--[[ 2d vector type ]] local path = (...):gsub("vec2", "") local class = require(path .. "class") local math = require(path .. "mathx") --shadow global math module local make_pooled = require(path .. "make_pooled") local vec2 = class({ name = "vec2", }) --stringification function vec2:__tostring() return ("(%.2f, %.2f)"):format(self.x, self.y) end --probably-too-flexible ctor function vec2:new(x, y) if type(x) == "number" or type(x) == "nil" then self:sset(x or 0, y) elseif type(x) == "table" then if x.type and x:type() == "vec2" then self:vset(x) elseif x[1] then self:sset(x[1], x[2]) else self:sset(x.x, x.y) end end end --explicit ctors function vec2:copy() return vec2(self.x, self.y) end function vec2:xy(x, y) return vec2(x, y) end function vec2:filled(v) return vec2(v) end function vec2:zero() return vec2(0) end --unpack for multi-args function vec2:unpack() return self.x, self.y end --pack when a sequence is needed function vec2:pack() return {self:unpack()} end --shared pooled storage make_pooled(vec2, 128) --get a pooled copy of an existing vector function vec2:pooled_copy() return vec2:pooled():vset(self) end --modify function vec2:sset(x, y) if not y then y = x end self.x = x self.y = y return self end function vec2:vset(v) self.x = v.x self.y = v.y return self end function vec2:swap(v) local sx, sy = self.x, self.y self:vset(v) v:sset(sx, sy) return self end ----------------------------------------------------------- --equality comparison ----------------------------------------------------------- --threshold for equality in each dimension local EQUALS_EPSILON = 1e-9 --true if a and b are functionally equivalent function vec2.equals(a, b) return ( math.abs(a.x - b.x) <= EQUALS_EPSILON and math.abs(a.y - b.y) <= EQUALS_EPSILON ) end --true if a and b are not functionally equivalent --(very slightly faster than `not vec2.equals(a, b)`) function vec2.nequals(a, b) return ( math.abs(a.x - b.x) > EQUALS_EPSILON or math.abs(a.y - b.y) > EQUALS_EPSILON ) end ----------------------------------------------------------- --arithmetic ----------------------------------------------------------- --immediate mode --vector function vec2:vaddi(v) self.x = self.x + v.x self.y = self.y + v.y return self end function vec2:vsubi(v) self.x = self.x - v.x self.y = self.y - v.y return self end function vec2:vmuli(v) self.x = self.x * v.x self.y = self.y * v.y return self end function vec2:vdivi(v) self.x = self.x / v.x self.y = self.y / v.y return self end --scalar function vec2:saddi(x, y) if not y then y = x end self.x = self.x + x self.y = self.y + y return self end function vec2:ssubi(x, y) if not y then y = x end self.x = self.x - x self.y = self.y - y return self end function vec2:smuli(x, y) if not y then y = x end self.x = self.x * x self.y = self.y * y return self end function vec2:sdivi(x, y) if not y then y = x end self.x = self.x / x self.y = self.y / y return self end --garbage mode function vec2:vadd(v) return self:copy():vaddi(v) end function vec2:vsub(v) return self:copy():vsubi(v) end function vec2:vmul(v) return self:copy():vmuli(v) end function vec2:vdiv(v) return self:copy():vdivi(v) end function vec2:sadd(x, y) return self:copy():saddi(x, y) end function vec2:ssub(x, y) return self:copy():ssubi(x, y) end function vec2:smul(x, y) return self:copy():smuli(x, y) end function vec2:sdiv(x, y) return self:copy():sdivi(x, y) end --fused multiply-add (a + (b * t)) function vec2:fmai(v, t) self.x = self.x + (v.x * t) self.y = self.y + (v.y * t) return self end function vec2:fma(v, t) return self:copy():fmai(v, t) end ----------------------------------------------------------- -- geometric methods ----------------------------------------------------------- function vec2:length_squared() return self.x * self.x + self.y * self.y end function vec2:length() return math.sqrt(self:length_squared()) end function vec2:distance_squared(other) local dx = self.x - other.x local dy = self.y - other.y return dx * dx + dy * dy end function vec2:distance(other) return math.sqrt(self:distance_squared(other)) end --immediate mode function vec2:normalisei_both() local len = self:length() if len == 0 then return self, 0 end return self:sdivi(len), len end function vec2:normalisei() local v, len = self:normalisei_both() return v end function vec2:normalisei_len() local v, len = self:normalisei_both() return len end function vec2:inversei() return self:smuli(-1) end function vec2:rotatei(angle) local s = math.sin(angle) local c = math.cos(angle) local ox = self.x local oy = self.y self.x = c * ox - s * oy self.y = s * ox + c * oy return self end function vec2:rot90ri() local ox = self.x local oy = self.y self.x = -oy self.y = ox return self end function vec2:rot90li() local ox = self.x local oy = self.y self.x = oy self.y = -ox return self end vec2.rot180i = vec2.inversei --alias function vec2:rotate_aroundi(angle, pivot) self:vsubi(pivot) self:rotatei(angle) self:vaddi(pivot) return self end --garbage mode function vec2:normalised() return self:copy():normalisei() end function vec2:normalised_len() local v = self:copy() local len = v:normalisei_len() return v, len end function vec2:inverse() return self:copy():inversei() end function vec2:rotate(angle) return self:copy():rotatei(angle) end function vec2:rot90r() return self:copy():rot90ri() end function vec2:rot90l() return self:copy():rot90li() end vec2.rot180 = vec2.inverse --alias function vec2:rotate_around(angle, pivot) return self:copy():rotate_aroundi(angle, pivot) end -- angle/direction specific --get the angle of this vector relative to (1, 0) function vec2:angle() return math.atan2(self.y, self.x) end --get the normalised difference in angle between two vectors function vec2:angle_difference(v) return math.angle_difference(self:angle(), v:angle()) end --lerp towards the direction of a provided vector --(length unchanged) function vec2:lerp_directioni(v, t) return self:rotatei(self:angle_difference(v) * t) end function vec2:lerp_direction(v, t) return self:copy():lerp_directioni(v, t) end ----------------------------------------------------------- -- per-component clamping ops ----------------------------------------------------------- function vec2:mini(v) self.x = math.min(self.x, v.x) self.y = math.min(self.y, v.y) return self end function vec2:maxi(v) self.x = math.max(self.x, v.x) self.y = math.max(self.y, v.y) return self end function vec2:clampi(min, max) self.x = math.clamp(self.x, min.x, max.x) self.y = math.clamp(self.y, min.y, max.y) return self end function vec2:min(v) return self:copy():mini(v) end function vec2:max(v) return self:copy():maxi(v) end function vec2:clamp(min, max) return self:copy():clampi(min, max) end ----------------------------------------------------------- -- absolute value ----------------------------------------------------------- function vec2:absi() self.x = math.abs(self.x) self.y = math.abs(self.y) return self end function vec2:abs() return self:copy():absi() end ----------------------------------------------------------- -- sign ----------------------------------------------------------- function vec2:signi() self.x = math.sign(self.x) self.y = math.sign(self.y) return self end function vec2:sign() return self:copy():signi() end ----------------------------------------------------------- -- truncation/rounding ----------------------------------------------------------- function vec2:floori() self.x = math.floor(self.x) self.y = math.floor(self.y) return self end function vec2:ceili() self.x = math.ceil(self.x) self.y = math.ceil(self.y) return self end function vec2:roundi() self.x = math.round(self.x) self.y = math.round(self.y) return self end function vec2:floor() return self:copy():floori() end function vec2:ceil() return self:copy():ceili() end function vec2:round() return self:copy():roundi() end ----------------------------------------------------------- -- interpolation ----------------------------------------------------------- function vec2:lerpi(other, amount) self.x = math.lerp(self.x, other.x, amount) self.y = math.lerp(self.y, other.y, amount) return self end function vec2:lerp(other, amount) return self:copy():lerpi(other, amount) end function vec2:lerp_epsi(other, amount, eps) self.x = math.lerp_eps(self.x, other.x, amount, eps) self.y = math.lerp_eps(self.y, other.y, amount, eps) return self end function vec2:lerp_eps(other, amount, eps) return self:copy():lerp_epsi(other, amount, eps) end ----------------------------------------------------------- -- vector products and projections ----------------------------------------------------------- function vec2.dot(a, b) return a.x * b.x + a.y * b.y end --"fake", but useful - also called the wedge product apparently function vec2.cross(a, b) return a.x * b.y - a.y * b.x end --scalar projection a onto b function vec2.sproj(a, b) local len = b:length() if len == 0 then return 0 end return a:dot(b) / len end --vector projection a onto b (writes into a) function vec2.vproji(a, b) local div = b:dot(b) if div == 0 then return a:sset(0,0) end local fac = a:dot(b) / div return a:vset(b):smuli(fac) end function vec2.vproj(a, b) return a:copy():vproji(b) end --vector rejection a onto b (writes into a) function vec2.vreji(a, b) local tx, ty = a.x, a.y a:vproji(b) a:sset(tx - a.x, ty - a.y) return a end function vec2.vrej(a, b) return a:copy():vreji(b) end --get the winding side of p, relative to the line a-b -- (this is based on the signed area of the triangle a-b-p) -- return value: -- >0 when p left of line -- =0 when p on line -- <0 when p right of line function vec2.winding_side(a, b, p) return (b.x - a.x) * (p.y - a.y) - (p.x - a.x) * (b.y - a.y) end ----------------------------------------------------------- -- vector extension methods for special purposes -- (any common vector ops worth naming) ----------------------------------------------------------- --"physical" friction local _v_friction = vec2:zero() --avoid alloc function vec2:apply_friction(mu, dt) _v_friction:vset(self):smuli(mu * dt) if _v_friction:length_squared() > self:length_squared() then self:sset(0, 0) else self:vsubi(_v_friction) end return self end --"gamey" friction in one dimension local function apply_friction_1d(v, mu, dt) local friction = mu * v * dt if math.abs(friction) > math.abs(v) then return 0 else return v - friction end end --"gamey" friction in both dimensions function vec2:apply_friction_xy(mu_x, mu_y, dt) self.x = apply_friction_1d(self.x, mu_x, dt) self.y = apply_friction_1d(self.y, mu_y, dt) return self end --minimum/maximum components function vec2:mincomp() return math.min(self.x, self.y) end function vec2:maxcomp() return math.max(self.x, self.y) end -- mask out min component, with preference to keep x function vec2:majori() if self.x > self.y then self.y = 0 else self.x = 0 end return self end -- mask out max component, with preference to keep x function vec2:minori() if self.x < self.y then self.y = 0 else self.x = 0 end return self end --garbage generating versions function vec2:major(axis) return self:copy():majori(axis) end function vec2:minor(axis) return self:copy():minori(axis) end return vec2