--[[ geometric intersection routines from simple point tests to shape vs shape tests optimised pretty well in most places tests provided: overlap boolean "is overlapping" collide nil for no collision minimum separating vector on collision provided in the direction of the first object optional output parameters to avoid garbage generation ]] local path = (...):gsub("intersect", "") local vec2 = require(path .. "vec2") local mathx = require(path .. "mathx") --module storage local intersect = {} --epsilon for collisions local COLLIDE_EPS = 1e-6 ------------------------------------------------------------------------------ -- circles function intersect.circle_point_overlap(pos, rad, v) return pos:distance_squared(v) < rad * rad end function intersect.circle_circle_overlap(a_pos, a_rad, b_pos, b_rad) local rad = a_rad + b_rad return a_pos:distance_squared(b_pos) < rad * rad end function intersect.circle_circle_collide(a_pos, a_rad, b_pos, b_rad, into) --get delta local delta = a_pos :pooled_copy() :vector_sub_inplace(b_pos) --squared threshold local rad = a_rad + b_rad local dist = delta:length_squared() local res = false if dist < rad * rad then if dist == 0 then --singular case; just resolve vertically dist = 1 delta:scalar_set(0, 1) else --get actual distance dist = math.sqrt(dist) end --allocate if needed if into == nil then into = vec2(0) end --normalise, scale to separating distance res = into:set(delta) :scalar_div_inplace(dist) :scalar_mul_inplace(rad - dist) end delta:release() return res end function intersect.circle_point_collide(a_pos, a_rad, b, into) return intersect.circle_circle_collide(a_pos, a_rad, b, 0, into) end ------------------------------------------------------------------------------ -- line segments -- todo: separate double-sided, one-sided, and pull-through (along normal) collisions? --get the nearest point on the line segment a from point b function intersect.nearest_point_on_line(a_start, a_end, b_pos, into) if into == nil then into = vec2(0) end --direction of segment local segment = a_end:pooled_copy() :vector_sub_inplace(a_start) --detect degenerate case local lensq = segment:length_squared() if lensq <= COLLIDE_EPS then into:set(a_start) else --solve for factor along segment local point_to_start = b_pos:pooled_copy() :vector_sub_inplace(a_start) local factor = mathx.clamp01(point_to_start:dot(segment) / lensq) point_to_start:release() into:set(segment) :scalar_mul_inplace(factor) :vector_add_inplace(a_start) end segment:release() return into end --internal --vector from line seg origin to point function intersect._line_to_point(a_start, a_end, b_pos, into) return intersect.nearest_point_on_line(a_start, a_end, b_pos, into) :vector_sub_inplace(b_pos) end --internal --line displacement vector from separation vector function intersect._line_displacement_to_sep(a_start, a_end, separation, total_rad) local distance = separation:normalise_len_inplace() local sep = distance - total_rad if sep <= 0 then if distance <= COLLIDE_EPS then --point intersecting the line; push out along normal separation:set(a_end) :vector_sub_inplace(a_start) :normalise_inplace() :rot90l_inplace() else separation:scalar_mul_inplace(-sep) end return separation end return false end --overlap a line segment with a circle function intersect.line_circle_overlap(a_start, a_end, a_rad, b_pos, b_rad) local nearest = intersect.nearest_point_on_line(a_start, a_end, b_pos, vec2:pooled()) local overlapped = intersect.circle_point_overlap(b_pos, a_rad + b_rad, nearest) nearest:release() return overlapped end --collide a line segment with a circle function intersect.line_circle_collide(a_start, a_end, a_rad, b_pos, b_rad, into) into = intersect._line_to_point(a_start, a_end, b_pos, into) return intersect._line_displacement_to_sep(a_start, a_end, into, a_rad + b_rad) end --collide 2 line segments function intersect.line_line_collide(a_start, a_end, a_rad, b_start, b_end, b_rad, into) --segment directions from start points local a_dir = a_end :pooled_copy() :vector_sub_inplace(a_start) local b_dir = b_end :pooled_copy() :vector_sub_inplace(b_start) --detect degenerate cases local a_degen = a_dir:length_squared() <= COLLIDE_EPS local b_degen = b_dir:length_squared() <= COLLIDE_EPS if a_degen or b_degen then vec2.release(a_dir, b_dir) if a_degen and b_degen then --actually just circles return intersect.circle_circle_collide(a_start, a_rad, b_start, b_rad, into) elseif a_degen then --a is just circle return intersect.circle_line_collide(a_start, a_rad, b_start, b_end, b_rad, into) elseif b_degen then --b is just circle return intersect.line_circle_collide(a_start, a_end, a_rad, b_start, b_rad, into) end end --otherwise we're _actually_ 2 line segs :) if into == nil then into = vec2(0) end --first, check intersection --(c to lua translation of paul bourke's -- line intersection algorithm) local dx1 = (a_end.x - a_start.x) local dx2 = (b_end.x - b_start.x) local dy1 = (a_end.y - a_start.y) local dy2 = (b_end.y - b_start.y) local dxab = (a_start.x - b_start.x) local dyab = (a_start.y - b_start.y) local denom = dy2 * dx1 - dx2 * dy1 local numera = dx2 * dyab - dy2 * dxab local numerb = dx1 * dyab - dy1 * dxab --check coincident lines local intersected if math.abs(numera) < COLLIDE_EPS and math.abs(numerb) < COLLIDE_EPS and math.abs(denom) < COLLIDE_EPS then intersected = "both" else --check parallel, non-coincident lines if math.abs(denom) < COLLIDE_EPS then intersected = "none" else --get interpolants along segments local mua = numera / denom local mub = numerb / denom --intersection outside segment bounds? local outside_a = mua < 0 or mua > 1 local outside_b = mub < 0 or mub > 1 if outside_a and outside_b then intersected = "none" elseif outside_a then intersected = "b" elseif outside_b then intersected = "a" else intersected = "both" end end end assert(intersected) if intersected == "both" then --simply displace along A normal into:set(a_dir) vec2.release(a_dir, b_dir) return into :normalise_inplace() :scalar_mul_inplace(a_rad + b_rad) :rot90l_inplace() end vec2.release(a_dir, b_dir) --dumb as a rock check-corners approach --todo: pool storage --todo proper calculus from http://geomalgorithms.com/a07-_distance.html local search_tab = {} --only insert corners from the non-intersected line --since intersected line is potentially the apex if intersected ~= "a" then --a endpoints table.insert(search_tab, {intersect._line_to_point(b_start, b_end, a_start), 1}) table.insert(search_tab, {intersect._line_to_point(b_start, b_end, a_end), 1}) end if intersected ~= "b" then --b endpoints table.insert(search_tab, {intersect._line_to_point(a_start, a_end, b_start), -1}) table.insert(search_tab, {intersect._line_to_point(a_start, a_end, b_end), -1}) end local best = nil local best_len = nil for _, v in ipairs(search_tab) do local len = v[1]:length_squared() if not best_len or len < best_len then best = v end end --fix direction into:set(best[1]) :scalar_mul_inplace(best[2]) return intersect._line_displacement_to_sep(a_start, a_end, into, a_rad + b_rad) end ------------------------------------------------------------------------------ -- axis aligned bounding boxes -- -- pos is the centre position of the box -- hs is the half-size of the box -- eg for a 10x8 box, vec2(5, 4) -- -- we use half-sizes to keep these routines as fast as possible -- see intersect.rect_to_aabb for conversion from topleft corner and size --return true on overlap, false otherwise function intersect.aabb_point_overlap(pos, hs, v) local delta = pos :pooled_copy() :vector_sub_inplace(v) :abs_inplace() local overlap = delta.x < hs.x and delta.y < hs.y delta:release() return overlap end -- discrete displacement -- return msv to push point to closest edge of aabb function intersect.aabb_point_collide(pos, hs, v, into) --separation between centres local delta_c = v :pooled_copy() :vector_sub_inplace(pos) --absolute separation local delta_c_abs = delta_c :pooled_copy() :abs_inplace() local res = false if delta_c_abs.x < hs.x and delta_c_abs.y < hs.y then res = (into or vec2(0)) --separating offset in both directions :set(hs) :vector_sub_inplace(delta_c_abs) --minimum separating distance :minor_inplace() --in the right direction :vector_mul_inplace(delta_c:sign_inplace()) --from the aabb's point of view :inverse_inplace() end vec2.release(delta_c, delta_c_abs) return res end --return true on overlap, false otherwise function intersect.aabb_aabb_overlap(a_pos, a_hs, b_pos, b_hs) local delta = a_pos :pooled_copy() :vector_sub_inplace(b_pos) :abs_inplace() local total_size = a_hs :pooled_copy() :vector_add_inplace(b_hs) local overlap = delta.x < total_size.x and delta.y < total_size.y vec2.release(delta, total_size) return overlap end --discrete displacement --return msv on collision, false otherwise function intersect.aabb_aabb_collide(a_pos, a_hs, b_pos, b_hs, into) local delta = a_pos :pooled_copy() :vector_sub_inplace(b_pos) local abs_delta = delta :pooled_copy() :abs_inplace() local size = a_hs :pooled_copy() :vector_add_inplace(b_hs) local abs_amount = size :pooled_copy() :vector_sub_inplace(abs_delta) local res = false if abs_amount.x > COLLIDE_EPS and abs_amount.y > COLLIDE_EPS then if not into then into = vec2(0) end --actually collided if abs_amount.x <= abs_amount.y then --x min res = into:scalar_set(abs_amount.x * mathx.sign(delta.x), 0) else --y min res = into:scalar_set(0, abs_amount.y * mathx.sign(delta.y)) end end return res end -- helper function to clamp point to aabb function intersect.aabb_point_clamp(pos, hs, v, into) local v_min = pos :pooled_copy() :vector_sub_inplace(hs) local v_max = pos :pooled_copy() :vector_add_inplace(hs) into = into or vec2(0) into:set(v) :clamp_inplace(v_min, v_max) vec2.release(v_min, v_max) return into end -- return true on overlap, false otherwise function intersect.aabb_circle_overlap(a_pos, a_hs, b_pos, b_rad) local clamped = intersect.aabb_point_clamp(a_pos, a_hs, b_pos, vec2:pooled()) local edge_distance_squared = clamped:distance_squared(b_pos) clamped:release() return edge_distance_squared < (b_rad * b_rad) end -- return msv on collision, false otherwise function intersect.aabb_circle_collide(a_pos, a_hs, b_pos, b_rad, into) local abs_delta = a_pos :pooled_copy() :vector_sub_inplace(b_pos) :abs_inplace() --circle centre within aabb-like bounds, collide as an aabb local like_aabb = abs_delta.x < a_hs.x or abs_delta.y < a_hs.y --(clean up) abs_delta:release() -- local result if like_aabb then local pretend_hs = vec2:pooled(0, 0) result = intersect.aabb_aabb_collide(a_pos, a_hs, b_pos, pretend_hs, into) pretend_hs:release() else --outside aabb-like bounds so we need to collide with the nearest clamped corner point local clamped = intersect.aabb_point_clamp(a_pos, a_hs, b_pos, vec2:pooled()) result = intersect.circle_circle_collide(clamped, 0, b_pos, b_rad, into) clamped:release() end return result end --convert raw x, y, w, h rectangle components to aabb vectors function intersect.rect_raw_to_aabb(x, y, w, h) local hs = vec2(w, h):scalar_mul_inplace(0.5) local pos = vec2(x, y):vector_add_inplace(hs) return pos, hs end --convert (x, y), (w, h) rectangle vectors to aabb vectors function intersect.rect_to_aabb(pos, size) return intersect.rect_raw_to_aabb(pos.x, pos.y, size.x, size.y) end --check if a point is in a polygon --point is the point to test --poly is a list of points in order --based on winding number, so re-intersecting areas are counted as solid rather than inverting function intersect.point_in_poly(point, poly) local wn = 0 for i, a in ipairs(poly) do local b = poly[i + 1] or poly[1] if a.y <= point.y then if b.y > point.y and vec2.winding_side(a, b, point) > 0 then wn = wn + 1 end else if b.y <= point.y and vec2.winding_side(a, b, point) < 0 then wn = wn - 1 end end end return wn ~= 0 end --reversed versions --it's annoying to need to flip the order of operands depending on what --shapes you're working with --so these functions provide the --todo: ensure this is all of them --(helper for reversing only if there's actually a vector, preserving false) function intersect.reverse_msv(result) if result then result:inverse_inplace() end return result end function intersect.point_circle_overlap(a, b_pos, b_rad) return intersect.circle_point_overlap(b_pos, b_rad, a) end function intersect.point_circle_collide(a, b_pos, b_rad, into) return intersect.reverse_msv(intersect.circle_circle_collide(b_pos, b_rad, a, 0, into)) end function intersect.point_aabb_overlap(a, b_pos, b_hs) return intersect.aabb_point_overlap(b_pos, b_hs, a) end function intersect.point_aabb_collide(a, b_pos, b_hs, into) return intersect.reverse_msv(intersect.aabb_point_collide(b_pos, b_hs, a, into)) end function intersect.circle_aabb_overlap(a, a_rad, b_pos, b_hs) return intersect.aabb_circle_overlap(b_pos, b_hs, a, a_rad) end function intersect.circle_aabb_collide(a, a_rad, b_pos, b_hs, into) return intersect.reverse_msv(intersect.aabb_circle_collide(b_pos, b_hs, a, a_rad, into)) end function intersect.circle_line_collide(a, a_rad, b_start, b_end, b_rad, into) return intersect.reverse_msv(intersect.line_circle_collide(b_start, b_end, b_rad, a, a_rad, into)) end --resolution helpers --resolve a collision between two bodies, given a (minimum) separating vector -- from a's frame of reference, like the result of any of the _collide functions --requires the two positions of the bodies, the msv, and a balance factor --balance should be between 1 and 0; -- 1 is only a_pos moving to resolve -- 0 is only b_pos moving to resolve -- 0.5 is balanced between both (default) --note: this wont work as-is for line segments, which have two separate position coordinates -- you will need to understand what is going on and move the both coordinates yourself function intersect.resolve_msv(a_pos, b_pos, msv, balance) balance = balance or 0.5 a_pos:fused_multiply_add_inplace(msv, balance) b_pos:fused_multiply_add_inplace(msv, -(1 - balance)) end -- gets a normalised balance factor from two mass inputs, and treats <=0 or infinite or nil masses as static bodies -- returns false if we're colliding two static bodies, as that's invalid function intersect.balance_from_mass(a_mass, b_mass) --static cases local a_static = a_mass <= 0 or a_mass == math.huge or not a_mass local b_static = b_mass <= 0 or b_mass == math.huge or not a_mass if a_static and b_static then return false --colliding two static bodies elseif a_static then return 0.0 elseif b_static then return 1.0 end --get balance factor local total = a_mass + b_mass return a_mass / total end --bounce a velocity off of a normal (modifying velocity) --essentially flips the part of the velocity in the direction of the normal function intersect.bounce_off(velocity, normal, conservation) --(default) conservation = conservation or 1 --take a copy, we need it local old_vel = velocity:pooled_copy() --heading into the normal if old_vel:dot(normal) < 0 then --reject on the normal (keep velocity tangential to the normal) velocity:vector_rejection_inplace(normal) --add back the complement of the difference; --basically "flip" the velocity in line with the normal. velocity:fused_multiply_add_inplace(old_vel:vector_sub_inplace(velocity), -conservation) end --clean up old_vel:release() return velocity end --mutual bounce; two similar bodies bounce off each other, transferring energy function intersect.mutual_bounce(velocity_a, velocity_b, normal, conservation) --(default) conservation = conservation or 1 --take copies, we need them local old_a_vel = velocity_a:pooled_copy() local old_b_vel = velocity_b:pooled_copy() --reject on the normal velocity_a:vector_rejection_inplace(normal) velocity_b:vector_rejection_inplace(normal) --calculate the amount remaining from the old velocity --(transfer pool ownership) local a_remaining = old_a_vel:vector_sub_inplace(velocity_a) local b_remaining = old_b_vel:vector_sub_inplace(velocity_b) --transfer it to the other body velocity_a:fused_multiply_add_inplace(b_remaining, conservation) velocity_b:fused_multiply_add_inplace(a_remaining, conservation) --clean up vec2.release(a_remaining, b_remaining) end return intersect