--[[ 3d vector type ]] --[[ notes: depends on a class() function as in oo.lua some methods depend on math library extensions math.clamp(v, min, max) - return v clamped between min and max math.round(v) - round v downwards if fractional part is < 0.5 ]] --defined globally? otherwise import vec2 if not vec2 then local path = ... local vec2_path = path:sub(1, path:len() - 1) .. "2" local vec2 = require(vec2_path) end local vec3 = class() vec3.type = "vec3" --probably-too-flexible ctor function vec3:new(x, y, z) if x and y and z then return vec3:xyz(x, y, z) elseif x then if type(x) == "number" then return vec3:filled(x) elseif type(x) == "table" then if x.type == "vec3" then return x:copy() elseif x[1] and x[2] and x[3] then return vec3:xyz(x[1], x[2], x[3]) end end end return vec3:zero() end --explicit ctors function vec3:copy() return self:init({ x = self.x, y = self.y, z = self.z }) end function vec3:xyz(x, y, z) return self:init({ x = x, y = y, z = z }) end function vec3:filled(v) return self:init({ x = v, y = v, z = v }) end function vec3:zero() return vec3:filled(0) end --shared pooled storage local _vec3_pool = {} --size limit for tuning memory upper bound local _vec3_pool_limit = 128 function vec3.pool_size() return #_vec3_pool end --flush the entire pool function vec3.flush_pool() if vec3.pool_size() > 0 then _vec3_pool = {} end end --drain one element from the pool, if it exists function vec3.drain_pool() if #_vec3_pool > 0 then return table.remove(_vec3_pool) end return nil end --get a pooled vector (initialise it yourself) function vec3:pooled() return vec3.drain_pool() or vec3:zero() end --get a pooled copy of an existing vector function vec3:pooled_copy() return vec3:pooled():vset(self) end --release a vector to the pool function vec3:release() if vec3.pool_size() < _vec3_pool_limit then table.insert(_vec3_pool, self) end end --unpack for multi-args function vec3:unpack() return self.x, self.y, self.z end --pack when a sequence is needed --(not particularly useful) function vec3:pack() return {self:unpack()} end --modify function vec3:sset(x, y, z) if not y then y = x end if not z then z = y end self.x = x self.y = y self.z = z return self end function vec3:vset(v) self.x = v.x self.y = v.y self.z = v.z return self end function vec3:swap(v) local sx, sy, sz = self.x, self.y, self.z self:vset(v) v:sset(sx, sy, sz) return self end ----------------------------------------------------------- --equality comparison ----------------------------------------------------------- --threshold for equality in each dimension local EQUALS_EPSILON = 1e-9 --true if a and b are functionally equivalent function vec3.equals(a, b) return ( math.abs(a.x - b.x) <= EQUALS_EPSILON and math.abs(a.y - b.y) <= EQUALS_EPSILON and math.abs(a.z - b.z) <= EQUALS_EPSILON ) end --true if a and b are not functionally equivalent --(very slightly faster than `not vec3.equals(a, b)`) function vec3.nequals(a, b) return ( math.abs(a.x - b.x) > EQUALS_EPSILON or math.abs(a.y - b.y) > EQUALS_EPSILON or math.abs(a.z - b.z) > EQUALS_EPSILON ) end ----------------------------------------------------------- --arithmetic ----------------------------------------------------------- --immediate mode --vector function vec3:vaddi(v) self.x = self.x + v.x self.y = self.y + v.y self.z = self.z + v.z return self end function vec3:vsubi(v) self.x = self.x - v.x self.y = self.y - v.y self.z = self.z - v.z return self end function vec3:vmuli(v) self.x = self.x * v.x self.y = self.y * v.y self.z = self.z * v.z return self end function vec3:vdivi(v) self.x = self.x / v.x self.y = self.y / v.y self.z = self.z / v.z return self end --scalar function vec3:saddi(x, y, z) if not y then y = x end if not z then z = y end self.x = self.x + x self.y = self.y + y self.z = self.z + z return self end function vec3:ssubi(x, y, z) if not y then y = x end if not z then z = y end self.x = self.x - x self.y = self.y - y self.z = self.z - z return self end function vec3:smuli(x, y, z) if not y then y = x end if not z then z = y end self.x = self.x * x self.y = self.y * y self.z = self.z * z return self end function vec3:sdivi(x, y, z) if not y then y = x end if not z then z = y end self.x = self.x / x self.y = self.y / y self.z = self.z / z return self end --garbage mode function vec3:vadd(v) return self:copy():vaddi(v) end function vec3:vsub(v) return self:copy():vsubi(v) end function vec3:vmul(v) return self:copy():vmuli(v) end function vec3:vdiv(v) return self:copy():vdivi(v) end function vec3:sadd(x, y, z) return self:copy():saddi(x, y, z) end function vec3:ssub(x, y, z) return self:copy():ssubi(x, y, z) end function vec3:smul(x, y, z) return self:copy():smuli(x, y, z) end function vec3:sdiv(x, y, z) return self:copy():sdivi(x, y, z) end --fused multiply-add (a + (b * t)) function vec3:fmai(v, t) self.x = self.x + (v.x * t) self.y = self.y + (v.y * t) self.z = self.z + (v.z * t) return self end function vec3:fma(v, t) return self:copy():fmai(v, t) end ----------------------------------------------------------- -- geometric methods ----------------------------------------------------------- function vec3:length_squared() return self.x * self.x + self.y * self.y + self.z * self.z end function vec3:length() return math.sqrt(self:length_squared()) end function vec3:distance_squared(other) local dx = self.x - other.x local dy = self.y - other.y local dz = self.z - other.z return dx * dx + dy * dy + dz * dz end function vec3:distance(other) return math.sqrt(self:distance_squared(other)) end --immediate mode function vec3:normalisei_both() local len = self:length() if len == 0 then return self, 0 end return self:sdivi(len), len end function vec3:normalisei() local v, len = self:normalisei_both() return v end function vec3:normalisei_len() local v, len = self:normalisei_both() return len end function vec3:inversei() return self:smuli(-1) end --swizzle extraction --not as nice as property accessors so might be worth doing that later :) local _allowed_swizzle = { x = true, y = true, z = true, } function vec3:extract_single(swizzle) if _allowed_swizzle[swizzle] then return self[swizzle] end return 0 end function vec3:infuse_single(swizzle, v) if _allowed_swizzle[swizzle] then self[swizzle] = v end return self end function vec3:extract_vec2(swizzle, into) if not into then into = vec2:zero() end local x = self:extract_single(swizzle:sub(1, 1)) local y = self:extract_single(swizzle:sub(2, 2)) return into:sset(x, y) end function vec3:infuse_vec2(swizzle, v) self:infuse_single(swizzle:sub(1, 1), v.x) self:infuse_single(swizzle:sub(2, 2), v.y) return self end --rotate around a swizzle function vec3:rotatei(swizzle, angle) local v = vec2:pooled() self:extract_vec2(swizzle, v) v:rotatei(angle) self:infuse_vec2(swizzle, v) v:release() return self end local _euler_macro = { "yz", "xz", "xy", } function vec3:rotate_euleri(angle_x_axis, angle_y_axis, angle_z_axis) for i, swizzle in ipairs(_euler_macro) do local angle = i == 1 and angle_x_axis or i == 2 and angle_y_axis or i == 3 and angle_z_axis self:rotatei(swizzle, angle) end return self end --todo: 90deg rotations vec3.rot180i = vec3.inversei --alias function vec3:rotate_aroundi(swizzle, angle, pivot) self:vsubi(pivot) self:rotatei(swizzle, angle) self:vaddi(pivot) return self end --garbage mode function vec3:normalised() return self:copy():normalisei() end function vec3:normalised_len() local v = self:copy() local len = v:normalisei_len() return v, len end function vec3:inverse() return self:copy():inversei() end function vec3:rotate(angle) return self:copy():rotatei(angle) end function vec3:rot90r() return self:copy():rot90ri() end function vec3:rot90l() return self:copy():rot90li() end vec3.rot180 = vec3.inverse --alias function vec3:rotate_around(swizzle, angle, pivot) return self:copy():rotate_aroundi(swizzle, angle, pivot) end ----------------------------------------------------------- -- per-component clamping ops ----------------------------------------------------------- function vec3:mini(v) self.x = math.min(self.x, v.x) self.y = math.min(self.y, v.y) self.z = math.min(self.z, v.z) return self end function vec3:maxi(v) self.x = math.max(self.x, v.x) self.y = math.max(self.y, v.y) self.z = math.max(self.z, v.z) return self end function vec3:clampi(min, max) self.x = math.clamp(self.x, min.x, max.x) self.y = math.clamp(self.y, min.y, max.y) self.z = math.clamp(self.z, min.z, max.z) return self end function vec3:min(v) return self:copy():mini(v) end function vec3:max(v) return self:copy():maxi(v) end function vec3:clamp(min, max) return self:copy():clampi(min, max) end ----------------------------------------------------------- -- absolute value ----------------------------------------------------------- function vec3:absi() self.x = math.abs(self.x) self.y = math.abs(self.y) self.z = math.abs(self.z) return self end function vec3:abs() return self:copy():absi() end ----------------------------------------------------------- -- truncation/rounding ----------------------------------------------------------- function vec3:floori() self.x = math.floor(self.x) self.y = math.floor(self.y) self.z = math.floor(self.z) return self end function vec3:ceili() self.x = math.ceil(self.x) self.y = math.ceil(self.y) self.z = math.ceil(self.z) return self end function vec3:roundi() self.x = math.round(self.x) self.y = math.round(self.y) self.z = math.round(self.z) return self end function vec3:floor() return self:copy():floori() end function vec3:ceil() return self:copy():ceili() end function vec3:round() return self:copy():roundi() end ----------------------------------------------------------- -- interpolation ----------------------------------------------------------- function vec3:lerpi(other, amount) self.x = math.lerp(self.x, other.x, amount) self.y = math.lerp(self.y, other.y, amount) self.z = math.lerp(self.z, other.z, amount) return self end function vec3:lerp(other, amount) return self:copy():lerpi(other, amount) end ----------------------------------------------------------- -- vector products and projections ----------------------------------------------------------- function vec3.dot(a, b) return a.x * b.x + a.y * b.y + a.z * b.z end function vec3.cross(a, b, into) if not into then into = vec3:zero() end return into:sset( a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x ) end --scalar projection a onto b function vec3.sproj(a, b) local len = b:length() if len == 0 then return 0 end return a:dot(b) / len end --vector projection a onto b (writes into a) function vec3.vproji(a, b) local div = b:dot(b) if div == 0 then return a:sset(0, 0, 0) end local fac = a:dot(b) / div return a:vset(b):smuli(fac) end function vec3.vproj(a, b) return a:copy():vproji(b) end --vector rejection a onto b (writes into a) function vec3.vreji(a, b) local tx, ty, tz = a.x, a.y, a.z a:vproji(b) a:sset(tx - a.x, ty - a.y, tz - a.z) return a end function vec3.vrej(a, b) return a:copy():vreji(b) end ----------------------------------------------------------- -- vector extension methods for special purposes -- (any common vector ops worth naming) ----------------------------------------------------------- --"physical" friction local _v_friction = vec3:zero() --avoid alloc function vec3:apply_friction(mu, dt) _v_friction:vset(self):smuli(mu * dt) if _v_friction:length_squared() > self:length_squared() then self:sset(0, 0) else self:vsubi(_v_friction) end return self end --"gamey" friction in one dimension local function apply_friction_1d(v, mu, dt) local friction = mu * v * dt if math.abs(friction) > math.abs(v) then return 0 else return v - friction end end --"gamey" friction in both dimensions function vec3:apply_friction_xy(mu_x, mu_y, dt) self.x = apply_friction_1d(self.x, mu_x, dt) self.y = apply_friction_1d(self.y, mu_y, dt) self.z = apply_friction_1d(self.z, mu_y, dt) return self end return vec3