diff --git a/deps/linmath.h b/deps/linmath.h index 9c2e2a0a..c4c0e24e 100644 --- a/deps/linmath.h +++ b/deps/linmath.h @@ -3,31 +3,40 @@ #include -#ifdef _MSC_VER -#define inline __inline +/* 2020-03-02 Camilla Löwy + * - Added inclusion of string.h for memcpy + * - Replaced tan and acos with tanf and acosf + * - Replaced double constants with float equivalents + */ +#include + +#ifdef LINMATH_NO_INLINE +#define LINMATH_H_FUNC static +#else +#define LINMATH_H_FUNC static inline #endif #define LINMATH_H_DEFINE_VEC(n) \ typedef float vec##n[n]; \ -static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ +LINMATH_H_FUNC void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ { \ int i; \ for(i=0; ib[i] ? a[i] : b[i]; \ } LINMATH_H_DEFINE_VEC(2) LINMATH_H_DEFINE_VEC(3) LINMATH_H_DEFINE_VEC(4) -static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) +LINMATH_H_FUNC void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) { r[0] = a[1]*b[2] - a[2]*b[1]; r[1] = a[2]*b[0] - a[0]*b[2]; r[2] = a[0]*b[1] - a[1]*b[0]; } -static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) +LINMATH_H_FUNC void vec3_reflect(vec3 r, vec3 const v, vec3 const n) { float p = 2.f*vec3_mul_inner(v, n); int i; @@ -64,7 +85,7 @@ static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) r[i] = v[i] - p*n[i]; } -static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) +LINMATH_H_FUNC void vec4_mul_cross(vec4 r, vec4 a, vec4 b) { r[0] = a[1]*b[2] - a[2]*b[1]; r[1] = a[2]*b[0] - a[0]*b[2]; @@ -72,7 +93,7 @@ static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) r[3] = 1.f; } -static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) +LINMATH_H_FUNC void vec4_reflect(vec4 r, vec4 v, vec4 n) { float p = 2.f*vec4_mul_inner(v, n); int i; @@ -81,58 +102,58 @@ static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) } typedef vec4 mat4x4[4]; -static inline void mat4x4_identity(mat4x4 M) +LINMATH_H_FUNC void mat4x4_identity(mat4x4 M) { int i, j; for(i=0; i<4; ++i) for(j=0; j<4; ++j) M[i][j] = i==j ? 1.f : 0.f; } -static inline void mat4x4_dup(mat4x4 M, mat4x4 N) +LINMATH_H_FUNC void mat4x4_dup(mat4x4 M, mat4x4 N) { int i, j; for(i=0; i<4; ++i) for(j=0; j<4; ++j) M[i][j] = N[i][j]; } -static inline void mat4x4_row(vec4 r, mat4x4 M, int i) +LINMATH_H_FUNC void mat4x4_row(vec4 r, mat4x4 M, int i) { int k; for(k=0; k<4; ++k) r[k] = M[k][i]; } -static inline void mat4x4_col(vec4 r, mat4x4 M, int i) +LINMATH_H_FUNC void mat4x4_col(vec4 r, mat4x4 M, int i) { int k; for(k=0; k<4; ++k) r[k] = M[i][k]; } -static inline void mat4x4_transpose(mat4x4 M, mat4x4 N) +LINMATH_H_FUNC void mat4x4_transpose(mat4x4 M, mat4x4 N) { int i, j; for(j=0; j<4; ++j) for(i=0; i<4; ++i) M[i][j] = N[j][i]; } -static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) +LINMATH_H_FUNC void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b) { int i; for(i=0; i<4; ++i) vec4_add(M[i], a[i], b[i]); } -static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) +LINMATH_H_FUNC void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b) { int i; for(i=0; i<4; ++i) vec4_sub(M[i], a[i], b[i]); } -static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k) +LINMATH_H_FUNC void mat4x4_scale(mat4x4 M, mat4x4 a, float k) { int i; for(i=0; i<4; ++i) vec4_scale(M[i], a[i], k); } -static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z) +LINMATH_H_FUNC void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z) { int i; vec4_scale(M[0], a[0], x); @@ -142,7 +163,7 @@ static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, floa M[3][i] = a[3][i]; } } -static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) +LINMATH_H_FUNC void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) { mat4x4 temp; int k, r, c; @@ -153,7 +174,7 @@ static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b) } mat4x4_dup(M, temp); } -static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) +LINMATH_H_FUNC void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) { int i, j; for(j=0; j<4; ++j) { @@ -162,14 +183,14 @@ static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v) r[j] += M[i][j] * v[i]; } } -static inline void mat4x4_translate(mat4x4 T, float x, float y, float z) +LINMATH_H_FUNC void mat4x4_translate(mat4x4 T, float x, float y, float z) { mat4x4_identity(T); T[3][0] = x; T[3][1] = y; T[3][2] = z; } -static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z) +LINMATH_H_FUNC void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z) { vec4 t = {x, y, z, 0}; vec4 r; @@ -179,33 +200,32 @@ static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z M[3][i] += vec4_mul_inner(r, t); } } -static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) +LINMATH_H_FUNC void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b) { int i, j; for(i=0; i<4; ++i) for(j=0; j<4; ++j) M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f; } -static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle) +LINMATH_H_FUNC void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle) { float s = sinf(angle); float c = cosf(angle); vec3 u = {x, y, z}; if(vec3_len(u) > 1e-4) { - mat4x4 T, C, S = {{0}}; - vec3_norm(u, u); + mat4x4 T; mat4x4_from_vec3_mul_outer(T, u, u); - S[1][2] = u[0]; - S[2][1] = -u[0]; - S[2][0] = u[1]; - S[0][2] = -u[1]; - S[0][1] = u[2]; - S[1][0] = -u[2]; - + mat4x4 S = { + { 0, u[2], -u[1], 0}, + {-u[2], 0, u[0], 0}, + { u[1], -u[0], 0, 0}, + { 0, 0, 0, 0} + }; mat4x4_scale(S, S, s); + mat4x4 C; mat4x4_identity(C); mat4x4_sub(C, C, T); @@ -214,13 +234,13 @@ static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, mat4x4_add(T, T, C); mat4x4_add(T, T, S); - T[3][3] = 1.; + T[3][3] = 1.; mat4x4_mul(R, M, T); } else { mat4x4_dup(R, M); } } -static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) +LINMATH_H_FUNC void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) { float s = sinf(angle); float c = cosf(angle); @@ -232,7 +252,7 @@ static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) }; mat4x4_mul(Q, M, R); } -static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) +LINMATH_H_FUNC void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) { float s = sinf(angle); float c = cosf(angle); @@ -244,7 +264,7 @@ static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) }; mat4x4_mul(Q, M, R); } -static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) +LINMATH_H_FUNC void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) { float s = sinf(angle); float c = cosf(angle); @@ -256,9 +276,8 @@ static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) }; mat4x4_mul(Q, M, R); } -static inline void mat4x4_invert(mat4x4 T, mat4x4 M) +LINMATH_H_FUNC void mat4x4_invert(mat4x4 T, mat4x4 M) { - float idet; float s[6]; float c[6]; s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1]; @@ -274,10 +293,10 @@ static inline void mat4x4_invert(mat4x4 T, mat4x4 M) c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2]; c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3]; c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3]; - + /* Assumes it is invertible */ - idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); - + float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); + T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; @@ -298,35 +317,34 @@ static inline void mat4x4_invert(mat4x4 T, mat4x4 M) T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; } -static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) +LINMATH_H_FUNC void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) { + mat4x4_dup(R, M); float s = 1.; vec3 h; - mat4x4_dup(R, M); vec3_norm(R[2], R[2]); - - s = vec3_mul_inner(R[1], R[2]); - vec3_scale(h, R[2], s); - vec3_sub(R[1], R[1], h); - vec3_norm(R[2], R[2]); - + s = vec3_mul_inner(R[1], R[2]); vec3_scale(h, R[2], s); vec3_sub(R[1], R[1], h); vec3_norm(R[1], R[1]); + s = vec3_mul_inner(R[0], R[2]); + vec3_scale(h, R[2], s); + vec3_sub(R[0], R[0], h); + s = vec3_mul_inner(R[0], R[1]); vec3_scale(h, R[1], s); vec3_sub(R[0], R[0], h); vec3_norm(R[0], R[0]); } -static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f) +LINMATH_H_FUNC void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f) { M[0][0] = 2.f*n/(r-l); M[0][1] = M[0][2] = M[0][3] = 0.f; - + M[1][1] = 2.f*n/(t-b); M[1][0] = M[1][2] = M[1][3] = 0.f; @@ -334,11 +352,11 @@ static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, M[2][1] = (t+b)/(t-b); M[2][2] = -(f+n)/(f-n); M[2][3] = -1.f; - + M[3][2] = -2.f*(f*n)/(f-n); M[3][0] = M[3][1] = M[3][3] = 0.f; } -static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f) +LINMATH_H_FUNC void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f) { M[0][0] = 2.f/(r-l); M[0][1] = M[0][2] = M[0][3] = 0.f; @@ -348,17 +366,17 @@ static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, fl M[2][2] = -2.f/(f-n); M[2][0] = M[2][1] = M[2][3] = 0.f; - + M[3][0] = -(r+l)/(r-l); M[3][1] = -(t+b)/(t-b); M[3][2] = -(f+n)/(f-n); M[3][3] = 1.f; } -static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f) +LINMATH_H_FUNC void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f) { /* NOTE: Degrees are an unhandy unit to work with. * linmath.h uses radians for everything! */ - float const a = 1.f / (float) tan(y_fov / 2.f); + float const a = 1.f / tanf(y_fov / 2.f); m[0][0] = a / aspect; m[0][1] = 0.f; @@ -380,7 +398,7 @@ static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float m[3][2] = -((2.f * f * n) / (f - n)); m[3][3] = 0.f; } -static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) +LINMATH_H_FUNC void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) { /* Adapted from Android's OpenGL Matrix.java. */ /* See the OpenGL GLUT documentation for gluLookAt for a description */ @@ -389,15 +407,14 @@ static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) /* TODO: The negation of of can be spared by swapping the order of * operands in the following cross products in the right way. */ vec3 f; + vec3_sub(f, center, eye); + vec3_norm(f, f); + vec3 s; - vec3 t; - - vec3_sub(f, center, eye); - vec3_norm(f, f); - vec3_mul_cross(s, f, up); vec3_norm(s, s); + vec3 t; vec3_mul_cross(t, s, f); m[0][0] = s[0]; @@ -424,24 +441,24 @@ static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) } typedef float quat[4]; -static inline void quat_identity(quat q) +LINMATH_H_FUNC void quat_identity(quat q) { q[0] = q[1] = q[2] = 0.f; q[3] = 1.f; } -static inline void quat_add(quat r, quat a, quat b) +LINMATH_H_FUNC void quat_add(quat r, quat a, quat b) { int i; for(i=0; i<4; ++i) r[i] = a[i] + b[i]; } -static inline void quat_sub(quat r, quat a, quat b) +LINMATH_H_FUNC void quat_sub(quat r, quat a, quat b) { int i; for(i=0; i<4; ++i) r[i] = a[i] - b[i]; } -static inline void quat_mul(quat r, quat p, quat q) +LINMATH_H_FUNC void quat_mul(quat r, quat p, quat q) { vec3 w; vec3_mul_cross(r, p, q); @@ -451,13 +468,13 @@ static inline void quat_mul(quat r, quat p, quat q) vec3_add(r, r, w); r[3] = p[3]*q[3] - vec3_mul_inner(p, q); } -static inline void quat_scale(quat r, quat v, float s) +LINMATH_H_FUNC void quat_scale(quat r, quat v, float s) { int i; for(i=0; i<4; ++i) r[i] = v[i] * s; } -static inline float quat_inner_product(quat a, quat b) +LINMATH_H_FUNC float quat_inner_product(quat a, quat b) { float p = 0.f; int i; @@ -465,42 +482,43 @@ static inline float quat_inner_product(quat a, quat b) p += b[i]*a[i]; return p; } -static inline void quat_conj(quat r, quat q) +LINMATH_H_FUNC void quat_conj(quat r, quat q) { int i; for(i=0; i<3; ++i) r[i] = -q[i]; r[3] = q[3]; } -static inline void quat_rotate(quat r, float angle, vec3 axis) { - int i; +LINMATH_H_FUNC void quat_rotate(quat r, float angle, vec3 axis) { vec3 v; vec3_scale(v, axis, sinf(angle / 2)); + int i; for(i=0; i<3; ++i) r[i] = v[i]; r[3] = cosf(angle / 2); } #define quat_norm vec4_norm -static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) +LINMATH_H_FUNC void quat_mul_vec3(vec3 r, quat q, vec3 v) { /* * Method by Fabian 'ryg' Giessen (of Farbrausch) t = 2 * cross(q.xyz, v) v' = v + q.w * t + cross(q.xyz, t) */ - vec3 t = {q[0], q[1], q[2]}; + vec3 t; + vec3 q_xyz = {q[0], q[1], q[2]}; vec3 u = {q[0], q[1], q[2]}; - vec3_mul_cross(t, t, v); + vec3_mul_cross(t, q_xyz, v); vec3_scale(t, t, 2); - vec3_mul_cross(u, u, t); + vec3_mul_cross(u, q_xyz, t); vec3_scale(t, t, q[3]); vec3_add(r, v, t); vec3_add(r, r, u); } -static inline void mat4x4_from_quat(mat4x4 M, quat q) +LINMATH_H_FUNC void mat4x4_from_quat(mat4x4 M, quat q) { float a = q[3]; float b = q[0]; @@ -510,7 +528,7 @@ static inline void mat4x4_from_quat(mat4x4 M, quat q) float b2 = b*b; float c2 = c*c; float d2 = d*d; - + M[0][0] = a2 + b2 - c2 - d2; M[0][1] = 2.f*(b*c + a*d); M[0][2] = 2.f*(b*d - a*c); @@ -530,7 +548,7 @@ static inline void mat4x4_from_quat(mat4x4 M, quat q) M[3][3] = 1.f; } -static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) +LINMATH_H_FUNC void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) { /* XXX: The way this is written only works for othogonal matrices. */ /* TODO: Take care of non-orthogonal case. */ @@ -541,7 +559,7 @@ static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) R[3][0] = R[3][1] = R[3][2] = 0.f; R[3][3] = 1.f; } -static inline void quat_from_mat4x4(quat q, mat4x4 M) +LINMATH_H_FUNC void quat_from_mat4x4(quat q, mat4x4 M) { float r=0.f; int i; @@ -557,7 +575,7 @@ static inline void quat_from_mat4x4(quat q, mat4x4 M) p = &perm[i]; } - r = (float) sqrt(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] ); + r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] ); if(r < 1e-6) { q[0] = 1.f; @@ -571,4 +589,33 @@ static inline void quat_from_mat4x4(quat q, mat4x4 M) q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r); } +LINMATH_H_FUNC void mat4x4_arcball(mat4x4 R, mat4x4 M, vec2 _a, vec2 _b, float s) +{ + vec2 a; memcpy(a, _a, sizeof(a)); + vec2 b; memcpy(b, _b, sizeof(b)); + + float z_a = 0.; + float z_b = 0.; + + if(vec2_len(a) < 1.f) { + z_a = sqrtf(1.f - vec2_mul_inner(a, a)); + } else { + vec2_norm(a, a); + } + + if(vec2_len(b) < 1.f) { + z_b = sqrtf(1.f - vec2_mul_inner(b, b)); + } else { + vec2_norm(b, b); + } + + vec3 a_ = {a[0], a[1], z_a}; + vec3 b_ = {b[0], b[1], z_b}; + + vec3 c_; + vec3_mul_cross(c_, a_, b_); + + float const angle = acosf(vec3_mul_inner(a_, b_)) * s; + mat4x4_rotate(R, M, c_[0], c_[1], c_[2], angle); +} #endif