diff --git a/glm/gtx/intersect.hpp b/glm/gtx/intersect.hpp index 0a27b02c..81050515 100644 --- a/glm/gtx/intersect.hpp +++ b/glm/gtx/intersect.hpp @@ -103,6 +103,24 @@ namespace glm genType & intersectionPosition1, genType & intersectionNormal1, genType & intersectionPosition2 = genType(), genType & intersectionNormal2 = genType()); + //! Compute the intersection of a line and a non-degenerate quadrilateral. + //! From the GLM_GTX_intersect extension + template + GLM_FUNC_DECL bool intersectRayQuad( + genType const & orig, genType const & dir, + genType const & v00, genType const & v10, genType const & v11, genType const & v01, + genType & bilinearCoordinates + ); + + //! Compute the intersection of a line and a non-degenerate quadrilateral. + //! Does not compute the bilinear coordinates of the intersection. + //! From the GLM_GTX_intersect extension + template + GLM_FUNC_DECL bool fastIntersectRayQuad( + genType const & orig, genType const & dir, + genType const & v00, genType const & v10, genType const & v11, genType const & v01 + ); + /// @} }//namespace glm diff --git a/glm/gtx/intersect.inl b/glm/gtx/intersect.inl index 0c1cc935..88664531 100644 --- a/glm/gtx/intersect.inl +++ b/glm/gtx/intersect.inl @@ -214,4 +214,241 @@ namespace glm intersectionNormal2 = (intersectionPoint2 - sphereCenter) / sphereRadius; return true; } + + template + GLM_FUNC_QUALIFIER bool intersectRayQuad + ( + genType const & orig, genType const & dir, + genType const & v00, genType const & v10, genType const & v11, genType const & v01, + genType & bilinearCoordinates + ) + { + // Epsilon to reject parallell lines + typename genType::value_type epsilon = std::numeric_limits::epsilon(); + + // Calculate edges and normal of first triangle + genType e01 = v10 - v00; + genType e03 = v01 - v00; + + genType p = glm::cross(dir, e03); + + typename genType::value_type det = glm::dot(e01, p); + + // Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane. + if(det < epsilon) + return false; + + typename genType::value_type inv_det = typename genType::value_type(1.0f)/det; + + genType s = orig - v00; + + // Calculate the barycentric alpha coordinate of the first triangle + typename genType::value_type alpha = inv_det * glm::dot(s, p); + + // It lies outside the triangle + if(alpha > typename genType::value_type(1.0f)) + return false; + + if(alpha < typename genType::value_type(0.0f)) + return false; + + // Vector perpendicular to T and e01 + genType q = glm::cross(s, e01); + + // Calculate barycentric beta coordinate of the first triangle + typename genType::value_type beta = inv_det * glm::dot(dir, q); + + if(beta > typename genType::value_type(1.0f)) + return false; + + if(beta < typename genType::value_type(0.0f)) + return false; + + bilinearCoordinates.z = inv_det * glm::dot(e03, q); + + if(alpha + beta > typename genType::value_type(1.0f)){ + // Do exactly the same for the second triangle + + genType e23 = v01 - v11; + genType e21 = v10 - v11; + + p = glm::cross(dir, e21); + + det = glm::dot(e23, p); + + if(det < epsilon && det > -epsilon) + return false; + + inv_det = typename genType::value_type(1.0f)/det; + s = orig - v11; + + alpha = inv_det * glm::dot(s, p); + + if(alpha < typename genType::value_type(0.0f)) + return false; + + q = glm::cross(s, e23); + beta = inv_det * glm::dot(dir, q); + + if(beta < typename genType::value_type(0.0f)) + return false; + + // This to support degenerate squares + if(beta + alpha > typename genType::value_type(1.0f)) + return false; + + bilinearCoordinates.z = inv_det * glm::dot(e21, q); + } + + + if(bilinearCoordinates.z < typename genType::value_type(0.0f)) + return false; + + // Compute barycentric coordinates of v11 + genType e02 = v11 - v00; + genType N = glm::cross(e01, e03); + + typename genType::value_type alpha_11, beta_11; + + if(abs(N.x) >= abs(N.y) && abs(N.x) >= abs(N.z)) { + alpha_11 = (e02.y * e03.z - e02.z * e03.y) / N.x; + beta_11 = (e01.y * e02.z - e01.z * e02.y) / N.x; + } else if(abs(N.y) >= abs(N.x) && abs(N.y) >= abs(N.z)) { + alpha_11 = (e02.z * e03.x - e02.x * e03.z) / N.x; + beta_11 = (e01.z * e02.x - e01.x * e02.z) / N.x; + } else { + alpha_11 = (e02.x * e03.y - e02.y * e03.x) / N.z; + beta_11 = (e01.x * e02.y - e01.y * e02.x) / N.z; + } + + // Compute bilinear coordinates of the intersection point + if(abs(alpha_11 - typename genType::value_type(1.0f)) < epsilon) { + bilinearCoordinates.x = alpha; + + if(abs(beta_11 - typename genType::value_type(1.0f)) < epsilon){ + bilinearCoordinates.y = beta; + } else { + bilinearCoordinates.y = beta/(bilinearCoordinates.x * (beta_11 - typename genType::value_type(1.0f)) + typename genType::value_type(1.0f)); + } + + } else if(abs(beta_11 - typename genType::value_type(1.0f)) < epsilon) { + bilinearCoordinates.y = alpha; + bilinearCoordinates.x = alpha/(bilinearCoordinates.y*(alpha_11 - typename genType::value_type(1.0f)) + typename genType::value_type(1.0f)); + } else { + typename genType::value_type a, b, c, discr, q; + + a = -(beta_11 - typename genType::value_type(1.0f)); + b = alpha*(beta_11 - 1) - beta*(alpha_11 - typename genType::value_type(1.0f)) - typename genType::value_type(1.0f); + c = alpha; + + discr = b*b - typename genType::value_type(4.0f)*a*c; + + // Get sign of b + typename genType::value_type sign = (typename genType::value_type(0) < b) - (b < typename genType::value_type(0)); + + q = -(typename genType::value_type(0.5f)) * (b + sign*glm::fastSqrt(discr)); + + bilinearCoordinates.x = q/a; + + if(bilinearCoordinates.x < 0 || bilinearCoordinates.y > 1){ + bilinearCoordinates.x = c/q; + } + + bilinearCoordinates.y = beta/(bilinearCoordinates.x*(beta_11 - 1) + 1); + } + + return true; + } + + template + GLM_FUNC_QUALIFIER bool fastIntersectRayQuad + ( + genType const & orig, genType const & dir, + genType const & v00, genType const & v10, genType const & v11, genType const & v01 + ) + { + // Epsilon to reject parallell lines + typename genType::value_type epsilon = std::numeric_limits::epsilon(); + + // Calculate edges and normal of first triangle + genType e01 = v10 - v00; + genType e03 = v01 - v00; + + genType p = glm::cross(dir, e03); + + typename genType::value_type det = glm::dot(e01, p); + + // Reject rays orthagonal to the normal vector. I.e. rays parallell to the plane. + if(det < epsilon) + return false; + + typename genType::value_type inv_det = typename genType::value_type(1.0f)/det; + + + genType s = orig - v00; + + // Calculate the barycentric alpha coordinate of the first triangle + typename genType::value_type alpha = inv_det * glm::dot(s, p); + + // It lies outside the triangle + if(alpha > typename genType::value_type(1.0f)) + return false; + + if(alpha < typename genType::value_type(0.0f)) + return false; + + // Vector perpendicular to T and e01 + genType q = glm::cross(s, e01); + + // Calculate barycentric beta coordinate of the first triangle + typename genType::value_type beta = inv_det * glm::dot(dir, q); + + if(beta > typename genType::value_type(1.0f)) + return false; + if(beta < typename genType::value_type(0.0f)) + return false; + + typename genType::value_type t = inv_det * glm::dot(e03, q); + + if(alpha + beta > typename genType::value_type(1.0f)){ + // Do exactly the same for the second triangle + + genType e23 = v01 - v11; + genType e21 = v10 - v11; + + p = glm::cross(dir, e21); + + det = glm::dot(e23, p); + + if(det < epsilon) + return false; + + inv_det = typename genType::value_type(1.0f)/det; + s = orig - v11; + + alpha = inv_det * glm::dot(s, p); + + if(alpha < typename genType::value_type(0.0f)) + return false; + + q = glm::cross(s, e23); + beta = inv_det * glm::dot(dir, q); + + if(beta < typename genType::value_type(0.0f)) + return false; + + // This to support degenerate squares + if(beta + alpha > typename genType::value_type(1.0f)) + return false; + + t = inv_det * glm::dot(e21, q); + } + + if(t < typename genType::value_type(0.0f)) + return false; + + return true; + } + + }//namespace glm