glfw/src/x11_init.c
Camilla Berglund 75a6d87542 Added support for Cygwin-X.
Fixes #406.
2015-02-16 15:40:57 +01:00

821 lines
30 KiB
C

//========================================================================
// GLFW 3.1 X11 - www.glfw.org
//------------------------------------------------------------------------
// Copyright (c) 2002-2006 Marcus Geelnard
// Copyright (c) 2006-2010 Camilla Berglund <elmindreda@elmindreda.org>
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would
// be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
//========================================================================
#include "internal.h"
#include <X11/Xresource.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <stdio.h>
#include <locale.h>
// Translate an X11 key code to a GLFW key code.
//
static int translateKey(int scancode)
{
int keySym;
// Valid key code range is [8,255], according to the Xlib manual
if (scancode < 8 || scancode > 255)
return GLFW_KEY_UNKNOWN;
if (_glfw.x11.xkb.available)
{
// Try secondary keysym, for numeric keypad keys
// Note: This way we always force "NumLock = ON", which is intentional
// since the returned key code should correspond to a physical
// location.
keySym = XkbKeycodeToKeysym(_glfw.x11.display, scancode, 0, 1);
switch (keySym)
{
case XK_KP_0: return GLFW_KEY_KP_0;
case XK_KP_1: return GLFW_KEY_KP_1;
case XK_KP_2: return GLFW_KEY_KP_2;
case XK_KP_3: return GLFW_KEY_KP_3;
case XK_KP_4: return GLFW_KEY_KP_4;
case XK_KP_5: return GLFW_KEY_KP_5;
case XK_KP_6: return GLFW_KEY_KP_6;
case XK_KP_7: return GLFW_KEY_KP_7;
case XK_KP_8: return GLFW_KEY_KP_8;
case XK_KP_9: return GLFW_KEY_KP_9;
case XK_KP_Separator:
case XK_KP_Decimal: return GLFW_KEY_KP_DECIMAL;
case XK_KP_Equal: return GLFW_KEY_KP_EQUAL;
case XK_KP_Enter: return GLFW_KEY_KP_ENTER;
default: break;
}
// Now try primary keysym for function keys (non-printable keys). These
// should not be layout dependent (i.e. US layout and international
// layouts should give the same result).
keySym = XkbKeycodeToKeysym(_glfw.x11.display, scancode, 0, 0);
}
else
{
int dummy;
KeySym* keySyms;
keySyms = XGetKeyboardMapping(_glfw.x11.display, scancode, 1, &dummy);
keySym = keySyms[0];
XFree(keySyms);
}
switch (keySym)
{
case XK_Escape: return GLFW_KEY_ESCAPE;
case XK_Tab: return GLFW_KEY_TAB;
case XK_Shift_L: return GLFW_KEY_LEFT_SHIFT;
case XK_Shift_R: return GLFW_KEY_RIGHT_SHIFT;
case XK_Control_L: return GLFW_KEY_LEFT_CONTROL;
case XK_Control_R: return GLFW_KEY_RIGHT_CONTROL;
case XK_Meta_L:
case XK_Alt_L: return GLFW_KEY_LEFT_ALT;
case XK_Mode_switch: // Mapped to Alt_R on many keyboards
case XK_ISO_Level3_Shift: // AltGr on at least some machines
case XK_Meta_R:
case XK_Alt_R: return GLFW_KEY_RIGHT_ALT;
case XK_Super_L: return GLFW_KEY_LEFT_SUPER;
case XK_Super_R: return GLFW_KEY_RIGHT_SUPER;
case XK_Menu: return GLFW_KEY_MENU;
case XK_Num_Lock: return GLFW_KEY_NUM_LOCK;
case XK_Caps_Lock: return GLFW_KEY_CAPS_LOCK;
case XK_Print: return GLFW_KEY_PRINT_SCREEN;
case XK_Scroll_Lock: return GLFW_KEY_SCROLL_LOCK;
case XK_Pause: return GLFW_KEY_PAUSE;
case XK_Delete: return GLFW_KEY_DELETE;
case XK_BackSpace: return GLFW_KEY_BACKSPACE;
case XK_Return: return GLFW_KEY_ENTER;
case XK_Home: return GLFW_KEY_HOME;
case XK_End: return GLFW_KEY_END;
case XK_Page_Up: return GLFW_KEY_PAGE_UP;
case XK_Page_Down: return GLFW_KEY_PAGE_DOWN;
case XK_Insert: return GLFW_KEY_INSERT;
case XK_Left: return GLFW_KEY_LEFT;
case XK_Right: return GLFW_KEY_RIGHT;
case XK_Down: return GLFW_KEY_DOWN;
case XK_Up: return GLFW_KEY_UP;
case XK_F1: return GLFW_KEY_F1;
case XK_F2: return GLFW_KEY_F2;
case XK_F3: return GLFW_KEY_F3;
case XK_F4: return GLFW_KEY_F4;
case XK_F5: return GLFW_KEY_F5;
case XK_F6: return GLFW_KEY_F6;
case XK_F7: return GLFW_KEY_F7;
case XK_F8: return GLFW_KEY_F8;
case XK_F9: return GLFW_KEY_F9;
case XK_F10: return GLFW_KEY_F10;
case XK_F11: return GLFW_KEY_F11;
case XK_F12: return GLFW_KEY_F12;
case XK_F13: return GLFW_KEY_F13;
case XK_F14: return GLFW_KEY_F14;
case XK_F15: return GLFW_KEY_F15;
case XK_F16: return GLFW_KEY_F16;
case XK_F17: return GLFW_KEY_F17;
case XK_F18: return GLFW_KEY_F18;
case XK_F19: return GLFW_KEY_F19;
case XK_F20: return GLFW_KEY_F20;
case XK_F21: return GLFW_KEY_F21;
case XK_F22: return GLFW_KEY_F22;
case XK_F23: return GLFW_KEY_F23;
case XK_F24: return GLFW_KEY_F24;
case XK_F25: return GLFW_KEY_F25;
// Numeric keypad
case XK_KP_Divide: return GLFW_KEY_KP_DIVIDE;
case XK_KP_Multiply: return GLFW_KEY_KP_MULTIPLY;
case XK_KP_Subtract: return GLFW_KEY_KP_SUBTRACT;
case XK_KP_Add: return GLFW_KEY_KP_ADD;
// These should have been detected in secondary keysym test above!
case XK_KP_Insert: return GLFW_KEY_KP_0;
case XK_KP_End: return GLFW_KEY_KP_1;
case XK_KP_Down: return GLFW_KEY_KP_2;
case XK_KP_Page_Down: return GLFW_KEY_KP_3;
case XK_KP_Left: return GLFW_KEY_KP_4;
case XK_KP_Right: return GLFW_KEY_KP_6;
case XK_KP_Home: return GLFW_KEY_KP_7;
case XK_KP_Up: return GLFW_KEY_KP_8;
case XK_KP_Page_Up: return GLFW_KEY_KP_9;
case XK_KP_Delete: return GLFW_KEY_KP_DECIMAL;
case XK_KP_Equal: return GLFW_KEY_KP_EQUAL;
case XK_KP_Enter: return GLFW_KEY_KP_ENTER;
// Last resort: Check for printable keys (should not happen if the XKB
// extension is available). This will give a layout dependent mapping
// (which is wrong, and we may miss some keys, especially on non-US
// keyboards), but it's better than nothing...
case XK_a: return GLFW_KEY_A;
case XK_b: return GLFW_KEY_B;
case XK_c: return GLFW_KEY_C;
case XK_d: return GLFW_KEY_D;
case XK_e: return GLFW_KEY_E;
case XK_f: return GLFW_KEY_F;
case XK_g: return GLFW_KEY_G;
case XK_h: return GLFW_KEY_H;
case XK_i: return GLFW_KEY_I;
case XK_j: return GLFW_KEY_J;
case XK_k: return GLFW_KEY_K;
case XK_l: return GLFW_KEY_L;
case XK_m: return GLFW_KEY_M;
case XK_n: return GLFW_KEY_N;
case XK_o: return GLFW_KEY_O;
case XK_p: return GLFW_KEY_P;
case XK_q: return GLFW_KEY_Q;
case XK_r: return GLFW_KEY_R;
case XK_s: return GLFW_KEY_S;
case XK_t: return GLFW_KEY_T;
case XK_u: return GLFW_KEY_U;
case XK_v: return GLFW_KEY_V;
case XK_w: return GLFW_KEY_W;
case XK_x: return GLFW_KEY_X;
case XK_y: return GLFW_KEY_Y;
case XK_z: return GLFW_KEY_Z;
case XK_1: return GLFW_KEY_1;
case XK_2: return GLFW_KEY_2;
case XK_3: return GLFW_KEY_3;
case XK_4: return GLFW_KEY_4;
case XK_5: return GLFW_KEY_5;
case XK_6: return GLFW_KEY_6;
case XK_7: return GLFW_KEY_7;
case XK_8: return GLFW_KEY_8;
case XK_9: return GLFW_KEY_9;
case XK_0: return GLFW_KEY_0;
case XK_space: return GLFW_KEY_SPACE;
case XK_minus: return GLFW_KEY_MINUS;
case XK_equal: return GLFW_KEY_EQUAL;
case XK_bracketleft: return GLFW_KEY_LEFT_BRACKET;
case XK_bracketright: return GLFW_KEY_RIGHT_BRACKET;
case XK_backslash: return GLFW_KEY_BACKSLASH;
case XK_semicolon: return GLFW_KEY_SEMICOLON;
case XK_apostrophe: return GLFW_KEY_APOSTROPHE;
case XK_grave: return GLFW_KEY_GRAVE_ACCENT;
case XK_comma: return GLFW_KEY_COMMA;
case XK_period: return GLFW_KEY_PERIOD;
case XK_slash: return GLFW_KEY_SLASH;
case XK_less: return GLFW_KEY_WORLD_1; // At least in some layouts...
default: break;
}
// No matching translation was found
return GLFW_KEY_UNKNOWN;
}
// Create key code translation tables
//
static void createKeyTables(void)
{
int scancode, key;
memset(_glfw.x11.publicKeys, -1, sizeof(_glfw.x11.publicKeys));
if (_glfw.x11.xkb.available)
{
// Use XKB to determine physical key locations independently of the current
// keyboard layout
char name[XkbKeyNameLength + 1];
XkbDescPtr descr = XkbGetKeyboard(_glfw.x11.display,
XkbAllComponentsMask,
XkbUseCoreKbd);
// Find the X11 key code -> GLFW key code mapping
for (scancode = descr->min_key_code; scancode <= descr->max_key_code; scancode++)
{
memcpy(name, descr->names->keys[scancode].name, XkbKeyNameLength);
name[XkbKeyNameLength] = 0;
// Map the key name to a GLFW key code. Note: We only map printable
// keys here, and we use the US keyboard layout. The rest of the
// keys (function keys) are mapped using traditional KeySym
// translations.
if (strcmp(name, "TLDE") == 0) key = GLFW_KEY_GRAVE_ACCENT;
else if (strcmp(name, "AE01") == 0) key = GLFW_KEY_1;
else if (strcmp(name, "AE02") == 0) key = GLFW_KEY_2;
else if (strcmp(name, "AE03") == 0) key = GLFW_KEY_3;
else if (strcmp(name, "AE04") == 0) key = GLFW_KEY_4;
else if (strcmp(name, "AE05") == 0) key = GLFW_KEY_5;
else if (strcmp(name, "AE06") == 0) key = GLFW_KEY_6;
else if (strcmp(name, "AE07") == 0) key = GLFW_KEY_7;
else if (strcmp(name, "AE08") == 0) key = GLFW_KEY_8;
else if (strcmp(name, "AE09") == 0) key = GLFW_KEY_9;
else if (strcmp(name, "AE10") == 0) key = GLFW_KEY_0;
else if (strcmp(name, "AE11") == 0) key = GLFW_KEY_MINUS;
else if (strcmp(name, "AE12") == 0) key = GLFW_KEY_EQUAL;
else if (strcmp(name, "AD01") == 0) key = GLFW_KEY_Q;
else if (strcmp(name, "AD02") == 0) key = GLFW_KEY_W;
else if (strcmp(name, "AD03") == 0) key = GLFW_KEY_E;
else if (strcmp(name, "AD04") == 0) key = GLFW_KEY_R;
else if (strcmp(name, "AD05") == 0) key = GLFW_KEY_T;
else if (strcmp(name, "AD06") == 0) key = GLFW_KEY_Y;
else if (strcmp(name, "AD07") == 0) key = GLFW_KEY_U;
else if (strcmp(name, "AD08") == 0) key = GLFW_KEY_I;
else if (strcmp(name, "AD09") == 0) key = GLFW_KEY_O;
else if (strcmp(name, "AD10") == 0) key = GLFW_KEY_P;
else if (strcmp(name, "AD11") == 0) key = GLFW_KEY_LEFT_BRACKET;
else if (strcmp(name, "AD12") == 0) key = GLFW_KEY_RIGHT_BRACKET;
else if (strcmp(name, "AC01") == 0) key = GLFW_KEY_A;
else if (strcmp(name, "AC02") == 0) key = GLFW_KEY_S;
else if (strcmp(name, "AC03") == 0) key = GLFW_KEY_D;
else if (strcmp(name, "AC04") == 0) key = GLFW_KEY_F;
else if (strcmp(name, "AC05") == 0) key = GLFW_KEY_G;
else if (strcmp(name, "AC06") == 0) key = GLFW_KEY_H;
else if (strcmp(name, "AC07") == 0) key = GLFW_KEY_J;
else if (strcmp(name, "AC08") == 0) key = GLFW_KEY_K;
else if (strcmp(name, "AC09") == 0) key = GLFW_KEY_L;
else if (strcmp(name, "AC10") == 0) key = GLFW_KEY_SEMICOLON;
else if (strcmp(name, "AC11") == 0) key = GLFW_KEY_APOSTROPHE;
else if (strcmp(name, "AB01") == 0) key = GLFW_KEY_Z;
else if (strcmp(name, "AB02") == 0) key = GLFW_KEY_X;
else if (strcmp(name, "AB03") == 0) key = GLFW_KEY_C;
else if (strcmp(name, "AB04") == 0) key = GLFW_KEY_V;
else if (strcmp(name, "AB05") == 0) key = GLFW_KEY_B;
else if (strcmp(name, "AB06") == 0) key = GLFW_KEY_N;
else if (strcmp(name, "AB07") == 0) key = GLFW_KEY_M;
else if (strcmp(name, "AB08") == 0) key = GLFW_KEY_COMMA;
else if (strcmp(name, "AB09") == 0) key = GLFW_KEY_PERIOD;
else if (strcmp(name, "AB10") == 0) key = GLFW_KEY_SLASH;
else if (strcmp(name, "BKSL") == 0) key = GLFW_KEY_BACKSLASH;
else if (strcmp(name, "LSGT") == 0) key = GLFW_KEY_WORLD_1;
else key = GLFW_KEY_UNKNOWN;
if ((scancode >= 0) && (scancode < 256))
_glfw.x11.publicKeys[scancode] = key;
}
XkbFreeKeyboard(descr, 0, True);
}
// Translate the un-translated key codes using traditional X11 KeySym
// lookups
for (scancode = 0; scancode < 256; scancode++)
{
if (_glfw.x11.publicKeys[scancode] < 0)
_glfw.x11.publicKeys[scancode] = translateKey(scancode);
}
}
// Check whether the IM has a usable style
//
static GLboolean hasUsableInputMethodStyle(void)
{
unsigned int i;
GLboolean found = GL_FALSE;
XIMStyles* styles = NULL;
if (XGetIMValues(_glfw.x11.im, XNQueryInputStyle, &styles, NULL) != NULL)
return GL_FALSE;
for (i = 0; i < styles->count_styles; i++)
{
if (styles->supported_styles[i] == (XIMPreeditNothing | XIMStatusNothing))
{
found = GL_TRUE;
break;
}
}
XFree(styles);
return found;
}
// Check whether the specified atom is supported
//
static Atom getSupportedAtom(Atom* supportedAtoms,
unsigned long atomCount,
const char* atomName)
{
Atom atom = XInternAtom(_glfw.x11.display, atomName, True);
if (atom != None)
{
unsigned long i;
for (i = 0; i < atomCount; i++)
{
if (supportedAtoms[i] == atom)
return atom;
}
}
return None;
}
// Check whether the running window manager is EWMH-compliant
//
static void detectEWMH(void)
{
Window* windowFromRoot = NULL;
Window* windowFromChild = NULL;
// First we need a couple of atoms, which should already be there
Atom supportingWmCheck =
XInternAtom(_glfw.x11.display, "_NET_SUPPORTING_WM_CHECK", True);
Atom wmSupported =
XInternAtom(_glfw.x11.display, "_NET_SUPPORTED", True);
if (supportingWmCheck == None || wmSupported == None)
return;
// Then we look for the _NET_SUPPORTING_WM_CHECK property of the root window
if (_glfwGetWindowProperty(_glfw.x11.root,
supportingWmCheck,
XA_WINDOW,
(unsigned char**) &windowFromRoot) != 1)
{
if (windowFromRoot)
XFree(windowFromRoot);
return;
}
_glfwGrabXErrorHandler();
// It should be the ID of a child window (of the root)
// Then we look for the same property on the child window
if (_glfwGetWindowProperty(*windowFromRoot,
supportingWmCheck,
XA_WINDOW,
(unsigned char**) &windowFromChild) != 1)
{
XFree(windowFromRoot);
if (windowFromChild)
XFree(windowFromChild);
return;
}
_glfwReleaseXErrorHandler();
// It should be the ID of that same child window
if (*windowFromRoot != *windowFromChild)
{
XFree(windowFromRoot);
XFree(windowFromChild);
return;
}
XFree(windowFromRoot);
XFree(windowFromChild);
// We are now fairly sure that an EWMH-compliant window manager is running
Atom* supportedAtoms;
unsigned long atomCount;
// Now we need to check the _NET_SUPPORTED property of the root window
// It should be a list of supported WM protocol and state atoms
atomCount = _glfwGetWindowProperty(_glfw.x11.root,
wmSupported,
XA_ATOM,
(unsigned char**) &supportedAtoms);
// See which of the atoms we support that are supported by the WM
_glfw.x11.NET_WM_STATE =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_STATE");
_glfw.x11.NET_WM_STATE_ABOVE =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_STATE_ABOVE");
_glfw.x11.NET_WM_STATE_FULLSCREEN =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_STATE_FULLSCREEN");
_glfw.x11.NET_WM_FULLSCREEN_MONITORS =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_FULLSCREEN_MONITORS");
_glfw.x11.NET_WM_NAME =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_NAME");
_glfw.x11.NET_WM_ICON_NAME =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_ICON_NAME");
_glfw.x11.NET_WM_PID =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_PID");
_glfw.x11.NET_WM_PING =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_PING");
_glfw.x11.NET_ACTIVE_WINDOW =
getSupportedAtom(supportedAtoms, atomCount, "_NET_ACTIVE_WINDOW");
_glfw.x11.NET_FRAME_EXTENTS =
getSupportedAtom(supportedAtoms, atomCount, "_NET_FRAME_EXTENTS");
_glfw.x11.NET_REQUEST_FRAME_EXTENTS =
getSupportedAtom(supportedAtoms, atomCount, "_NET_REQUEST_FRAME_EXTENTS");
_glfw.x11.NET_WM_BYPASS_COMPOSITOR =
getSupportedAtom(supportedAtoms, atomCount, "_NET_WM_BYPASS_COMPOSITOR");
XFree(supportedAtoms);
_glfw.x11.hasEWMH = GL_TRUE;
}
// Initialize X11 display and look for supported X11 extensions
//
static GLboolean initExtensions(void)
{
// Find or create window manager atoms
_glfw.x11.WM_PROTOCOLS = XInternAtom(_glfw.x11.display,
"WM_PROTOCOLS",
False);
_glfw.x11.WM_STATE = XInternAtom(_glfw.x11.display, "WM_STATE", False);
_glfw.x11.WM_DELETE_WINDOW = XInternAtom(_glfw.x11.display,
"WM_DELETE_WINDOW",
False);
_glfw.x11.MOTIF_WM_HINTS = XInternAtom(_glfw.x11.display,
"_MOTIF_WM_HINTS",
False);
#if defined(_GLFW_HAS_XF86VM)
// Check for XF86VidMode extension
_glfw.x11.vidmode.available =
XF86VidModeQueryExtension(_glfw.x11.display,
&_glfw.x11.vidmode.eventBase,
&_glfw.x11.vidmode.errorBase);
#endif /*_GLFW_HAS_XF86VM*/
// Check for RandR extension
_glfw.x11.randr.available =
XRRQueryExtension(_glfw.x11.display,
&_glfw.x11.randr.eventBase,
&_glfw.x11.randr.errorBase);
if (_glfw.x11.randr.available)
{
XRRScreenResources* sr;
if (!XRRQueryVersion(_glfw.x11.display,
&_glfw.x11.randr.versionMajor,
&_glfw.x11.randr.versionMinor))
{
_glfwInputError(GLFW_PLATFORM_ERROR,
"X11: Failed to query RandR version");
return GL_FALSE;
}
// The GLFW RandR path requires at least version 1.3
if (_glfw.x11.randr.versionMajor == 1 &&
_glfw.x11.randr.versionMinor < 3)
{
_glfw.x11.randr.available = GL_FALSE;
}
sr = XRRGetScreenResources(_glfw.x11.display, _glfw.x11.root);
if (!sr->ncrtc || !XRRGetCrtcGammaSize(_glfw.x11.display, sr->crtcs[0]))
{
// This is either a headless system or an older Nvidia binary driver
// with broken gamma support
// Flag it as useless and fall back to Xf86VidMode gamma, if
// available
_glfwInputError(GLFW_PLATFORM_ERROR,
"X11: RandR gamma ramp support seems broken");
_glfw.x11.randr.gammaBroken = GL_TRUE;
}
XRRFreeScreenResources(sr);
}
if (XineramaQueryExtension(_glfw.x11.display,
&_glfw.x11.xinerama.versionMajor,
&_glfw.x11.xinerama.versionMinor))
{
if (XineramaIsActive(_glfw.x11.display))
_glfw.x11.xinerama.available = GL_TRUE;
}
#if defined(_GLFW_HAS_XINPUT)
if (XQueryExtension(_glfw.x11.display,
"XInputExtension",
&_glfw.x11.xi.majorOpcode,
&_glfw.x11.xi.eventBase,
&_glfw.x11.xi.errorBase))
{
_glfw.x11.xi.versionMajor = 2;
_glfw.x11.xi.versionMinor = 0;
if (XIQueryVersion(_glfw.x11.display,
&_glfw.x11.xi.versionMajor,
&_glfw.x11.xi.versionMinor) != BadRequest)
{
_glfw.x11.xi.available = GL_TRUE;
}
}
#endif /*_GLFW_HAS_XINPUT*/
// Check if Xkb is supported on this display
_glfw.x11.xkb.versionMajor = 1;
_glfw.x11.xkb.versionMinor = 0;
_glfw.x11.xkb.available =
XkbQueryExtension(_glfw.x11.display,
&_glfw.x11.xkb.majorOpcode,
&_glfw.x11.xkb.eventBase,
&_glfw.x11.xkb.errorBase,
&_glfw.x11.xkb.versionMajor,
&_glfw.x11.xkb.versionMinor);
if (_glfw.x11.xkb.available)
{
Bool supported;
if (XkbSetDetectableAutoRepeat(_glfw.x11.display, True, &supported))
{
if (supported)
_glfw.x11.xkb.detectable = GL_TRUE;
}
}
// Update the key code LUT
// FIXME: We should listen to XkbMapNotify events to track changes to
// the keyboard mapping.
createKeyTables();
// Detect whether an EWMH-conformant window manager is running
detectEWMH();
// Find or create string format atoms
_glfw.x11.NULL_ = XInternAtom(_glfw.x11.display, "NULL", False);
_glfw.x11.UTF8_STRING =
XInternAtom(_glfw.x11.display, "UTF8_STRING", False);
_glfw.x11.COMPOUND_STRING =
XInternAtom(_glfw.x11.display, "COMPOUND_STRING", False);
_glfw.x11.ATOM_PAIR = XInternAtom(_glfw.x11.display, "ATOM_PAIR", False);
// Find or create selection property atom
_glfw.x11.GLFW_SELECTION =
XInternAtom(_glfw.x11.display, "GLFW_SELECTION", False);
// Find or create standard clipboard atoms
_glfw.x11.TARGETS = XInternAtom(_glfw.x11.display, "TARGETS", False);
_glfw.x11.MULTIPLE = XInternAtom(_glfw.x11.display, "MULTIPLE", False);
_glfw.x11.CLIPBOARD = XInternAtom(_glfw.x11.display, "CLIPBOARD", False);
// Find or create clipboard manager atoms
_glfw.x11.CLIPBOARD_MANAGER =
XInternAtom(_glfw.x11.display, "CLIPBOARD_MANAGER", False);
_glfw.x11.SAVE_TARGETS =
XInternAtom(_glfw.x11.display, "SAVE_TARGETS", False);
// Find Xdnd (drag and drop) atoms, if available
_glfw.x11.XdndAware = XInternAtom(_glfw.x11.display, "XdndAware", True);
_glfw.x11.XdndEnter = XInternAtom(_glfw.x11.display, "XdndEnter", True);
_glfw.x11.XdndPosition = XInternAtom(_glfw.x11.display, "XdndPosition", True);
_glfw.x11.XdndStatus = XInternAtom(_glfw.x11.display, "XdndStatus", True);
_glfw.x11.XdndActionCopy = XInternAtom(_glfw.x11.display, "XdndActionCopy", True);
_glfw.x11.XdndDrop = XInternAtom(_glfw.x11.display, "XdndDrop", True);
_glfw.x11.XdndLeave = XInternAtom(_glfw.x11.display, "XdndLeave", True);
_glfw.x11.XdndFinished = XInternAtom(_glfw.x11.display, "XdndFinished", True);
_glfw.x11.XdndSelection = XInternAtom(_glfw.x11.display, "XdndSelection", True);
return GL_TRUE;
}
// Create a blank cursor for hidden and disabled cursor modes
//
static Cursor createNULLCursor(void)
{
unsigned char pixels[16 * 16 * 4];
GLFWimage image = { 16, 16, pixels };
memset(pixels, 0, sizeof(pixels));
return _glfwCreateCursor(&image, 0, 0);
}
// X error handler
//
static int errorHandler(Display *display, XErrorEvent* event)
{
_glfw.x11.errorCode = event->error_code;
return 0;
}
//////////////////////////////////////////////////////////////////////////
////// GLFW internal API //////
//////////////////////////////////////////////////////////////////////////
// Sets the X error handler callback
//
void _glfwGrabXErrorHandler(void)
{
_glfw.x11.errorCode = Success;
XSetErrorHandler(errorHandler);
}
// Clears the X error handler callback
//
void _glfwReleaseXErrorHandler(void)
{
// Synchronize to make sure all commands are processed
XSync(_glfw.x11.display, False);
XSetErrorHandler(NULL);
}
// Reports the specified error, appending information about the last X error
//
void _glfwInputXError(int error, const char* message)
{
char buffer[8192];
XGetErrorText(_glfw.x11.display, _glfw.x11.errorCode,
buffer, sizeof(buffer));
_glfwInputError(error, "%s: %s", message, buffer);
}
// Creates a native cursor object from the specified image and hotspot
//
Cursor _glfwCreateCursor(const GLFWimage* image, int xhot, int yhot)
{
int i;
Cursor cursor;
XcursorImage* native = XcursorImageCreate(image->width, image->height);
if (native == NULL)
return None;
native->xhot = xhot;
native->yhot = yhot;
unsigned char* source = (unsigned char*) image->pixels;
XcursorPixel* target = native->pixels;
for (i = 0; i < image->width * image->height; i++, target++, source += 4)
{
*target = (source[3] << 24) |
(source[0] << 16) |
(source[1] << 8) |
source[2];
}
cursor = XcursorImageLoadCursor(_glfw.x11.display, native);
XcursorImageDestroy(native);
return cursor;
}
//////////////////////////////////////////////////////////////////////////
////// GLFW platform API //////
//////////////////////////////////////////////////////////////////////////
int _glfwPlatformInit(void)
{
if (strcmp(setlocale(LC_CTYPE, NULL), "C") == 0)
setlocale(LC_CTYPE, "");
XInitThreads();
_glfw.x11.display = XOpenDisplay(NULL);
if (!_glfw.x11.display)
{
_glfwInputError(GLFW_API_UNAVAILABLE, "X11: Failed to open X display");
return GL_FALSE;
}
_glfw.x11.screen = DefaultScreen(_glfw.x11.display);
_glfw.x11.root = RootWindow(_glfw.x11.display, _glfw.x11.screen);
_glfw.x11.context = XUniqueContext();
if (!initExtensions())
return GL_FALSE;
_glfw.x11.cursor = createNULLCursor();
if (XSupportsLocale())
{
XSetLocaleModifiers("");
_glfw.x11.im = XOpenIM(_glfw.x11.display, 0, 0, 0);
if (_glfw.x11.im)
{
if (!hasUsableInputMethodStyle())
{
XCloseIM(_glfw.x11.im);
_glfw.x11.im = NULL;
}
}
}
if (!_glfwInitContextAPI())
return GL_FALSE;
if (!_glfwInitJoysticks())
return GL_FALSE;
_glfwInitTimer();
return GL_TRUE;
}
void _glfwPlatformTerminate(void)
{
if (_glfw.x11.cursor)
{
XFreeCursor(_glfw.x11.display, _glfw.x11.cursor);
_glfw.x11.cursor = (Cursor) 0;
}
free(_glfw.x11.clipboardString);
if (_glfw.x11.im)
{
XCloseIM(_glfw.x11.im);
_glfw.x11.im = NULL;
}
_glfwTerminateJoysticks();
_glfwTerminateContextAPI();
if (_glfw.x11.display)
{
XCloseDisplay(_glfw.x11.display);
_glfw.x11.display = NULL;
}
}
const char* _glfwPlatformGetVersionString(void)
{
const char* version = _GLFW_VERSION_NUMBER " X11"
#if defined(_GLFW_GLX)
" GLX"
#elif defined(_GLFW_EGL)
" EGL"
#endif
#if defined(_GLFW_HAS_GLXGETPROCADDRESS)
" glXGetProcAddress"
#elif defined(_GLFW_HAS_GLXGETPROCADDRESSARB)
" glXGetProcAddressARB"
#elif defined(_GLFW_HAS_GLXGETPROCADDRESSEXT)
" glXGetProcAddressEXT"
#elif defined(_GLFW_DLOPEN_LIBGL)
" dlsym(libGL)"
#endif
#if defined(_POSIX_TIMERS) && defined(_POSIX_MONOTONIC_CLOCK)
" clock_gettime"
#endif
#if defined(__linux__)
" /dev/js"
#endif
#if defined(_GLFW_BUILD_DLL)
" shared"
#endif
;
return version;
}