Completed EXT_*_integer extensions

This commit is contained in:
Christophe 2019-07-12 18:46:08 +02:00
parent 3288df2f89
commit 3a65b7a628
18 changed files with 455 additions and 359 deletions

View File

@ -15,6 +15,7 @@
#include "../detail/setup.hpp"
#include "../detail/qualifier.hpp"
#include "../detail/_vectorize.hpp"
#include "../detail/type_float.hpp"
#include "../vector_relational.hpp"
#include "../common.hpp"
#include <limits>

View File

@ -159,6 +159,8 @@ namespace detail
template<typename genIUType>
GLM_FUNC_QUALIFIER bool isPowerOfTwo(genIUType Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'isPowerOfTwo' only accept integer inputs");
genIUType const Result = glm::abs(Value);
return !(Result & (Result - 1));
}
@ -166,30 +168,40 @@ namespace detail
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType nextPowerOfTwo(genIUType value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'nextPowerOfTwo' only accept integer inputs");
return detail::compute_ceilPowerOfTwo<1, genIUType, defaultp, std::numeric_limits<genIUType>::is_signed>::call(vec<1, genIUType, defaultp>(value)).x;
}
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType prevPowerOfTwo(genIUType value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'prevPowerOfTwo' only accept integer inputs");
return isPowerOfTwo(value) ? value : static_cast<genIUType>(1) << findMSB(value);
}
template<typename genIUType>
GLM_FUNC_QUALIFIER bool isMultiple(genIUType Value, genIUType Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'isMultiple' only accept integer inputs");
return isMultiple(vec<1, genIUType>(Value), vec<1, genIUType>(Multiple)).x;
}
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType nextMultiple(genIUType Source, genIUType Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'nextMultiple' only accept integer inputs");
return detail::compute_ceilMultiple<std::numeric_limits<genIUType>::is_iec559, std::numeric_limits<genIUType>::is_signed>::call(Source, Multiple);
}
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType prevMultiple(genIUType Source, genIUType Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'prevMultiple' only accept integer inputs");
return detail::compute_floorMultiple<std::numeric_limits<genIUType>::is_iec559, std::numeric_limits<genIUType>::is_signed>::call(Source, Multiple);
}
}//namespace glm

View File

@ -32,7 +32,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<typename genType>
GLM_FUNC_DECL genType next_float(genType x);
GLM_FUNC_DECL genType nextFloat(genType x);
/// Return the previous ULP value(s) before the input value(s).
///
@ -40,7 +40,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<typename genType>
GLM_FUNC_DECL genType prev_float(genType x);
GLM_FUNC_DECL genType prevFloat(genType x);
/// Return the value(s) ULP distance after the input value(s).
///
@ -48,7 +48,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<typename genType>
GLM_FUNC_DECL genType next_float(genType x, int ULPs);
GLM_FUNC_DECL genType nextFloat(genType x, int ULPs);
/// Return the value(s) ULP distance before the input value(s).
///
@ -56,17 +56,17 @@ namespace glm
///
/// @see ext_scalar_ulp
template<typename genType>
GLM_FUNC_DECL genType prev_float(genType x, int ULPs);
GLM_FUNC_DECL genType prevFloat(genType x, int ULPs);
/// Return the distance in the number of ULP between 2 single-precision floating-point scalars.
///
/// @see ext_scalar_ulp
GLM_FUNC_DECL int float_distance(float x, float y);
GLM_FUNC_DECL int floatDistance(float x, float y);
/// Return the distance in the number of ULP between 2 double-precision floating-point scalars.
///
/// @see ext_scalar_ulp
GLM_FUNC_DECL int64 float_distance(double x, double y);
GLM_FUNC_DECL int64 floatDistance(double x, double y);
/// @}
}//namespace glm

View File

@ -189,7 +189,7 @@ namespace detail
namespace glm
{
template<>
GLM_FUNC_QUALIFIER float next_float(float x)
GLM_FUNC_QUALIFIER float nextFloat(float x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<float>::max());
@ -203,7 +203,7 @@ namespace glm
}
template<>
GLM_FUNC_QUALIFIER double next_float(double x)
GLM_FUNC_QUALIFIER double nextFloat(double x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<double>::max());
@ -217,18 +217,18 @@ namespace glm
}
template<typename T>
GLM_FUNC_QUALIFIER T next_float(T x, int ULPs)
GLM_FUNC_QUALIFIER T nextFloat(T x, int ULPs)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'next_float' only accept floating-point input");
assert(ULPs >= 0);
T temp = x;
for(int i = 0; i < ULPs; ++i)
temp = next_float(temp);
temp = nextFloat(temp);
return temp;
}
GLM_FUNC_QUALIFIER float prev_float(float x)
GLM_FUNC_QUALIFIER float prevFloat(float x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<float>::min());
@ -241,7 +241,7 @@ namespace glm
# endif
}
GLM_FUNC_QUALIFIER double prev_float(double x)
GLM_FUNC_QUALIFIER double prevFloat(double x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<double>::min());
@ -255,18 +255,18 @@ namespace glm
}
template<typename T>
GLM_FUNC_QUALIFIER T prev_float(T x, int ULPs)
GLM_FUNC_QUALIFIER T prevFloat(T x, int ULPs)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'prev_float' only accept floating-point input");
assert(ULPs >= 0);
T temp = x;
for(int i = 0; i < ULPs; ++i)
temp = prev_float(temp);
temp = prevFloat(temp);
return temp;
}
GLM_FUNC_QUALIFIER int float_distance(float x, float y)
GLM_FUNC_QUALIFIER int floatDistance(float x, float y)
{
detail::float_t<float> const a(x);
detail::float_t<float> const b(y);
@ -274,7 +274,7 @@ namespace glm
return abs(a.i - b.i);
}
GLM_FUNC_QUALIFIER int64 float_distance(double x, double y)
GLM_FUNC_QUALIFIER int64 floatDistance(double x, double y)
{
detail::float_t<double> const a(x);
detail::float_t<double> const b(y);

View File

@ -5,6 +5,8 @@ namespace glm
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, bool, Q> isPowerOfTwo(vec<L, T, Q> const& Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'isPowerOfTwo' only accept integer inputs");
vec<L, T, Q> const Result(abs(Value));
return equal(Result & (Result - vec<L, T, Q>(1)), vec<L, T, Q>(0));
}
@ -12,48 +14,64 @@ namespace glm
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> nextPowerOfTwo(vec<L, T, Q> const& v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'nextPowerOfTwo' only accept integer inputs");
return detail::compute_ceilPowerOfTwo<L, T, Q, std::numeric_limits<T>::is_signed>::call(v);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prevPowerOfTwo(vec<L, T, Q> const& v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'prevPowerOfTwo' only accept integer inputs");
return detail::functor1<vec, L, T, T, Q>::call(prevPowerOfTwo, v);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, bool, Q> isMultiple(vec<L, T, Q> const& Value, T Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'isMultiple' only accept integer inputs");
return (Value % Multiple) == vec<L, T, Q>(0);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, bool, Q> isMultiple(vec<L, T, Q> const& Value, vec<L, T, Q> const& Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'isMultiple' only accept integer inputs");
return (Value % Multiple) == vec<L, T, Q>(0);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> nextMultiple(vec<L, T, Q> const& Source, T Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'nextMultiple' only accept integer inputs");
return detail::functor2<vec, L, T, Q>::call(nextMultiple, Source, vec<L, T, Q>(Multiple));
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> nextMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'nextMultiple' only accept integer inputs");
return detail::functor2<vec, L, T, Q>::call(nextMultiple, Source, Multiple);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prevMultiple(vec<L, T, Q> const& Source, T Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'prevMultiple' only accept integer inputs");
return detail::functor2<vec, L, T, Q>::call(prevMultiple, Source, vec<L, T, Q>(Multiple));
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prevMultiple(vec<L, T, Q> const& Source, vec<L, T, Q> const& Multiple)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'prevMultiple' only accept integer inputs");
return detail::functor2<vec, L, T, Q>::call(prevMultiple, Source, Multiple);
}
}//namespace glm

View File

@ -33,7 +33,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> next_float(vec<L, T, Q> const& x);
GLM_FUNC_DECL vec<L, T, Q> nextFloat(vec<L, T, Q> const& x);
/// Return the value(s) ULP distance after the input value(s).
///
@ -43,7 +43,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> next_float(vec<L, T, Q> const& x, int ULPs);
GLM_FUNC_DECL vec<L, T, Q> nextFloat(vec<L, T, Q> const& x, int ULPs);
/// Return the value(s) ULP distance after the input value(s).
///
@ -53,7 +53,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> next_float(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs);
GLM_FUNC_DECL vec<L, T, Q> nextFloat(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs);
/// Return the previous ULP value(s) before the input value(s).
///
@ -63,7 +63,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> prev_float(vec<L, T, Q> const& x);
GLM_FUNC_DECL vec<L, T, Q> prevFloat(vec<L, T, Q> const& x);
/// Return the value(s) ULP distance before the input value(s).
///
@ -73,7 +73,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> prev_float(vec<L, T, Q> const& x, int ULPs);
GLM_FUNC_DECL vec<L, T, Q> prevFloat(vec<L, T, Q> const& x, int ULPs);
/// Return the value(s) ULP distance before the input value(s).
///
@ -83,7 +83,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> prev_float(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs);
GLM_FUNC_DECL vec<L, T, Q> prevFloat(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs);
/// Return the distance in the number of ULP between 2 single-precision floating-point scalars.
///
@ -92,7 +92,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, int, Q> float_distance(vec<L, float, Q> const& x, vec<L, float, Q> const& y);
GLM_FUNC_DECL vec<L, int, Q> floatDistance(vec<L, float, Q> const& x, vec<L, float, Q> const& y);
/// Return the distance in the number of ULP between 2 double-precision floating-point scalars.
///
@ -101,7 +101,7 @@ namespace glm
///
/// @see ext_scalar_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, int64, Q> float_distance(vec<L, double, Q> const& x, vec<L, double, Q> const& y);
GLM_FUNC_DECL vec<L, int64, Q> floatDistance(vec<L, double, Q> const& x, vec<L, double, Q> const& y);
/// @}
}//namespace glm

View File

@ -1,74 +1,74 @@
namespace glm
{
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> next_float(vec<L, T, Q> const& x)
GLM_FUNC_QUALIFIER vec<L, T, Q> nextFloat(vec<L, T, Q> const& x)
{
vec<L, T, Q> Result;
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = next_float(x[i]);
Result[i] = nextFloat(x[i]);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> next_float(vec<L, T, Q> const& x, int ULPs)
GLM_FUNC_QUALIFIER vec<L, T, Q> nextFloat(vec<L, T, Q> const& x, int ULPs)
{
vec<L, T, Q> Result;
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = next_float(x[i], ULPs);
Result[i] = nextFloat(x[i], ULPs);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> next_float(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs)
GLM_FUNC_QUALIFIER vec<L, T, Q> nextFloat(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs)
{
vec<L, T, Q> Result;
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = next_float(x[i], ULPs[i]);
Result[i] = nextFloat(x[i], ULPs[i]);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prev_float(vec<L, T, Q> const& x)
GLM_FUNC_QUALIFIER vec<L, T, Q> prevFloat(vec<L, T, Q> const& x)
{
vec<L, T, Q> Result;
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = prev_float(x[i]);
Result[i] = prevFloat(x[i]);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prev_float(vec<L, T, Q> const& x, int ULPs)
GLM_FUNC_QUALIFIER vec<L, T, Q> prevFloat(vec<L, T, Q> const& x, int ULPs)
{
vec<L, T, Q> Result;
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = prev_float(x[i], ULPs);
Result[i] = prevFloat(x[i], ULPs);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prev_float(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs)
GLM_FUNC_QUALIFIER vec<L, T, Q> prevFloat(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs)
{
vec<L, T, Q> Result;
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = prev_float(x[i], ULPs[i]);
Result[i] = prevFloat(x[i], ULPs[i]);
return Result;
}
template<length_t L, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, int, Q> float_distance(vec<L, float, Q> const& x, vec<L, float, Q> const& y)
GLM_FUNC_QUALIFIER vec<L, int, Q> floatDistance(vec<L, float, Q> const& x, vec<L, float, Q> const& y)
{
vec<L, int, Q> Result;
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = float_distance(x[i], y[i]);
Result[i] = floatDistance(x[i], y[i]);
return Result;
}
template<length_t L, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, int64, Q> float_distance(vec<L, double, Q> const& x, vec<L, double, Q> const& y)
GLM_FUNC_QUALIFIER vec<L, int64, Q> floatDistance(vec<L, double, Q> const& x, vec<L, double, Q> const& y)
{
vec<L, int64, Q> Result;
for(length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = float_distance(x[i], y[i]);
Result[i] = floatDistance(x[i], y[i]);
return Result;
}
}//namespace glm

View File

@ -30,7 +30,7 @@ namespace glm
/// @addtogroup gtc_integer
/// @{
/// Returns the log2 of x for integer values. Can be reliably using to compute mipmap count from the texture size.
/// Returns the log2 of x for integer values. Usefull to compute mipmap count from the texture size.
/// @see gtc_integer
template<typename genIUType>
GLM_FUNC_DECL genIUType log2(genIUType x);

View File

@ -1,230 +1,10 @@
/// @ref gtc_round
#include "../integer.hpp"
#include "../ext/vector_integer.hpp"
namespace glm{
namespace detail
namespace glm
{
template<length_t L, typename T, qualifier Q, bool compute = false>
struct compute_ceilShift
{
GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& v, T)
{
return v;
}
};
template<length_t L, typename T, qualifier Q>
struct compute_ceilShift<L, T, Q, true>
{
GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& v, T Shift)
{
return v | (v >> Shift);
}
};
template<length_t L, typename T, qualifier Q, bool isSigned = true>
struct compute_ceilPowerOfTwo
{
GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vec<L, T, Q> const Sign(sign(x));
vec<L, T, Q> v(abs(x));
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<L, T, Q, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<L, T, Q, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<L, T, Q, sizeof(T) >= 8>::call(v, 32);
return (v + static_cast<T>(1)) * Sign;
}
};
template<length_t L, typename T, qualifier Q>
struct compute_ceilPowerOfTwo<L, T, Q, false>
{
GLM_FUNC_QUALIFIER static vec<L, T, Q> call(vec<L, T, Q> const& x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vec<L, T, Q> v(x);
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<L, T, Q, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<L, T, Q, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<L, T, Q, sizeof(T) >= 8>::call(v, 32);
return v + static_cast<T>(1);
}
};
template<bool is_float, bool is_signed>
struct compute_ceilMultiple{};
template<>
struct compute_ceilMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
return Source + (Multiple - std::fmod(Source, Multiple));
else
return Source + std::fmod(-Source, Multiple);
}
};
template<>
struct compute_ceilMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
};
template<>
struct compute_ceilMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
else
return Source + (-Source % Multiple);
}
};
template<bool is_float, bool is_signed>
struct compute_floorMultiple{};
template<>
struct compute_floorMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
return Source - std::fmod(Source, Multiple) - Multiple;
}
};
template<>
struct compute_floorMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<>
struct compute_floorMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<bool is_float, bool is_signed>
struct compute_roundMultiple{};
template<>
struct compute_roundMultiple<true, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
{
genType Tmp = Source + genType(1);
return Tmp - std::fmod(Tmp, Multiple) - Multiple;
}
}
};
template<>
struct compute_roundMultiple<false, false>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template<>
struct compute_roundMultiple<false, true>
{
template<typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
}//namespace detail
////////////////
// isPowerOfTwo
template<typename genType>
GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value)
{
genType const Result = glm::abs(Value);
return !(Result & (Result - 1));
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, bool, Q> isPowerOfTwo(vec<L, T, Q> const& Value)
{
vec<L, T, Q> const Result(abs(Value));
return equal(Result & (Result - 1), vec<L, T, Q>(0));
}
//////////////////
// ceilPowerOfTwo
@ -275,27 +55,6 @@ namespace detail
return detail::functor1<vec, L, T, T, Q>::call(roundPowerOfTwo, v);
}
////////////////
// isMultiple
template<typename genType>
GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple)
{
return isMultiple(vec<1, genType>(Value), vec<1, genType>(Multiple)).x;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, bool, Q> isMultiple(vec<L, T, Q> const& Value, T Multiple)
{
return (Value % Multiple) == vec<L, T, Q>(0);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, bool, Q> isMultiple(vec<L, T, Q> const& Value, vec<L, T, Q> const& Multiple)
{
return (Value % Multiple) == vec<L, T, Q>(0);
}
//////////////////////
// ceilMultiple

View File

@ -15,10 +15,138 @@
#pragma once
// Dependencies
#include "../ext/scalar_ulp.hpp"
#include "../ext/vector_ulp.hpp"
#include "../detail/setup.hpp"
#include "../detail/qualifier.hpp"
#include "../detail/_vectorize.hpp"
#include "../ext/scalar_int_sized.hpp"
#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
# pragma message("GLM: GLM_GTC_ulp extension included")
#endif
namespace glm
{
/// Return the next ULP value(s) after the input value(s).
///
/// @tparam genType A floating-point scalar type.
///
/// @see gtc_ulp
template<typename genType>
GLM_FUNC_DECL genType next_float(genType x);
/// Return the previous ULP value(s) before the input value(s).
///
/// @tparam genType A floating-point scalar type.
///
/// @see gtc_ulp
template<typename genType>
GLM_FUNC_DECL genType prev_float(genType x);
/// Return the value(s) ULP distance after the input value(s).
///
/// @tparam genType A floating-point scalar type.
///
/// @see gtc_ulp
template<typename genType>
GLM_FUNC_DECL genType next_float(genType x, int ULPs);
/// Return the value(s) ULP distance before the input value(s).
///
/// @tparam genType A floating-point scalar type.
///
/// @see gtc_ulp
template<typename genType>
GLM_FUNC_DECL genType prev_float(genType x, int ULPs);
/// Return the distance in the number of ULP between 2 single-precision floating-point scalars.
///
/// @see gtc_ulp
GLM_FUNC_DECL int float_distance(float x, float y);
/// Return the distance in the number of ULP between 2 double-precision floating-point scalars.
///
/// @see gtc_ulp
GLM_FUNC_DECL int64 float_distance(double x, double y);
/// Return the next ULP value(s) after the input value(s).
///
/// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector
/// @tparam T Floating-point
/// @tparam Q Value from qualifier enum
///
/// @see gtc_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> next_float(vec<L, T, Q> const& x);
/// Return the value(s) ULP distance after the input value(s).
///
/// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector
/// @tparam T Floating-point
/// @tparam Q Value from qualifier enum
///
/// @see gtc_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> next_float(vec<L, T, Q> const& x, int ULPs);
/// Return the value(s) ULP distance after the input value(s).
///
/// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector
/// @tparam T Floating-point
/// @tparam Q Value from qualifier enum
///
/// @see gtc_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> next_float(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs);
/// Return the previous ULP value(s) before the input value(s).
///
/// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector
/// @tparam T Floating-point
/// @tparam Q Value from qualifier enum
///
/// @see gtc_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> prev_float(vec<L, T, Q> const& x);
/// Return the value(s) ULP distance before the input value(s).
///
/// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector
/// @tparam T Floating-point
/// @tparam Q Value from qualifier enum
///
/// @see gtc_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> prev_float(vec<L, T, Q> const& x, int ULPs);
/// Return the value(s) ULP distance before the input value(s).
///
/// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector
/// @tparam T Floating-point
/// @tparam Q Value from qualifier enum
///
/// @see gtc_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, T, Q> prev_float(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs);
/// Return the distance in the number of ULP between 2 single-precision floating-point scalars.
///
/// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector
/// @tparam Q Value from qualifier enum
///
/// @see gtc_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, int, Q> float_distance(vec<L, float, Q> const& x, vec<L, float, Q> const& y);
/// Return the distance in the number of ULP between 2 double-precision floating-point scalars.
///
/// @tparam L Integer between 1 and 4 included that qualify the dimension of the vector
/// @tparam Q Value from qualifier enum
///
/// @see gtc_ulp
template<length_t L, typename T, qualifier Q>
GLM_FUNC_DECL vec<L, int64, Q> float_distance(vec<L, double, Q> const& x, vec<L, double, Q> const& y);
/// @}
}//namespace glm
#include "ulp.inl"

View File

@ -1,3 +1,174 @@
/// @ref gtc_ulp
///
#include "../ext/scalar_integer.hpp"
#include "../ext/vector_integer.hpp"
namespace glm
{
template<>
GLM_FUNC_QUALIFIER float next_float(float x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<float>::max());
# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
return detail::nextafterf(x, FLT_MAX);
# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return __builtin_nextafterf(x, FLT_MAX);
# else
return nextafterf(x, FLT_MAX);
# endif
}
template<>
GLM_FUNC_QUALIFIER double next_float(double x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<double>::max());
# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
return detail::nextafter(x, std::numeric_limits<double>::max());
# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return __builtin_nextafter(x, DBL_MAX);
# else
return nextafter(x, DBL_MAX);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER T next_float(T x, int ULPs)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'next_float' only accept floating-point input");
assert(ULPs >= 0);
T temp = x;
for (int i = 0; i < ULPs; ++i)
temp = next_float(temp);
return temp;
}
GLM_FUNC_QUALIFIER float prev_float(float x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<float>::min());
# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
return detail::nextafterf(x, FLT_MIN);
# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return __builtin_nextafterf(x, FLT_MIN);
# else
return nextafterf(x, FLT_MIN);
# endif
}
GLM_FUNC_QUALIFIER double prev_float(double x)
{
# if GLM_HAS_CXX11_STL
return std::nextafter(x, std::numeric_limits<double>::min());
# elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS)))
return _nextafter(x, DBL_MIN);
# elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return __builtin_nextafter(x, DBL_MIN);
# else
return nextafter(x, DBL_MIN);
# endif
}
template<typename T>
GLM_FUNC_QUALIFIER T prev_float(T x, int ULPs)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'prev_float' only accept floating-point input");
assert(ULPs >= 0);
T temp = x;
for (int i = 0; i < ULPs; ++i)
temp = prev_float(temp);
return temp;
}
GLM_FUNC_QUALIFIER int float_distance(float x, float y)
{
detail::float_t<float> const a(x);
detail::float_t<float> const b(y);
return abs(a.i - b.i);
}
GLM_FUNC_QUALIFIER int64 float_distance(double x, double y)
{
detail::float_t<double> const a(x);
detail::float_t<double> const b(y);
return abs(a.i - b.i);
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> next_float(vec<L, T, Q> const& x)
{
vec<L, T, Q> Result;
for (length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = next_float(x[i]);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> next_float(vec<L, T, Q> const& x, int ULPs)
{
vec<L, T, Q> Result;
for (length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = next_float(x[i], ULPs);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> next_float(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs)
{
vec<L, T, Q> Result;
for (length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = next_float(x[i], ULPs[i]);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prev_float(vec<L, T, Q> const& x)
{
vec<L, T, Q> Result;
for (length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = prev_float(x[i]);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prev_float(vec<L, T, Q> const& x, int ULPs)
{
vec<L, T, Q> Result;
for (length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = prev_float(x[i], ULPs);
return Result;
}
template<length_t L, typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, T, Q> prev_float(vec<L, T, Q> const& x, vec<L, int, Q> const& ULPs)
{
vec<L, T, Q> Result;
for (length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = prev_float(x[i], ULPs[i]);
return Result;
}
template<length_t L, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, int, Q> float_distance(vec<L, float, Q> const& x, vec<L, float, Q> const& y)
{
vec<L, int, Q> Result;
for (length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = float_distance(x[i], y[i]);
return Result;
}
template<length_t L, qualifier Q>
GLM_FUNC_QUALIFIER vec<L, int64, Q> float_distance(vec<L, double, Q> const& x, vec<L, double, Q> const& y)
{
vec<L, int64, Q> Result;
for (length_t i = 0, n = Result.length(); i < n; ++i)
Result[i] = float_distance(x[i], y[i]);
return Result;
}
}//namespace glm

View File

@ -54,6 +54,10 @@ glm::mat4 camera(float Translate, glm::vec2 const& Rotate)
## Release notes
### [GLM 0.9.9.6](https://github.com/g-truc/glm/tree/master)
#### Features:
- Added EXT_scalar_integer extension with power of two and multiple scalar functions
- Added EXT_vector_integer extension with power of two and multiple vector functions
#### Improvements:
- Added SYCL support #914
- Added Visual C++ 2019 detection
@ -65,6 +69,7 @@ glm::mat4 camera(float Translate, glm::vec2 const& Rotate)
- Fixed .natvis as structs renamed #915
- Fixed ldexp and frexp declaration #895
- Fixed missing const to quaternion conversion operators #890
- Fixed EXT_scalar_ulp and EXT_vector_ulp API coding style
### [GLM 0.9.9.5](https://github.com/g-truc/glm/releases/tag/0.9.9.5) - 2019-04-01
#### Fixes:

View File

@ -23,7 +23,7 @@
#include <glm/ext/vector_float2.hpp>
#include <glm/ext/vector_float3.hpp>
#include <glm/ext/vector_float4.hpp>
#include <glm/gtc/ulp.hpp>
#include <glm/ext/scalar_ulp.hpp>
template <typename matType, typename vecType>
static int test_equal()
@ -70,16 +70,16 @@ static int test_equal_ulps()
int Error = 0;
T const ULP1Plus = glm::next_float(One);
T const ULP1Plus = glm::nextFloat(One);
Error += glm::all(glm::equal(Ones, mat4(ULP1Plus), 1)) ? 0 : 1;
T const ULP2Plus = glm::next_float(ULP1Plus);
T const ULP2Plus = glm::nextFloat(ULP1Plus);
Error += !glm::all(glm::equal(Ones, mat4(ULP2Plus), 1)) ? 0 : 1;
T const ULP1Minus = glm::prev_float(One);
T const ULP1Minus = glm::prevFloat(One);
Error += glm::all(glm::equal(Ones, mat4(ULP1Minus), 1)) ? 0 : 1;
T const ULP2Minus = glm::prev_float(ULP1Minus);
T const ULP2Minus = glm::prevFloat(ULP1Minus);
Error += !glm::all(glm::equal(Ones, mat4(ULP2Minus), 1)) ? 0 : 1;
return Error;
@ -95,16 +95,16 @@ static int test_notEqual_ulps()
int Error = 0;
T const ULP1Plus = glm::next_float(One);
T const ULP1Plus = glm::nextFloat(One);
Error += !glm::all(glm::notEqual(Ones, mat4(ULP1Plus), 1)) ? 0 : 1;
T const ULP2Plus = glm::next_float(ULP1Plus);
T const ULP2Plus = glm::nextFloat(ULP1Plus);
Error += glm::all(glm::notEqual(Ones, mat4(ULP2Plus), 1)) ? 0 : 1;
T const ULP1Minus = glm::prev_float(One);
T const ULP1Minus = glm::prevFloat(One);
Error += !glm::all(glm::notEqual(Ones, mat4(ULP1Minus), 1)) ? 0 : 1;
T const ULP2Minus = glm::prev_float(ULP1Minus);
T const ULP2Minus = glm::prevFloat(ULP1Minus);
Error += glm::all(glm::notEqual(Ones, mat4(ULP2Minus), 1)) ? 0 : 1;
return Error;

View File

@ -1,5 +1,6 @@
#include <glm/ext/scalar_relational.hpp>
#include <glm/gtc/ulp.hpp>
#include <glm/ext/scalar_integer.hpp>
#include <glm/ext/scalar_ulp.hpp>
#include <cmath>
static int test_equal_epsilon()
@ -36,16 +37,16 @@ static int test_equal_ulps()
{
int Error = 0;
float const ULP1Plus = glm::next_float(1.0f);
float const ULP1Plus = glm::nextFloat(1.0f);
Error += glm::equal(1.0f, ULP1Plus, 1) ? 0 : 1;
float const ULP2Plus = glm::next_float(ULP1Plus);
float const ULP2Plus = glm::nextFloat(ULP1Plus);
Error += !glm::equal(1.0f, ULP2Plus, 1) ? 0 : 1;
float const ULP1Minus = glm::prev_float(1.0f);
float const ULP1Minus = glm::prevFloat(1.0f);
Error += glm::equal(1.0f, ULP1Minus, 1) ? 0 : 1;
float const ULP2Minus = glm::prev_float(ULP1Minus);
float const ULP2Minus = glm::prevFloat(ULP1Minus);
Error += !glm::equal(1.0f, ULP2Minus, 1) ? 0 : 1;
return Error;
@ -55,16 +56,16 @@ static int test_notEqual_ulps()
{
int Error = 0;
float const ULP1Plus = glm::next_float(1.0f);
float const ULP1Plus = glm::nextFloat(1.0f);
Error += !glm::notEqual(1.0f, ULP1Plus, 1) ? 0 : 1;
float const ULP2Plus = glm::next_float(ULP1Plus);
float const ULP2Plus = glm::nextFloat(ULP1Plus);
Error += glm::notEqual(1.0f, ULP2Plus, 1) ? 0 : 1;
float const ULP1Minus = glm::prev_float(1.0f);
float const ULP1Minus = glm::prevFloat(1.0f);
Error += !glm::notEqual(1.0f, ULP1Minus, 1) ? 0 : 1;
float const ULP2Minus = glm::prev_float(ULP1Minus);
float const ULP2Minus = glm::prevFloat(ULP1Minus);
Error += glm::notEqual(1.0f, ULP2Minus, 1) ? 0 : 1;
return Error;

View File

@ -7,14 +7,14 @@ static int test_ulp_float_dist()
float A = 1.0f;
float B = glm::next_float(A);
float B = glm::nextFloat(A);
Error += glm::notEqual(A, B, 0) ? 0 : 1;
float C = glm::prev_float(B);
float C = glm::prevFloat(B);
Error += glm::equal(A, C, 0) ? 0 : 1;
int D = glm::float_distance(A, B);
int D = glm::floatDistance(A, B);
Error += D == 1 ? 0 : 1;
int E = glm::float_distance(A, C);
int E = glm::floatDistance(A, C);
Error += E == 0 ? 0 : 1;
return Error;
@ -28,14 +28,14 @@ static int test_ulp_float_step()
for(int i = 10; i < 1000; i *= 10)
{
float B = glm::next_float(A, i);
float B = glm::nextFloat(A, i);
Error += glm::notEqual(A, B, 0) ? 0 : 1;
float C = glm::prev_float(B, i);
float C = glm::prevFloat(B, i);
Error += glm::equal(A, C, 0) ? 0 : 1;
int D = glm::float_distance(A, B);
int D = glm::floatDistance(A, B);
Error += D == i ? 0 : 1;
int E = glm::float_distance(A, C);
int E = glm::floatDistance(A, C);
Error += E == 0 ? 0 : 1;
}
@ -48,14 +48,14 @@ static int test_ulp_double_dist()
double A = 1.0;
double B = glm::next_float(A);
double B = glm::nextFloat(A);
Error += glm::notEqual(A, B, 0) ? 0 : 1;
double C = glm::prev_float(B);
double C = glm::prevFloat(B);
Error += glm::equal(A, C, 0) ? 0 : 1;
glm::int64 const D = glm::float_distance(A, B);
glm::int64 const D = glm::floatDistance(A, B);
Error += D == 1 ? 0 : 1;
glm::int64 const E = glm::float_distance(A, C);
glm::int64 const E = glm::floatDistance(A, C);
Error += E == 0 ? 0 : 1;
return Error;
@ -69,14 +69,14 @@ static int test_ulp_double_step()
for(int i = 10; i < 1000; i *= 10)
{
double B = glm::next_float(A, i);
double B = glm::nextFloat(A, i);
Error += glm::notEqual(A, B, 0) ? 0 : 1;
double C = glm::prev_float(B, i);
double C = glm::prevFloat(B, i);
Error += glm::equal(A, C, 0) ? 0 : 1;
glm::int64 const D = glm::float_distance(A, B);
glm::int64 const D = glm::floatDistance(A, B);
Error += D == i ? 0 : 1;
glm::int64 const E = glm::float_distance(A, C);
glm::int64 const E = glm::floatDistance(A, C);
Error += E == 0 ? 0 : 1;
}

View File

@ -15,7 +15,7 @@
#include <glm/ext/vector_double3_precision.hpp>
#include <glm/ext/vector_double4.hpp>
#include <glm/ext/vector_double4_precision.hpp>
#include <glm/gtc/ulp.hpp>
#include <glm/ext/vector_ulp.hpp>
template <typename vecType>
static int test_equal()
@ -79,16 +79,16 @@ static int test_equal_ulps()
int Error = 0;
T const ULP1Plus = glm::next_float(One);
T const ULP1Plus = glm::nextFloat(One);
Error += glm::all(glm::equal(Ones, vec4(ULP1Plus), 1)) ? 0 : 1;
T const ULP2Plus = glm::next_float(ULP1Plus);
T const ULP2Plus = glm::nextFloat(ULP1Plus);
Error += !glm::all(glm::equal(Ones, vec4(ULP2Plus), 1)) ? 0 : 1;
T const ULP1Minus = glm::prev_float(One);
T const ULP1Minus = glm::prevFloat(One);
Error += glm::all(glm::equal(Ones, vec4(ULP1Minus), 1)) ? 0 : 1;
T const ULP2Minus = glm::prev_float(ULP1Minus);
T const ULP2Minus = glm::prevFloat(ULP1Minus);
Error += !glm::all(glm::equal(Ones, vec4(ULP2Minus), 1)) ? 0 : 1;
return Error;
@ -104,16 +104,16 @@ static int test_notEqual_ulps()
int Error = 0;
T const ULP1Plus = glm::next_float(One);
T const ULP1Plus = glm::nextFloat(One);
Error += !glm::all(glm::notEqual(Ones, vec4(ULP1Plus), 1)) ? 0 : 1;
T const ULP2Plus = glm::next_float(ULP1Plus);
T const ULP2Plus = glm::nextFloat(ULP1Plus);
Error += glm::all(glm::notEqual(Ones, vec4(ULP2Plus), 1)) ? 0 : 1;
T const ULP1Minus = glm::prev_float(One);
T const ULP1Minus = glm::prevFloat(One);
Error += !glm::all(glm::notEqual(Ones, vec4(ULP1Minus), 1)) ? 0 : 1;
T const ULP2Minus = glm::prev_float(ULP1Minus);
T const ULP2Minus = glm::prevFloat(ULP1Minus);
Error += glm::all(glm::notEqual(Ones, vec4(ULP2Minus), 1)) ? 0 : 1;
return Error;

View File

@ -10,14 +10,14 @@ static int test_ulp_float_dist()
glm::vec4 const A(1.0f);
glm::vec4 const B = glm::next_float(A);
glm::vec4 const B = glm::nextFloat(A);
Error += glm::any(glm::notEqual(A, B, 0)) ? 0 : 1;
glm::vec4 const C = glm::prev_float(B);
glm::vec4 const C = glm::prevFloat(B);
Error += glm::all(glm::equal(A, C, 0)) ? 0 : 1;
glm::ivec4 const D = glm::float_distance(A, B);
glm::ivec4 const D = glm::floatDistance(A, B);
Error += D == glm::ivec4(1) ? 0 : 1;
glm::ivec4 const E = glm::float_distance(A, C);
glm::ivec4 const E = glm::floatDistance(A, C);
Error += E == glm::ivec4(0) ? 0 : 1;
return Error;
@ -31,14 +31,14 @@ static int test_ulp_float_step()
for(int i = 10; i < 1000; i *= 10)
{
glm::vec4 const B = glm::next_float(A, i);
glm::vec4 const B = glm::nextFloat(A, i);
Error += glm::any(glm::notEqual(A, B, 0)) ? 0 : 1;
glm::vec4 const C = glm::prev_float(B, i);
glm::vec4 const C = glm::prevFloat(B, i);
Error += glm::all(glm::equal(A, C, 0)) ? 0 : 1;
glm::ivec4 const D = glm::float_distance(A, B);
glm::ivec4 const D = glm::floatDistance(A, B);
Error += D == glm::ivec4(i) ? 0 : 1;
glm::ivec4 const E = glm::float_distance(A, C);
glm::ivec4 const E = glm::floatDistance(A, C);
Error += E == glm::ivec4(0) ? 0 : 1;
}
@ -51,14 +51,14 @@ static int test_ulp_double_dist()
glm::dvec4 const A(1.0);
glm::dvec4 const B = glm::next_float(A);
glm::dvec4 const B = glm::nextFloat(A);
Error += glm::any(glm::notEqual(A, B, 0)) ? 0 : 1;
glm::dvec4 const C = glm::prev_float(B);
glm::dvec4 const C = glm::prevFloat(B);
Error += glm::all(glm::equal(A, C, 0)) ? 0 : 1;
glm::ivec4 const D(glm::float_distance(A, B));
glm::ivec4 const D(glm::floatDistance(A, B));
Error += D == glm::ivec4(1) ? 0 : 1;
glm::ivec4 const E = glm::float_distance(A, C);
glm::ivec4 const E = glm::floatDistance(A, C);
Error += E == glm::ivec4(0) ? 0 : 1;
return Error;
@ -72,14 +72,14 @@ static int test_ulp_double_step()
for(int i = 10; i < 1000; i *= 10)
{
glm::dvec4 const B = glm::next_float(A, i);
glm::dvec4 const B = glm::nextFloat(A, i);
Error += glm::any(glm::notEqual(A, B, 0)) ? 0 : 1;
glm::dvec4 const C = glm::prev_float(B, i);
glm::dvec4 const C = glm::prevFloat(B, i);
Error += glm::all(glm::equal(A, C, 0)) ? 0 : 1;
glm::ivec4 const D(glm::float_distance(A, B));
glm::ivec4 const D(glm::floatDistance(A, B));
Error += D == glm::ivec4(i) ? 0 : 1;
glm::ivec4 const E(glm::float_distance(A, C));
glm::ivec4 const E(glm::floatDistance(A, C));
Error += E == glm::ivec4(0) ? 0 : 1;
}

View File

@ -1,10 +1,11 @@
#include <glm/ext/scalar_ulp.hpp>
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtc/type_precision.hpp>
#include <glm/gtx/fast_trigonometry.hpp>
#include <glm/gtx/integer.hpp>
#include <glm/gtx/common.hpp>
#include <glm/gtc/constants.hpp>
#include <glm/gtc/ulp.hpp>
#include <glm/gtc/vec1.hpp>
#include <glm/trigonometric.hpp>
#include <cmath>
@ -21,11 +22,11 @@ namespace fastCos
float result = 0.f;
const std::clock_t timestamp1 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::fastCos(i);
const std::clock_t timestamp2 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::cos(i);
const std::clock_t timestamp3 = std::clock();
@ -55,11 +56,11 @@ namespace fastSin
float result = 0.f;
const std::clock_t timestamp1 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::fastSin(i);
const std::clock_t timestamp2 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::sin(i);
const std::clock_t timestamp3 = std::clock();
@ -81,11 +82,11 @@ namespace fastTan
float result = 0.f;
const std::clock_t timestamp1 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::fastTan(i);
const std::clock_t timestamp2 = std::clock();
for (float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for (float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::tan(i);
const std::clock_t timestamp3 = std::clock();
@ -107,11 +108,11 @@ namespace fastAcos
float result = 0.f;
const std::clock_t timestamp1 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::fastAcos(i);
const std::clock_t timestamp2 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::acos(i);
const std::clock_t timestamp3 = std::clock();
@ -133,10 +134,10 @@ namespace fastAsin
const float end = glm::pi<float>();
float result = 0.f;
const std::clock_t timestamp1 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::fastAsin(i);
const std::clock_t timestamp2 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::asin(i);
const std::clock_t timestamp3 = std::clock();
const std::clock_t time_fast = timestamp2 - timestamp1;
@ -156,10 +157,10 @@ namespace fastAtan
const float end = glm::pi<float>();
float result = 0.f;
const std::clock_t timestamp1 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::fastAtan(i);
const std::clock_t timestamp2 = std::clock();
for(float i = begin; i < end; i = NextFloat ? glm::next_float(i) : i += 0.1f)
for(float i = begin; i < end; i = NextFloat ? glm::nextFloat(i) : i += 0.1f)
result = glm::atan(i);
const std::clock_t timestamp3 = std::clock();
const std::clock_t time_fast = timestamp2 - timestamp1;