diff --git a/glm/gtx/euler_angles.hpp b/glm/gtx/euler_angles.hpp index 0ec9a848..beb612a3 100644 --- a/glm/gtx/euler_angles.hpp +++ b/glm/gtx/euler_angles.hpp @@ -9,6 +9,9 @@ /// Include to use the features of this extension. /// /// Build matrices from Euler angles. +/// +/// Extraction of Euler angles from rotation matrix. +/// Based on the original paper 2014 Mike Day - Extracting Euler Angles from a Rotation Matrix. #pragma once @@ -238,6 +241,94 @@ namespace glm T & t2, T & t3); + /// Extracts the (Y * X * Z) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (X * Z * X) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (X * Y * X) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Y * X * Y) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Y * Z * Y) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Z * Y * Z) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Z * X * Z) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (X * Z * Y) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Y * Z * X) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Z * Y * X) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + + /// Extracts the (Z * X * Y) Euler angles from the rotation matrix M + /// @see gtx_euler_angles + template + GLM_FUNC_DECL void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3); + /// @} }//namespace glm diff --git a/glm/gtx/euler_angles.inl b/glm/gtx/euler_angles.inl index a7cd9873..fff9e90e 100644 --- a/glm/gtx/euler_angles.inl +++ b/glm/gtx/euler_angles.inl @@ -710,4 +710,191 @@ namespace glm t2 = -T2; t3 = -T3; } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleYXZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[2][0], M[2][2]); + T C2 = glm::sqrt(M[0][1]*M[0][1] + M[1][1]*M[1][1]); + T T2 = glm::atan2(-M[2][1], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[1][2] - C1*M[1][0], C1*M[0][0] - S1*M[0][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleXZX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[0][2], M[0][1]); + T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]); + T T2 = glm::atan2(S2, M[0][0]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(C1*M[1][2] - S1*M[1][1], C1*M[2][2] - S1*M[2][1]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleXYX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[0][1], -M[0][2]); + T S2 = glm::sqrt(M[1][0]*M[1][0] + M[2][0]*M[2][0]); + T T2 = glm::atan2(S2, M[0][0]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(-C1*M[2][1] - S1*M[2][2], C1*M[1][1] + S1*M[1][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleYXY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[1][0], M[1][2]); + T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]); + T T2 = glm::atan2(S2, M[1][1]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(C1*M[2][0] - S1*M[2][2], C1*M[0][0] - S1*M[0][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleYZY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[1][2], -M[1][0]); + T S2 = glm::sqrt(M[0][1]*M[0][1] + M[2][1]*M[2][1]); + T T2 = glm::atan2(S2, M[1][1]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(-S1*M[0][0] - C1*M[0][2], S1*M[2][0] + C1*M[2][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleZYZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[2][1], M[2][0]); + T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]); + T T2 = glm::atan2(S2, M[2][2]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(C1*M[0][1] - S1*M[0][0], C1*M[1][1] - S1*M[1][0]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleZXZ(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[2][0], -M[2][1]); + T S2 = glm::sqrt(M[0][2]*M[0][2] + M[1][2]*M[1][2]); + T T2 = glm::atan2(S2, M[2][2]); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(-C1*M[1][0] - S1*M[1][1], C1*M[0][0] + S1*M[0][1]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleXZY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[1][2], M[1][1]); + T C2 = glm::sqrt(M[0][0]*M[0][0] + M[2][0]*M[2][0]); + T T2 = glm::atan2(-M[1][0], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[0][1] - C1*M[0][2], C1*M[2][2] - S1*M[2][1]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleYZX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(-M[0][2], M[0][0]); + T C2 = glm::sqrt(M[1][1]*M[1][1] + M[2][1]*M[2][1]); + T T2 = glm::atan2(M[0][1], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[1][0] + C1*M[1][2], S1*M[2][0] + C1*M[2][2]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleZYX(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(M[0][1], M[0][0]); + T C2 = glm::sqrt(M[1][2]*M[1][2] + M[2][2]*M[2][2]); + T T2 = glm::atan2(-M[0][2], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(S1*M[2][0] - C1*M[2][1], C1*M[1][1] - S1*M[1][0]); + t1 = T1; + t2 = T2; + t3 = T3; + } + + template + GLM_FUNC_QUALIFIER void extractEulerAngleZXY(mat<4, 4, T, defaultp> const & M, + T & t1, + T & t2, + T & t3) + { + T T1 = glm::atan2(-M[1][0], M[1][1]); + T C2 = glm::sqrt(M[0][2]*M[0][2] + M[2][2]*M[2][2]); + T T2 = glm::atan2(M[1][2], C2); + T S1 = glm::sin(T1); + T C1 = glm::cos(T1); + T T3 = glm::atan2(C1*M[2][0] + S1*M[2][1], C1*M[0][0] + S1*M[0][1]); + t1 = T1; + t2 = T2; + t3 = T3; + } }//namespace glm