//======================================================================== // GLFW 3.1 X11 - www.glfw.org //------------------------------------------------------------------------ // Copyright (c) 2002-2006 Marcus Geelnard // Copyright (c) 2006-2010 Camilla Berglund // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would // be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not // be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // //======================================================================== #include "internal.h" #include #include #include #include #include #include // Translate an X11 key code to a GLFW key code. // static int translateKeyCode(int scancode) { int keySym; // Valid key code range is [8,255], according to the Xlib manual if (scancode < 8 || scancode > 255) return GLFW_KEY_UNKNOWN; if (_glfw.x11.xkb.available) { // Try secondary keysym, for numeric keypad keys // Note: This way we always force "NumLock = ON", which is intentional // since the returned key code should correspond to a physical // location. keySym = XkbKeycodeToKeysym(_glfw.x11.display, scancode, 0, 1); switch (keySym) { case XK_KP_0: return GLFW_KEY_KP_0; case XK_KP_1: return GLFW_KEY_KP_1; case XK_KP_2: return GLFW_KEY_KP_2; case XK_KP_3: return GLFW_KEY_KP_3; case XK_KP_4: return GLFW_KEY_KP_4; case XK_KP_5: return GLFW_KEY_KP_5; case XK_KP_6: return GLFW_KEY_KP_6; case XK_KP_7: return GLFW_KEY_KP_7; case XK_KP_8: return GLFW_KEY_KP_8; case XK_KP_9: return GLFW_KEY_KP_9; case XK_KP_Separator: case XK_KP_Decimal: return GLFW_KEY_KP_DECIMAL; case XK_KP_Equal: return GLFW_KEY_KP_EQUAL; case XK_KP_Enter: return GLFW_KEY_KP_ENTER; default: break; } // Now try primary keysym for function keys (non-printable keys). These // should not be layout dependent (i.e. US layout and international // layouts should give the same result). keySym = XkbKeycodeToKeysym(_glfw.x11.display, scancode, 0, 0); } else { int dummy; KeySym* keySyms; keySyms = XGetKeyboardMapping(_glfw.x11.display, scancode, 1, &dummy); keySym = keySyms[0]; XFree(keySyms); } switch (keySym) { case XK_Escape: return GLFW_KEY_ESCAPE; case XK_Tab: return GLFW_KEY_TAB; case XK_Shift_L: return GLFW_KEY_LEFT_SHIFT; case XK_Shift_R: return GLFW_KEY_RIGHT_SHIFT; case XK_Control_L: return GLFW_KEY_LEFT_CONTROL; case XK_Control_R: return GLFW_KEY_RIGHT_CONTROL; case XK_Meta_L: case XK_Alt_L: return GLFW_KEY_LEFT_ALT; case XK_Mode_switch: // Mapped to Alt_R on many keyboards case XK_ISO_Level3_Shift: // AltGr on at least some machines case XK_Meta_R: case XK_Alt_R: return GLFW_KEY_RIGHT_ALT; case XK_Super_L: return GLFW_KEY_LEFT_SUPER; case XK_Super_R: return GLFW_KEY_RIGHT_SUPER; case XK_Menu: return GLFW_KEY_MENU; case XK_Num_Lock: return GLFW_KEY_NUM_LOCK; case XK_Caps_Lock: return GLFW_KEY_CAPS_LOCK; case XK_Print: return GLFW_KEY_PRINT_SCREEN; case XK_Scroll_Lock: return GLFW_KEY_SCROLL_LOCK; case XK_Pause: return GLFW_KEY_PAUSE; case XK_Delete: return GLFW_KEY_DELETE; case XK_BackSpace: return GLFW_KEY_BACKSPACE; case XK_Return: return GLFW_KEY_ENTER; case XK_Home: return GLFW_KEY_HOME; case XK_End: return GLFW_KEY_END; case XK_Page_Up: return GLFW_KEY_PAGE_UP; case XK_Page_Down: return GLFW_KEY_PAGE_DOWN; case XK_Insert: return GLFW_KEY_INSERT; case XK_Left: return GLFW_KEY_LEFT; case XK_Right: return GLFW_KEY_RIGHT; case XK_Down: return GLFW_KEY_DOWN; case XK_Up: return GLFW_KEY_UP; case XK_F1: return GLFW_KEY_F1; case XK_F2: return GLFW_KEY_F2; case XK_F3: return GLFW_KEY_F3; case XK_F4: return GLFW_KEY_F4; case XK_F5: return GLFW_KEY_F5; case XK_F6: return GLFW_KEY_F6; case XK_F7: return GLFW_KEY_F7; case XK_F8: return GLFW_KEY_F8; case XK_F9: return GLFW_KEY_F9; case XK_F10: return GLFW_KEY_F10; case XK_F11: return GLFW_KEY_F11; case XK_F12: return GLFW_KEY_F12; case XK_F13: return GLFW_KEY_F13; case XK_F14: return GLFW_KEY_F14; case XK_F15: return GLFW_KEY_F15; case XK_F16: return GLFW_KEY_F16; case XK_F17: return GLFW_KEY_F17; case XK_F18: return GLFW_KEY_F18; case XK_F19: return GLFW_KEY_F19; case XK_F20: return GLFW_KEY_F20; case XK_F21: return GLFW_KEY_F21; case XK_F22: return GLFW_KEY_F22; case XK_F23: return GLFW_KEY_F23; case XK_F24: return GLFW_KEY_F24; case XK_F25: return GLFW_KEY_F25; // Numeric keypad case XK_KP_Divide: return GLFW_KEY_KP_DIVIDE; case XK_KP_Multiply: return GLFW_KEY_KP_MULTIPLY; case XK_KP_Subtract: return GLFW_KEY_KP_SUBTRACT; case XK_KP_Add: return GLFW_KEY_KP_ADD; // These should have been detected in secondary keysym test above! case XK_KP_Insert: return GLFW_KEY_KP_0; case XK_KP_End: return GLFW_KEY_KP_1; case XK_KP_Down: return GLFW_KEY_KP_2; case XK_KP_Page_Down: return GLFW_KEY_KP_3; case XK_KP_Left: return GLFW_KEY_KP_4; case XK_KP_Right: return GLFW_KEY_KP_6; case XK_KP_Home: return GLFW_KEY_KP_7; case XK_KP_Up: return GLFW_KEY_KP_8; case XK_KP_Page_Up: return GLFW_KEY_KP_9; case XK_KP_Delete: return GLFW_KEY_KP_DECIMAL; case XK_KP_Equal: return GLFW_KEY_KP_EQUAL; case XK_KP_Enter: return GLFW_KEY_KP_ENTER; // Last resort: Check for printable keys (should not happen if the XKB // extension is available). This will give a layout dependent mapping // (which is wrong, and we may miss some keys, especially on non-US // keyboards), but it's better than nothing... case XK_a: return GLFW_KEY_A; case XK_b: return GLFW_KEY_B; case XK_c: return GLFW_KEY_C; case XK_d: return GLFW_KEY_D; case XK_e: return GLFW_KEY_E; case XK_f: return GLFW_KEY_F; case XK_g: return GLFW_KEY_G; case XK_h: return GLFW_KEY_H; case XK_i: return GLFW_KEY_I; case XK_j: return GLFW_KEY_J; case XK_k: return GLFW_KEY_K; case XK_l: return GLFW_KEY_L; case XK_m: return GLFW_KEY_M; case XK_n: return GLFW_KEY_N; case XK_o: return GLFW_KEY_O; case XK_p: return GLFW_KEY_P; case XK_q: return GLFW_KEY_Q; case XK_r: return GLFW_KEY_R; case XK_s: return GLFW_KEY_S; case XK_t: return GLFW_KEY_T; case XK_u: return GLFW_KEY_U; case XK_v: return GLFW_KEY_V; case XK_w: return GLFW_KEY_W; case XK_x: return GLFW_KEY_X; case XK_y: return GLFW_KEY_Y; case XK_z: return GLFW_KEY_Z; case XK_1: return GLFW_KEY_1; case XK_2: return GLFW_KEY_2; case XK_3: return GLFW_KEY_3; case XK_4: return GLFW_KEY_4; case XK_5: return GLFW_KEY_5; case XK_6: return GLFW_KEY_6; case XK_7: return GLFW_KEY_7; case XK_8: return GLFW_KEY_8; case XK_9: return GLFW_KEY_9; case XK_0: return GLFW_KEY_0; case XK_space: return GLFW_KEY_SPACE; case XK_minus: return GLFW_KEY_MINUS; case XK_equal: return GLFW_KEY_EQUAL; case XK_bracketleft: return GLFW_KEY_LEFT_BRACKET; case XK_bracketright: return GLFW_KEY_RIGHT_BRACKET; case XK_backslash: return GLFW_KEY_BACKSLASH; case XK_semicolon: return GLFW_KEY_SEMICOLON; case XK_apostrophe: return GLFW_KEY_APOSTROPHE; case XK_grave: return GLFW_KEY_GRAVE_ACCENT; case XK_comma: return GLFW_KEY_COMMA; case XK_period: return GLFW_KEY_PERIOD; case XK_slash: return GLFW_KEY_SLASH; case XK_less: return GLFW_KEY_WORLD_1; // At least in some layouts... default: break; } // No matching translation was found return GLFW_KEY_UNKNOWN; } // Create key code translation tables // static void createKeyTables(void) { int scancode, key; memset(_glfw.x11.publicKeys, -1, sizeof(_glfw.x11.publicKeys)); if (_glfw.x11.xkb.available) { // Use XKB to determine physical key locations independently of the current // keyboard layout char name[XkbKeyNameLength + 1]; XkbDescPtr desc = XkbGetMap(_glfw.x11.display, 0, XkbUseCoreKbd); XkbGetNames(_glfw.x11.display, XkbKeyNamesMask, desc); // Find the X11 key code -> GLFW key code mapping for (scancode = desc->min_key_code; scancode <= desc->max_key_code; scancode++) { memcpy(name, desc->names->keys[scancode].name, XkbKeyNameLength); name[XkbKeyNameLength] = '\0'; // Map the key name to a GLFW key code. Note: We only map printable // keys here, and we use the US keyboard layout. The rest of the // keys (function keys) are mapped using traditional KeySym // translations. if (strcmp(name, "TLDE") == 0) key = GLFW_KEY_GRAVE_ACCENT; else if (strcmp(name, "AE01") == 0) key = GLFW_KEY_1; else if (strcmp(name, "AE02") == 0) key = GLFW_KEY_2; else if (strcmp(name, "AE03") == 0) key = GLFW_KEY_3; else if (strcmp(name, "AE04") == 0) key = GLFW_KEY_4; else if (strcmp(name, "AE05") == 0) key = GLFW_KEY_5; else if (strcmp(name, "AE06") == 0) key = GLFW_KEY_6; else if (strcmp(name, "AE07") == 0) key = GLFW_KEY_7; else if (strcmp(name, "AE08") == 0) key = GLFW_KEY_8; else if (strcmp(name, "AE09") == 0) key = GLFW_KEY_9; else if (strcmp(name, "AE10") == 0) key = GLFW_KEY_0; else if (strcmp(name, "AE11") == 0) key = GLFW_KEY_MINUS; else if (strcmp(name, "AE12") == 0) key = GLFW_KEY_EQUAL; else if (strcmp(name, "AD01") == 0) key = GLFW_KEY_Q; else if (strcmp(name, "AD02") == 0) key = GLFW_KEY_W; else if (strcmp(name, "AD03") == 0) key = GLFW_KEY_E; else if (strcmp(name, "AD04") == 0) key = GLFW_KEY_R; else if (strcmp(name, "AD05") == 0) key = GLFW_KEY_T; else if (strcmp(name, "AD06") == 0) key = GLFW_KEY_Y; else if (strcmp(name, "AD07") == 0) key = GLFW_KEY_U; else if (strcmp(name, "AD08") == 0) key = GLFW_KEY_I; else if (strcmp(name, "AD09") == 0) key = GLFW_KEY_O; else if (strcmp(name, "AD10") == 0) key = GLFW_KEY_P; else if (strcmp(name, "AD11") == 0) key = GLFW_KEY_LEFT_BRACKET; else if (strcmp(name, "AD12") == 0) key = GLFW_KEY_RIGHT_BRACKET; else if (strcmp(name, "AC01") == 0) key = GLFW_KEY_A; else if (strcmp(name, "AC02") == 0) key = GLFW_KEY_S; else if (strcmp(name, "AC03") == 0) key = GLFW_KEY_D; else if (strcmp(name, "AC04") == 0) key = GLFW_KEY_F; else if (strcmp(name, "AC05") == 0) key = GLFW_KEY_G; else if (strcmp(name, "AC06") == 0) key = GLFW_KEY_H; else if (strcmp(name, "AC07") == 0) key = GLFW_KEY_J; else if (strcmp(name, "AC08") == 0) key = GLFW_KEY_K; else if (strcmp(name, "AC09") == 0) key = GLFW_KEY_L; else if (strcmp(name, "AC10") == 0) key = GLFW_KEY_SEMICOLON; else if (strcmp(name, "AC11") == 0) key = GLFW_KEY_APOSTROPHE; else if (strcmp(name, "AB01") == 0) key = GLFW_KEY_Z; else if (strcmp(name, "AB02") == 0) key = GLFW_KEY_X; else if (strcmp(name, "AB03") == 0) key = GLFW_KEY_C; else if (strcmp(name, "AB04") == 0) key = GLFW_KEY_V; else if (strcmp(name, "AB05") == 0) key = GLFW_KEY_B; else if (strcmp(name, "AB06") == 0) key = GLFW_KEY_N; else if (strcmp(name, "AB07") == 0) key = GLFW_KEY_M; else if (strcmp(name, "AB08") == 0) key = GLFW_KEY_COMMA; else if (strcmp(name, "AB09") == 0) key = GLFW_KEY_PERIOD; else if (strcmp(name, "AB10") == 0) key = GLFW_KEY_SLASH; else if (strcmp(name, "BKSL") == 0) key = GLFW_KEY_BACKSLASH; else if (strcmp(name, "LSGT") == 0) key = GLFW_KEY_WORLD_1; else key = GLFW_KEY_UNKNOWN; if ((scancode >= 0) && (scancode < 256)) _glfw.x11.publicKeys[scancode] = key; } XkbFreeNames(desc, XkbKeyNamesMask, True); XkbFreeClientMap(desc, 0, True); } // Translate the un-translated key codes using traditional X11 KeySym // lookups for (scancode = 0; scancode < 256; scancode++) { if (_glfw.x11.publicKeys[scancode] < 0) _glfw.x11.publicKeys[scancode] = translateKeyCode(scancode); } } // Check whether the IM has a usable style // static GLboolean hasUsableInputMethodStyle(void) { unsigned int i; GLboolean found = GL_FALSE; XIMStyles* styles = NULL; if (XGetIMValues(_glfw.x11.im, XNQueryInputStyle, &styles, NULL) != NULL) return GL_FALSE; for (i = 0; i < styles->count_styles; i++) { if (styles->supported_styles[i] == (XIMPreeditNothing | XIMStatusNothing)) { found = GL_TRUE; break; } } XFree(styles); return found; } // Check whether the specified atom is supported // static Atom getSupportedAtom(Atom* supportedAtoms, unsigned long atomCount, const char* atomName) { Atom atom = XInternAtom(_glfw.x11.display, atomName, True); if (atom != None) { unsigned long i; for (i = 0; i < atomCount; i++) { if (supportedAtoms[i] == atom) return atom; } } return None; } // Check whether the running window manager is EWMH-compliant // static void detectEWMH(void) { Window* windowFromRoot = NULL; Window* windowFromChild = NULL; // First we need a couple of atoms, which should already be there Atom supportingWmCheck = XInternAtom(_glfw.x11.display, "_NET_SUPPORTING_WM_CHECK", True); Atom wmSupported = XInternAtom(_glfw.x11.display, "_NET_SUPPORTED", True); if (supportingWmCheck == None || wmSupported == None) return; // Then we look for the _NET_SUPPORTING_WM_CHECK property of the root window if (_glfwGetWindowProperty(_glfw.x11.root, supportingWmCheck, XA_WINDOW, (unsigned char**) &windowFromRoot) != 1) { if (windowFromRoot) XFree(windowFromRoot); return; } _glfwGrabXErrorHandler(); // It should be the ID of a child window (of the root) // Then we look for the same property on the child window if (_glfwGetWindowProperty(*windowFromRoot, supportingWmCheck, XA_WINDOW, (unsigned char**) &windowFromChild) != 1) { XFree(windowFromRoot); if (windowFromChild) XFree(windowFromChild); return; } _glfwReleaseXErrorHandler(); // It should be the ID of that same child window if (*windowFromRoot != *windowFromChild) { XFree(windowFromRoot); XFree(windowFromChild); return; } XFree(windowFromRoot); XFree(windowFromChild); // We are now fairly sure that an EWMH-compliant window manager is running Atom* supportedAtoms; unsigned long atomCount; // Now we need to check the _NET_SUPPORTED property of the root window // It should be a list of supported WM protocol and state atoms atomCount = _glfwGetWindowProperty(_glfw.x11.root, wmSupported, XA_ATOM, (unsigned char**) &supportedAtoms); // See which of the atoms we support that are supported by the WM _glfw.x11.NET_WM_STATE = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_STATE"); _glfw.x11.NET_WM_STATE_ABOVE = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_STATE_ABOVE"); _glfw.x11.NET_WM_STATE_FULLSCREEN = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_STATE_FULLSCREEN"); _glfw.x11.NET_WM_FULLSCREEN_MONITORS = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_FULLSCREEN_MONITORS"); _glfw.x11.NET_WM_NAME = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_NAME"); _glfw.x11.NET_WM_ICON_NAME = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_ICON_NAME"); _glfw.x11.NET_WM_PID = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_PID"); _glfw.x11.NET_WM_PING = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_PING"); _glfw.x11.NET_ACTIVE_WINDOW = getSupportedAtom(supportedAtoms, atomCount, "_NET_ACTIVE_WINDOW"); _glfw.x11.NET_FRAME_EXTENTS = getSupportedAtom(supportedAtoms, atomCount, "_NET_FRAME_EXTENTS"); _glfw.x11.NET_REQUEST_FRAME_EXTENTS = getSupportedAtom(supportedAtoms, atomCount, "_NET_REQUEST_FRAME_EXTENTS"); _glfw.x11.NET_WM_BYPASS_COMPOSITOR = getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_BYPASS_COMPOSITOR"); XFree(supportedAtoms); } // Initialize X11 display and look for supported X11 extensions // static GLboolean initExtensions(void) { // Find or create window manager atoms _glfw.x11.WM_PROTOCOLS = XInternAtom(_glfw.x11.display, "WM_PROTOCOLS", False); _glfw.x11.WM_STATE = XInternAtom(_glfw.x11.display, "WM_STATE", False); _glfw.x11.WM_DELETE_WINDOW = XInternAtom(_glfw.x11.display, "WM_DELETE_WINDOW", False); _glfw.x11.MOTIF_WM_HINTS = XInternAtom(_glfw.x11.display, "_MOTIF_WM_HINTS", False); #if defined(_GLFW_HAS_XF86VM) // Check for XF86VidMode extension _glfw.x11.vidmode.available = XF86VidModeQueryExtension(_glfw.x11.display, &_glfw.x11.vidmode.eventBase, &_glfw.x11.vidmode.errorBase); #endif /*_GLFW_HAS_XF86VM*/ // Check for RandR extension _glfw.x11.randr.available = XRRQueryExtension(_glfw.x11.display, &_glfw.x11.randr.eventBase, &_glfw.x11.randr.errorBase); if (_glfw.x11.randr.available) { XRRScreenResources* sr; if (!XRRQueryVersion(_glfw.x11.display, &_glfw.x11.randr.major, &_glfw.x11.randr.minor)) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to query RandR version"); return GL_FALSE; } // The GLFW RandR path requires at least version 1.3 if (_glfw.x11.randr.major == 1 && _glfw.x11.randr.minor < 3) _glfw.x11.randr.available = GL_FALSE; sr = XRRGetScreenResources(_glfw.x11.display, _glfw.x11.root); if (!sr->ncrtc || !XRRGetCrtcGammaSize(_glfw.x11.display, sr->crtcs[0])) { // This is either a headless system or an older Nvidia binary driver // with broken gamma support // Flag it as useless and fall back to Xf86VidMode gamma, if // available _glfwInputError(GLFW_PLATFORM_ERROR, "X11: RandR gamma ramp support seems broken"); _glfw.x11.randr.gammaBroken = GL_TRUE; } XRRFreeScreenResources(sr); } if (XineramaQueryExtension(_glfw.x11.display, &_glfw.x11.xinerama.major, &_glfw.x11.xinerama.minor)) { if (XineramaIsActive(_glfw.x11.display)) _glfw.x11.xinerama.available = GL_TRUE; } #if defined(_GLFW_HAS_XINPUT) if (XQueryExtension(_glfw.x11.display, "XInputExtension", &_glfw.x11.xi.majorOpcode, &_glfw.x11.xi.eventBase, &_glfw.x11.xi.errorBase)) { _glfw.x11.xi.major = 2; _glfw.x11.xi.minor = 0; if (XIQueryVersion(_glfw.x11.display, &_glfw.x11.xi.major, &_glfw.x11.xi.minor) != BadRequest) { _glfw.x11.xi.available = GL_TRUE; } } #endif /*_GLFW_HAS_XINPUT*/ // Check if Xkb is supported on this display _glfw.x11.xkb.major = 1; _glfw.x11.xkb.minor = 0; _glfw.x11.xkb.available = XkbQueryExtension(_glfw.x11.display, &_glfw.x11.xkb.majorOpcode, &_glfw.x11.xkb.eventBase, &_glfw.x11.xkb.errorBase, &_glfw.x11.xkb.major, &_glfw.x11.xkb.minor); if (_glfw.x11.xkb.available) { Bool supported; if (XkbSetDetectableAutoRepeat(_glfw.x11.display, True, &supported)) { if (supported) _glfw.x11.xkb.detectable = GL_TRUE; } } // Update the key code LUT // FIXME: We should listen to XkbMapNotify events to track changes to // the keyboard mapping. createKeyTables(); // Detect whether an EWMH-conformant window manager is running detectEWMH(); // Find or create string format atoms _glfw.x11.NULL_ = XInternAtom(_glfw.x11.display, "NULL", False); _glfw.x11.UTF8_STRING = XInternAtom(_glfw.x11.display, "UTF8_STRING", False); _glfw.x11.COMPOUND_STRING = XInternAtom(_glfw.x11.display, "COMPOUND_STRING", False); _glfw.x11.ATOM_PAIR = XInternAtom(_glfw.x11.display, "ATOM_PAIR", False); // Find or create selection property atom _glfw.x11.GLFW_SELECTION = XInternAtom(_glfw.x11.display, "GLFW_SELECTION", False); // Find or create standard clipboard atoms _glfw.x11.TARGETS = XInternAtom(_glfw.x11.display, "TARGETS", False); _glfw.x11.MULTIPLE = XInternAtom(_glfw.x11.display, "MULTIPLE", False); _glfw.x11.CLIPBOARD = XInternAtom(_glfw.x11.display, "CLIPBOARD", False); // Find or create clipboard manager atoms _glfw.x11.CLIPBOARD_MANAGER = XInternAtom(_glfw.x11.display, "CLIPBOARD_MANAGER", False); _glfw.x11.SAVE_TARGETS = XInternAtom(_glfw.x11.display, "SAVE_TARGETS", False); // Find Xdnd (drag and drop) atoms, if available _glfw.x11.XdndAware = XInternAtom(_glfw.x11.display, "XdndAware", True); _glfw.x11.XdndEnter = XInternAtom(_glfw.x11.display, "XdndEnter", True); _glfw.x11.XdndPosition = XInternAtom(_glfw.x11.display, "XdndPosition", True); _glfw.x11.XdndStatus = XInternAtom(_glfw.x11.display, "XdndStatus", True); _glfw.x11.XdndActionCopy = XInternAtom(_glfw.x11.display, "XdndActionCopy", True); _glfw.x11.XdndDrop = XInternAtom(_glfw.x11.display, "XdndDrop", True); _glfw.x11.XdndLeave = XInternAtom(_glfw.x11.display, "XdndLeave", True); _glfw.x11.XdndFinished = XInternAtom(_glfw.x11.display, "XdndFinished", True); _glfw.x11.XdndSelection = XInternAtom(_glfw.x11.display, "XdndSelection", True); return GL_TRUE; } // Create a blank cursor for hidden and disabled cursor modes // static Cursor createNULLCursor(void) { unsigned char pixels[16 * 16 * 4]; GLFWimage image = { 16, 16, pixels }; memset(pixels, 0, sizeof(pixels)); return _glfwCreateCursor(&image, 0, 0); } // X error handler // static int errorHandler(Display *display, XErrorEvent* event) { _glfw.x11.errorCode = event->error_code; return 0; } ////////////////////////////////////////////////////////////////////////// ////// GLFW internal API ////// ////////////////////////////////////////////////////////////////////////// // Sets the X error handler callback // void _glfwGrabXErrorHandler(void) { _glfw.x11.errorCode = Success; XSetErrorHandler(errorHandler); } // Clears the X error handler callback // void _glfwReleaseXErrorHandler(void) { // Synchronize to make sure all commands are processed XSync(_glfw.x11.display, False); XSetErrorHandler(NULL); } // Reports the specified error, appending information about the last X error // void _glfwInputXError(int error, const char* message) { char buffer[8192]; XGetErrorText(_glfw.x11.display, _glfw.x11.errorCode, buffer, sizeof(buffer)); _glfwInputError(error, "%s: %s", message, buffer); } // Creates a native cursor object from the specified image and hotspot // Cursor _glfwCreateCursor(const GLFWimage* image, int xhot, int yhot) { int i; Cursor cursor; XcursorImage* native = XcursorImageCreate(image->width, image->height); if (native == NULL) return None; native->xhot = xhot; native->yhot = yhot; unsigned char* source = (unsigned char*) image->pixels; XcursorPixel* target = native->pixels; for (i = 0; i < image->width * image->height; i++, target++, source += 4) { *target = (source[3] << 24) | (source[0] << 16) | (source[1] << 8) | source[2]; } cursor = XcursorImageLoadCursor(_glfw.x11.display, native); XcursorImageDestroy(native); return cursor; } ////////////////////////////////////////////////////////////////////////// ////// GLFW platform API ////// ////////////////////////////////////////////////////////////////////////// int _glfwPlatformInit(void) { // HACK: If the current locale is C, apply the environment's locale // This is done because the C locale breaks character input if (strcmp(setlocale(LC_CTYPE, NULL), "C") == 0) setlocale(LC_CTYPE, ""); XInitThreads(); _glfw.x11.display = XOpenDisplay(NULL); if (!_glfw.x11.display) { const char* display = getenv("DISPLAY"); if (display) { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: Failed to open display %s", display); } else { _glfwInputError(GLFW_PLATFORM_ERROR, "X11: The DISPLAY environment variable is missing"); } return GL_FALSE; } _glfw.x11.screen = DefaultScreen(_glfw.x11.display); _glfw.x11.root = RootWindow(_glfw.x11.display, _glfw.x11.screen); _glfw.x11.context = XUniqueContext(); if (!initExtensions()) return GL_FALSE; _glfw.x11.cursor = createNULLCursor(); if (XSupportsLocale()) { XSetLocaleModifiers(""); _glfw.x11.im = XOpenIM(_glfw.x11.display, 0, NULL, NULL); if (_glfw.x11.im) { if (!hasUsableInputMethodStyle()) { XCloseIM(_glfw.x11.im); _glfw.x11.im = NULL; } } } if (!_glfwInitContextAPI()) return GL_FALSE; if (!_glfwInitJoysticks()) return GL_FALSE; _glfwInitTimer(); return GL_TRUE; } void _glfwPlatformTerminate(void) { if (_glfw.x11.cursor) { XFreeCursor(_glfw.x11.display, _glfw.x11.cursor); _glfw.x11.cursor = (Cursor) 0; } free(_glfw.x11.clipboardString); if (_glfw.x11.im) { XCloseIM(_glfw.x11.im); _glfw.x11.im = NULL; } _glfwTerminateJoysticks(); _glfwTerminateContextAPI(); if (_glfw.x11.display) { XCloseDisplay(_glfw.x11.display); _glfw.x11.display = NULL; } } const char* _glfwPlatformGetVersionString(void) { return _GLFW_VERSION_NUMBER " X11" #if defined(_GLFW_GLX) " GLX" #elif defined(_GLFW_EGL) " EGL" #endif #if defined(_POSIX_TIMERS) && defined(_POSIX_MONOTONIC_CLOCK) " clock_gettime" #else " gettimeofday" #endif #if defined(__linux__) " /dev/js" #endif #if defined(_GLFW_BUILD_DLL) " shared" #endif ; }