--[[ set type with appropriate operations ]] local path = (...):gsub("set", "") local class = require(path .. "class") local table = require(path .. "tablex") --shadow global table module local set = class() --construct a new set --elements is an optional ordered table of elements to be added to the set function set:new(elements) self = self:init({ _keyed = {}, _ordered = {}, }) if elements then for _, v in ipairs(elements) do self:add(v) end end return self end --check if an element is present in the set function set:has(v) return self._keyed[v] or false end --add a value to the set, if it's not already present function set:add(v) if not self:has(v) then self._keyed[v] = true table.insert(self._ordered, v) end return self end --remove a value from the set, if it's present function set:remove(v) if self:has(v) then self._keyed[v] = nil table.remove_value(self._ordered, v) end return self end --get the number of distinct values in the set function set:size() return #self._ordered end --return a value from the set --index must be between 1 and size() inclusive --adding/removing invalidates indices function set:get(index) return self._ordered[index] end --iterate the values in the set, along with their index --the index is useless but harmless, and adding a custom iterator seems --like a really easy way to encourage people to use slower-than-optimal code function set:ipairs() return ipairs(self._ordered) end --get a copy of the values in the set, as a simple table function set:values() return table.copy(self._ordered) end --get a direct reference to the internal list of values in the set --do NOT modify the result, or you'll break the set! --for read-only access it avoids a needless table copy --(eg this is sensible to pass to functional apis) function set:values_readonly() return self._ordered end --convert to an ordered table, destroying set-like properties --and deliberately disabling the initial set object function set:to_table() local r = self._ordered self._ordered = nil self._keyed = nil return r end --modifying operations --add all the elements present in the other set function set:add_set(other) for i, v in other:ipairs() do self:add(v) end return self end --remove all the elements present in the other set function set:subtract_set(other) for i, v in other:ipairs() do self:remove(v) end return self end --new collection operations --copy a set function set:copy() return set:new():add_set(self) end --create a new set containing the complement of the other set contained in this one --the elements present in this set but not present in the other set will remain in the result function set:complement(other) return self:copy():subtract_set(other) end --alias set.difference = set.complement --create a new set containing the union of this set with another --an element present in either set will be present in the result function set:union(other) return self:copy():add_set(other) end --create a new set containing the intersection of this set with another --only the elements present in both sets will remain in the result function set:intersection(other) local r = set:new() for i, v in self:ipairs() do if other:has(v) then r:add(v) end end return r end --create a new set containing the symmetric difference of this set with another --only the elements not present in both sets will remain in the result --similiar to a logical XOR operation -- --equal to self:union(other):subtract_set(self:intersection(other)) -- but with much less wasted effort function set:symmetric_difference(other) local r = set:new() for i, v in self:ipairs() do if not other:has(v) then r:add(v) end end for i, v in other:ipairs() do if not self:has(v) then r:add(v) end end return r end --alias set.xor = set.symmetric_difference -- return set