Reworked aabb vs point and circle methods

This commit is contained in:
Max Cahill 2021-06-08 11:51:18 +10:00
parent 99c496df24
commit a92a0c0351

View File

@ -236,16 +236,26 @@ end
-- return msv to push point to closest edge of aabb -- return msv to push point to closest edge of aabb
local _apo_delta_c = vec2:zero() local _apo_delta_c = vec2:zero()
local _apo_delta_c_abs = vec2:zero() local _apo_delta_c_abs = vec2:zero()
local _apo_normal = vec2:zero()
function intersect.aabb_point_collide(pos, hs, v, into) function intersect.aabb_point_collide(pos, hs, v, into)
_apo_delta_c:vset(v):vsubi(pos) --separation between centres
_apo_delta_c_abs:vset(_apo_delta_c):absi() _apo_delta_c
if _apo_delta_c_abs.x <= hs.x and _apo_delta_c_abs.y <= hs.y then :vset(v)
into = into or vec2:zero() :vsubi(pos)
-- ahh get the point outta here --absolute separation
_apo_normal:vset(hs):saddi(COLLIDE_EPS):vsubi(_apo_delta_c_abs):minori() _apo_delta_c_abs
into:vset(_apo_delta_c):vmuli(_apo_normal):normalisei():smuli(_apo_normal:length()) :vset(_apo_delta_c)
return into :absi()
if _apo_delta_c_abs.x < hs.x and _apo_delta_c_abs.y < hs.y then
return (into or vec2:zero())
--separating offset in both directions
:vset(hs)
:vsubi(_apo_delta_c_abs)
--minimum separating distance
:minori()
--in the right direction
:vmuli(_apo_delta_c:signi())
--from the aabb's point of view
:smuli(-1)
end end
return false return false
end end
@ -253,9 +263,9 @@ end
--return true on overlap, false otherwise --return true on overlap, false otherwise
local _aao_abs_delta = vec2:zero() local _aao_abs_delta = vec2:zero()
local _aao_total_size = vec2:zero() local _aao_total_size = vec2:zero()
function intersect.aabb_aabb_overlap(pos, hs, opos, ohs) function intersect.aabb_aabb_overlap(a_pos, a_hs, b_pos, b_hs)
_aao_abs_delta:vset(pos):vsubi(opos):absi() _aao_abs_delta:vset(a_pos):vsubi(b_pos):absi()
_aao_total_size:vset(hs):vaddi(ohs) _aao_total_size:vset(a_hs):vaddi(b_hs)
return _aao_abs_delta.x < _aao_total_size.x and _aao_abs_delta.y < _aao_total_size.y return _aao_abs_delta.x < _aao_total_size.x and _aao_abs_delta.y < _aao_total_size.y
end end
@ -265,11 +275,11 @@ local _aac_delta = vec2:zero()
local _aac_abs_delta = vec2:zero() local _aac_abs_delta = vec2:zero()
local _aac_size = vec2:zero() local _aac_size = vec2:zero()
local _aac_abs_amount = vec2:zero() local _aac_abs_amount = vec2:zero()
function intersect.aabb_aabb_collide(apos, ahs, bpos, bhs, into) function intersect.aabb_aabb_collide(a_pos, a_hs, b_pos, b_hs, into)
if not into then into = vec2:zero() end if not into then into = vec2:zero() end
_aac_delta:vset(apos):vsubi(bpos) _aac_delta:vset(a_pos):vsubi(b_pos)
_aac_abs_delta:vset(_aac_delta):absi() _aac_abs_delta:vset(_aac_delta):absi()
_aac_size:vset(ahs):vaddi(bhs) _aac_size:vset(a_hs):vaddi(b_hs)
_aac_abs_amount:vset(_aac_size):vsubi(_aac_abs_delta) _aac_abs_amount:vset(_aac_size):vsubi(_aac_abs_delta)
if _aac_abs_amount.x > COLLIDE_EPS and _aac_abs_amount.y > COLLIDE_EPS then if _aac_abs_amount.x > COLLIDE_EPS and _aac_abs_amount.y > COLLIDE_EPS then
--actually collided --actually collided
@ -295,8 +305,8 @@ end
--return normal and fraction of dt encountered on collision, false otherwise --return normal and fraction of dt encountered on collision, false otherwise
--TODO: re-pool storage here --TODO: re-pool storage here
function intersect.aabb_aabb_collide_continuous( function intersect.aabb_aabb_collide_continuous(
a_startpos, a_endpos, ahs, a_startpos, a_endpos, a_hs,
b_startpos, b_endpos, bhs, b_startpos, b_endpos, b_hs,
into into
) )
if not into then into = vec2:zero() end if not into then into = vec2:zero() end
@ -309,11 +319,11 @@ function intersect.aabb_aabb_collide_continuous(
do do
local _self_half_delta = _self_delta_motion:smul(0.5) local _self_half_delta = _self_delta_motion:smul(0.5)
local _self_bounds_pos = _self_half_delta:vadd(a_endpos) local _self_bounds_pos = _self_half_delta:vadd(a_endpos)
local _self_bounds_hs = _self_half_delta:vadd(ahs) local _self_bounds_hs = _self_half_delta:vadd(a_hs)
local _other_half_delta = _other_delta_motion:smul(0.5) local _other_half_delta = _other_delta_motion:smul(0.5)
local _other_bounds_pos = _other_half_delta:vadd(b_endpos) local _other_bounds_pos = _other_half_delta:vadd(b_endpos)
local _other_bounds_hs = _other_half_delta:vadd(bhs) local _other_bounds_hs = _other_half_delta:vadd(b_hs)
if not body._overlap_raw( if not body._overlap_raw(
_self_bounds_pos, _self_bounds_hs, _self_bounds_pos, _self_bounds_hs,
@ -326,7 +336,7 @@ function intersect.aabb_aabb_collide_continuous(
--get ccd minkowski box --get ccd minkowski box
--this is a relative-space box --this is a relative-space box
local _relative_delta_motion = _self_delta_motion:vsub(_other_delta_motion) local _relative_delta_motion = _self_delta_motion:vsub(_other_delta_motion)
local _minkowski_halfsize = ahs:vadd(bhs) local _minkowski_halfsize = a_hs:vadd(b_hs)
local _minkowski_pos = b_startpos:vsub(a_startpos) local _minkowski_pos = b_startpos:vsub(a_startpos)
--if a line seg from our relative motion hits the minkowski box, we're in luck --if a line seg from our relative motion hits the minkowski box, we're in luck
@ -416,55 +426,43 @@ function intersect.aabb_aabb_collide_continuous(
end end
-- helper function to clamp point to aabb -- helper function to clamp point to aabb
local _v_min = vec2:zero() function intersect.aabb_point_clamp(pos, hs, v, into)
local _v_max = vec2:zero() local v_min = pos:pooled_copy():vsubi(hs)
local _v_clamp = vec2:zero() local v_max = pos:pooled_copy():vaddi(hs)
local function aabb_clamp(pos, hs, v) into = into or vec2:zero()
_v_min:sset(pos.x-hs.x, pos.y-hs.y) into:vset(v):clampi(v_min, v_max)
_v_max:sset(pos.x+hs.x, pos.y+hs.y) vec2.release(v_min, v_max)
_v_clamp:vset(v):clampi(_v_min,_v_max) return into
return _v_clamp.x, _v_clamp.y
end end
-- return true on overlap, false otherwise -- return true on overlap, false otherwise
local _a_b_closest = vec2:zero() function intersect.aabb_circle_overlap(a_pos, a_hs, b_pos, b_rad)
local _a_b_delta = vec2:zero() -- Delta vec for minimum distance between aabb and circle local clamped = intersect.aabb_point_clamp(a_pos, a_hs, b_pos, vec2:pooled())
function intersect.aabb_circle_overlap(apos, ahs, bpos, brad) local edge_distance_squared = clamped:distance_squared(b_pos)
_a_b_closest:sset(aabb_clamp(apos, ahs, bpos)) clamped:release()
_a_b_delta:vset(bpos):vsubi(_a_b_closest) return edge_distance_squared < (b_rad * b_rad)
return _a_b_delta:dot(_a_b_delta) < (brad*brad) + COLLIDE_EPS -- Pythag theorem
end end
-- Discrete
-- return msv on collision, false otherwise -- return msv on collision, false otherwise
local _new_bpos = vec2:zero() -- Intermediate circle pos function intersect.aabb_circle_collide(a_pos, a_hs, b_pos, b_rad, into)
local _ap_bp_delta = vec2:zero() -- Vec from closest points local abs_delta = a_pos:pooled_copy():vsub(b_pos):absi()
local _aabb_closest = vec2:zero() -- Closest point on aabb to circle --circle centre within aabb-like bounds, collide as an aabb
local _circle_closest = vec2:zero() -- Closest point on circle to aabb local like_aabb = abs_delta.x < a_hs.x or abs_delta.y < a_hs.y
function intersect.aabb_circle_collide(apos, ahs, bpos, brad, into) --(clean up)
abs_delta:release()
-- Get msv --
if intersect.aabb_circle_overlap(apos, ahs, bpos, brad) then local result
if like_aabb then
into = into or vec2:zero() local pretend_hs = vec2:pooled():sset(b_rad)
result = intersect.aabb_aabb_collide(a_pos, a_hs, b_pos, pretend_hs, into)
--if intersect.aabb_point_overlap(apos, ahs, bpos) then -- circle center in aabb pretend_hs:release()
intersect.aabb_point_collide(apos, ahs, bpos, into) -- separate center out else
--end --outside aabb-like bounds so we need to collide with the nearest clamped corner point
local clamped = intersect.aabb_point_clamp(a_pos, a_hs, b_pos, vec2:pooled())
_new_bpos:vset(bpos):vaddi(into) -- Add msv to bpos result = intersect.circle_circle_collide(clamped, 0, b_pos, b_rad, into)
-- Closest point on aabb to new bpos clamped:release()
_aabb_closest:sset(aabb_clamp(apos, ahs, _new_bpos))
-- Closest point on circle to closest point on aabb
_ap_bp_delta:vset(_aabb_closest):vsubi(_new_bpos)
print(_ap_bp_delta)
_circle_closest:vset(_new_bpos):vaddi(_ap_bp_delta:normalisei():smuli(brad))
-- Delta between closest points
_ap_bp_delta:vset(_aabb_closest):vsubi(_circle_closest)
into:vaddi(_ap_bp_delta):vaddi(_ap_bp_delta:normalisei():smuli(COLLIDE_EPS))
return into
end end
return false -- no overlap return result
end end
--check if a point is in a polygon --check if a point is in a polygon