--[[ functional programming facilities notes: be careful about creating closures in hot loops. this is this module's achilles heel - there's no special syntax for closures so it's not apparent that you're suddenly allocating at every call reduce has a similar problem, but at least arguments there are clear! ]] local path = (...):gsub("functional", "") local tablex = require(path .. "tablex") local functional = setmetatable({}, { __index = tablex, }) --the identity function function functional.identity(v) return v end --simple sequential iteration, f is called for all elements of t --f can return non-nil to break the loop (and return the value) function functional.foreach(t, f) for i,v in ipairs(t) do local r = f(v, i) if r ~= nil then return r end end end --performs a left to right reduction of t using f, with o as the initial value -- reduce({1, 2, 3}, f, 0) -> f(f(f(0, 1), 2), 3) -- (but performed iteratively, so no stack smashing) function functional.reduce(t, f, o) for i,v in ipairs(t) do o = f(o, v) end return o end --maps a sequence {a, b, c} -> {f(a), f(b), f(c)} -- (automatically drops any nils due to table.insert, which can be used to simultaneously map and filter) function functional.map(t, f) local r = {} for i,v in ipairs(t) do local mapped = f(v, i) if mapped ~= nil then table.insert(r, mapped) end end return r end --maps a sequence inplace, modifying it {a, b, c} -> {f(a), f(b), f(c)} -- (automatically drops any nils, which can be used to simultaneously map and filter, -- but this results in a linear table.remove so "careful" for big working sets) function functional.remap(t, f) local i = 1 while i <= #t do local mapped = f(t[i]) if mapped ~= nil then t[i] = mapped i = i + 1 else table.remove(t, i) end end return t end --filters a sequence -- returns a table containing items where f(v) returns truthy function functional.filter(t, f) local r = {} for i,v in ipairs(t) do if f(v, i) then table.insert(r, v) end end return r end -- complement of filter -- returns a table containing items where f(v) returns falsey -- nil results are included so that this is an exact complement of filter; consider using partition if you need both! function functional.remove_if(t, f) local r = {} for i, v in ipairs(t) do if not f(v, i) then table.insert(r, v) end end return r end --partitions a sequence into two, based on filter criteria --simultaneous filter and remove_if function functional.partition(t, f) local a = {} local b = {} for i,v in ipairs(t) do if f(v, i) then table.insert(a, v) else table.insert(b, v) end end return a, b end -- returns a table where the elements in t are grouped into sequential tables by the result of f on each element. -- more general than partition, but requires you to know your groups ahead of time (or use numeric grouping) if you want to avoid pairs! function functional.group_by(t, f) local result = {} for i, v in ipairs(t) do local group = f(v) if result[group] == nil then result[group] = {} end table.insert(result[group], v) end return result end --zips two sequences together into a new table, based on another function --iteration limited by min(#t1, #t2) --function receives arguments (t1, t2, i) --nil results ignored function functional.zip(t1, t2, f) local ret = {} local limit = math.min(#t1, #t2) for i = 1, limit do local v1 = t1[i] local v2 = t2[i] local zipped = f(v1, v2, i) if zipped ~= nil then table.insert(ret, zipped) end end return ret end ----------------------------------------------------------- --generating data ----------------------------------------------------------- --generate data into a table --basically a map on numeric values from 1 to count --nil values are omitted in the result, as for map function functional.generate(count, f) local r = {} for i = 1, count do local v = f(i) if v ~= nil then table.insert(r, v) end end return r end --2d version of the above --note: ends up with a 1d table; -- if you need a 2d table, you should nest 1d generate calls function functional.generate_2d(width, height, f) local r = {} for y = 1, height do for x = 1, width do local v = f(x, y) if v ~= nil then table.insert(r, v) end end end return r end ----------------------------------------------------------- --common queries and reductions ----------------------------------------------------------- --true if any element of the table matches f function functional.any(t, f) for i,v in ipairs(t) do if f(v) then return true end end return false end --true if no element of the table matches f function functional.none(t, f) for i,v in ipairs(t) do if f(v) then return false end end return true end --true if all elements of the table match f function functional.all(t, f) for i,v in ipairs(t) do if not f(v) then return false end end return true end --counts the elements of t that match f function functional.count(t, f) local c = 0 for i,v in ipairs(t) do if f(v) then c = c + 1 end end return c end --true if the table contains element e function functional.contains(t, e) for i, v in ipairs(t) do if v == e then return true end end return false end --return the numeric sum of all elements of t function functional.sum(t) return functional.reduce(t, function(a, b) return a + b end, 0) end --return the numeric mean of all elements of t function functional.mean(t) local len = #t if len == 0 then return 0 end return functional.sum(t) / len end --return the minimum and maximum of t in one pass --or zero for both if t is empty -- (would perhaps more correctly be math.huge, -math.huge -- but that tends to be surprising/annoying in practice) function functional.minmax(t) local max, min for i,v in ipairs(t) do min = not min and v or math.min(min, v) max = not max and v or math.max(max, v) end if min == nil then min = 0 max = 0 end return min, max end --return the maximum element of t or zero if t is empty function functional.max(t) local min, max = functional.minmax(t) return max end --return the minimum element of t or zero if t is empty function functional.min(t) local min, max = functional.minmax(t) return min end --return the element of the table that results in the lowest numeric value --(function receives element and index respectively) function functional.find_min(t, f) local current = nil local current_min = math.huge for i, e in ipairs(t) do local v = f(e, i) if v and v < current_min then current_min = v current = e end end return current end --return the element of the table that results in the greatest numeric value --(function receives element and index respectively) function functional.find_max(t, f) local current = nil local current_max = -math.huge for i, e in ipairs(t) do local v = f(e, i) if v and v > current_max then current_max = v current = e end end return current end --alias functional.find_best = functional.find_max --return the element of the table that results in the value nearest to the passed value --todo: optimise as this generates a closure each time function functional.find_nearest(t, f, v) return functional.find_min(t, function(e) return math.abs(f(e) - v) end) end --return the first element of the table that results in a true filter function functional.find_match(t, f) for i,v in ipairs(t) do if f(v) then return v end end return nil end return functional