Completed bit interleaving for 3 and 4 values

This commit is contained in:
Christophe Riccio 2013-02-21 21:35:21 +01:00
parent 3e3736769c
commit 1e3cb00fe5
4 changed files with 359 additions and 152 deletions

View File

@ -135,123 +135,5 @@ namespace detail
return Reg1;
}
/*
inline __m128i _mm_bit_interleave3_si128(__m128i x)
{
__m128i const Mask4 = _mm_set1_epi32(0xFFFF00000000FFFF);
__m128i const Mask3 = _mm_set1_epi32(0x00FF0000FF0000FF);
__m128i const Mask2 = _mm_set1_epi32(0xF00F00F00F00F00F);
__m128i const Mask1 = _mm_set1_epi32(0x30C30C30C30C30C3);
__m128i const Mask0 = _mm_set1_epi32(0x9249249249249249);
__m128i Reg1;
__m128i Reg2;
// REG1 = x;
// REG2 = y;
Reg1 = _mm_unpacklo_epi64(x, y);
//REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF);
//REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF);
//REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF);
Reg2 = _mm_slli_si128(Reg1, 4);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask4);
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF);
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF);
//REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF);
Reg2 = _mm_slli_si128(Reg1, 2);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask3);
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F);
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F);
//REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F);
Reg2 = _mm_slli_si128(Reg1, 1);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask2);
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3);
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3);
//REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3);
Reg2 = _mm_slli_epi32(Reg1, 4);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask1);
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249);
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249);
//REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249);
Reg2 = _mm_slli_epi32(Reg1, 2);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask0);
//return REG1 | (REG2 << 1) | (REG3 << 2);
Reg2 = _mm_slli_epi32(Reg1, 1);
Reg2 = _mm_srli_si128(Reg2, 8);
Reg1 = _mm_or_si128(Reg1, Reg2);
return Reg1;
}
inline __m128i _mm_bit_interleave4_si128(__m128i x)
{
__m128i const Mask4 = _mm_set1_epi32(0xFFFF00000000FFFF);
__m128i const Mask3 = _mm_set1_epi32(0x00FF0000FF0000FF);
__m128i const Mask2 = _mm_set1_epi32(0xF00F00F00F00F00F);
__m128i const Mask1 = _mm_set1_epi32(0x30C30C30C30C30C3);
__m128i const Mask0 = _mm_set1_epi32(0x9249249249249249);
__m128i Reg1;
__m128i Reg2;
// REG1 = x;
// REG2 = y;
Reg1 = _mm_unpacklo_epi64(x, y);
//REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF);
//REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF);
//REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF);
Reg2 = _mm_slli_si128(Reg1, 4);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask4);
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF);
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF);
//REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF);
Reg2 = _mm_slli_si128(Reg1, 2);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask3);
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F);
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F);
//REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F);
Reg2 = _mm_slli_si128(Reg1, 1);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask2);
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3);
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3);
//REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3);
Reg2 = _mm_slli_epi32(Reg1, 4);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask1);
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249);
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249);
//REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249);
Reg2 = _mm_slli_epi32(Reg1, 2);
Reg1 = _mm_or_si128(Reg2, Reg1);
Reg1 = _mm_and_si128(Reg1, Mask0);
//return REG1 | (REG2 << 1) | (REG3 << 2);
Reg2 = _mm_slli_epi32(Reg1, 1);
Reg2 = _mm_srli_si128(Reg2, 8);
Reg1 = _mm_or_si128(Reg1, Reg2);
return Reg1;
}
*/
}//namespace detail
}//namespace glms

View File

@ -132,30 +132,118 @@ namespace glm
int const & FromBit,
int const & ToBit);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
int16 bitfieldInterleave(int8 x, int8 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
uint16 bitfieldInterleave(uint8 x, uint8 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
int32 bitfieldInterleave(int16 x, int16 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
uint32 bitfieldInterleave(uint16 x, uint16 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
int64 bitfieldInterleave(int32 x, int32 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
uint64 bitfieldInterleave(uint32 x, uint32 y);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
int32 bitfieldInterleave(int8 x, int8 y, int8 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
int64 bitfieldInterleave(int16 x, int16 y, int16 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
int64 bitfieldInterleave(int32 x, int32 y, int32 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w);
/// @}
} //namespace glm

View File

@ -600,6 +600,16 @@ namespace glm
namespace detail
{
template <typename PARAM, typename RET>
RET bitfieldInterleave(PARAM x, PARAM y);
template <typename PARAM, typename RET>
RET bitfieldInterleave(PARAM x, PARAM y, PARAM z);
template <typename PARAM, typename RET>
RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w);
/*
template <typename PARAM, typename RET>
inline RET bitfieldInterleave(PARAM x, PARAM y)
{
@ -609,6 +619,33 @@ namespace glm
return Result;
}
template <typename PARAM, typename RET>
inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z)
{
RET Result = 0;
for (RET i = 0; i < sizeof(PARAM) * 8; i++)
{
Result |= ((RET(x) & (RET(1) << i)) << ((i << 1) + 0));
Result |= ((RET(y) & (RET(1) << i)) << ((i << 1) + 1));
Result |= ((RET(z) & (RET(1) << i)) << ((i << 1) + 2));
}
return Result;
}
template <typename PARAM, typename RET>
inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w)
{
RET Result = 0;
for (int i = 0; i < sizeof(PARAM) * 8; i++)
{
Result |= ((((RET(x) >> i) & RET(1))) << RET((i << 2) + 0));
Result |= ((((RET(y) >> i) & RET(1))) << RET((i << 2) + 1));
Result |= ((((RET(z) >> i) & RET(1))) << RET((i << 2) + 2));
Result |= ((((RET(w) >> i) & RET(1))) << RET((i << 2) + 3));
}
return Result;
}
*/
template <>
inline glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
{
@ -672,6 +709,7 @@ namespace glm
return REG1 | (REG2 << 1);
}
template <>
inline glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z)
{
glm::uint64 REG1(x);
@ -701,37 +739,33 @@ namespace glm
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template <>
inline glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
glm::uint64 REG4(w);
/*
REG1 = ((REG1 << 64) | REG1) & glm::uint64(0x000000000000FFFF);
REG2 = ((REG2 << 64) | REG2) & glm::uint64(0x000000000000FFFF);
REG3 = ((REG3 << 64) | REG3) & glm::uint64(0x000000000000FFFF);
REG4 = ((REG4 << 64) | REG4) & glm::uint64(0x000000000000FFFF);
*/
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0x000000FF000000FF);
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0x000000FF000000FF);
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0x000000FF000000FF);
REG4 = ((REG4 << 32) | REG4) & glm::uint64(0x000000FF000000FF);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x000F000F000F000F);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x000F000F000F000F);
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x000F000F000F000F);
REG4 = ((REG4 << 16) | REG4) & glm::uint64(0x000F000F000F000F);
REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF);
REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF);
REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF);
REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x0303030303030303);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x0303030303030303);
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0x0303030303030303);
REG4 = ((REG4 << 8) | REG4) & glm::uint64(0x0303030303030303);
REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F);
REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F);
REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F);
REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x1111111111111111);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x1111111111111111);
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x1111111111111111);
REG4 = ((REG4 << 4) | REG4) & glm::uint64(0x1111111111111111);
REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303);
REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303);
REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303);
REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303);
REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111);
REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111);
REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111);
REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111);
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
}
@ -753,7 +787,7 @@ namespace glm
sign_x.i = x;
sign_y.i = y;
result.u = detail::bitfieldInterleave<int8, int16>(sign_x.u, sign_y.u);
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
@ -779,7 +813,7 @@ namespace glm
sign_x.i = x;
sign_y.i = y;
result.u = detail::bitfieldInterleave<int16, int32>(sign_x.u, sign_y.u);
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
@ -805,7 +839,7 @@ namespace glm
sign_x.i = x;
sign_y.i = y;
result.u = detail::bitfieldInterleave<int32, int64>(sign_x.u, sign_y.u);
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
@ -814,4 +848,142 @@ namespace glm
{
return detail::bitfieldInterleave<uint32, uint64>(x, y);
}
inline int32 bitfieldInterleave(int8 x, int8 y, int8 z)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
inline uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z)
{
return detail::bitfieldInterleave<uint8, uint32>(x, y, z);
}
inline int64 bitfieldInterleave(int16 x, int16 y, int16 z)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
inline uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
}
inline int64 bitfieldInterleave(int32 x, int32 y, int32 z)
{
union sign16
{
int32 i;
uint32 u;
} sign_x, sign_y, sign_z;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
inline uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
}
inline int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z, sign_w;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
inline uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w)
{
return detail::bitfieldInterleave<uint8, uint32>(x, y, z);
}
inline int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z, sign_w;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
inline uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w)
{
return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w);
}
}//namespace glm

View File

@ -388,7 +388,7 @@ namespace bitfieldInterleave
assert(A == F);
# if(GLM_ARCH != GLM_ARCH_PURE)
__m128i G = _mm_bit_interleave_si128(_mm_set_epi32(0, y, 0, x));
__m128i G = glm::detail::_mm_bit_interleave_si128(_mm_set_epi32(0, y, 0, x));
glm::uint64 Result[2];
_mm_storeu_si128((__m128i*)Result, G);
assert(A == Result[0]);
@ -483,7 +483,7 @@ namespace bitfieldInterleave
std::clock_t LastTime = std::clock();
for(std::size_t i = 0; i < Data.size(); ++i)
Data[i] = glm::detail::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x);
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x);
std::clock_t Time = std::clock() - LastTime;
@ -518,11 +518,75 @@ namespace bitfieldInterleave
namespace bitfieldInterleave3
{
template <typename PARAM, typename RET>
inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z)
{
RET Result = 0;
for(RET i = 0; i < sizeof(PARAM) * 8; ++i)
{
Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0));
Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1));
Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2));
}
return Result;
}
int test()
{
int Error(0);
glm::uint64 Result = glm::detail::bitfieldInterleave(0xFFFFFFFF, 0x00000000, 0x00000000);
glm::uint16 x_max = 1 << 11;
glm::uint16 y_max = 1 << 11;
glm::uint16 z_max = 1 << 11;
for(glm::uint16 z = 0; z < z_max; z += 27)
for(glm::uint16 y = 0; y < y_max; y += 27)
for(glm::uint16 x = 0; x < x_max; x += 27)
{
glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z);
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z);
Error += ResultA == ResultB ? 0 : 1;
}
return Error;
}
}
namespace bitfieldInterleave4
{
template <typename PARAM, typename RET>
inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w)
{
RET const v[4] = {x, y, z, w};
RET Result = 0;
for(RET i = 0; i < sizeof(PARAM) * 8; i++)
{
Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0));
Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1));
Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2));
Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3));
}
return Result;
}
int test()
{
int Error(0);
glm::uint16 x_max = 1 << 11;
glm::uint16 y_max = 1 << 11;
glm::uint16 z_max = 1 << 11;
glm::uint16 w_max = 1 << 11;
for(glm::uint16 w = 0; w < w_max; w += 27)
for(glm::uint16 z = 0; z < z_max; z += 27)
for(glm::uint16 y = 0; y < y_max; y += 27)
for(glm::uint16 x = 0; x < x_max; x += 27)
{
glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w);
glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w);
Error += ResultA == ResultB ? 0 : 1;
}
return Error;
}
@ -533,6 +597,7 @@ int main()
int Error(0);
Error += ::bitfieldInterleave3::test();
Error += ::bitfieldInterleave4::test();
Error += ::bitfieldInterleave::test();
Error += ::extractField::test();
Error += ::bitRevert::test();