path = ...
|
||||
local vec2_path = path:sub(1, path:len() - 1) .. "2"
|
||||
local vec2 = require(vec2_path)
|
||||
end
|
||||
|
||||
local vec3 = class()
|
||||
vec3.type = "vec3"
|
||||
|
||||
--probably-too-flexible ctor
|
||||
function vec3:new(x, y, z)
|
||||
if x and y then
|
||||
return vec3:xyz(x, y, z)
|
||||
elseif x then
|
||||
if type(x) == "number" then
|
||||
return vec3:filled(x)
|
||||
elseif x.type == "vec3" then
|
||||
return x:copy()
|
||||
elseif type(x) == "table" and x[1] and x[2] and x[3] then
|
||||
return vec3:xyz(x[1], x[2], x[3])
|
||||
end
|
||||
end
|
||||
return vec3:zero()
|
||||
end
|
||||
|
||||
--explicit ctors
|
||||
function vec3:copy()
|
||||
return self:init({
|
||||
x = self.x, y = self.y, z = self.z
|
||||
})
|
||||
end
|
||||
|
||||
function vec3:xyz(x, y, z)
|
||||
return self:init({
|
||||
x = x, y = y, z = z
|
||||
})
|
||||
end
|
||||
|
||||
function vec3:filled(v)
|
||||
return self:init({
|
||||
x = v, y = v, z = v
|
||||
})
|
||||
end
|
||||
|
||||
function vec3:zero()
|
||||
return vec3:filled(0)
|
||||
end
|
||||
|
||||
--shared pooled storage
|
||||
local _vec3_pool = {}
|
||||
--size limit for tuning memory upper bound
|
||||
local _vec3_pool_limit = 128
|
||||
|
||||
function vec3.pool_size()
|
||||
return #_vec3_pool
|
||||
end
|
||||
|
||||
--flush the entire pool
|
||||
function vec3.flush_pool()
|
||||
if vec3.pool_size() > 0 then
|
||||
_vec3_pool = {}
|
||||
end
|
||||
end
|
||||
|
||||
--drain one element from the pool, if it exists
|
||||
function vec3.drain_pool()
|
||||
if #_vec3_pool > 0 then
|
||||
return table.remove(_vec3_pool)
|
||||
end
|
||||
return nil
|
||||
end
|
||||
|
||||
--get a pooled vector (initialise it yourself)
|
||||
function vec3:pooled()
|
||||
return vec3.drain_pool() or vec3:zero()
|
||||
end
|
||||
|
||||
--get a pooled copy of an existing vector
|
||||
function vec3:pooled_copy()
|
||||
return vec3:pooled():vset(self)
|
||||
end
|
||||
|
||||
--release a vector to the pool
|
||||
function vec3:release()
|
||||
if vec3.pool_size() < _vec3_pool_limit then
|
||||
table.insert(_vec3_pool, self)
|
||||
end
|
||||
end
|
||||
|
||||
--unpack for multi-args
|
||||
|
||||
function vec3:unpack()
|
||||
return self.x, self.y, self.z
|
||||
end
|
||||
|
||||
--pack when a sequence is needed
|
||||
--(not particularly useful)
|
||||
|
||||
function vec3:pack()
|
||||
return {self:unpack()}
|
||||
end
|
||||
|
||||
--modify
|
||||
|
||||
function vec3:sset(x, y, z)
|
||||
if not y then y = x end
|
||||
if not z then z = y end
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.z = z
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:vset(v)
|
||||
self.x = v.x
|
||||
self.y = v.y
|
||||
self.z = v.z
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:swap(v)
|
||||
local sx, sy, sz = self.x, self.y, self.z
|
||||
self:vset(v)
|
||||
v:sset(sx, sy, sz)
|
||||
return self
|
||||
end
|
||||
|
||||
-----------------------------------------------------------
|
||||
--equality comparison
|
||||
-----------------------------------------------------------
|
||||
|
||||
--threshold for equality in each dimension
|
||||
local EQUALS_EPSILON = 1e-9
|
||||
|
||||
--true if a and b are functionally equivalent
|
||||
function vec3.equals(a, b)
|
||||
return (
|
||||
math.abs(a.x - b.x) <= EQUALS_EPSILON and
|
||||
math.abs(a.y - b.y) <= EQUALS_EPSILON and
|
||||
math.abs(a.z - b.z) <= EQUALS_EPSILON
|
||||
)
|
||||
end
|
||||
|
||||
--true if a and b are not functionally equivalent
|
||||
--(very slightly faster than `not vec3.equals(a, b)`)
|
||||
function vec3.nequals(a, b)
|
||||
return (
|
||||
math.abs(a.x - b.x) > EQUALS_EPSILON or
|
||||
math.abs(a.y - b.y) > EQUALS_EPSILON or
|
||||
math.abs(a.z - b.z) > EQUALS_EPSILON
|
||||
)
|
||||
end
|
||||
|
||||
-----------------------------------------------------------
|
||||
--arithmetic
|
||||
-----------------------------------------------------------
|
||||
|
||||
--immediate mode
|
||||
|
||||
--vector
|
||||
function vec3:vaddi(v)
|
||||
self.x = self.x + v.x
|
||||
self.y = self.y + v.y
|
||||
self.z = self.z + v.z
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:vsubi(v)
|
||||
self.x = self.x - v.x
|
||||
self.y = self.y - v.y
|
||||
self.z = self.z - v.z
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:vmuli(v)
|
||||
self.x = self.x * v.x
|
||||
self.y = self.y * v.y
|
||||
self.z = self.z * v.z
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:vdivi(v)
|
||||
self.x = self.x / v.x
|
||||
self.y = self.y / v.y
|
||||
self.z = self.z / v.z
|
||||
return self
|
||||
end
|
||||
|
||||
--scalar
|
||||
function vec3:saddi(x, y, z)
|
||||
if not y then y = x end
|
||||
if not z then z = y end
|
||||
self.x = self.x + x
|
||||
self.y = self.y + y
|
||||
self.z = self.z + z
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:ssubi(x, y, z)
|
||||
if not y then y = x end
|
||||
if not z then z = y end
|
||||
self.x = self.x - x
|
||||
self.y = self.y - y
|
||||
self.z = self.z - z
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:smuli(x, y, z)
|
||||
if not y then y = x end
|
||||
if not z then z = y end
|
||||
self.x = self.x * x
|
||||
self.y = self.y * y
|
||||
self.z = self.z * z
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:sdivi(x, y, z)
|
||||
if not y then y = x end
|
||||
if not z then z = y end
|
||||
self.x = self.x / x
|
||||
self.y = self.y / y
|
||||
self.z = self.z / z
|
||||
return self
|
||||
end
|
||||
|
||||
--garbage mode
|
||||
|
||||
function vec3:vadd(v)
|
||||
return self:copy():vaddi(v)
|
||||
end
|
||||
|
||||
function vec3:vsub(v)
|
||||
return self:copy():vsubi(v)
|
||||
end
|
||||
|
||||
function vec3:vmul(v)
|
||||
return self:copy():vmuli(v)
|
||||
end
|
||||
|
||||
function vec3:vdiv(v)
|
||||
return self:copy():vdivi(v)
|
||||
end
|
||||
|
||||
function vec3:sadd(x, y, z)
|
||||
return self:copy():saddi(x, y, z)
|
||||
end
|
||||
|
||||
function vec3:ssub(x, y, z)
|
||||
return self:copy():ssubi(x, y, z)
|
||||
end
|
||||
|
||||
function vec3:smul(x, y, z)
|
||||
return self:copy():smuli(x, y, z)
|
||||
end
|
||||
|
||||
function vec3:sdiv(x, y, z)
|
||||
return self:copy():sdivi(x, y, z)
|
||||
end
|
||||
|
||||
--fused multiply-add (a + (b * t))
|
||||
|
||||
function vec3:fmai(v, t)
|
||||
self.x = self.x + (v.x * t)
|
||||
self.y = self.y + (v.y * t)
|
||||
self.z = self.z + (v.z * t)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:fma(v, t)
|
||||
return self:copy():fmai(v, t)
|
||||
end
|
||||
|
||||
-----------------------------------------------------------
|
||||
-- geometric methods
|
||||
-----------------------------------------------------------
|
||||
|
||||
function vec3:length_squared()
|
||||
return self.x * self.x + self.y * self.y + self.z * self.z
|
||||
end
|
||||
|
||||
function vec3:length()
|
||||
return math.sqrt(self:length_squared())
|
||||
end
|
||||
|
||||
function vec3:distance_squared(other)
|
||||
local dx = self.x - other.x
|
||||
local dy = self.y - other.y
|
||||
local dz = self.z - other.z
|
||||
return dx * dx + dy * dy + dz * dz
|
||||
end
|
||||
|
||||
function vec3:distance(other)
|
||||
return math.sqrt(self:distance_squared(other))
|
||||
end
|
||||
|
||||
--immediate mode
|
||||
|
||||
function vec3:normalisei_both()
|
||||
local len = self:length()
|
||||
if len == 0 then
|
||||
return self, 0
|
||||
end
|
||||
return self:sdivi(len), len
|
||||
end
|
||||
|
||||
function vec3:normalisei()
|
||||
local v, len = self:normalisei_both()
|
||||
return v
|
||||
end
|
||||
|
||||
function vec3:normalisei_len()
|
||||
local v, len = self:normalisei_both()
|
||||
return len
|
||||
end
|
||||
|
||||
function vec3:inversei()
|
||||
return self:smuli(-1)
|
||||
end
|
||||
|
||||
--swizzle extraction
|
||||
--not as nice as property accessors so might be worth doing that later :)
|
||||
local _allowed_swizzle = {
|
||||
x = true,
|
||||
y = true,
|
||||
z = true,
|
||||
}
|
||||
function vec3:extract_single(swizzle)
|
||||
if _allowed_swizzle[swizzle] then
|
||||
return self[swizzle]
|
||||
end
|
||||
return 0
|
||||
end
|
||||
|
||||
function vec3:infuse_single(swizzle, v)
|
||||
if _allowed_swizzle[swizzle] then
|
||||
self[swizzle] = v
|
||||
end
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:extract_vec2(swizzle, into)
|
||||
if not into then into = vec2:zero() end
|
||||
local x = self:extract_single(swizzle:sub(1, 1))
|
||||
local y = self:extract_single(swizzle:sub(2, 2))
|
||||
return into:sset(x, y)
|
||||
end
|
||||
|
||||
function vec3:infuse_vec2(swizzle, v)
|
||||
self:infuse_single(swizzle:sub(1, 1), v.x)
|
||||
self:infuse_single(swizzle:sub(2, 2), v.y)
|
||||
return self
|
||||
end
|
||||
|
||||
--rotate around a swizzle
|
||||
function vec3:rotatei(swizzle, angle)
|
||||
local v = vec2:pooled()
|
||||
self:extract_vec2(swizzle, v)
|
||||
v:rotatei(angle)
|
||||
self:infuse_vec2(swizzle, v)
|
||||
v:release()
|
||||
return self
|
||||
end
|
||||
|
||||
local _euler_macro = {
|
||||
"yz",
|
||||
"xz",
|
||||
"xy",
|
||||
}
|
||||
function vec3:rotate_euleri(angle_x_axis, angle_y_axis, angle_z_axis)
|
||||
for i, swizzle in ipairs(_euler_macro) do
|
||||
local angle =
|
||||
i == 1 and angle_x_axis
|
||||
or i == 2 and angle_y_axis
|
||||
or i == 3 and angle_z_axis
|
||||
self:rotatei(swizzle, angle)
|
||||
end
|
||||
return self
|
||||
end
|
||||
|
||||
--todo: 90deg rotations
|
||||
|
||||
vec3.rot180i = vec3.inversei --alias
|
||||
|
||||
function vec3:rotate_aroundi(swizzle, angle, pivot)
|
||||
self:vsubi(pivot)
|
||||
self:rotatei(swizzle, angle)
|
||||
self:vaddi(pivot)
|
||||
return self
|
||||
end
|
||||
|
||||
--garbage mode
|
||||
|
||||
function vec3:normalised()
|
||||
return self:copy():normalisei()
|
||||
end
|
||||
|
||||
function vec3:normalised_len()
|
||||
local v = self:copy()
|
||||
local len = v:normalisei_len()
|
||||
return v, len
|
||||
end
|
||||
|
||||
function vec3:inverse()
|
||||
return self:copy():inversei()
|
||||
end
|
||||
|
||||
function vec3:rotate(angle)
|
||||
return self:copy():rotatei(angle)
|
||||
end
|
||||
|
||||
function vec3:rot90r()
|
||||
return self:copy():rot90ri()
|
||||
end
|
||||
|
||||
function vec3:rot90l()
|
||||
return self:copy():rot90li()
|
||||
end
|
||||
|
||||
vec3.rot180 = vec3.inverse --alias
|
||||
|
||||
function vec3:rotate_around(swizzle, angle, pivot)
|
||||
return self:copy():rotate_aroundi(swizzle, angle, pivot)
|
||||
end
|
||||
|
||||
|
||||
-----------------------------------------------------------
|
||||
-- per-component clamping ops
|
||||
-----------------------------------------------------------
|
||||
|
||||
function vec3:mini(v)
|
||||
self.x = math.min(self.x, v.x)
|
||||
self.y = math.min(self.y, v.y)
|
||||
self.z = math.min(self.z, v.z)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:maxi(v)
|
||||
self.x = math.max(self.x, v.x)
|
||||
self.y = math.max(self.y, v.y)
|
||||
self.z = math.max(self.z, v.z)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:clampi(min, max)
|
||||
self.x = math.clamp(self.x, min.x, max.x)
|
||||
self.y = math.clamp(self.y, min.y, max.y)
|
||||
self.z = math.clamp(self.z, min.z, max.z)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:min(v)
|
||||
return self:copy():mini(v)
|
||||
end
|
||||
|
||||
function vec3:max(v)
|
||||
return self:copy():maxi(v)
|
||||
end
|
||||
|
||||
function vec3:clamp(min, max)
|
||||
return self:copy():clampi(min, max)
|
||||
end
|
||||
|
||||
-----------------------------------------------------------
|
||||
-- absolute value
|
||||
-----------------------------------------------------------
|
||||
|
||||
function vec3:absi()
|
||||
self.x = math.abs(self.x)
|
||||
self.y = math.abs(self.y)
|
||||
self.z = math.abs(self.z)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:abs()
|
||||
return self:copy():absi()
|
||||
end
|
||||
|
||||
-----------------------------------------------------------
|
||||
-- truncation/rounding
|
||||
-----------------------------------------------------------
|
||||
|
||||
function vec3:floori()
|
||||
self.x = math.floor(self.x)
|
||||
self.y = math.floor(self.y)
|
||||
self.z = math.floor(self.z)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:ceili()
|
||||
self.x = math.ceil(self.x)
|
||||
self.y = math.ceil(self.y)
|
||||
self.z = math.ceil(self.z)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:roundi()
|
||||
self.x = math.round(self.x)
|
||||
self.y = math.round(self.y)
|
||||
self.z = math.round(self.z)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:floor()
|
||||
return self:copy():floori()
|
||||
end
|
||||
|
||||
function vec3:ceil()
|
||||
return self:copy():ceili()
|
||||
end
|
||||
|
||||
function vec3:round()
|
||||
return self:copy():roundi()
|
||||
end
|
||||
|
||||
-----------------------------------------------------------
|
||||
-- interpolation
|
||||
-----------------------------------------------------------
|
||||
|
||||
function vec3:lerpi(other, amount)
|
||||
self.x = math.lerp(self.x, other.x, amount)
|
||||
self.y = math.lerp(self.y, other.y, amount)
|
||||
self.z = math.lerp(self.z, other.z, amount)
|
||||
return self
|
||||
end
|
||||
|
||||
function vec3:lerp(other, amount)
|
||||
return self:copy():lerpi(other, amount)
|
||||
end
|
||||
|
||||
-----------------------------------------------------------
|
||||
-- vector products and projections
|
||||
-----------------------------------------------------------
|
||||
|
||||
function vec3.dot(a, b)
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z
|
||||
end
|
||||
|
||||
function vec3.cross(a, b, into)
|
||||
if not into then into = vec3:zero() end
|
||||
return into:sset(
|
||||
a.y * b.z - a.z * b.y,
|
||||
a.z * b.x - a.x * b.z,
|
||||
a.x * b.y - a.y * b.x
|
||||
)
|
||||
end
|
||||
|
||||
--scalar projection a onto b
|
||||
function vec3.sproj(a, b)
|
||||
local len = b:length()
|
||||
if len == 0 then
|
||||
return 0
|
||||
end
|
||||
return a:dot(b) / len
|
||||
end
|
||||
|
||||
--vector projection a onto b (writes into a)
|
||||
function vec3.vproji(a, b)
|
||||
local div = b:dot(b)
|
||||
if div == 0 then
|
||||
return a:sset(0, 0, 0)
|
||||
end
|
||||
local fac = a:dot(b) / div
|
||||
return a:vset(b):smuli(fac)
|
||||
end
|
||||
|
||||
function vec3.vproj(a, b)
|
||||
return a:copy():vproji(b)
|
||||
end
|
||||
|
||||
--vector rejection a onto b (writes into a)
|
||||
function vec3.vreji(a, b)
|
||||
local tx, ty, tz = a.x, a.y, a.z
|
||||
a:vproji(b)
|
||||
a:sset(tx - a.x, ty - a.y, tz - a.z)
|
||||
return a
|
||||
end
|
||||
|
||||
function vec3.vrej(a, b)
|
||||
return a:copy():vreji(b)
|
||||
end
|
||||
|
||||
-----------------------------------------------------------
|
||||
-- vector extension methods for special purposes
|
||||
-- (any common vector ops worth naming)
|
||||
-----------------------------------------------------------
|
||||
|
||||
--"physical" friction
|
||||
local _v_friction = vec3:zero() --avoid alloc
|
||||
function vec3:apply_friction(mu, dt)
|
||||
_v_friction:vset(self):smuli(mu * dt)
|
||||
if _v_friction:length_squared() > self:length_squared() then
|
||||
self:sset(0, 0)
|
||||
else
|
||||
self:vsubi(_v_friction)
|
||||
end
|
||||
return self
|
||||
end
|
||||
|
||||
--"gamey" friction in one dimension
|
||||
local function apply_friction_1d(v, mu, dt)
|
||||
local friction = mu * v * dt
|
||||
if math.abs(friction) > math.abs(v) then
|
||||
return 0
|
||||
else
|
||||
return v - friction
|
||||
end
|
||||
end
|
||||
|
||||
--"gamey" friction in both dimensions
|
||||
function vec3:apply_friction_xy(mu_x, mu_y, dt)
|
||||
self.x = apply_friction_1d(self.x, mu_x, dt)
|
||||
self.y = apply_friction_1d(self.y, mu_y, dt)
|
||||
self.z = apply_friction_1d(self.z, mu_y, dt)
|
||||
return self
|
||||
end
|
||||
|
||||
return vec3
|
Loading…
Reference in New Issue
Block a user