mirror of
https://github.com/g-truc/glm.git
synced 2024-11-16 06:44:35 +00:00
Removed comment lines and replaced duplicate intersectLineQuad with correct intersectRayDegenerateQuad
This commit is contained in:
parent
05865e239b
commit
26f32e6ed6
@ -223,57 +223,40 @@ namespace glm
|
||||
genType & bilinearCoordinates
|
||||
)
|
||||
{
|
||||
// Epsilon to reject parallell lines
|
||||
typename genType::value_type epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
|
||||
// Calculate edges and normal of first triangle
|
||||
genType e01 = v10 - v00;
|
||||
genType e03 = v01 - v00;
|
||||
|
||||
genType p = glm::cross(dir, e03);
|
||||
|
||||
typename genType::value_type det = glm::dot(e01, p);
|
||||
|
||||
// Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane.
|
||||
if(det < epsilon)
|
||||
return false;
|
||||
|
||||
typename genType::value_type inv_det = typename genType::value_type(1.0f)/det;
|
||||
|
||||
genType s = orig - v00;
|
||||
|
||||
// Calculate the barycentric alpha coordinate of the first triangle
|
||||
typename genType::value_type alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
// It lies outside the triangle
|
||||
if(alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// Vector perpendicular to T and e01
|
||||
genType q = glm::cross(s, e01);
|
||||
|
||||
// Calculate barycentric beta coordinate of the first triangle
|
||||
typename genType::value_type beta = inv_det * glm::dot(dir, q);
|
||||
|
||||
if(beta > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
bilinearCoordinates.z = inv_det * glm::dot(e03, q);
|
||||
|
||||
if(alpha + beta > typename genType::value_type(1.0f)){
|
||||
// Do exactly the same for the second triangle
|
||||
|
||||
genType e23 = v01 - v11;
|
||||
genType e21 = v10 - v11;
|
||||
|
||||
p = glm::cross(dir, e21);
|
||||
|
||||
det = glm::dot(e23, p);
|
||||
|
||||
if(det < epsilon && det > -epsilon)
|
||||
@ -292,8 +275,6 @@ namespace glm
|
||||
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// This to support degenerate squares
|
||||
if(beta + alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
@ -304,7 +285,6 @@ namespace glm
|
||||
if(bilinearCoordinates.z < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// Compute barycentric coordinates of v11
|
||||
genType e02 = v11 - v00;
|
||||
genType N = glm::cross(e01, e03);
|
||||
|
||||
@ -321,7 +301,6 @@ namespace glm
|
||||
beta_11 = (e01.x * e02.y - e01.y * e02.x) / N.z;
|
||||
}
|
||||
|
||||
// Compute bilinear coordinates of the intersection point
|
||||
if(abs(alpha_11 - typename genType::value_type(1.0f)) < epsilon) {
|
||||
bilinearCoordinates.x = alpha;
|
||||
|
||||
@ -330,7 +309,6 @@ namespace glm
|
||||
} else {
|
||||
bilinearCoordinates.y = beta/(bilinearCoordinates.x * (beta_11 - typename genType::value_type(1.0f)) + typename genType::value_type(1.0f));
|
||||
}
|
||||
|
||||
} else if(abs(beta_11 - typename genType::value_type(1.0f)) < epsilon) {
|
||||
bilinearCoordinates.y = alpha;
|
||||
bilinearCoordinates.x = alpha/(bilinearCoordinates.y*(alpha_11 - typename genType::value_type(1.0f)) + typename genType::value_type(1.0f));
|
||||
@ -343,7 +321,6 @@ namespace glm
|
||||
|
||||
discr = b*b - typename genType::value_type(4.0f)*a*c;
|
||||
|
||||
// Get sign of b
|
||||
typename genType::value_type sign = (typename genType::value_type(0) < b) - (b < typename genType::value_type(0));
|
||||
|
||||
q = -(typename genType::value_type(0.5f)) * (b + sign*glm::fastSqrt(discr));
|
||||
@ -356,7 +333,6 @@ namespace glm
|
||||
|
||||
bilinearCoordinates.y = beta/(bilinearCoordinates.x*(beta_11 - 1) + 1);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -367,40 +343,27 @@ namespace glm
|
||||
genType const & v00, genType const & v10, genType const & v11, genType const & v01
|
||||
)
|
||||
{
|
||||
// Epsilon to reject parallell lines
|
||||
typename genType::value_type epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
|
||||
// Calculate edges and normal of first triangle
|
||||
genType e01 = v10 - v00;
|
||||
genType e03 = v01 - v00;
|
||||
|
||||
genType p = glm::cross(dir, e03);
|
||||
|
||||
typename genType::value_type det = glm::dot(e01, p);
|
||||
|
||||
// Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane.
|
||||
if(det < epsilon)
|
||||
return false;
|
||||
|
||||
typename genType::value_type inv_det = typename genType::value_type(1.0f)/det;
|
||||
|
||||
|
||||
genType s = orig - v00;
|
||||
|
||||
// Calculate the barycentric alpha coordinate of the first triangle
|
||||
typename genType::value_type alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
// It lies outside the triangle
|
||||
if(alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// Vector perpendicular to T and e01
|
||||
genType q = glm::cross(s, e01);
|
||||
|
||||
// Calculate barycentric beta coordinate of the first triangle
|
||||
typename genType::value_type beta = inv_det * glm::dot(dir, q);
|
||||
|
||||
if(beta > typename genType::value_type(1.0f))
|
||||
@ -411,13 +374,10 @@ namespace glm
|
||||
typename genType::value_type t = inv_det * glm::dot(e03, q);
|
||||
|
||||
if(alpha + beta > typename genType::value_type(1.0f)){
|
||||
// Do exactly the same for the second triangle
|
||||
|
||||
genType e23 = v01 - v11;
|
||||
genType e21 = v10 - v11;
|
||||
|
||||
p = glm::cross(dir, e21);
|
||||
|
||||
det = glm::dot(e23, p);
|
||||
|
||||
if(det < epsilon)
|
||||
@ -425,7 +385,6 @@ namespace glm
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v11;
|
||||
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
@ -437,7 +396,6 @@ namespace glm
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// This to support degenerate squares
|
||||
if(beta + alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
@ -446,7 +404,6 @@ namespace glm
|
||||
|
||||
if(t < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -458,39 +415,28 @@ namespace glm
|
||||
genType & bilinearCoordinates
|
||||
)
|
||||
{
|
||||
// Epsilon to reject parallell lines
|
||||
typename genType::value_type epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
|
||||
// Calculate edges and normal of first triangle
|
||||
genType e01 = v10 - v00;
|
||||
genType e03 = v01 - v00;
|
||||
|
||||
genType p = glm::cross(dir, e03);
|
||||
|
||||
typename genType::value_type det = glm::dot(e01, p);
|
||||
|
||||
// Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane.
|
||||
if(det < epsilon && det > -epsilon)
|
||||
return false;
|
||||
|
||||
typename genType::value_type inv_det = typename genType::value_type(1.0f)/det;
|
||||
|
||||
genType s = orig - v00;
|
||||
|
||||
// Calculate the barycentric alpha coordinate of the first triangle
|
||||
typename genType::value_type alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
// It lies outside the triangle
|
||||
if(alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// Vector perpendicular to T and e01
|
||||
genType q = glm::cross(s, e01);
|
||||
|
||||
// Calculate barycentric beta coordinate of the first triangle
|
||||
typename genType::value_type beta = inv_det * glm::dot(dir, q);
|
||||
|
||||
if(beta > typename genType::value_type(1.0f))
|
||||
@ -501,13 +447,10 @@ namespace glm
|
||||
bilinearCoordinates.z = inv_det * glm::dot(e03, q);
|
||||
|
||||
if(alpha + beta > typename genType::value_type(1.0f)){
|
||||
// Do exactly the same for the second triangle
|
||||
|
||||
genType e23 = v01 - v11;
|
||||
genType e21 = v10 - v11;
|
||||
|
||||
p = glm::cross(dir, e21);
|
||||
|
||||
det = glm::dot(e23, p);
|
||||
|
||||
if(det < epsilon && det > -epsilon)
|
||||
@ -515,7 +458,6 @@ namespace glm
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v11;
|
||||
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
@ -527,14 +469,12 @@ namespace glm
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// This to support degenerate squares
|
||||
if(beta + alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
bilinearCoordinates.z = inv_det * glm::dot(e21, q);
|
||||
}
|
||||
|
||||
// Compute barycentric coordinates of v11
|
||||
genType e02 = v11 - v00;
|
||||
genType N = glm::cross(e01, e03);
|
||||
|
||||
@ -551,7 +491,6 @@ namespace glm
|
||||
beta_11 = (e01.x * e02.y - e01.y * e02.x) / N.z;
|
||||
}
|
||||
|
||||
// Compute bilinear coordinates of the intersection point
|
||||
if(abs(alpha_11 - typename genType::value_type(1.0f)) < epsilon) {
|
||||
bilinearCoordinates.x = alpha;
|
||||
|
||||
@ -573,7 +512,7 @@ namespace glm
|
||||
|
||||
discr = b*b - typename genType::value_type(4.0f)*a*c;
|
||||
|
||||
// Get sign of b
|
||||
|
||||
typename genType::value_type sign = (typename genType::value_type(0) < b) - (b < typename genType::value_type(0));
|
||||
|
||||
q = -(typename genType::value_type(0.5f)) * (b + sign*glm::fastSqrt(discr));
|
||||
@ -598,40 +537,28 @@ namespace glm
|
||||
|
||||
)
|
||||
{
|
||||
// Epsilon to reject parallell lines
|
||||
typename genType::value_type epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
|
||||
// Calculate edges and normal of first triangle
|
||||
genType e01 = v10 - v00;
|
||||
genType e03 = v01 - v00;
|
||||
|
||||
genType p = glm::cross(dir, e03);
|
||||
|
||||
typename genType::value_type det = glm::dot(e01, p);
|
||||
|
||||
// Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane.
|
||||
if(det < epsilon && det > -epsilon)
|
||||
return false;
|
||||
|
||||
typename genType::value_type inv_det = typename genType::value_type(1.0f)/det;
|
||||
|
||||
|
||||
genType s = orig - v00;
|
||||
|
||||
// Calculate the barycentric alpha coordinate of the first triangle
|
||||
typename genType::value_type alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
// It lies outside the triangle
|
||||
if(alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// Vector perpendicular to T and e01
|
||||
genType q = glm::cross(s, e01);
|
||||
|
||||
// Calculate barycentric beta coordinate of the first triangle
|
||||
genType q = glm::cross(s, e01);
|
||||
typename genType::value_type beta = inv_det * glm::dot(dir, q);
|
||||
|
||||
if(beta > typename genType::value_type(1.0f))
|
||||
@ -639,15 +566,12 @@ namespace glm
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
|
||||
if(alpha + beta > typename genType::value_type(1.0f)){
|
||||
// Do exactly the same for the second triangle
|
||||
|
||||
genType e23 = v01 - v11;
|
||||
genType e21 = v10 - v11;
|
||||
|
||||
p = glm::cross(dir, e21);
|
||||
|
||||
det = glm::dot(e23, p);
|
||||
|
||||
if(det < epsilon && det > -epsilon)
|
||||
@ -655,7 +579,6 @@ namespace glm
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v11;
|
||||
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
@ -666,8 +589,6 @@ namespace glm
|
||||
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// This to support degenerate squares
|
||||
if(beta + alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
@ -676,72 +597,80 @@ namespace glm
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename genType>
|
||||
GLM_FUNC_QUALIFIER bool intersectLineQuad
|
||||
template <typename genType>
|
||||
GLM_FUNC_QUALIFIER bool intersectRayDegenerateQuad
|
||||
(
|
||||
genType const & orig, genType const & dir,
|
||||
genType const & v00, genType const & v10, genType const & v11, genType const & v01,
|
||||
genType & bilinearCoordinates
|
||||
)
|
||||
{
|
||||
// Epsilon to reject parallell lines
|
||||
typename genType::value_type epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
genType e01, e03, p, s, q;
|
||||
typename genType::value_type epsilon, det, inv_det, alpha, beta, t;
|
||||
bool isInOne = true;
|
||||
|
||||
// Calculate edges and normal of first triangle
|
||||
genType e01 = v10 - v00;
|
||||
genType e03 = v01 - v00;
|
||||
epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
|
||||
genType p = glm::cross(dir, e03);
|
||||
e01 = v10 - v00;
|
||||
e03 = v01 - v00;
|
||||
|
||||
typename genType::value_type det = glm::dot(e01, p);
|
||||
p = glm::cross(dir, e03);
|
||||
|
||||
// Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane.
|
||||
if(det < epsilon && det > -epsilon)
|
||||
return false;
|
||||
det = glm::dot(e01, p);
|
||||
|
||||
typename genType::value_type inv_det = typename genType::value_type(1.0f)/det;
|
||||
if(det < epsilon){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
genType s = orig - v00;
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v00;
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
// Calculate the barycentric alpha coordinate of the first triangle
|
||||
typename genType::value_type alpha = inv_det * glm::dot(s, p);
|
||||
if(alpha > typename genType::value_type(1.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
// It lies outside the triangle
|
||||
if(alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
if(alpha < typename genType::value_type(0.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
q = glm::cross(s, e01);
|
||||
beta = inv_det * glm::dot(dir, q);
|
||||
|
||||
// Vector perpendicular to T and e01
|
||||
genType q = glm::cross(s, e01);
|
||||
if(beta > typename genType::value_type(1.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
// Calculate barycentric beta coordinate of the first triangle
|
||||
typename genType::value_type beta = inv_det * glm::dot(dir, q);
|
||||
if(beta < typename genType::value_type(0.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
if(beta > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
t = inv_det * glm::dot(e03, q);
|
||||
|
||||
bilinearCoordinates.z = inv_det * glm::dot(e03, q);
|
||||
|
||||
if(alpha + beta > typename genType::value_type(1.0f)){
|
||||
// Do exactly the same for the second triangle
|
||||
if(t < typename genType::value_type(0.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
second:
|
||||
if(!isInOne || alpha + beta > typename genType::value_type(1.0f)){
|
||||
genType e23 = v01 - v11;
|
||||
genType e21 = v10 - v11;
|
||||
|
||||
p = glm::cross(dir, e21);
|
||||
|
||||
det = glm::dot(e23, p);
|
||||
|
||||
if(det < epsilon && det > -epsilon)
|
||||
if(det < epsilon){
|
||||
return false;
|
||||
}
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v11;
|
||||
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
@ -752,15 +681,15 @@ namespace glm
|
||||
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// This to support degenerate squares
|
||||
if(beta + alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
bilinearCoordinates.z = inv_det * glm::dot(e21, q);
|
||||
t = inv_det * glm::dot(e21, q);
|
||||
|
||||
if(t < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
}
|
||||
|
||||
// Compute barycentric coordinates of v11
|
||||
genType e02 = v11 - v00;
|
||||
genType N = glm::cross(e01, e03);
|
||||
|
||||
@ -777,7 +706,6 @@ namespace glm
|
||||
beta_11 = (e01.x * e02.y - e01.y * e02.x) / N.z;
|
||||
}
|
||||
|
||||
// Compute bilinear coordinates of the intersection point
|
||||
if(abs(alpha_11 - typename genType::value_type(1.0f)) < epsilon) {
|
||||
bilinearCoordinates.x = alpha;
|
||||
|
||||
@ -799,7 +727,6 @@ namespace glm
|
||||
|
||||
discr = b*b - typename genType::value_type(4.0f)*a*c;
|
||||
|
||||
// Get sign of b
|
||||
typename genType::value_type sign = (typename genType::value_type(0) < b) - (b < typename genType::value_type(0));
|
||||
|
||||
q = -(typename genType::value_type(0.5f)) * (b + sign*glm::fastSqrt(discr));
|
||||
@ -817,57 +744,65 @@ namespace glm
|
||||
}
|
||||
|
||||
template<typename genType>
|
||||
GLM_FUNC_QUALIFIER bool fastIntersectLineQuad
|
||||
GLM_FUNC_QUALIFIER bool fastIntersectRayDegenerateQuad
|
||||
(
|
||||
genType const & orig, genType const & dir,
|
||||
genType const & v00, genType const & v10, genType const & v11, genType const & v01
|
||||
|
||||
)
|
||||
{
|
||||
// Epsilon to reject parallell lines
|
||||
typename genType::value_type epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
genType e01, e03, p, s, q;
|
||||
typename genType::value_type epsilon, det, inv_det, alpha, beta, t;
|
||||
bool isInOne = true;
|
||||
|
||||
// Calculate edges and normal of first triangle
|
||||
genType e01 = v10 - v00;
|
||||
genType e03 = v01 - v00;
|
||||
epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
|
||||
genType p = glm::cross(dir, e03);
|
||||
e01 = v10 - v00;
|
||||
e03 = v01 - v00;
|
||||
|
||||
typename genType::value_type det = glm::dot(e01, p);
|
||||
p = glm::cross(dir, e03);
|
||||
det = glm::dot(e01, p);
|
||||
|
||||
// Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane.
|
||||
if(det < epsilon && det > -epsilon)
|
||||
return false;
|
||||
if(det < epsilon){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
typename genType::value_type inv_det = typename genType::value_type(1.0f)/det;
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v00;
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
if(alpha > typename genType::value_type(1.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
genType s = orig - v00;
|
||||
if(alpha < typename genType::value_type(0.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
// Calculate the barycentric alpha coordinate of the first triangle
|
||||
typename genType::value_type alpha = inv_det * glm::dot(s, p);
|
||||
q = glm::cross(s, e01);
|
||||
beta = inv_det * glm::dot(dir, q);
|
||||
|
||||
// It lies outside the triangle
|
||||
if(alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
if(beta > typename genType::value_type(1.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
if(beta < typename genType::value_type(0.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
// Vector perpendicular to T and e01
|
||||
genType q = glm::cross(s, e01);
|
||||
t = inv_det * glm::dot(e03, q);
|
||||
|
||||
// Calculate barycentric beta coordinate of the first triangle
|
||||
typename genType::value_type beta = inv_det * glm::dot(dir, q);
|
||||
if(t < typename genType::value_type(0.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
if(beta > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
|
||||
if(alpha + beta > typename genType::value_type(1.0f)){
|
||||
// Do exactly the same for the second triangle
|
||||
second:
|
||||
if(!isInOne || alpha + beta > typename genType::value_type(1.0f)){
|
||||
|
||||
genType e23 = v01 - v11;
|
||||
genType e21 = v10 - v11;
|
||||
@ -876,8 +811,9 @@ namespace glm
|
||||
|
||||
det = glm::dot(e23, p);
|
||||
|
||||
if(det < epsilon && det > -epsilon)
|
||||
if(det < epsilon){
|
||||
return false;
|
||||
}
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v11;
|
||||
@ -893,13 +829,13 @@ namespace glm
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// This to support degenerate squares
|
||||
if(beta + alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
|
||||
t = inv_det * glm::dot(e21, q);
|
||||
}
|
||||
|
||||
return true;
|
||||
return t >= typename genType::value_type(0.0f);
|
||||
}
|
||||
|
||||
template<typename genType>
|
||||
@ -914,18 +850,14 @@ namespace glm
|
||||
typename genType::value_type epsilon, det, inv_det, alpha, beta;
|
||||
bool isInOne = true;
|
||||
|
||||
// Epsilon to reject parallell lines
|
||||
epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
|
||||
// Calculate edges and normal of first triangle
|
||||
e01 = v10 - v00;
|
||||
e03 = v01 - v00;
|
||||
|
||||
p = glm::cross(dir, e03);
|
||||
|
||||
det = glm::dot(e01, p);
|
||||
|
||||
// Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane.
|
||||
if(det < epsilon && det > -epsilon){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
@ -933,11 +865,8 @@ namespace glm
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v00;
|
||||
|
||||
// Calculate the barycentric alpha coordinate of the first triangle
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
// It lies outside the triangle
|
||||
if(alpha > typename genType::value_type(1.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
@ -948,32 +877,25 @@ namespace glm
|
||||
goto second;
|
||||
}
|
||||
|
||||
// Vector perpendicular to T and e01
|
||||
q = glm::cross(s, e01);
|
||||
|
||||
// Calculate barycentric beta coordinate of the first triangle
|
||||
beta = inv_det * glm::dot(dir, q);
|
||||
|
||||
if(beta > typename genType::value_type(1.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
if(beta < typename genType::value_type(0.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
}
|
||||
|
||||
/* Intersection is not in the first triangle, check the second*/
|
||||
second:
|
||||
if(!isInOne || alpha + beta > typename genType::value_type(1.0f)){
|
||||
// Do exactly the same for the second triangle
|
||||
|
||||
genType e23 = v01 - v11;
|
||||
genType e21 = v10 - v11;
|
||||
|
||||
p = glm::cross(dir, e21);
|
||||
|
||||
det = glm::dot(e23, p);
|
||||
|
||||
if(det < epsilon && det > -epsilon){
|
||||
@ -982,7 +904,6 @@ namespace glm
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v11;
|
||||
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
@ -994,13 +915,10 @@ namespace glm
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// This to support degenerate squares
|
||||
if(beta + alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Compute barycentric coordinates of v11
|
||||
genType e02 = v11 - v00;
|
||||
genType N = glm::cross(e01, e03);
|
||||
|
||||
@ -1017,7 +935,6 @@ namespace glm
|
||||
beta_11 = (e01.x * e02.y - e01.y * e02.x) / N.z;
|
||||
}
|
||||
|
||||
// Compute bilinear coordinates of the intersection point
|
||||
if(abs(alpha_11 - typename genType::value_type(1.0f)) < epsilon) {
|
||||
bilinearCoordinates.x = alpha;
|
||||
|
||||
@ -1039,7 +956,6 @@ namespace glm
|
||||
|
||||
discr = b*b - typename genType::value_type(4.0f)*a*c;
|
||||
|
||||
// Get sign of b
|
||||
typename genType::value_type sign = (typename genType::value_type(0) < b) - (b < typename genType::value_type(0));
|
||||
|
||||
q = -(typename genType::value_type(0.5f)) * (b + sign*glm::fastSqrt(discr));
|
||||
@ -1067,18 +983,14 @@ namespace glm
|
||||
typename genType::value_type epsilon, det, inv_det, alpha, beta;
|
||||
bool isInOne = true;
|
||||
|
||||
// Epsilon to reject parallell lines
|
||||
epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
||||
|
||||
// Calculate edges and normal of first triangle
|
||||
e01 = v10 - v00;
|
||||
e03 = v01 - v00;
|
||||
|
||||
p = glm::cross(dir, e03);
|
||||
|
||||
det = glm::dot(e01, p);
|
||||
|
||||
// Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane.
|
||||
if(det < epsilon && det > -epsilon){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
@ -1086,11 +998,8 @@ namespace glm
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v00;
|
||||
|
||||
// Calculate the barycentric alpha coordinate of the first triangle
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
// It lies outside the triangle
|
||||
if(alpha > typename genType::value_type(1.0f)){
|
||||
isInOne = false;
|
||||
goto second;
|
||||
@ -1101,10 +1010,7 @@ namespace glm
|
||||
goto second;
|
||||
}
|
||||
|
||||
// Vector perpendicular to T and e01
|
||||
q = glm::cross(s, e01);
|
||||
|
||||
// Calculate barycentric beta coordinate of the first triangle
|
||||
beta = inv_det * glm::dot(dir, q);
|
||||
|
||||
if(beta > typename genType::value_type(1.0f)){
|
||||
@ -1117,16 +1023,13 @@ namespace glm
|
||||
goto second;
|
||||
}
|
||||
|
||||
/* Intersection is not in the first triangle, check the second*/
|
||||
second:
|
||||
if(!isInOne || alpha + beta > typename genType::value_type(1.0f)){
|
||||
// Do exactly the same for the second triangle
|
||||
|
||||
genType e23 = v01 - v11;
|
||||
genType e21 = v10 - v11;
|
||||
|
||||
p = glm::cross(dir, e21);
|
||||
|
||||
det = glm::dot(e23, p);
|
||||
|
||||
if(det < epsilon && det > -epsilon){
|
||||
@ -1135,7 +1038,6 @@ namespace glm
|
||||
|
||||
inv_det = typename genType::value_type(1.0f)/det;
|
||||
s = orig - v11;
|
||||
|
||||
alpha = inv_det * glm::dot(s, p);
|
||||
|
||||
if(alpha < typename genType::value_type(0.0f))
|
||||
@ -1146,8 +1048,6 @@ namespace glm
|
||||
|
||||
if(beta < typename genType::value_type(0.0f))
|
||||
return false;
|
||||
|
||||
// This to support degenerate squares
|
||||
if(beta + alpha > typename genType::value_type(1.0f))
|
||||
return false;
|
||||
}
|
||||
@ -1155,5 +1055,4 @@ namespace glm
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
}//namespace glm
|
||||
|
Loading…
Reference in New Issue
Block a user