Fixed spaces

This commit is contained in:
Christophe Riccio 2014-10-12 02:32:04 +02:00
parent 8cb9328e11
commit 284ba46dae

View File

@ -36,20 +36,20 @@ namespace glm
tvec3<T, P> const & b, tvec3<T, P> const & b,
T ascl, T bscl) T ascl, T bscl)
{ {
return (a * ascl) + (b * bscl); return (a * ascl) + (b * bscl);
} }
template <typename T, precision P> template <typename T, precision P>
GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength) GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength)
{ {
T len = glm::length(v); T len = glm::length(v);
if(len != 0) if(len != 0)
{ {
T l = desiredLength / len; T l = desiredLength / len;
v[0] *= l; v[0] *= l;
v[1] *= l; v[1] *= l;
v[2] *= l; v[2] *= l;
} }
} }
/** /**
@ -64,29 +64,29 @@ namespace glm
{ {
tmat4x4<T, P> LocalMatrix(ModelMatrix); tmat4x4<T, P> LocalMatrix(ModelMatrix);
// Normalize the matrix. // Normalize the matrix.
if(LocalMatrix[3][3] == static_cast<T>(0)) if(LocalMatrix[3][3] == static_cast<T>(0))
return false; return false;
for(length_t i = 0; i < 4; i++) for(length_t i = 0; i < 4; ++i)
for(length_t j = 0; j < 4; j++) for(length_t j = 0; j < 4; ++j)
LocalMatrix[i][j] /= LocalMatrix[3][3]; LocalMatrix[i][j] /= LocalMatrix[3][3];
// perspectiveMatrix is used to solve for perspective, but it also provides // perspectiveMatrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component. // an easy way to test for singularity of the upper 3x3 component.
tmat4x4<T, P> PerspectiveMatrix(LocalMatrix); tmat4x4<T, P> PerspectiveMatrix(LocalMatrix);
for(length_t i = 0; i < 3; i++) for(length_t i = 0; i < 3; i++)
PerspectiveMatrix[i][3] = 0; PerspectiveMatrix[i][3] = 0;
PerspectiveMatrix[3][3] = 1; PerspectiveMatrix[3][3] = 1;
/// TODO: Fixme! /// TODO: Fixme!
if(determinant(PerspectiveMatrix) == static_cast<T>(0)) if(determinant(PerspectiveMatrix) == static_cast<T>(0))
return false; return false;
// First, isolate perspective. This is the messiest. // First, isolate perspective. This is the messiest.
if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0) if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0)
{ {
// rightHandSide is the right hand side of the equation. // rightHandSide is the right hand side of the equation.
tvec4<T, P> RightHandSide; tvec4<T, P> RightHandSide;
RightHandSide[0] = LocalMatrix[0][3]; RightHandSide[0] = LocalMatrix[0][3];
@ -106,122 +106,121 @@ namespace glm
// Clear the perspective partition // Clear the perspective partition
LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = 0; LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = 0;
LocalMatrix[3][3] = 1; LocalMatrix[3][3] = 1;
} }
else else
{ {
// No perspective. // No perspective.
Perspective = tvec4<T, P>(0, 0, 0, 1); Perspective = tvec4<T, P>(0, 0, 0, 1);
} }
// Next take care of translation (easy). // Next take care of translation (easy).
Translation = tvec3<T, P>(LocalMatrix[3]); Translation = tvec3<T, P>(LocalMatrix[3]);
LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w); LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
tvec3<T, P> Row[3], Pdum3; tvec3<T, P> Row[3], Pdum3;
// Now get scale and shear. // Now get scale and shear.
for(length_t i = 0; i < 3; ++i) for(length_t i = 0; i < 3; ++i)
Row[i] = LocalMatrix[i]; Row[i] = LocalMatrix[i];
// Compute X scale factor and normalize first row. // Compute X scale factor and normalize first row.
Scale.x = length(Row[0]);// v3Length(Row[0]); Scale.x = length(Row[0]);// v3Length(Row[0]);
v3Scale(Row[0], 1.0); v3Scale(Row[0], 1.0);
// Compute XY shear factor and make 2nd row orthogonal to 1st. // Compute XY shear factor and make 2nd row orthogonal to 1st.
Skew.z = dot(Row[0], Row[1]); Skew.z = dot(Row[0], Row[1]);
Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z); Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z);
// Now, compute Y scale and normalize 2nd row. // Now, compute Y scale and normalize 2nd row.
Scale.y = length(Row[1]); Scale.y = length(Row[1]);
v3Scale(Row[1], 1.0); v3Scale(Row[1], 1.0);
Skew.z /= Scale.y; Skew.z /= Scale.y;
// Compute XZ and YZ shears, orthogonalize 3rd row. // Compute XZ and YZ shears, orthogonalize 3rd row.
Skew.y = glm::dot(Row[0], Row[2]); Skew.y = glm::dot(Row[0], Row[2]);
Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y); Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y);
Skew.x = glm::dot(Row[1], Row[2]); Skew.x = glm::dot(Row[1], Row[2]);
Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x); Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x);
// Next, get Z scale and normalize 3rd row. // Next, get Z scale and normalize 3rd row.
Scale.z = length(Row[2]); Scale.z = length(Row[2]);
v3Scale(Row[2], 1.0); v3Scale(Row[2], 1.0);
Skew.y /= Scale.z; Skew.y /= Scale.z;
Skew.x /= Scale.z; Skew.x /= Scale.z;
// At this point, the matrix (in rows[]) is orthonormal. // At this point, the matrix (in rows[]) is orthonormal.
// Check for a coordinate system flip. If the determinant // Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors. // is -1, then negate the matrix and the scaling factors.
Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
if(dot(Row[0], Pdum3) < 0) if(dot(Row[0], Pdum3) < 0)
{ {
for(length_t i = 0; i < 3; i++) for(length_t i = 0; i < 3; i++)
{ {
Scale.x *= static_cast<T>(-1); Scale.x *= static_cast<T>(-1);
Row[i] *= static_cast<T>(-1); Row[i] *= static_cast<T>(-1);
} }
} }
// Now, get the rotations out, as described in the gem. // Now, get the rotations out, as described in the gem.
// FIXME - Add the ability to return either quaternions (which are // FIXME - Add the ability to return either quaternions (which are
// easier to recompose with) or Euler angles (rx, ry, rz), which // easier to recompose with) or Euler angles (rx, ry, rz), which
// are easier for authors to deal with. The latter will only be useful // are easier for authors to deal with. The latter will only be useful
// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
// will leave the Euler angle code here for now. // will leave the Euler angle code here for now.
// ret.rotateY = asin(-Row[0][2]); // ret.rotateY = asin(-Row[0][2]);
// if (cos(ret.rotateY) != 0) { // if (cos(ret.rotateY) != 0) {
// ret.rotateX = atan2(Row[1][2], Row[2][2]); // ret.rotateX = atan2(Row[1][2], Row[2][2]);
// ret.rotateZ = atan2(Row[0][1], Row[0][0]); // ret.rotateZ = atan2(Row[0][1], Row[0][0]);
// } else { // } else {
// ret.rotateX = atan2(-Row[2][0], Row[1][1]); // ret.rotateX = atan2(-Row[2][0], Row[1][1]);
// ret.rotateZ = 0; // ret.rotateZ = 0;
// } // }
T s, t, x, y, z, w; T s, t, x, y, z, w;
t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0; t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0;
if(t > 1e-4) if(t > 1e-4)
{ {
s = 0.5 / sqrt(t); s = 0.5 / sqrt(t);
w = 0.25 / s; w = 0.25 / s;
x = (Row[2][1] - Row[1][2]) * s; x = (Row[2][1] - Row[1][2]) * s;
y = (Row[0][2] - Row[2][0]) * s; y = (Row[0][2] - Row[2][0]) * s;
z = (Row[1][0] - Row[0][1]) * s; z = (Row[1][0] - Row[0][1]) * s;
} }
else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2]) else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
{ {
s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx
x = 0.25 * s; x = 0.25 * s;
y = (Row[0][1] + Row[1][0]) / s; y = (Row[0][1] + Row[1][0]) / s;
z = (Row[0][2] + Row[2][0]) / s; z = (Row[0][2] + Row[2][0]) / s;
w = (Row[2][1] - Row[1][2]) / s; w = (Row[2][1] - Row[1][2]) / s;
} }
else if(Row[1][1] > Row[2][2]) else if(Row[1][1] > Row[2][2])
{ {
s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy
x = (Row[0][1] + Row[1][0]) / s; x = (Row[0][1] + Row[1][0]) / s;
y = 0.25 * s; y = 0.25 * s;
z = (Row[1][2] + Row[2][1]) / s; z = (Row[1][2] + Row[2][1]) / s;
w = (Row[0][2] - Row[2][0]) / s; w = (Row[0][2] - Row[2][0]) / s;
} }
else else
{ {
s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz
x = (Row[0][2] + Row[2][0]) / s; x = (Row[0][2] + Row[2][0]) / s;
y = (Row[1][2] + Row[2][1]) / s; y = (Row[1][2] + Row[2][1]) / s;
z = 0.25 * s; z = 0.25 * s;
w = (Row[1][0] - Row[0][1]) / s; w = (Row[1][0] - Row[0][1]) / s;
} }
Orientation.x = x; Orientation.x = x;
Orientation.y = y; Orientation.y = y;
Orientation.z = z; Orientation.z = z;
Orientation.w = w; Orientation.w = w;
return true;
return true;
} }
}//namespace glm }//namespace glm