<p>For each of the following built-in matrix functions, there is both a single-precision floating point version, where all arguments and return values are single precision, and a double-precision floating version, where all arguments and return values are double precision.
<trclass="memitem:ga26ea77c574802bc6fc193c40478718d2"><tdclass="memTemplParams"colspan="2">template<typename T , precision P, template< typename, precision > class matType></td></tr>
<trclass="memitem:ga26ea77c574802bc6fc193c40478718d2"><tdclass="memTemplItemLeft"align="right"valign="top">GLM_FUNC_DECL T </td><tdclass="memTemplItemRight"valign="bottom"><aclass="el"href="a00149.html#ga26ea77c574802bc6fc193c40478718d2">determinant</a> (matType< T, P > const &m)</td></tr>
<trclass="memdesc:ga26ea77c574802bc6fc193c40478718d2"><tdclass="mdescLeft"> </td><tdclass="mdescRight">Returns the transposed matrix of x. <ahref="a00149.html#ga26ea77c574802bc6fc193c40478718d2">More...</a><br/></td></tr>
<trclass="memitem:gaa7e1d5586cd499126cec76e0f11871e3"><tdclass="memTemplParams"colspan="2">template<typename T , precision P, template< typename, precision > class matType></td></tr>
<trclass="memitem:gaa7e1d5586cd499126cec76e0f11871e3"><tdclass="memTemplItemLeft"align="right"valign="top">GLM_FUNC_DECL matType< T, P > </td><tdclass="memTemplItemRight"valign="bottom"><aclass="el"href="a00149.html#gaa7e1d5586cd499126cec76e0f11871e3">inverse</a> (matType< T, P > const &m)</td></tr>
<trclass="memdesc:gaa7e1d5586cd499126cec76e0f11871e3"><tdclass="mdescLeft"> </td><tdclass="mdescRight">Return the inverse of a squared matrix. <ahref="a00149.html#gaa7e1d5586cd499126cec76e0f11871e3">More...</a><br/></td></tr>
<trclass="memitem:ga4a54992e4741188ee624b21e3ba91814"><tdclass="memTemplParams"colspan="2">template<typename T , precision P, template< typename, precision > class matType></td></tr>
<trclass="memitem:ga4a54992e4741188ee624b21e3ba91814"><tdclass="memTemplItemLeft"align="right"valign="top">GLM_FUNC_DECL matType< T, P > </td><tdclass="memTemplItemRight"valign="bottom"><aclass="el"href="a00149.html#ga4a54992e4741188ee624b21e3ba91814">matrixCompMult</a> (matType< T, P > const &x, matType< T, P > const &y)</td></tr>
<trclass="memdesc:ga4a54992e4741188ee624b21e3ba91814"><tdclass="mdescLeft"> </td><tdclass="mdescRight">Multiply matrix x by matrix y component-wise, i.e., result[i][j] is the scalar product of x[i][j] and y[i][j]. <ahref="a00149.html#ga4a54992e4741188ee624b21e3ba91814">More...</a><br/></td></tr>
<trclass="memitem:gae9f513dc8e4f3ceb993669321b6d0f09"><tdclass="memTemplParams"colspan="2">template<typename T , precision P, template< typename, precision > class vecTypeA, template< typename, precision > class vecTypeB></td></tr>
<trclass="memitem:gae9f513dc8e4f3ceb993669321b6d0f09"><tdclass="memTemplItemLeft"align="right"valign="top">GLM_FUNC_DECL detail::outerProduct_trait< T, P, vecTypeA, vecTypeB >::type </td><tdclass="memTemplItemRight"valign="bottom"><aclass="el"href="a00149.html#gae9f513dc8e4f3ceb993669321b6d0f09">outerProduct</a> (vecTypeA< T, P > const &c, vecTypeB< T, P > const &r)</td></tr>
<trclass="memdesc:gae9f513dc8e4f3ceb993669321b6d0f09"><tdclass="mdescLeft"> </td><tdclass="mdescRight">Treats the first parameter c as a column vector and the second parameter r as a row vector and does a linear algebraic matrix multiply c * r. <ahref="a00149.html#gae9f513dc8e4f3ceb993669321b6d0f09">More...</a><br/></td></tr>
<p>For each of the following built-in matrix functions, there is both a single-precision floating point version, where all arguments and return values are single precision, and a double-precision floating version, where all arguments and return values are double precision. </p>
<p>Only the single-precision floating point version is shown. </p>
<ahref="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a> Return the determinant of a squared matrix.</dd></dl>