mirror of
https://github.com/1bardesign/batteries.git
synced 2024-11-10 02:31:48 +00:00
330 lines
7.3 KiB
Lua
330 lines
7.3 KiB
Lua
--[[
|
|
functional programming facilities
|
|
|
|
notes:
|
|
be careful about creating closures in hot loops.
|
|
this is this module's achilles heel - there's no special
|
|
syntax for closures so it's not apparent that you're suddenly
|
|
allocating at every call
|
|
|
|
reduce has a similar problem, but at least arguments
|
|
there are clear!
|
|
]]
|
|
|
|
local path = (...):gsub("functional", "")
|
|
local tablex = require(path .. "tablex")
|
|
|
|
local functional = setmetatable({}, {
|
|
__index = tablex,
|
|
})
|
|
|
|
--simple sequential iteration, f is called for all elements of t
|
|
--f can return non-nil to break the loop (and return the value)
|
|
function functional.foreach(t, f)
|
|
for i,v in ipairs(t) do
|
|
local r = f(v, i)
|
|
if r ~= nil then
|
|
return r
|
|
end
|
|
end
|
|
end
|
|
|
|
--performs a left to right reduction of t using f, with o as the initial value
|
|
-- reduce({1, 2, 3}, f, 0) -> f(f(f(0, 1), 2), 3)
|
|
-- (but performed iteratively, so no stack smashing)
|
|
function functional.reduce(t, f, o)
|
|
for i,v in ipairs(t) do
|
|
o = f(o, v)
|
|
end
|
|
return o
|
|
end
|
|
|
|
--maps a sequence {a, b, c} -> {f(a), f(b), f(c)}
|
|
-- (automatically drops any nils due to table.insert, which can be used to simultaneously map and filter)
|
|
function functional.map(t, f)
|
|
local r = {}
|
|
for i,v in ipairs(t) do
|
|
local mapped = f(v, i)
|
|
if mapped ~= nil then
|
|
table.insert(r, mapped)
|
|
end
|
|
end
|
|
return r
|
|
end
|
|
|
|
--maps a sequence inplace, modifying it {a, b, c} -> {f(a), f(b), f(c)}
|
|
-- (automatically drops any nils, which can be used to simultaneously map and filter,
|
|
-- but this results in a linear table.remove so "careful" for big working sets)
|
|
function functional.remap(t, f)
|
|
local i = 1
|
|
while i <= #t do
|
|
local mapped = f(t[i])
|
|
if mapped ~= nil then
|
|
t[i] = mapped
|
|
i = i + 1
|
|
else
|
|
table.remove(t, i)
|
|
end
|
|
end
|
|
return t
|
|
end
|
|
|
|
--filters a sequence
|
|
-- returns a table containing items where f(v) returns truthy
|
|
function functional.filter(t, f)
|
|
local r = {}
|
|
for i,v in ipairs(t) do
|
|
if f(v, i) then
|
|
table.insert(r, v)
|
|
end
|
|
end
|
|
return r
|
|
end
|
|
|
|
-- complement of filter
|
|
-- returns a table containing items where f(v) returns falsey
|
|
-- nil results are included so that this is an exact complement of filter; consider using partition if you need both!
|
|
function functional.remove_if(t, f)
|
|
local r = {}
|
|
for i, v in ipairs(t) do
|
|
if not f(v, i) then
|
|
table.insert(r, v)
|
|
end
|
|
end
|
|
return r
|
|
end
|
|
|
|
--partitions a sequence into two, based on filter criteria
|
|
--simultaneous filter and remove_if
|
|
function functional.partition(t, f)
|
|
local a = {}
|
|
local b = {}
|
|
for i,v in ipairs(t) do
|
|
if f(v, i) then
|
|
table.insert(a, v)
|
|
else
|
|
table.insert(b, v)
|
|
end
|
|
end
|
|
return a, b
|
|
end
|
|
|
|
-- returns a table where the elements in t are grouped into sequential tables by the result of f on each element.
|
|
-- more general than partition, but requires you to know your groups ahead of time (or use numeric grouping) if you want to avoid pairs!
|
|
function functional.group_by(t, f)
|
|
local result = {}
|
|
for i, v in ipairs(t) do
|
|
local group = f(v)
|
|
if result[group] == nil then
|
|
result[group] = {}
|
|
end
|
|
table.insert(result[group], v)
|
|
end
|
|
return result
|
|
end
|
|
|
|
--zips two sequences together into a new table, based on another function
|
|
--iteration limited by min(#t1, #t2)
|
|
--function receives arguments (t1, t2, i)
|
|
--nil results ignored
|
|
function functional.zip(t1, t2, f)
|
|
local ret = {}
|
|
local limit = math.min(#t1, #t2)
|
|
for i = 1, limit do
|
|
local v1 = t1[i]
|
|
local v2 = t2[i]
|
|
local zipped = f(v1, v2, i)
|
|
if zipped ~= nil then
|
|
table.insert(ret, zipped)
|
|
end
|
|
end
|
|
return ret
|
|
end
|
|
|
|
-----------------------------------------------------------
|
|
--generating data
|
|
-----------------------------------------------------------
|
|
|
|
--generate data into a table
|
|
--basically a map on numeric values from 1 to count
|
|
--nil values are omitted in the result, as for map
|
|
function functional.generate(count, f)
|
|
local r = {}
|
|
for i = 1, count do
|
|
local v = f(i)
|
|
if v ~= nil then
|
|
table.insert(r, v)
|
|
end
|
|
end
|
|
return r
|
|
end
|
|
|
|
--2d version of the above
|
|
--note: ends up with a 1d table;
|
|
-- if you need a 2d table, nest 1d generate calls
|
|
function functional.generate_2d(width, height, f)
|
|
local r = {}
|
|
for y = 1, height do
|
|
for x = 1, width do
|
|
local v = f(x, y)
|
|
if v ~= nil then
|
|
table.insert(r, v)
|
|
end
|
|
end
|
|
end
|
|
return r
|
|
end
|
|
|
|
-----------------------------------------------------------
|
|
--common queries and reductions
|
|
-----------------------------------------------------------
|
|
|
|
--true if any element of the table matches f
|
|
function functional.any(t, f)
|
|
for i,v in ipairs(t) do
|
|
if f(v) then
|
|
return true
|
|
end
|
|
end
|
|
return false
|
|
end
|
|
|
|
--true if no element of the table matches f
|
|
function functional.none(t, f)
|
|
for i,v in ipairs(t) do
|
|
if f(v) then
|
|
return false
|
|
end
|
|
end
|
|
return true
|
|
end
|
|
|
|
--true if all elements of the table match f
|
|
function functional.all(t, f)
|
|
for i,v in ipairs(t) do
|
|
if not f(v) then
|
|
return false
|
|
end
|
|
end
|
|
return true
|
|
end
|
|
|
|
--counts the elements of t that match f
|
|
function functional.count(t, f)
|
|
local c = 0
|
|
for i,v in ipairs(t) do
|
|
if f(v) then
|
|
c = c + 1
|
|
end
|
|
end
|
|
return c
|
|
end
|
|
|
|
--true if the table contains element e
|
|
function functional.contains(t, e)
|
|
for i, v in ipairs(t) do
|
|
if v == e then
|
|
return true
|
|
end
|
|
end
|
|
return false
|
|
end
|
|
|
|
--return the numeric sum of all elements of t
|
|
function functional.sum(t)
|
|
return functional.reduce(t, function(a, b)
|
|
return a + b
|
|
end, 0)
|
|
end
|
|
|
|
--return the numeric mean of all elements of t
|
|
function functional.mean(t)
|
|
local len = #t
|
|
if len == 0 then
|
|
return 0
|
|
end
|
|
return functional.sum(t) / len
|
|
end
|
|
|
|
--return the minimum and maximum of t in one pass
|
|
--or zero for both if t is empty
|
|
-- (would perhaps more correctly be math.huge, -math.huge
|
|
-- but that tends to be surprising/annoying in practice)
|
|
function functional.minmax(t)
|
|
local max, min
|
|
for i,v in ipairs(t) do
|
|
min = not min and v or math.min(min, v)
|
|
max = not max and v or math.max(max, v)
|
|
end
|
|
if min == nil then
|
|
min = 0
|
|
max = 0
|
|
end
|
|
return min, max
|
|
end
|
|
|
|
--return the maximum element of t or zero if t is empty
|
|
function functional.max(t)
|
|
local min, max = functional.minmax(t)
|
|
return max
|
|
end
|
|
|
|
--return the minimum element of t or zero if t is empty
|
|
function functional.min(t)
|
|
local min, max = functional.minmax(t)
|
|
return min
|
|
end
|
|
|
|
--return the element of the table that results in the lowest numeric value
|
|
--(function receives element and index respectively)
|
|
function functional.find_min(t, f)
|
|
local current = nil
|
|
local current_min = math.huge
|
|
for i, e in ipairs(t) do
|
|
local v = f(e, i)
|
|
if v and v < current_min then
|
|
current_min = v
|
|
current = e
|
|
end
|
|
end
|
|
return current
|
|
end
|
|
|
|
--return the element of the table that results in the greatest numeric value
|
|
--(function receives element and index respectively)
|
|
function functional.find_max(t, f)
|
|
local current = nil
|
|
local current_max = -math.huge
|
|
for i, e in ipairs(t) do
|
|
local v = f(e, i)
|
|
if v and v > current_max then
|
|
current_max = v
|
|
current = e
|
|
end
|
|
end
|
|
return current
|
|
end
|
|
|
|
--alias
|
|
functional.find_best = functional.find_max
|
|
|
|
--return the element of the table that results in the value nearest to the passed value
|
|
--todo: optimise as this generates a closure each time
|
|
function functional.find_nearest(t, f, v)
|
|
return functional.find_min(t, function(e)
|
|
return math.abs(f(e) - v)
|
|
end)
|
|
end
|
|
|
|
--return the first element of the table that results in a true filter
|
|
function functional.find_match(t, f)
|
|
for i,v in ipairs(t) do
|
|
if f(v) then
|
|
return v
|
|
end
|
|
end
|
|
return nil
|
|
end
|
|
|
|
return functional
|