glfw/support/tinycthread.c
2012-08-12 13:49:12 +02:00

589 lines
12 KiB
C

/*
Copyright (c) 2011 Marcus Geelnard
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
/* Activate some POSIX functionality (e.g. recursive mutexes) */
#define _GNU_SOURCE
#if !defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 500)
#undef _XOPEN_SOURCE
#define _XOPEN_SOURCE 500
#endif
#include "tinycthread.h"
#include <stdlib.h>
/* Platform specific includes */
#if defined(_TTHREAD_POSIX_)
#include <signal.h>
#include <sched.h>
#include <unistd.h>
#include <sys/time.h>
#include <errno.h>
#elif defined(_TTHREAD_WIN32_)
#include <process.h>
#include <sys/timeb.h>
#endif
/* Standard, good-to-have defines */
#ifndef NULL
#define NULL (void*)0
#endif
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
int mtx_init(mtx_t *mtx, int type)
{
#if defined(_TTHREAD_WIN32_)
mtx->mAlreadyLocked = FALSE;
mtx->mRecursive = type & mtx_recursive;
InitializeCriticalSection(&mtx->mHandle);
return thrd_success;
#else
int ret;
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
if (type & mtx_recursive)
{
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
}
ret = pthread_mutex_init(mtx, &attr);
pthread_mutexattr_destroy(&attr);
return ret == 0 ? thrd_success : thrd_error;
#endif
}
void mtx_destroy(mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
DeleteCriticalSection(&mtx->mHandle);
#else
pthread_mutex_destroy(mtx);
#endif
}
int mtx_lock(mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
EnterCriticalSection(&mtx->mHandle);
if (!mtx->mRecursive)
{
while(mtx->mAlreadyLocked) Sleep(1000); /* Simulate deadlock... */
mtx->mAlreadyLocked = TRUE;
}
return thrd_success;
#else
return pthread_mutex_lock(mtx) == 0 ? thrd_success : thrd_error;
#endif
}
int mtx_timedlock(mtx_t *mtx, const xtime *xt)
{
/* FIXME! */
return thrd_error;
}
int mtx_trylock(mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
int ret = TryEnterCriticalSection(&mtx->mHandle) ? thrd_success : thrd_busy;
if ((!mtx->mRecursive) && (ret == thrd_success) && mtx->mAlreadyLocked)
{
LeaveCriticalSection(&mtx->mHandle);
ret = thrd_busy;
}
return ret;
#else
return (pthread_mutex_trylock(mtx) == 0) ? thrd_success : thrd_busy;
#endif
}
int mtx_unlock(mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
mtx->mAlreadyLocked = FALSE;
LeaveCriticalSection(&mtx->mHandle);
return thrd_success;
#else
return pthread_mutex_unlock(mtx) == 0 ? thrd_success : thrd_error;;
#endif
}
#if defined(_TTHREAD_WIN32_)
#define _CONDITION_EVENT_ONE 0
#define _CONDITION_EVENT_ALL 1
#endif
int cnd_init(cnd_t *cond)
{
#if defined(_TTHREAD_WIN32_)
cond->mWaitersCount = 0;
/* Init critical section */
InitializeCriticalSection(&cond->mWaitersCountLock);
/* Init events */
cond->mEvents[_CONDITION_EVENT_ONE] = CreateEvent(NULL, FALSE, FALSE, NULL);
if (cond->mEvents[_CONDITION_EVENT_ONE] == NULL)
{
cond->mEvents[_CONDITION_EVENT_ALL] = NULL;
return thrd_error;
}
cond->mEvents[_CONDITION_EVENT_ALL] = CreateEvent(NULL, TRUE, FALSE, NULL);
if (cond->mEvents[_CONDITION_EVENT_ALL] == NULL)
{
CloseHandle(cond->mEvents[_CONDITION_EVENT_ONE]);
cond->mEvents[_CONDITION_EVENT_ONE] = NULL;
return thrd_error;
}
return thrd_success;
#else
return pthread_cond_init(cond, NULL) == 0 ? thrd_success : thrd_error;
#endif
}
void cnd_destroy(cnd_t *cond)
{
#if defined(_TTHREAD_WIN32_)
if (cond->mEvents[_CONDITION_EVENT_ONE] != NULL)
{
CloseHandle(cond->mEvents[_CONDITION_EVENT_ONE]);
}
if (cond->mEvents[_CONDITION_EVENT_ALL] != NULL)
{
CloseHandle(cond->mEvents[_CONDITION_EVENT_ALL]);
}
DeleteCriticalSection(&cond->mWaitersCountLock);
#else
pthread_cond_destroy(cond);
#endif
}
int cnd_signal(cnd_t *cond)
{
#if defined(_TTHREAD_WIN32_)
int haveWaiters;
/* Are there any waiters? */
EnterCriticalSection(&cond->mWaitersCountLock);
haveWaiters = (cond->mWaitersCount > 0);
LeaveCriticalSection(&cond->mWaitersCountLock);
/* If we have any waiting threads, send them a signal */
if(haveWaiters)
{
if (SetEvent(cond->mEvents[_CONDITION_EVENT_ONE]) == 0)
{
return thrd_error;
}
}
return thrd_success;
#else
return pthread_cond_signal(cond) == 0 ? thrd_success : thrd_error;
#endif
}
int cnd_broadcast(cnd_t *cond)
{
#if defined(_TTHREAD_WIN32_)
int haveWaiters;
/* Are there any waiters? */
EnterCriticalSection(&cond->mWaitersCountLock);
haveWaiters = (cond->mWaitersCount > 0);
LeaveCriticalSection(&cond->mWaitersCountLock);
/* If we have any waiting threads, send them a signal */
if(haveWaiters)
{
if (SetEvent(cond->mEvents[_CONDITION_EVENT_ALL]) == 0)
{
return thrd_error;
}
}
return thrd_success;
#else
return pthread_cond_signal(cond) == 0 ? thrd_success : thrd_error;
#endif
}
#if defined(_TTHREAD_WIN32_)
static int _cnd_timedwait_win32(cnd_t *cond, mtx_t *mtx, DWORD timeout)
{
int result, lastWaiter;
/* Increment number of waiters */
EnterCriticalSection(&cond->mWaitersCountLock);
++ cond->mWaitersCount;
LeaveCriticalSection(&cond->mWaitersCountLock);
/* Release the mutex while waiting for the condition (will decrease
the number of waiters when done)... */
mtx_unlock(mtx);
/* Wait for either event to become signaled due to cnd_signal() or
cnd_broadcast() being called */
result = WaitForMultipleObjects(2, cond->mEvents, FALSE, timeout);
if (result == WAIT_TIMEOUT)
{
return thrd_timeout;
}
else if (result == (int)WAIT_FAILED)
{
return thrd_error;
}
/* Check if we are the last waiter */
EnterCriticalSection(&cond->mWaitersCountLock);
-- cond->mWaitersCount;
lastWaiter = (result == (WAIT_OBJECT_0 + _CONDITION_EVENT_ALL)) &&
(cond->mWaitersCount == 0);
LeaveCriticalSection(&cond->mWaitersCountLock);
/* If we are the last waiter to be notified to stop waiting, reset the event */
if (lastWaiter)
{
if (ResetEvent(cond->mEvents[_CONDITION_EVENT_ALL]) == 0)
{
return thrd_error;
}
}
/* Re-acquire the mutex */
mtx_lock(mtx);
return thrd_success;
}
#endif
int cnd_wait(cnd_t *cond, mtx_t *mtx)
{
#if defined(_TTHREAD_WIN32_)
return _cnd_timedwait_win32(cond, mtx, INFINITE);
#else
return pthread_cond_wait(cond, mtx) == 0 ? thrd_success : thrd_error;
#endif
}
int cnd_timedwait(cnd_t *cond, mtx_t *mtx, const xtime *xt)
{
#if defined(_TTHREAD_WIN32_)
xtime now;
DWORD delta;
xtime_get(&now, TIME_UTC);
delta = (xt->sec - now.sec) * 1000 +
(xt->nsec - now.nsec + 500000) / 1000000;
return _cnd_timedwait_win32(cond, mtx, delta);
#else
struct timespec ts;
int ret;
ts.tv_sec = xt->sec;
ts.tv_nsec = xt->nsec;
ret = pthread_cond_timedwait(cond, mtx, &ts);
if (ret == ETIMEDOUT)
{
return thrd_timeout;
}
return ret == 0 ? thrd_success : thrd_error;
#endif
}
/** Information to pass to the new thread (what to run). */
typedef struct {
thrd_start_t mFunction; /**< Pointer to the function to be executed. */
void * mArg; /**< Function argument for the thread function. */
} _thread_start_info;
/* Thread wrapper function. */
#if defined(_TTHREAD_WIN32_)
unsigned WINAPI _thrd_wrapper_function(void * aArg)
#elif defined(_TTHREAD_POSIX_)
void * _thrd_wrapper_function(void * aArg)
#endif
{
thrd_start_t fun;
void *arg;
int res;
#if defined(_TTHREAD_POSIX_)
void *pres;
#endif
/* Get thread startup information */
_thread_start_info *ti = (_thread_start_info *) aArg;
fun = ti->mFunction;
arg = ti->mArg;
/* The thread is responsible for freeing the startup information */
free((void *)ti);
/* Call the actual client thread function */
res = fun(arg);
#if defined(_TTHREAD_WIN32_)
return res;
#else
pres = malloc(sizeof(int));
if (pres != NULL)
{
*(int*)pres = res;
}
return pres;
#endif
}
int thrd_create(thrd_t *thr, thrd_start_t func, void *arg)
{
/* Fill out the thread startup information (passed to the thread wrapper,
which will eventually free it) */
_thread_start_info* ti = (_thread_start_info*)malloc(sizeof(_thread_start_info));
if (ti == NULL)
{
return thrd_nomem;
}
ti->mFunction = func;
ti->mArg = arg;
/* Create the thread */
#if defined(_TTHREAD_WIN32_)
*thr = (HANDLE)_beginthreadex(NULL, 0, _thrd_wrapper_function, (void *)ti, 0, NULL);
#elif defined(_TTHREAD_POSIX_)
if(pthread_create(thr, NULL, _thrd_wrapper_function, (void *)ti) != 0)
{
*thr = 0;
}
#endif
/* Did we fail to create the thread? */
if(!*thr)
{
free(ti);
return thrd_error;
}
return thrd_success;
}
thrd_t thrd_current(void)
{
#if defined(_TTHREAD_WIN32_)
return GetCurrentThread();
#else
return pthread_self();
#endif
}
int thrd_detach(thrd_t thr)
{
/* FIXME! */
return thrd_error;
}
int thrd_equal(thrd_t thr0, thrd_t thr1)
{
#if defined(_TTHREAD_WIN32_)
return thr0 == thr1;
#else
return pthread_equal(thr0, thr1);
#endif
}
void thrd_exit(int res)
{
#if defined(_TTHREAD_WIN32_)
ExitThread(res);
#else
void *pres = malloc(sizeof(int));
if (pres != NULL)
{
*(int*)pres = res;
}
pthread_exit(pres);
#endif
}
int thrd_join(thrd_t thr, int *res)
{
#if defined(_TTHREAD_WIN32_)
if (WaitForSingleObject(thr, INFINITE) == WAIT_FAILED)
{
return thrd_error;
}
if (res != NULL)
{
DWORD dwRes;
GetExitCodeThread(thr, &dwRes);
*res = dwRes;
}
#elif defined(_TTHREAD_POSIX_)
void *pres;
int ires = 0;
if (pthread_join(thr, &pres) != 0)
{
return thrd_error;
}
if (pres != NULL)
{
ires = *(int*)pres;
free(pres);
}
if (res != NULL)
{
*res = ires;
}
#endif
return thrd_success;
}
void thrd_sleep(const xtime *xt)
{
xtime now;
#if defined(_TTHREAD_WIN32_)
DWORD delta;
#else
long delta;
#endif
/* Get the current time */
xtime_get(&now, TIME_UTC);
#if defined(_TTHREAD_WIN32_)
/* Delta in milliseconds */
delta = (xt->sec - now.sec) * 1000 +
(xt->nsec - now.nsec + 500000) / 1000000;
if (delta > 0)
{
Sleep(delta);
}
#else
/* Delta in microseconds */
delta = (xt->sec - now.sec) * 1000000L +
(xt->nsec - now.nsec + 500L) / 1000L;
/* On some systems, the usleep argument must be < 1000000 */
while (delta > 999999L)
{
usleep(999999);
delta -= 999999L;
}
if (delta > 0L)
{
usleep((useconds_t)delta);
}
#endif
}
void thrd_yield(void)
{
#if defined(_TTHREAD_WIN32_)
Sleep(0);
#else
sched_yield();
#endif
}
int tss_create(tss_t *key, tss_dtor_t dtor)
{
#if defined(_TTHREAD_WIN32_)
/* FIXME: The destructor function is not supported yet... */
if (dtor != NULL)
{
return thrd_error;
}
*key = TlsAlloc();
if (*key == TLS_OUT_OF_INDEXES)
{
return thrd_error;
}
#else
if (pthread_key_create(key, dtor) != 0)
{
return thrd_error;
}
#endif
return thrd_success;
}
void tss_delete(tss_t key)
{
#if defined(_TTHREAD_WIN32_)
TlsFree(key);
#else
pthread_key_delete(key);
#endif
}
void *tss_get(tss_t key)
{
#if defined(_TTHREAD_WIN32_)
return TlsGetValue(key);
#else
return pthread_getspecific(key);
#endif
}
int tss_set(tss_t key, void *val)
{
#if defined(_TTHREAD_WIN32_)
if (TlsSetValue(key, val) == 0)
{
return thrd_error;
}
#else
if (pthread_setspecific(key, val) != 0)
{
return thrd_error;
}
#endif
return thrd_success;
}
int xtime_get(xtime *xt, int base)
{
if (base == TIME_UTC)
{
#if defined(_TTHREAD_WIN32_)
struct _timeb tb;
_ftime(&tb);
xt->sec = (time_t)tb.time;
xt->nsec = 1000000 * (long)tb.millitm;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
xt->sec = (time_t)tv.tv_sec;
xt->nsec = 1000 * (long)tv.tv_usec;
#endif
return base;
}
else
{
return 0;
}
}